Supporting Information

Non-multimacrocyclic heteroditopic receptor that cooperatively binds and effectively extracts KAcO salt

Maciej Zakrzewski, Natalia Kwietniewska, Wojciech Walczak, Piotr Piątek*

Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

Table of Contents:

- 1. Previous results
- Synthetic route to receptors 1 and 2 with experimental procedures and NMR spectra
- 3. The calculated structure of 1•KCl complex
- 4. UV-Vis titration experiments
- 5. NMR titration experiments
- 6. Extraction studies
- 7. References

1. Previous results

	TBA⁺	NaClO ₄
Cl-	1 700	5 100
K _M /K _{TBACI}	-	3.0

Table 1. The association constants (K_a) values (298 K, CH_3CN solution) for interactions of **S4** with chloride anion in the absence and presence of one molar equivalent of sodium cation

2. Synthetic route to receptors 1 and 2 with experimental procedures and NMR spectra

2-Hydroxymethyl-18-crown-6 ester of Boc-L-valine

The solution of Boc-L-valine 0.15 g (0.69 mmol), 0.3 g (0.79 mmol) HATU, 0.19 g (0.25 mL, 1.4 mmol) DIPEA and catalytic amount of DMAP, dissolve in 2 mL of dry DMF, was stirred under argon atmosphere in room temerature for one hour. Then the solution of 0.2 g (0.68 mmol) 2-hydroxymethyl-18-crown-6 in 2 mL of dry DMF was added. The reaction mixture was stirred at room temerature for 24h. After this time the solvent was evaporated under reduce pressure, the oil resiude was dissolve in CHCl₃ and washed with amonium chloride and water. The organic phase was dryed over MgSO₄, filtered and the solvent was eveporated. The oil was purified by column chromatography on silica gel with 50% hexane/ethyl acetate then ethyl acetate as eluents to give 0.18 g (0.37 mmol) of product **3** as oil in 54% of yield. R_f (10% MeOH/DCM) = 0.3 ¹H NMR (300 MHz, CDCl₃, δ_{ppm}): 5.01 (d, J=9 Hz, 1H), 4.14 (m, 3H), 3.69 (m, 3H), 3.62 (m, 22H), 2.02 (m, 1H), 1.33 (s, 9H), 0.85 (d, J=6Hz, 3H), 0.78 (d, J=6Hz, 3H). ¹³C NMR (75 MHz, CDCl₃, δ_{ppm}): 172.07, 155.49, 79.47, 76.78, 70.86, 70.82, 70.77, 70.72, 70.62, 70.56, 70.51, 69.78, 69.67, 64.63, 64.12, 58.42, 31.18, 28.18, 18.87, 17.43.

Figure 1. ¹H NMR of compound 3

Figure 2. ¹³C NMR of compound 3

Trifluoroacetic acid salt of 2-Hydroxymethyl-18-crown-6 ester of L-valine

The solution of **3** 0.18 g (0.37mmol) in 2 mL DCM was cooled to 0 °C using dry ice/water bath. To this solution 1.5 mL of trifluoroacetic acid was added. Then cooling bath was removed and the reaction mixture was stirred at room temperature for 1h. The full conversion of the substrate was confirmed by TLC analysis in 10% MeOH/DCM. Then the volatiles were evaporated and the residue was dried under high vacuum to give desired compound in form of TFA salts. These compounds were used in the next step without further purification.

Receptor 1

To the solution of **4** 0.19 g (0.37 mmol) in 5 mL of DCM, 0.6 mL (0.83 g, 4 mmol, 10 eq) of triethylamine was added. Then solution of 0.067 g (0.41 mmol, 1.1 eq) 4-nitrophenyl isothiocyanate in 2 mL of DCM was added. The reaction was stirred overnight in room temperature. Then the solvent was evaporated and the resulting oil was dissolved in chloroform and washed twice with water. The organic layers were dried over MgSO₄, filtered and the solvent was evaporated. Receptors were purified by column chromatography on silica gel with chloroform then 5% MeOH/CHCl₃. To remove any inorganic salts absorbed during the work-up, receptor **1** was dissolved in chloroform and washed with distilled water. Evaporation of the solvent (without drying) gave 0.14 g (0.25 mmol) of desired receptor as a yellow oil in 68% of yield. R_f (10% MeOH/DCM) = 0.2. ¹H NMR (300 MHz, CDCl₃, δ_{ppm}): 8.51 (d, J=24 Hz, 1H), 8.10 (d, J=6 Hz, 2H), 7.63 (dd, J₁=3 Hz, J₂=6 Hz, 2H), 6.28 (dd, J₁=9 Hz, J₂=15 Hz, 1H), 4.46 (m, 1H), 4.21 (m, 2H), 3.69 (m, 22H), 3.31 (m, 1H), 2.16 (m, 1H), 0.97 (dd, J₁=3 Hz, J₂=6 Hz, 3H), 0.90 (d, J=6 Hz). ¹³C NMR (75 MHz, CDCl₃, δ_{ppm}): 172.47, 154.87, 146.19, 141.86, 125.28, 117.83, 70.92, 70.76, 70.54, 69.87, 64.35, 58.20, 31.20, 19.17, 17.80. HR-MS (ESI): m/z = 580.2464 [M+Na]⁺ (calc. for C₂₅H₃₉N₃O₁₁Na: 580.2482).

Figure 3. ¹H NMR of compound 1

Figure 4. ¹³C NMR of compound 1

2-Hydroxymethyl-18-crown-6 ester of Boc-β-alanine

The solution of Boc- β -alanine 0.27g (1.45 mmol), 0.46g (1.2 mmol) HATU, 0.40g (0.55 mL, 3.1 mmol) DIPEA and catalytic amount of DMAP, dissolve in 4 mL of dry DMF, was stirred under argon atmosphere in room temerature for one hour. Then the solution of 0.36g (1.2 mmol) 2-hydroxymethyl-18-crown-6 in 2 mL of dry DMF was added. The reaction mixture was stirred at room temerature for 24h. After this time the solvent was evaporated under reduce pressure, the oil resiude was dissolve in CHCl₃ and washed with amonium chloride and water. The organic phase was dryed over MgSO₄, filtered and the solvent was eveporated. The oil was purified by column chromatography on silica gel with chloroform then 5% MeOH/CHCl₃ as eluents to give 0.42 g (0.91 mmol) of product **5** as oil in 63% of yield. R_f (10% MeOH/DCM) = 0.33. ¹H NMR (300 MHz, CDCl₃, δ_{ppm}): 5.19 (t, J=6 Hz, 1H), 4.13 (dd, J₁=6 Hz, J₂=12 Hz, 1H), 3.97 (dd, J₁=6 Hz, J₂=12 Hz, 1H), 3.67 (m, 1H), 3.62 (m, 2H), 3.49 (m, 20H), 3.20 (m, 2H), 2.39 (t, J=6 Hz, 2H), 1.26 (s, 9H).¹³C NMR (75 MHz, CDCl₃, δ_{ppm}): 171.85, 155.59, 78,89, 76.61, 70.75, 70.63, 70.56, 70.44, 70.38, 70.35, 69.47, 63.75, 35.95, 34.49, 28.17.

Figure 5. ¹H NMR of compound 5

Figure 6. ¹³C NMR of compound 5

Trifluoroacetic acid salt of 2-Hydroxymethyl-18-crown-6 ester of β-alanine

The solution of **5** 0.27g (0.58 mmol) in 2mL DCM was cooled to 0 °C using dry ice/water bath. To this solution 1.5 mL of trifluoroacetic acid was added. Then cooling bath was removed and the reaction mixture was stirred at room temperature for 1h. The full conversion of the substrate was confirmed by TLC analysis in 10% MeOH/DCM. Then the volatiles were evaporated and the residue was dried under high vacuum to give desired compound in form of TFA salts. These compounds were used in the next step without further purification.

Receptor 2

To the solution of **6** 0.27 g (0.58 mmol) in 5 mL of DCM, 1.0 mL (0.73 g, 7 mmol, 12 eq) of triethylamine was added. Then solution of 0.11 g (0.67 mmol, 1.2 eq) 4-nitrophenyl isothiocyanate in 2 mL of DCM was added. The reaction was stirred overnight in room temperature. Then the solvent was evaporated and the resulting oil was dissolved in chloroform and washed twice with water. The organic layers were dried over MgSO₄, filtered and the solvent was evaporated. Receptors were purified by column chromatography on silica gel with chloroform then 5% MeOH/CHCl₃. To remove any inorganic salts absorbed during the work-up, receptor **2** was dissolved in chloroform and washed with distilled water. Evaporation of the solvent (without drying) gave 0.20 g (0.37 mmol) of desired receptor as a yellow oil in 64% of yield. R_f (10% MeOH/DCM) = 0.3.¹H NMR (300 MHz, CDCl₃, δ_{ppm}): 8.90 (s, 1H), 8.11 (d, J=9 Hz, 2H), 7.71 (d, J=9 Hz, 2H), 6.15 (t, J=6 Hz, 1H), 4.69 (m, 1H), 3.89 (m, 2H), 3.60 (m, 22H), 2.57 (m, 2H). ¹³C NMR (75 MHz, CDCl₃, δ_{ppm}): 172.20, 155.06, 146.73, 141.57, 125.18, 117.65, 77.03, 71.72, 70.87, 70.81, 70.74, 70.62, 70.33, 70.30, 70.03, 69.18, 62.42, 36.66, 35.59. HR-MS (ESI): m/z = 552.2144 [M+Na]⁺ (calc. for C₂₃H₃₅N₃O₁₁Na: 552.2169).

Figure 7. ¹H NMR of compound 2

Figure 8. ¹³C NMR of compound 2

3. The calculated structure of 1•KCl complex

Geometrical optimizations analyses were carried out with the Gaussian09^[1] suite of programs at the ω B97X-D functional at 6-311G(2df,2p) basis set^[2].

Figure 9. The structure of the receptor 1 in complex with KCl salt

Atom-ion	Distance [Å]
K⁺ ···· O(crown)	2.91
K⁺ ···· O(crown)	2.82
K⁺ ···· O(crown)	2.82
K⁺ ···· O(crown)	2.74
K ⁺ ···· O(crown)	3.25
K⁺ ···· O(crown)	2.75
Cl⁻····· HN(Urea)	2.13
Cl⁻ ···· HN(Urea)	2.74
K⁺····CI-	3.12

 Table 2. Distances between ions and atoms

4. UV-Vis titration experiments

UV-Vis titration experiments were performed on a Thermo SpectronicUnicam UV500 spectrophotometer in CH₃CN solution at 298K. To 10 mm cuvette was added 2.5 mL of 5.0×10^{-5} M solution of studied receptor and in case of salts binding studies 1 molar equivalent of cation (KPF₆, NaClO₄ or NH₄PF₆) was added. Small aliquots of ~ 5.0×10^{-3} M guest solution (anion or cation) containing receptor **1** or **2** at the same concentration as in cuvette, were added and a spectrum was acquired. The resulting titration data were analysed by the HypSpec program to obtain the association constant (K_a). The stoichiometry determination was done using continuous variation method (Job plot).

Figure 10. Job plot analysis of the receptor 1 in the presence of TBACI

Figure 11. Job plot analysis of the receptor 1 in the presence of KPF₆

Figure 12. Job plot analysis of the receptor 1 in the presence of TBACl and KPF_6

Figure 13. UV-Vis 1 spectrum changes upon titrant (TBACI) addition (293 K, CH₃CN solution, $C_{titrant}$ =5.9x10⁻³ M, $C_{receptor}$ =5.4 x10⁻⁵ M)

Figure 14. UV-Vis **1** spectrum changes upon titrant (TBACI) addition in presence of 1 eq. KPF₆ (293 K, CH₃CN solution, $C_{titrant}$ =5.9 x10⁻³ M, $C_{receptor}$ =5.4 x10⁻⁵ M)

Figure 15. UV-Vis 1 spectrum changes upon titrant (TBACI) addition in presence of 1 eq. NaClO₄ (293 K, CH₃CN solution, $C_{titrant}$ =5.9 x10⁻³ M, $C_{receptor}$ =5.4 x10⁻⁵ M)

Figure 16. UV-Vis 1 spectrum changes upon titrant (TBACI) addition in presence of 1 eq. NH_4PF_6 (293 K, CH_3CN solution, $C_{titrant}=5.9 \times 10^{-3} M$, $C_{receptor}=5.4 \times 10^{-5} M$)

Figure 17. UV-Vis titration binding isotherms (experimental and calculated) of the receptor **1** with TBACl in the presence of one equivalent of cations (λ =360 nm)

Figure 18. UV-Vis 1 spectrum changes upon titrant (TBABzO) addition (293 K, CH₃CN solution, $C_{titrant}$ =1.9 x10⁻³ M, $C_{receptor}$ =4.9 x10⁻⁵ M)

Figure 19. UV-Vis 1 spectrum changes upon titrant (TBABzO) addition in presence of 1 eq. KPF₆ (293 K, CH₃CN solution, $C_{titrant}$ =1.9 x10⁻³ M, $C_{receptor}$ =4.9 x10⁻⁵ M)

Figure 20. UV-Vis 1 spectrum changes upon titrant (TBABzO) addition in presence of 1 eq. NaClO4 (293 K, CH3CN solution, $C_{titrant}$ =1.9 x10⁻³ M, $C_{receptor}$ =4.9 x10⁻⁵ M)

Figure 21. UV-Vis titration binding isotherms (experimental and calculated) of the receptor **1** with TBABzO in the presence of one equivalent of cations (λ =360 nm)

Figure 22. UV-Vis titration binding isotherms (experimental and calculated) of the receptor **1** with NaClO₄, KPF₆ and NH₄PF₆ (293K, CH₃CN solution, λ =357 nm, C_{NaClO4}=1.2 x10⁻³ M, C_{KPF6}=1.5 x10⁻³ M, C_{NH4PF6}=1.2 x10⁻³ M C_{receptor}=4.9 x10⁻⁵ M)

	TBA⁺	NaClO ₄	KPF ₆	NH ₄ PF ₆
Cl	4 500 (0.11%)	17 500 (0.13%)	25 600 (0.13%)	55 000 (0.34%)
К м /К твасі	-	3.9	5.7	12.2
Br	1 040 (0.51%)	3 800 (0.14%)	4 420 (0.15%)	7 470 (0.12%)
К_М/К твавг	-	3.7	4.3	7.2
Ľ	_b	360 (0.88%)	120 (1.9%)	400 (0.94%)
Κ _Μ /Κ _{ΤΒΑ Ι}	-	7.2	2.4	8.0
AcO ⁻	252 000 (0.31%)	2 700 000 (8.3%)	>10 000 000 (22%)	_c
К_М/К тва асо	-	11	>40	-
BzO ⁻	75 000 (0.27%)	130 000 (0.48%)	570 000 (0.97%)	_ c
K _M /K _{TBA BZO}	_	1.7	7.6	-

L-BocPhe ⁻	21 000 (0.29%)	67 000 (0.16%)	130 000 (0.27%)	_ c
K _M /K _{TBA LBocPhe}	-	3.2	6.2	-

Table 3. UV-Vis spectroscopy Kobs^a values (298 K, CH₃CN solution) for interactions of 1 with various ion-pair combinations and standard errors values in parentheses, ^bK_a value too small to be calculated, to estimate cooperation factor, K_a values= 50 M⁻¹ was assume, ^cSpectral changes during the titration indicate dislodging of anions from the receptor 1.

Na⁺ClO₄⁻	K ⁺ PF ₆ -	H₄N⁺PF ₆ ⁻
92 000	924 000	77 000
(3.4%)	(6.9%)	(1.1%)

Table 4.UV-Vis spectroscopy Kobs values (298 K, CH₃CN solution) for interactions of 1 with cations and standard errors values in parentheses

Figure 23. UV-Vis 2 spectrum changes upon titrant (TBAAcO) addition (293 K, CH₃CN solution, C_{titrant}=1.9 x10⁻³ M, Creceptor=5.0 x10⁻⁵ M)

Figure 24. UV-Vis 2 spectrum changes upon titrant (TBAcO) addition in presence of 1 eq. KPF₆ (293 K, CH₃CN solution, C_{titrant}=1.9 x10⁻³ M, C_{receptor}=5.0 x10⁻⁵ M)

Figure 25. UV-Vis 2 spectrum changes upon titrant (TBAAcO) addition in presence of 1 eq. NaClO₄ (293 K, CH₃CN solution, $C_{titrant}$ =1.9 x10⁻³ M, $C_{receptor}$ =5.0 x10⁻⁵ M)

Figure 26. UV-Vis titration binding isotherms (experimental and calculated) of the receptor **2** with TBAAcO in the presence of one equivalent of cations (λ =360 nm)

	TBA⁺	NaClO ₄	KPF ₆
AcO ⁻	9 100 (0.15%)	12 600 (0.71%)	21 200 (0.63%)
Км/Ктваасо	-	1.4	2.3

Table 5. UV-Vis spectroscopy K_{obs} values (298 K, CH₃CN solution) for interactions of **2** with acetate ion-pairs and standard errors values in parentheses

5. NMR titration experiments

¹H NMR titration experiments were performed on a 300 MHz BrukerAvance spectrometer, at 298K, in CD₃CN solution. In each case 0.5 mL of 3.2×10^{-3} M solution of receptor **1** was added to 5 mm NMR tube. The receptor solution contains or not 1 mol eq. of sodium, potassium or ammonium cation. Then to the receptor solution titrant solution of tetrabutylammonium bromide in receptor solution (6.5 $\times 10^{-2}$ M) was added. After each addition of titrant, a spectrum was registered. The resulting titration date were analyzed by HypNMR.

Figure 27. Partial ¹H NMR titration experiment of **1** upon titrant (TBABr) addition, (293 K, CD₃CN solution, C_{titrant}=6.5 x10⁻² M, C_{receptor}=3.2 x10⁻³ M)

Figure 28. Partial ¹H NMR titration experiment of 1 upon titrant (TBABr) addition in presence of 1eq. KPF₆, (293 K, CD₃CN solution, $C_{titrant}$ =6.5 x10⁻² M, $C_{receptor}$ =3.2 x10⁻³ M)

Figure 29. Partial ¹H NMR titration experiment of **1** upon titrant (TBABr) addition in presence of 1eq. NH₄PF₆, (293 K, CD₃CN solution, C_{titrant}=6.5 x10⁻² M, C_{receptor}=3.2 x10⁻³ M)

Figure 30. Partial ¹H NMR titration experiment of 1 upon titrant (TBABr) addition in presence of 1eq. NaClO₄, (293 K, CD₃CN solution, $C_{titrant}$ =6.5 x10⁻² M, $C_{receptor}$ =3.2 x10⁻³ M)

Figure 31. ¹H NMR titration binding isotherm of 1 with TBABr in the presence or absence of 1 eq. of cations

	TBA⁺	NaClO ₄	KPF ₆	NH ₄ PF ₆
Br	1 000 (0.04%)	6 900 (0.29%)	7 400 (0.29%)	15 500 (0.62%)
К_М/К твасі	-	6.9	7.4	15.5

Table 6. ¹H NMR spectroscopy K_{obs} values (298 K, CD₃CN solution) for interactions of **1** with bromide ion-pairs and standard errors values in parentheses

Figure 32. Partial ¹H NMR spectra of compound 1 $C_{receptor}$ =3.2 x10⁻³ M (a) on the addition of 1.2 equivalent of TBABr (b) on the addition of 1 equivalent of KPF₆ (c) and on the addition of 1 equivalent of KPF₆ and 1.2 equivalent of TBABr (d)

6. Extraction studies

Extraction studies were performed using ¹H NMR spectroscopy on a 300 MHz BrukerAvance spectrometer, at 298K, in CDCl₃ solution. The solution of 7.96 mg of **1** in 0.6 ml of CDCl₃ in 0.5 mm NMR tube $C_{receptor1}=2.4\times10^{-2}$ was washed with destilated water, the spectrum was aquaierd, then the water phase was removed. Next chloroform solution was extracted (vigorous shaking for 10 minutes) with 0.5 ml aquoues solution of potasium acetate C_{ACOK} =5.63 M - which corresponds to 195 molar equivalents, the spectrum was acquired without aqueous phase removed. Then the water phase was removed and the organic phase was back-extracted with H₂O and the ¹H NMR spectra was aquaired.

Figure 33. Partial ¹H NMR spectra of the compound 1 $C_{receptor}$ =2.4 x10⁻² M: (a) $C_{receptor}$ =2.4 x10⁻² M in wet CDCl₃, (b) after extraction of CH₃COOK from aqua solution C_{CH3COOK}=5.6 M, (c) after back-extraction with distilled water

Figure 34. ^1H NMR spectra of compound 1 $C_{\text{receptor}}\text{=}2.4\ \text{x}10^{\text{-}2}\,\text{M}$ in wet CDCl3

Figure 35. ¹H NMR spectra of compound 1 $C_{receptor}$ =2.4 x10⁻² M after extraction of CH₃COOK from aqua solution $C_{CH3COOK}$ =5.6 M, n₁=0.0144, n_{CH3COOK}=2.8, 194 eq.

Figure 36. ¹H NMR spectra of compound 1 C_{receptor}=2.4 x10⁻² M after back-extraction with distilled water

7. References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. 1 G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *Gaussian 09, Revision A.02*, Gaussian, Inc., Wallingford CT, 2016. (a) J. Chaia, M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615-6620 (b) A. D. McLean and G. S. Chandler, *J. Chem. Phys.*, 1980, **72**, 5639-48 (c) M. J. Frisch, J. A. Pople, and J. S. Binkley, *J. Chem. Phys.*, 1984, **80**, 3265-69
- 2