Supplementary Information

Dimensional crossover of correlated anion disorder in oxynitride perovskites

Hannah Johnston, Ashley P. Black, Paula Kayser Gonzalez, Judith Oró-Solé, David A. Keen, Amparo Fuertes, and J. Paul Attfield

Table S1 Chemical analysis of nitrogen contents for $Ba_{1-x}Sr_xTaO_2N$ samples.

.97
.95
.96
.97
.99
.98

Table S2 Refined neutron atomic parameters for cubic $Pm\overline{3}m$ (x = 0 - 0.2) and tetragonal P4/mmm (x = 0.4 - 1) refinement models of Ba_{1-x}Sr_xTaO₂N solid solutions at 300 K. Isotropic thermal parameter Uiso values have Å² units. Occupancies >100% are shown for x = 0.8 and 1.0 refinements to demonstrate the precision and accuracy of the refinements.

|--|

	Х	у	Z	Uiso	Occ
Ba	0.5	0.5	0.5	0.3(1)	1
Та	0	0	0	0.4(1)	1
0	0	0	0.5	0.6(1)	0.667
Ν	0	0	0.5	0.6(1)	0.333

$Ba_{0.8}Sr_{0.8}$	₂ TaO ₂ N	$Pm\overline{3}m$	refinement
--------------------	---------------------------------	-------------------	------------

	Х	у	Z	Uiso	Occ
Ba	0.5	0.5	0.5	0.5(1)	0.8
Sr	0.5	0.5	0.5	0.5(1)	0.2
Та	0	0	0	0.9(1)	1
0	0	0	0.5	0.88(9)	0.667
Ν	0	0	0.5	0.88(9)	0.333

	X	у	Ζ	Uiso	Occ
Sr	0.5	0.5	0.5	0.8(1)	0.4
Ba	0.5	0.5	0.5	0.8(1)	0.6
Та	0	0	0	1.0(1)	1
0	0	0	0.5	1.14(8)	0.93(1)
Ν	0	0	0.5	1.14(8)	0.01(1)
0	0.5	0	0	1.14(8)	0.54(5)
Ν	0.5	0	0	1.14(8)	0.46(5)

Ba_{0.6}Sr_{0.4}TaO₂N P4/mmm refinement

Ba_{0.4}Sr_{0.6}TaO₂N P4/mmm refinement

	Х	у	Z	Uiso	Occ
Sr	0.5	0.5	0.5	0.52(5)	0.6
Ba	0.5	0.5	0.5	0.52(5)	0.4
Та	0	0	0	0.52(5)	1
0	0	0	0.5	0.84(5)	0.99(3)
Ν	0	0	0.5	0.84(5)	0.03(3)
0	0.5	0	0	0.84(5)	0.52(1)
N	0.5	0	0	0.84(5)	0.48(1)

Ba_{0.2}Sr_{0.8}TaO₂N P4/mmm refinement

	Х	у	Z	Uiso	Occ
Sr	0.5	0.5	0.5	0.32(6)	0.2
Ba	0.5	0.5	0.5	0.32(6)	0.8
Та	0	0	0	0.30(7)	1
0	0	0	0.5	0.75(6)	1.04(3)
Ν	0	0	0.5	0.75(6)	-0.05(3)
0	0.5	0	0	0.75(6)	0.49(2)
Ν	0.5	0	0	0.75(6)	0.51(2)

SrTaO₂N P4/mmm refinement

	Х	у	Z	Uiso	Occ
Sr	0.5	0.5	0.5	0.62(5)	1
Та	0	0	0	0.52(6)	1
0	0	0	0.5	1.40(6)	1.02(3)
Ν	0	0	0.5	1.40(6)	-0.03(3)
0	0.5	0	0	1.40(6)	0.49(1)
Ν	0.5	0	0	1.40(6)	0.51(1)

Fig. S1. Plot of cubic or pseudocubic 300 K lattice parameters for Ba_{1-x}Sr_xTaO₂N solid solutions against x.

Fig. S2. Comparison of HRPD powder neutron diffraction profiles from the 'new' SrTaO₂N sample used in the present study, and the 'old' sample used in ref. 7. (The 'old' sample was contained in a silica tube giving rise to the observed background scatter.) Peaks at d = 2.45 and 1.36 Å marked * from a rotational *Fmmm* superstructure of octahedral tilts are evident in the old data, but are extensively broadened for the new sample (the broadened 1.36 Å peak is shown in the inset) demonstrating that rotational domains are small. Hence the new data are analysed using a *P4/mmm* model without octahedral rotations, as described in the main text.

Fig. S3. Electron microscopy results for the $SrTaO_2N$ sample. (a) A typical grain – scale bar is 0.1 μ m. (b) Electron diffraction pattern from the grain with weak superstructure peaks characteristic of tilt domains arrowed.

Fig. S4. Blow-ups of the fitted (400) synchrotron X-ray diffraction peak in the Ba₁. $_x$ Sr_xTaO₂N series. (a) cubic x = 0 with no microstrain broadening or tetragonal distortion, (b) x = 0.4 showing microstrain broadening due to Ba/Sr mixing and tetragonal distortion, and (c) x = 1 where microstrain broadening is minimal and tetragonal splitting leads to a slight shoulder at the high-2 θ side.

Fig. S5. Plots of refined Uiso's across the $Ba_{1-x}Sr_xTaO_2N$ series from (a) synchrotron and (b) neutron refinements.