Electronic Supplementary Information for

Homolytic Cleavage of Peroxide Bonds via a Single

Electron Transfer of Frustrated Lewis Pair

Liu Leo Liu, Levy L. Cao, Diya Zhu, Jiliang Zhou and Douglas W. Stephan* Email: dstephan@chem.utoronto.ca

Contents:

General	S2
Experimental Section	S3-S22
Details of Single Crystal X-ray Diffraction Study	S23
Computational Details	S24-S45
References	\$46

General:

All manipulations were performed under an atmosphere of dry, oxygen-free N_2 by means of standard glovebox techniques (MBraun LABmaster SP drybox and Innovation Technology glovebox both equipped with a -35 °C freezer). Pentane, and dichloromethane (DCM) were collected from a Grubbs-type column system manufactured by Innovative Technology. These solvents were dried over 4 Å molecular sieves. Molecular sieves, type 4 Å (pellets, 3.2 mm diameter) purchased from Sigma-Aldrich were activated prior to usage by iteratively heating with 1050 W Haier microwave for 5 min and cooling under vacuo. The process was repeated until no further moisture was released upon heating. Chloroform-d (CDCl₃), purchased from Cambridge Isotope Laboratories, was degassed and stored over 4 Å molecular sieves in the glovebox for at least 8 h prior to use. Ph₃SnH, (PhCOO)₂ and Mes₃P were purchased and used directly. B(C₆F₅)₃ was purified from sublimation at 100 °C followed by stirring with chlorodimethylsilane at room temperature for 2 h, and dried under vacuo. (p-BrC₆H₄COO)₂ and (p-MeC₆H₄COO)₂ were synthesized according to the literature procedure.^{S1} Spectra were recorded on a Bruker Avance III 400 MHz spectrometer and spectra were referenced to residual solvents of $CDCl_3$ (¹H = 7.26) ppm; ${}^{13}C = 77.0$ ppm). Chemical shifts (δ) are reported in ppm and the absolute values of the coupling constants (J) are in Hz.

Experimental Section:

Synthesis of 1: A mixture of Mes₃P (10 mg, 0.026 mmol) and B(C₆F₅)₃ (13.2 mg, 0.026 mmol) was stirring in DCM (2 mL) at room temperature, immediately giving a light purple solution. (PhCOO)₂ (3.1 mg, 0.013 mmol) was added to this solution, immediately giving a deep purple solution. The solvent was removed under reduced pressure and the residue was washed with pentane (3 mL), yielding 1 as a deep purple oily solid (21.6 mg, 82%). ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ (ppm) -0.9 (bs). ³¹P NMR (162 MHz, CDCl₃): silent.¹⁹F NMR (377 MHz, CDCl₃): δ (ppm) -133.6 (bs), -160.4 (bs), -166.5 (bs). HRMS (ESI) calcd. for [PhCOOB(C₆F₅)₃]⁻ 633.0149, found 633.0142;

¹¹B $\{^{1}H\}$ NMR spectrum of **1** (128 MHz, CDCl₃)

 ^{19}F NMR spectrum of 1 (377 MHz, CDCl₃).

The experimental and simulated X-band EPR spectra of **1** in DCM (g = 2.0085, $a_P = 238.7$ G).

UV-vis study of **1** in C₆H₅Br revealed a visible absorption maximum at 572 nm, in line with the experimental observations of $Mes_3P^{\bullet+}$.

Synthesis of 2: A mixture of Mes₃P (10 mg, 0.026 mmol) and B(C₆F₅)₃ (13.2 mg, 0.026 mmol) was stirring in DCM (2 mL) at room temperature, immediately giving a light purple solution. (p-BrC₆H₄COO)₂ (5.2 mg, 0.013 mmol) was added to this solution, immediately giving a deep purple solution. The solvent was removed under reduced pressure and the residue was washed with pentane (3 mL), yielding 2 as a deep purple oily solid (22.7 mg, 80%). $^{11}B\{^1H\}$ NMR (128 MHz, CDCl₃): δ (ppm) -1.2 (bs). ³¹P NMR (162 MHz, CDCl₃): silent.¹⁹F NMR (377 MHz, CDCl₃): δ (ppm) -133.7 (bs), -160.1 -166.3 HRMS (ESI) calcd. (bs), (bs). for $[p-BrC_6H_4COOB(C_6F_5)_3]^-$ 710.9254, found 710.9261.

 ^{19}F NMR spectrum of **2** (377 MHz, CDCl₃).

The experimental and simulated X-band EPR spectra of **2** in DCM (g = 2.0092, $a_P = 238.7$ G).

Synthesis of **3**: A mixture of Mes₃P (10 mg, 0.026 mmol) and B(C₆F₅)₃ (13.2 mg, 0.026 mmol) was stirring in DCM (2 mL) at room temperature, immediately giving a light purple solution. (*p*-MeC₆H₄COO)₂ (3.5 mg, 0.013 mmol) was added to this solution, immediately giving a deep purple solution. The solvent was removed under reduced pressure and the residue was washed with pentane (3 mL), yielding **3** as a deep purple oily solid (20.6 mg, 77%). ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ (ppm) -1.5 (bs). ³¹P NMR (162 MHz, CDCl₃): silent.¹⁹F NMR (377 MHz, CDCl₃): δ (ppm) -133.9 (bs), -159.4 (bs), -162.6 (bs), -166.3 (bs). HRMS (ESI) calcd. for [*p*-MeC₆H₄COOB(C₆F₅)₃]⁻ 647.0305, found 647.0307.

 ^{19}F NMR spectrum of **3** (377 MHz, CDCl₃).

The experimental and simulated X-band EPR spectra of **3** in DCM (g = 2.0089, $a_P = 238.7$ G).

Synthesis of 10: Ph₃SnH (6.9 mg, 0.0195 mmol) was added to a DCM (2 mL) solution of 1 (20 mg, 0.0195 mmol) with stirring, immediately giving a light yellow solution. Pentane (5 mL) was added to this solution with stirring and a white precipitate appeared. The solution was decanted and the powder was washed with pentane (2 mL) to give 10 (15.2 mg, 76%). Colorless single crystals were obtained by vapor diffusion of pentane into a saturated DCM solution of **10**. ¹H NMR (400 MHz, CDCl₃): 8.24 (d, ${}^{1}J_{P-H} = 480$ Hz, 1H, PH), 8.07 (d, ${}^{3}J_{H-H} = 7.2$ Hz, 2H, Ph-H), 7.37 (t, ${}^{3}J_{\text{H-H}} = 7.2 \text{ Hz}, 1\text{H}, \text{Ph-}H), 7.28 \text{ (t, } {}^{3}J_{\text{H-H}} = 7.2 \text{ Hz}, 1\text{H}, \text{Ph-}H), 7.10 \text{ (s, 3H, Ar}^{\text{Mes}}-H),$ 7.02 (s, 3H, Ar^{Mes}-H), 2.35 (s, 9H, Me), 2.23 (s, 9H, Me), 1.97 (s, 9H, Me). ¹³C NMR (100 MHz, CDCl₃): 168.2 (carbonyl *C*), 148.2 (d(m), ${}^{1}J_{C-F} = 241$ Hz, $C_{6}F_{5}$), 147.3 (d, $J_{C-P} = 2.8$ Hz, Ar^{Mes}-C), 144.1 (d, $J_{C-P} = 10.3$ Hz, Ar^{Mes}-C), 142.8 (d, $J_{C-P} = 8.8$ Hz, Ar^{Mes}-C), 138.6 (d(m), ${}^{1}J_{C-F} = 243$ Hz, $C_{6}F_{5}$), 136.6 (d(m), ${}^{1}J_{C-F} = 240$ Hz, $C_{6}F_{5}$), 135.4 (s, Ph-C), 133.3 (d, J_{C-P} = 11.6 Hz, Ar^{Mes}-C), 131.9 (d, J_{C-P} = 9.8 Hz, Ar^{Mes}-C), 130.9 (s, Ph-C), 129.9 (s, Ph-C), 127.7 (s, Ph-C), 123.0 (m(br), C_6F_5), 11.5 (d, $J_{C-P}=$ 82.4 Hz, Ar^{Mes} -C), 22.0 (br, Me), 21.4 (s, Me), 21.1 (d(br), $J_{C-P} = 10.7$ Hz, Me). ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ (ppm) -4.5 (s). ³¹P{¹H} NMR (162 MHz,

CDCl₃): δ (ppm) -27.6 (s). ³¹P NMR (162 MHz, CDCl₃): δ (ppm) -27.6 (d, ¹*J*_{P-H} = 480 Hz). ¹⁹F NMR (377 MHz, CDCl₃): δ (ppm) -134.2 (d, ³*J*_{F-F} = 19.2 Hz, 2F, C₆*F*₅), -162.7 (t, ³*J*_{F-F} = 20.7 Hz, 1F, C₆*F*₅), -166.6 (t, ³*J*_{F-F} = 20.0 Hz, 2F, C₆*F*₅). HRMS (ESI) calcd. for C₂₇H₃₄P⁺ 389.2393, found 389.2398; calcd. for C₂₅H₅BF₁₅O₂⁻ 632.0185, found 632.0179 m/z.

¹H NMR spectrum of **10** (400 MHz, CDCl₃).

 $^{13}C{^{1}H}$ NMR spectrum of **10** (100 MHz, CDCl₃).

¹¹B $\{^{1}H\}$ NMR spectrum of **10** (128 MHz, CDCl₃)

 ^{19}F NMR spectrum of 10 (377 MHz, CDCl₃).

-132

-133

-134

-135

-137

136

-138

-139

-1

-131

-130

-129

-128

24

-125

-126

-127

Synthesis of **11**: Ph₃SnH (6.9 mg, 0.0195 mmol) was added to a DCM (2 mL) solution of **2** (20 mg, 0.0195 mmol) with stirring, immediately giving a light yellow solution. Pentane (5 mL) was added to this solution with stirring and a white precipitate appeared. The solution was decanted and the powder was washed with pentane (2 mL)

to give 11 (13.3 mg, 62%). Colorless single crystals were obtained by vapor diffusion of pentane into a concentrated 1,2-dichlorobenzene solution of 11. ¹H NMR (400 MHz, CDCl₃): 8.23 (d, ${}^{1}J_{P-H} = 479$ Hz, 1H, PH), 7.93 (d, ${}^{3}J_{H-H} = 8.4$ Hz, 2H, Ar^{Br}-H), 7.41 (d, ${}^{3}J_{H-H} = 8.4$ Hz, 2H, Ar^{Br}-H), 7.11 (br, 3H, Ar^{Mes}-H), 7.04 (br, 3H, Ar^{Mes}-H), 2.37 (s, 9H, Me), 2.24 (s, 9H, Me), 1.98 (s, 9H, Me). ¹³C{¹H} NMR (100 MHz, CDCl₃): 167.4 (carbonyl C), 148.1 (d(m), ${}^{1}J_{C-F} = 237$ Hz, C₆F₅), 147.4 (d, $J_{C-P} = 2.7$ Hz, Ar^{Mes}-C), 144.1 (d, J_{C-P} = 10.4 Hz, Ar^{Mes}-C), 142.7 (d, J_{C-P} = 10.5 Hz, Ar^{Mes}-C), 138.9 (d(m), ${}^{1}J_{C-F} = 206$ Hz, $C_{6}F_{5}$), 136.5 (d(m), ${}^{1}J_{C-F} = 230$ Hz, $C_{6}F_{5}$), 134.3 (s, Ar^{Br}-C), 133.3 (d, $J_{C-P} = 11.6$ Hz, Ar^{Mes}-C), 132.0 (d, $J_{C-P} = 10.2$ Hz, Ar^{Mes}-C), 131.6 (s, Ar^{Br}-C), 131.0 (s, Ar^{Br}-C), 125.7 (s, Ar^{Br}-C), 111.4 (d, $J_{C-P} = 82.5$ Hz, Ar^{Mes}-C), 22.1 (d(br), $J_{C-P} = 5.0$ Hz, Me), 21.5 (s, Me), 21.1 (d(br), $J_{C-P} = 11.8$ Hz, Me), 34.3, 22.5, 14.2 (*n*-pentane-*C*). ${}^{11}B{}^{1}H{}$ NMR (128 MHz, CDCl₃): δ (ppm) -4.6 (s). ${}^{19}F{}$ NMR (377 MHz, CDCl₃): δ (ppm) -134.4 (d, ${}^{3}J_{F-F} = 21.1$ Hz, 2F, C₆F₅), -162.5 (t, ${}^{3}J_{\text{F-F}} = 20.5 \text{ Hz}, 1\text{F}, C_{6}F_{5}), -166.5 \text{ (t, } {}^{3}J_{\text{F-F}} = 19.2 \text{ Hz}, 2\text{F}, C_{6}F_{5}). {}^{31}P\{{}^{1}\text{H}\} \text{ NMR} (162)$ MHz, CDCl₃): δ (ppm) -27.6 (s). ³¹P NMR (162 MHz, CDCl₃): δ (ppm) -27.6 (d, ¹J_{P-H} = 479 Hz). MS (ESI) Cation: $[M+] C_{27}H_{34}P^+$ calc. 389.2393 m/z found 389.2392 m/z; Anion: [M-] C₂₅H₄BBrF₁₅O₂⁻ calc. 709.9290 m/z found 709.9280 m/z.

¹H NMR spectrum of **11** (400 MHz, CDCl₃).

 $^{13}C{^{1}H}$ NMR spectrum of **11** (100 MHz, CDCl₃).

 $^{11}B\{^{1}H\}$ NMR spectrum of **11** (128 MHz, CDCl₃)

 $^{19}\mathrm{F}$ NMR spectrum of 11 (377 MHz, CDCl₃).

 $^{31}P\{^{1}H\}$ NMR spectrum of **11** (162 MHz, CDCl₃).

¹¹⁹Sn NMR spectrum of the crude mixture (DCM)

Synthesis of **12**: Ph₃SnH (6.9 mg, 0.0195 mmol) was added to a DCM (2 mL) solution of **3** (20 mg, 0.0195 mmol) with stirring, immediately giving a light yellow solution. Pentane (5 mL) was added to this solution with stirring and a white precipitate appeared. The solution was decanted and the powder was washed with pentane (2 mL) to give **12** (12.5 mg, 62%). Colorless single crystals were obtained by vapor diffusion of pentane into a concentrated 1,2-dichlorobenzene solution of **12**. ¹H NMR (400 MHz, CDCl₃): 8.25 (d, ¹*J*_{P-H} = 480 Hz, 1H, P*H*), 7.95 (d, ³*J*_{H-H} = 8.0 Hz, 2H, Ar^{tol}-*H*), 7.09 (m, 5H, Ar^{tol}-*H* and Ar^{Mes}-*H*), 7.03 (br, 3H, Ar^{Mes}-*H*), 2.36 (s, 9H, Ar^{Mes}-*Me*), 2.32 (s, 3H, Ar^{tol}-*Me*), 2.23 (s, 9H, Ar^{Mes}-*Me*), 1.98 (s, 9H, Ar^{Mes}-*Me*). ¹³C{¹H</sup> NMR (100 MHz, CDCl₃): 168.3 (carbonyl *C*), 148.2 (d(m), ¹*J*_{C-F} = 242 Hz, *C*₆F₅), 147.4 (d, *J*_{C-P} = 2.8 Hz, Ar^{Mes}-*C*), 144.1 (d, *J*_{C-P} = 11.1 Hz, Ar^{Mes}-*C*), 142.8 (d, *J*_{C-P} = 8.4 Hz, Ar^{Mes}-*C*), 141.0 (s, Ar^{tol}-*C*), 138.8 (d(m), ¹*J*_{C-F} = 206 Hz, *C*₆F₅), 136.3 (d(m), ¹*J*_{C-F} = 217 Hz, *C*₆F₅), 133.3 (d, *J*_{C-P} = 11.6 Hz, Ar^{tol}-*C*), 132.6 (s, Ar^{tol}-*C*), 131.9 (d, *J*_{C-P} = 11.2 Hz, Ar^{Mes}-*C*), 130.0 (s, Ar^{tol}-*C*), 128.5 (s, Ar^{tol}-*C*), 111.5 (d, *J*_{C-P}

= 82.4 Hz, Ar^{Mes}-*C*), 22.1 (d(br), J_{C-P} = 5.2 Hz, Ar^{Mes}-*Me*), 21.6 (s, Ar^{tol}-*Me*), 21.5 (d, J_{C-P} = 0.9 Hz, Ar^{Mes}-*Me*), 21.1 (d(br), J_{C-P} = 12.3 Hz, Ar^{Mes}-*Me*). ¹¹B{¹H} NMR (128 MHz, CDCl₃): δ (ppm) -4.5 (s). ¹⁹F NMR (377 MHz, CDCl₃): δ (ppm) -134.1 (d, ³ J_{F-F} = 22.8 Hz, 2F, C₆*F*₅), -162.8 (t, ³ J_{F-F} = 20.9 Hz, 1F, C₆*F*₅), -166.7 (t, ³ J_{F-F} = 19.0 Hz, 2F, C₆*F*₅). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ (ppm) -27.6 (s). ³¹P NMR (162 MHz, CDCl₃): δ (ppm) -27.6 (s). ³¹P NMR (162 MHz, CDCl₃): δ (ppm) -27.6 (d, ¹ J_{P-H} = 480 Hz). MS (ESI) Cation: [M+] C₂₇H₃₄P⁺ calc. 389.2393 m/z found 389.2393 m/z; Anion: [M-] C₂₆H₇BF₁₅O₂⁻ calc. 646.0341 m/z found 646.0334 m/z.

¹H NMR spectrum of **12** (400 MHz, CDCl₃).

 $^{13}C\{^{1}H\}$ NMR spectrum of **12** (100 MHz, CDCl₃).

 $^{11}B\{^{1}H\}$ NMR spectrum of **12** (128 MHz, CDCl₃)

 $^{19}\mathrm{F}$ NMR spectrum of 12 (377 MHz, CDCl₃).

 $^{31}P\{^{1}H\}$ NMR spectrum of **12** (162 MHz, CDCl₃).

¹¹⁹Sn NMR spectrum of the crude mixture (DCM)

 ^{11}B and ^{19}F NMR spectra revealing interaction of peroxides with B(C₆F₅)₃ in solution

-115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175

Details of Single Crystal X-ray Diffraction Study:

X-ray Data Collection and Reduction. Crystals were coated in Paratone-N oil in an N₂ filled glovebox, mounted on a MiTegen Micromount, and placed under a N₂ stream, thus maintaining a dry, O₂-free environment for each crystal. The data were collected on a Bruker Apex II diffractometer using a graphite monochromator with Mo K α radiation ($\lambda = 0.71073$ Å). The data were collected at 150(2) K for all crystals. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. Data were corrected for absorption effects using the empirical multiscan method (SADABS).

Structure Solution and Refinement. The structures were solved by direct methods using XS and subjected to full-matrix least-squares refinement on F^2 using XL as implemented in the SHELXTL suite of programs. All non-hydrogen atoms were refined with anisotropically thermal parameters. Carbon bound hydrogen atoms were placed in geometrically calculated positions and refined using an appropriate riding model and coupled isotropic thermal parameters.

	10	11	12
empirical formula	C52 H39 B F15 O2	C52 H38 B Br F15	C53 H41 B F15 O2
	Р	O2 P	Р
formula weight	1022.61	1101.50	1036.64
crystal system	Monoclinic	Triclinic	Monoclinic
space group	P 21/n	ΡĪ	P 21/c
<i>a</i> (Å)	13.040(4)	12.6688(9)	12.4203(12)
<i>b</i> (Å)	17.682(6)	18.7187(14)	20.1153(17)
<i>c</i> (Å)	20.467(7)	20.0531(14)	18.9334(18)
α (deg.)	90	90.811(3)	90
β (deg.)	99.613(7)	91.169(3)	97.534(3)
γ (deg.)	90	97.947(3)	90
vol (Å ³)	4653(3)	4708.1(6)	4689.5(7)
Ζ	4	4	4
μ (mm ⁻¹)	0.161	1.009	0.161
<i>F</i> (000)	2088.0	2224.0	2120.0
$T(\mathbf{K})$	150	150	150
reflections collected	9152	19418	9726
R _{int}	0.0804	0.1288	0.1297
$GOF(F^2)$	0.996	0.982	1.040
R1 indices $[I \ge 2\sigma(I)]$	0.0589	0.0636	0.0512
wR2 indices (all	0.1762	0.1642	0.1513
data)			
CCDC No.	1826281	1839053	1839054

Table S1. Summary of crystallographic data for compound 10-12.

Computational Details

Calculations were carried out with the Gaussian 09 package.^{S2} Geometry optimizations were performed with the M06 functional.^{S3} The Def2-SVP basis set was used for all the atoms. Frequency calculations at the same level of theory were performed to identify the number of imaginary frequencies (zero for local minimum and one for transition states) and provide Gibbs free energies. All the solution-phase free energies reported in the paper correspond to the reference state of 1 mol/L, 298K.

	Free Energies (Hartree)
$B(C_{6}F_{5})_{3}$	-2205.592543
(PhCOO) ₂	-838.994467
$(p-BrC_6H_4COO)_2$	-5985.324365
(p-MeC ₆ H ₄ COO) ₂	-917.460615
$(PhCOO)_2 \bullet B(C_6F_5)_3$	-3044.593676
$(p-BrC_6H_4COO)_2 \bullet B(C_6F_5)_3$	-8190.920981
$(p-MeC_6H_4COO)_2 \bullet B(C_6F_5)_3$	-3123.061453
(PhCOO)2• 2B(C ₆ F ₅) ₃	-5250.175575
(p-BrC ₆ H ₄ COO) ₂ • 2B(C ₆ F ₅) ₃	-10396.503110
$(p-MeC_6H_4COO)_2 \bullet 2B(C_6F_5)_3$	-5328.646933

Energies of Optimized St	ructures:
--------------------------	-----------

Cartesian Coordinates:

 $B(C_{6}F_{5})_{3}$

5	8.172881	-1.178119	1.636668
6	7.917447	-0.320122	0.347302
6	8.644407	-0.515814	-0.830646
6	6.953439	0.692016	0.318332
6	8.440465	0.248066	-1.974516

6	6.707019	1.463157	-0.811899
6	7.461882	1.239904	-1.961928
6	8.380117	-2.725932	1.518040
6	9.224300	-3.433216	2.385442
6	7.734921	-3.489439	0.535527
6	9.436854	-4.802634	2.281648
6	7.908568	-4.863957	0.413587
6	8.769037	-5.519802	1.290958
6	8.213898	-0.469787	3.033781
6	8.718944	0.826983	3.194181
6	7.739111	-1.089939	4.196727
6	8.757532	1.474282	4.424340
6	7.744201	-0.468112	5.439606
6	8.262238	0.820997	5.550787
9	8.285636	1.419560	6.718413
9	9.254603	2.688615	4.536555
9	9.213303	1.486080	2.158156
9	7.239104	-2.313889	4.139885
9	7.274070	-1.079711	6.507063
9	9.881559	-2.799188	3.342630
9	10.253314	-5.427666	3.104715
9	8.949067	-6.814867	1.185506
9	7.273383	-5.547662	-0.515509
9	6.896249	-2.918402	-0.313727
9	9.587751	-1.444914	-0.882161
9	9.158643	0.047590	-3.060668
9	7.251054	1.967055	-3.034919
9	5.778870	2.398113	-0.806889
9	6.217020	0.936920	1.392702

(PhCOO)₂

8	-0.677124	0.825851	-1.412923
8	1.485025	0.944832	-1.594924
6	0.241348	1.542095	-1.681054
6	0.115279	2.950164	-2.126944
6	-1.010287	3.640670	-1.660031
1	-1.682004	3.140844	-0.956818
6	0.965896	3.559654	-3.057463
1	1.833888	3.023365	-3.444157
6	-1.262501	4.938332	-2.087253
1	-2.133302	5.478764	-1.706485
6	0.694644	4.849592	-3.500307
1	1.355625	5.319137	-4.233698
6	-0.409680	5.543062	-3.009440
1	-0.610107	6.562301	-3.352215
8	2.558922	1.883304	-1.560315
6	3.620965	1.472526	-0.776951
8	4.385052	2.341057	-0.475774
6	3.780705	0.043327	-0.417606
6	4.497216	-0.212889	0.758626
6	3.378245	-1.024140	-1.229579
6	4.778990	-1.519486	1.136907
6	3.684135	-2.328947	-0.857882
6	4.373875	-2.579038	0.326818
1	2.834194	-0.835696	-2.156712
1	3.377294	-3.159363	-1.499429
1	4.601708	-3.608527	0.618026
1	5.325091	-1.713321	2.064075
1	4.829246	0.631799	1.368367

(p-BrC₆H₄COO)₂

8	-0.655147	0.809944	-1.451841
8	1.504508	0.929409	-1.667317
6	0.259731	1.528974	-1.723161
6	0.127611	2.943660	-2.143153
6	-1.004266	3.617937	-1.667689
1	-1.677838	3.101277	-0.978658
6	0.974538	3.581139	-3.058221
1	1.847901	3.063472	-3.457621
6	-1.269961	4.921883	-2.061791
1	-2.143569	5.455445	-1.679294
6	0.702529	4.877653	-3.476890
1	1.355238	5.375957	-4.197910
6	-0.410134	5.544313	-2.966482
8	2.580970	1.864097	-1.631623
6	3.631439	1.462783	-0.827271
8	4.394934	2.332620	-0.529921
6	3.780233	0.040242	-0.440546
6	4.497607	-0.197879	0.738929
6	3.370346	-1.043766	-1.226414
6	4.772416	-1.493756	1.152480
6	3.662187	-2.343606	-0.831615
6	4.350844	-2.561383	0.360718
1	2.827908	-0.878136	-2.158625
1	3.353521	-3.192129	-1.446899
1	5.318788	-1.681234	2.079997
1	4.839817	0.655133	1.331161
35	4.723365	-4.327007	0.908386
35	-0.762737	7.314610	-3.512356

(p-MeC₆H₄COO)₂

8	-0.669413	0.831391	-1.415021
8	1.491128	0.944276	-1.615631
6	0.248515	1.547413	-1.689114
6	0.122780	2.954468	-2.129686
6	-1.011752	3.640613	-1.678457
1	-1.692226	3.137295	-0.986129
6	0.979759	3.582992	-3.041634
1	1.860130	3.061722	-3.420578
6	-1.262752	4.938330	-2.099566
1	-2.141414	5.471591	-1.721729
6	0.705059	4.872982	-3.476042
1	1.379064	5.353082	-4.193203
6	-0.411272	5.576599	-3.009747
8	2.569787	1.876798	-1.574226
6	3.620896	1.466182	-0.774605
8	4.379577	2.337136	-0.463855
6	3.776792	0.039651	-0.413512
6	4.498971	-0.221272	0.757462
6	3.366464	-1.035072	-1.212882
6	4.775957	-1.526849	1.137715
6	3.670491	-2.335946	-0.835497
6	4.371734	-2.607530	0.345763
1	2.814259	-0.854978	-2.136753
1	3.350658	-3.168415	-1.471265
1	5.323794	-1.717296	2.066544
1	4.837883	0.621016	1.366866
6	4.701774	-4.014427	0.730955
1	3.881091	-4.705370	0.483145
1	5.595087	-4.371030	0.189433

1	4.915252	-4.102964	1.806579
6	-0.703875	6.961315	-3.493451
1	0.217193	7.507035	-3.749002
1	-1.327888	6.937024	-4.403831
1	-1.254866	7.546203	-2.741362

(PhCOO)₂• B(C₆F₅)₃

9	-2.449999	-0.266838	2.628107
9	-0.913409	-2.623267	1.408209
9	-2.696200	-0.371689	-2.083516
9	0.316230	-0.721785	-2.733034
9	-1.343926	2.330774	1.390586
9	1.557978	-1.400346	1.493071
9	0.061756	3.448942	3.357275
9	-5.354837	-0.594155	-1.927628
9	-0.063924	-5.014086	0.548609
9	2.222062	2.170111	4.395244
9	-5.096988	-0.522274	2.758079
8	-0.695415	1.034707	-0.995400
8	1.463560	1.156322	-1.073692
9	2.928349	-0.265096	3.438933
9	1.067583	-5.243949	-1.914337
9	1.262672	-3.065753	-3.509852
9	-6.574609	-0.681596	0.491778
6	0.285635	1.702309	-1.344460
6	0.097792	2.991978	-1.999065
6	0.007375	0.391903	1.349778
6	-2.450153	-0.265926	0.262382
6	-0.305389	1.647286	1.877781
6	-3.252223	-0.376549	-0.874198

6	-0.311757	-1.553137	-0.593013
6	-0.417257	-2.710465	0.178313
6	0.208099	-1.736574	-1.869700
6	-3.118260	-0.331082	1.483345
6	1.123158	-0.221222	1.918426
6	0.410215	2.261136	2.900385
6	1.519551	1.609468	3.433317
6	1.870777	0.357258	2.945327
6	0.027389	-3.959304	-0.238623
6	-1.090316	3.671881	-1.679737
1	-1.768594	3.238693	-0.939844
6	0.984260	3.524029	-2.948975
1	1.895984	2.989534	-3.218591
6	-4.637020	-0.503859	-0.822436
6	0.679538	-2.966380	-2.325196
6	0.591760	-4.083596	-1.505312
6	-4.502878	-0.468278	1.579679
6	-5.264719	-0.553862	0.418822
6	-1.372357	4.886990	-2.286353
1	-2.285843	5.426816	-2.025484
6	0.676132	4.726758	-3.568791
1	1.355335	5.136828	-4.320169
6	-0.491749	5.411441	-3.231542
5	-0.842696	-0.169945	0.074032
8	2.549919	2.068011	-1.163466
6	3.695770	1.576116	-0.503180
8	4.466646	2.428446	-0.195503
6	3.848670	0.123605	-0.310425
6	4.571453	-0.273357	0.822313
6	3.410340	-0.835890	-1.233707

6	4.820344	-1.620373	1.050081
6	3.693146	-2.179170	-1.015131
6	4.384185	-2.571985	0.130227
1	2.862258	-0.539547	-2.132405
1	3.367817	-2.923263	-1.748856
1	5.357450	-1.928833	1.950555
1	4.914388	0.486315	1.530705
1	4.587380	-3.632347	0.304470
1	-0.718818	6.365316	-3.715998

$(p-BrC_6H_4COO)_2 \bullet B(C_6F_5)_3$

9	0.019964	3.159396	2.396348
9	-2.330376	2.549302	0.475808
9	1.267220	2.615317	-2.124297
9	-0.146934	-0.245472	-2.642411
9	2.104772	0.928961	2.082683
9	-2.424732	-0.118642	1.208066
9	1.912824	-0.308205	4.432106
9	2.155088	5.134944	-2.167739
9	-4.540096	2.481757	-1.031371
9	-0.427784	-1.466815	5.183556
9	0.900876	5.662256	2.324829
8	1.369787	0.420996	-0.507627
8	0.539497	-1.576578	-0.404820
9	-2.575304	-1.340837	3.536102
9	-4.579019	0.999339	-3.314034
9	-2.355229	-0.343216	-4.076838
9	1.974269	6.681900	0.055079
6	1.604721	-0.794324	-0.528824
6	2.968340	-1.281597	-0.681274

6	-0.150492	0.497905	1.521793
6	0.635741	2.751616	0.145683
6	0.924665	0.392634	2.407861
6	1.178108	3.327802	-1.004102
6	-1.141206	1.141064	-0.978795
6	-2.297330	1.853137	-0.655518
6	-1.191339	0.455485	-2.187442
6	0.549557	3.588427	1.256659
6	-1.327284	-0.111539	1.955091
6	0.859762	-0.247577	3.640419
6	-0.337707	-0.843479	4.027808
6	-1.437953	-0.765720	3.183224
6	-3.461859	1.826922	-1.414205
6	3.988405	-0.421662	-0.239098
1	3.718334	0.525318	0.235137
6	3.296752	-2.504856	-1.288913
1	2.514138	-3.172730	-1.651501
6	1.642876	4.639152	-1.055919
6	-2.333584	0.406260	-2.984760
6	-3.480075	1.083101	-2.591495
6	0.998013	4.908065	1.245577
6	1.547067	5.435492	0.081166
6	5.317273	-0.788445	-0.375223
1	6.114681	-0.135766	-0.012543
6	4.626182	-2.858875	-1.452182
1	4.893233	-3.799462	-1.939347
6	5.628956	-2.005063	-0.985396
5	0.089204	1.225973	0.078742
8	0.851239	-2.921930	-0.066667
6	-0.254000	-3.575958	0.521745

8	0.050003	-4.495252	1.213091
6	-1.613537	-3.119490	0.192325
6	-2.599788	-3.371511	1.156485
6	-1.975945	-2.558094	-1.040547
6	-3.919319	-3.012251	0.924819
6	-3.301618	-2.233937	-1.292174
6	-4.259591	-2.433443	-0.297721
1	-1.230860	-2.380620	-1.821172
1	-3.597583	-1.823501	-2.261608
1	-4.682448	-3.166625	1.691375
1	-2.312228	-3.827262	2.108396
35	7.429186	-2.504605	-1.183712
35	-6.030617	-1.882608	-0.613365

 $(p-MeC_6H_4COO)_2 \bullet B(C_6F_5)_3$

9	-2.416440	-0.228198	2.651749
9	-0.837438	-2.565032	1.474054
9	-2.735750	-0.359853	-2.055633
9	0.239140	-0.743391	-2.748839
9	-1.380319	2.369524	1.364461
9	1.580372	-1.313894	1.517685
9	-0.000806	3.529748	3.324101
9	-5.387603	-0.617310	-1.855766
9	0.186423	-4.918168	0.699153
9	2.174063	2.294859	4.385911
9	-5.054876	-0.524219	2.825097
8	-0.700302	1.050197	-1.001068
8	1.462124	1.116661	-1.118641
9	2.922337	-0.138718	3.455434
9	1.261003	-5.176904	-1.779672

9	1.228254	-3.075385	-3.486037
9	-6.567182	-0.714087	0.583328
6	0.293542	1.694984	-1.367978
6	0.124525	2.986705	-2.013770
6	0.002627	0.452384	1.346379
6	-2.452045	-0.241412	0.285368
6	-0.331145	1.708507	1.859619
6	-3.271046	-0.366718	-0.837242
6	-0.310153	-1.527534	-0.567465
6	-0.351363	-2.663877	0.241116
6	0.177044	-1.733582	-1.854247
6	-3.100359	-0.309422	1.516918
6	1.127095	-0.134788	1.924251
6	0.370051	2.343772	2.879335
6	1.486873	1.715233	3.423930
6	1.861882	0.465511	2.947474
6	0.165099	-3.897201	-0.137682
6	-1.054675	3.683700	-1.695361
1	-1.740327	3.258847	-0.957461
6	1.015659	3.525651	-2.957032
1	1.925370	2.990181	-3.230805
6	-4.653207	-0.513027	-0.762386
6	0.680145	-2.959073	-2.286195
6	0.694167	-4.039946	-1.416200
6	-4.481012	-0.466608	1.636675
6	-5.260374	-0.567635	0.488708
6	-1.318905	4.905138	-2.291002
1	-2.225836	5.454427	-2.020246
6	0 720258	A 73A7A7	-3 563720
	0.720258	4.754747	5.505720

6	-0.442635	5.449237	-3.239412
5	-0.845974	-0.134052	0.077849
8	2.571437	1.999849	-1.229485
6	3.717613	1.492199	-0.574502
8	4.498629	2.338269	-0.272652
6	3.850122	0.041468	-0.383292
6	4.579715	-0.377135	0.737298
6	3.378424	-0.914554	-1.294295
6	4.773445	-1.729855	0.979281
6	3.620067	-2.259894	-1.063631
6	4.288854	-2.694167	0.088517
1	2.832921	-0.610914	-2.192504
1	3.276070	-3.003701	-1.790708
1	5.302994	-2.048113	1.882670
1	4.969917	0.374493	1.429337
6	4.476373	-4.156913	0.332308
1	3.550771	-4.716946	0.118808
1	5.255585	-4.570684	-0.330482
1	4.775851	-4.364731	1.369683
6	-0.751085	6.745347	-3.912847
1	0.163743	7.309315	-4.149427
1	-1.275823	6.568015	-4.867769
1	-1.405036	7.379678	-3.296669

$(PhCOO)_2 \bullet 2B(C_6F_5)_3$

9	5.795465	2.016776	-0.191495
9	5.543459	-0.597288	-1.778679
9	5.627793	-1.817657	2.554446
9	3.025103	-3.181148	1.267788
9	3.481244	2.168886	1.806139

9	2.763062	-0.356366	-2.129139
9	2.006956	4.135053	0.789861
9	8.028168	-1.196949	3.547624
9	5.839222	-2.751170	-3.337896
9	0.902294	3.872457	-1.693457
9	8.193012	2.604881	0.801244
8	3.304163	-0.617370	2.006282
8	1.384790	-1.114123	1.165236
9	1.308755	1.616049	-3.103429
9	4.644492	-5.097446	-2.651616
9	3.222642	-5.253006	-0.349509
9	9.332366	1.017248	2.675199
6	2.099386	-0.728670	2.238404
6	1.547620	-0.437229	3.554760
6	3.234714	0.806664	-0.108130
6	5.577640	0.090808	1.165138
6	2.974322	1.993314	0.584112
6	6.217593	-0.709336	2.113514
6	4.253966	-1.762185	-0.198566
6	4.998228	-1.741074	-1.379043
6	3.723014	-3.001753	0.141725
6	6.293999	1.205776	0.733081
6	2.637559	0.725438	-1.367089
6	2.207294	3.041449	0.081765
6	1.643728	2.914599	-1.184667
6	1.865389	1.752138	-1.910191
6	5.152670	-2.840444	-2.215657
6	2.370076	0.359699	4.376996
1	3.329855	0.710557	3.990470
6	0.309122	-0.895375	4.045801

1	-0.342631	-1.526843	3.444545
6	7.470687	-0.413324	2.642659
6	3.835589	-4.126108	-0.675040
6	4.554699	-4.047032	-1.859924
6	7.553357	1.534155	1.232347
6	8.143127	0.718918	2.193298
6	1.948756	0.712730	5.648856
1	2.583617	1.343612	6.275369
6	-0.097254	-0.539652	5.322841
1	-1.066483	-0.885505	5.689981
6	0.714041	0.267011	6.120161
5	4.125183	-0.359598	0.607635
8	-0.002023	-0.960822	1.354208
6	-0.685433	-0.897489	0.180553
8	-1.789096	-0.429756	0.374546
6	-0.141336	-1.395714	-1.070594
6	-0.470455	-0.703921	-2.246780
6	0.565251	-2.609415	-1.127017
6	-0.081883	-1.220359	-3.474831
6	0.917338	-3.130834	-2.364279
6	0.598388	-2.436379	-3.532507
5	-3.317923	-0.069739	-0.081388
6	-4.150678	-0.667955	1.180006
6	-3.703328	-0.504795	2.493731
6	-5.354244	-1.359004	1.038108
6	-4.376789	-1.025491	3.596019
6	-6.065087	-1.880453	2.117399
6	-5.569838	-1.713798	3.406833
6	-3.305214	1.551822	-0.073467
6	-4.523920	2.217783	0.057714

6	-2.179820	2.370806	-0.102142
6	-4.631975	3.598007	0.192175
6	-2.235223	3.754320	0.057792
6	-3.472923	4.371388	0.199215
6	-3.537807	-0.820153	-1.493274
6	-3.256353	-2.182425	-1.599642
6	-3.951837	-0.198399	-2.669460
6	-3.335672	-2.896271	-2.788620
6	-4.060232	-0.878786	-3.883834
6	-3.750828	-2.233785	-3.942021
9	-0.949158	1.865089	-0.285133
9	-1.130440	4.474138	0.072055
9	-3.549425	5.678001	0.338745
9	-5.809081	4.178688	0.314168
9	-5.650834	1.514525	0.042277
1	0.804880	-3.160310	-0.212540
1	1.442012	-4.089502	-2.417652
1	-0.306777	-0.666881	-4.390091
1	-0.986823	0.258432	-2.183034
9	-7.199226	-2.526856	1.930606
9	-6.223107	-2.204722	4.439370
9	-3.892997	-0.867016	4.818834
9	-2.577109	0.158028	2.760815
9	-5.884686	-1.550030	-0.162420
9	-2.848176	-2.855437	-0.520880
9	-3.026995	-4.178013	-2.836855
9	-3 844022	-2.886084	-5.081697
	-3.0++022		
9	-4.451983	-0.249970	-4.974718
9 9	-4.451983 -4.248787	-0.249970 1.093775	-4.974718 -2.690167

$(p-BrC_6H_4COO)_2 \bullet 2B(C_6F_5)_3$

9	5.758111	2.018534	-0.194140
9	5.508652	-0.587143	-1.792226
9	5.617843	-1.824202	2.541969
9	3.024057	-3.201832	1.256096
9	3.450774	2.151359	1.818026
9	2.733793	-0.353276	-2.131296
9	1.999843	4.134455	0.798634
9	8.017829	-1.194536	3.529200
9	5.806328	-2.729849	-3.365020
9	0.917001	3.893856	-1.694910
9	8.156053	2.614855	0.791997
8	3.288885	-0.636161	2.006677
8	1.366740	-1.157694	1.186184
9	1.310053	1.638508	-3.109971
9	4.631919	-5.088359	-2.681922
9	3.232713	-5.266219	-0.367951
9	9.308961	1.028225	2.658307
6	2.086322	-0.753115	2.248722
6	1.544324	-0.451687	3.564371
6	3.205634	0.798467	-0.103196
6	5.554185	0.087124	1.157182
6	2.949283	1.984258	0.592462
6	6.201131	-0.712145	2.101573
6	4.235091	-1.767130	-0.210438
6	4.971701	-1.735949	-1.395804
6	3.715176	-3.012192	0.127279
6	6.263867	1.206812	0.725963

6	2.614933	0.727636	-1.365758
6	2.196943	3.042084	0.088016
6	1.643557	2.926462	-1.183880
6	1.859192	1.764669	-1.911935
6	5.127311	-2.829693	-2.239802
6	2.379049	0.336795	4.383007
1	3.342859	0.674675	3.994516
6	0.302886	-0.889894	4.067010
1	-0.361322	-1.517172	3.475199
6	7.454338	-0.411421	2.627734
6	3.832062	-4.132162	-0.694912
6	4.539226	-4.042092	-1.886437
6	7.523230	1.539912	1.222092
6	8.120011	0.725136	2.179168
6	1.976691	0.701561	5.655015
1	2.617631	1.324600	6.282911
6	-0.098315	-0.528799	5.342001
1	-1.069476	-0.856228	5.721237
6	0.735077	0.269841	6.128929
5	4.102130	-0.369276	0.603339
8	-0.021657	-1.008353	1.374691
6	-0.692617	-0.906424	0.193460
8	-1.780973	-0.401056	0.378588
6	-0.141336	-1.410506	-1.049419
6	-0.431572	-0.714984	-2.234032
6	0.552107	-2.632714	-1.096205
6	-0.013736	-1.222210	-3.454183
6	0.928994	-3.160897	-2.319845
6	0.651391	-2.449959	-3.491201
5	-3.313377	-0.049121	-0.086316

6	-4.145790	-0.654177	1.172033
6	-3.702459	-0.494777	2.487568
6	-5.343962	-1.353809	1.024512
6	-4.369961	-1.032014	3.585398
6	-6.049835	-1.890656	2.099480
6	-5.556205	-1.730408	3.390479
6	-3.306637	1.570967	-0.081824
6	-4.525370	2.235198	0.055929
6	-2.182498	2.390811	-0.120749
6	-4.633684	3.615512	0.190056
6	-2.237753	3.774092	0.039404
6	-3.475213	4.389983	0.189017
6	-3.522150	-0.805283	-1.496061
6	-3.233001	-2.166257	-1.598293
6	-3.950067	-0.191868	-2.671703
6	-3.321326	-2.888001	-2.781827
6	-4.064837	-0.879547	-3.881469
6	-3.750796	-2.233876	-3.935057
9	-0.953548	1.884807	-0.314316
9	-1.133084	4.494131	0.045386
9	-3.552119	5.696410	0.328381
9	-5.810381	4.195172	0.318715
9	-5.651170	1.530272	0.047706
1	0.768733	-3.190694	-0.180441
1	1.440387	-4.126376	-2.374239
1	-0.193642	-0.665812	-4.377311
1	-0.942614	0.251388	-2.185796
9	-7.177668	-2.546088	1.907142
9	-6.204136	-2.237289	4.418238
9	-3.886239	-0.879373	4.808848

9	-2.584420	0.179268	2.761443
9	-5.872988	-1.539137	-0.177553
9	-2.810544	-2.830844	-0.518667
9	-3.008807	-4.168742	-2.824694
9	-3.853394	-2.892790	-5.069193
9	-4.470268	-0.258943	-4.971614
9	-4.258963	1.097189	-2.694434
35	0.179499	0.770967	7.848578
35	1.210998	-3.153394	-5.136902

$(p-MeC_6H_4COO)_2 \bullet 2B(C_6F_5)_3$

9	5.885131	1.875521	-0.140842
9	5.252084	-0.526310	-1.882980
9	5.615132	-2.063133	2.442537
9	3.011675	-3.219071	1.283802
9	3.774716	2.069267	2.077613
9	2.525711	-0.087750	-1.943237
9	2.360701	4.198072	1.348369
9	8.123285	-1.667020	3.285285
9	5.251361	-2.580013	-3.604376
9	1.023772	4.212028	-1.017466
9	8.386899	2.233643	0.689157
8	3.314603	-0.686768	2.077155
8	1.388272	-1.144357	1.218659
9	1.145404	2.049340	-2.639394
9	4.097075	-4.935835	-2.902097
9	2.982685	-5.207546	-0.451153
9	9.528550	0.480822	2.408791
6	2.100756	-0.765345	2.297835
6	1.535036	-0.446788	3.593584

6	3.255779	0.878943	0.101501
6	5.613929	-0.088251	1.151834
6	3.148334	2.021311	0.900251
6	6.256391	-0.979891	2.012028
6	4.099476	-1.746418	-0.238012
6	4.708753	-1.673407	-1.491357
6	3.589087	-2.996014	0.100789
6	6.383379	0.986403	0.709356
6	2.544061	0.937826	-1.096914
6	2.417315	3.151584	0.548091
6	1.728219	3.163218	-0.661155
6	1.801038	2.051412	-1.490673
6	4.727675	-2.724674	-2.401424
6	2.351676	0.341287	4.431641
1	3.329178	0.667233	4.069237
6	0.275000	-0.867484	4.066358
1	-0.373656	-1.502484	3.464054
6	7.563867	-0.803953	2.456859
6	3.593672	-4.079074	-0.776398
6	4.157618	-3.940589	-2.036333
6	7.698143	1.194515	1.123112
6	8.288839	0.294240	2.004094
6	1.904712	0.721997	5.683078
1	2.541994	1.345916	6.317052
6	-0.151779	-0.482960	5.324300
1	-1.135902	-0.807566	5.674062
6	0.642533	0.326618	6.149593
5	4.099655	-0.400337	0.669971
8	0.005852	-0.904922	1.367740
6	-0.629697	-0.761730	0.170974

8	-1.687211	-0.174817	0.333363
6	-0.092290	-1.299542	-1.056675
6	-0.358448	-0.607053	-2.247907
6	0.558336	-2.547854	-1.097723
6	0.058108	-1.135040	-3.459526
6	0.917578	-3.082019	-2.320279
6	0.696862	-2.379814	-3.517528
5	-3.255386	-0.010486	-0.098717
6	-3.999867	-0.643777	1.204430
6	-3.548162	-0.398098	2.504145
6	-5.136925	-1.447818	1.109998
6	-4.148436	-0.950842	3.633528
6	-5.774520	-2.003912	2.217367
6	-5.270849	-1.758242	3.490423
6	-3.446614	1.593630	-0.196680
6	-4.732580	2.119542	-0.077073
6	-2.434850	2.527870	-0.404248
6	-5.009536	3.481439	-0.114030
6	-2.664274	3.902835	-0.437633
6	-3.961184	4.381219	-0.288004
6	-3.422605	-0.848733	-1.472724
6	-3.024241	-2.185461	-1.518131
6	-3.891288	-0.324128	-2.676225
6	-3.027858	-2.955875	-2.673264
6	-3.934657	-1.067629	-3.856890
6	-3.498126	-2.387781	-3.855045
9	-1.164870	2.142642	-0.597543
9	-1.669807	4.749326	-0.617926
9	-4.198676	5.676182	-0.320645
9	-6.244981	3.926591	0.003986

9	-5.768442	1.294517	0.039231
1	0.749858	-3.112438	-0.179755
1	1.389907	-4.070015	-2.359879
1	-0.108839	-0.570731	-4.381956
1	-0.854232	0.366805	-2.204589
9	-6.846239	-2.759098	2.071467
9	-5.851513	-2.281750	4.550208
9	-3.662619	-0.709886	4.843600
9	-2.496642	0.387495	2.733699
9	-5.674895	-1.718285	-0.071756
9	-2.556149	-2.765756	-0.407844
9	-2.587562	-4.200656	-2.669372
9	-3.517925	-3.094183	-4.965839
9	-4.380703	-0.529841	-4.975344
9	-4.310956	0.930473	-2.763161
6	0.143743	0.780205	7.479586
1	-0.364180	1.755634	7.382211
1	-0.588299	0.076964	7.902672
1	0.964516	0.915674	8.199497
6	1.148972	-2.967429	-4.811816
1	2.216102	-3.242034	-4.763863
1	0.593686	-3.894042	-5.034731
1	1.007321	-2.273230	-5.651709

References:

S1. W.-Y. Yu, W. N. Sit, Z. Zhou and A. S. C. Chan, Org. Lett., 2009, 11, 3174.

S2. Gaussian 09, Revision B.01: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,

B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A.

F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,

R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven,

T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;

Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.;

Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;

Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;

Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;

Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth,

G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; and Fox, D. J. Gaussian, Inc., Wallingford,

CT, 2010.

S3. Y. Zhao; D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.