Suppoting information

Room-temperature liquid metal-based anodes for highenergy potassium-based electrochemcial devices

Lei Qin,‡^{ab} Wei Yang,‡^a Wei Lv,^a Liang Liu,^c Yu Lei,^a Wei Yu,^a Feiyu Kang,^a Jang-Kyo Kim,^b Dengyun Zhai^{*a} and Quan-Hong Yang^{*d}

^a Engineering Laboratory for Functionalized Carbon Materials, Shenzhen Key Laboratory for Graphene-Based Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.

E-mail: zhaidy0404@sz.tsinghua.edu.cn

^b Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

^c Department of Physics, Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China

^d School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

E-mail: qhyangcn@tju.edu.cn

[‡]These authors contributed equally to this work.

Material preparation

Materials: Potassium hexafluorophosphate (KPF₆), sodium (Na), potassium (K) was purchased from Sigma Aldrich.

CM@NaK membrane preparation: The liquid Na-K alloy was prepared by mixing 33.3 wt% Na (99.9 %, Aldrich) and 66.7 wt% K (98 %, Aldrich), and slightly pestling with a glass rod in the argon-filled glove box with water content < 0.1 ppm and oxygen content < 0.1 ppm. The CM@NaK membrane was prepared by immersing a super-aligned carbon nanotube membrane (CM, supplied by Prof. Shoushan Fan's Group¹) of 16 mm in diameter into the Na-K alloy at room temperature (RT). The CM of 7.9 mg was used to adsorb Na-K alloy and regarded as the anode in the symmetric cell, while the thinner CM of 1.5 mg was used to adsorb Na-K alloy and regarded as the another carbon nanotube membrane prepared by vacuum infiltration and the carbon paper (TGP-H-060, Toray) were used as reference samples to evaluate surface wettability with Na-K alloy.

Activated carbon electrode preparation: Activated carbon (AC) powder was prepared according to previous report.² A uniform slurry consisting of 80 wt% AC, 10 wt% carbon black and 10 wt% polyvinylidene fluoride (PVDF) was prepared by adding N-methyl-2-pyrrolidinone (NMP) solvent and thoroughly grinding the above mixture. The resultant slurry was uniformly coated onto Al foil, dried in vacuum at 110 °C overnight and cut into 16 mm disks with a typical AC loading of 2 mg for coin-cell tests.

Material characterization

X-ray diffraction (XRD) spectra were collected on a Rigaku D/MAX 2500/PC with a Cu K α source ($\lambda = 0.154$ nm) and the step rate was 5 degrees per minute. The morphologies were observed using a scanning electron microscope (SEM, HITACHI SU8010) with an electron beam voltage at 10 kV. X-ray photoelectron spectroscopy (XPS) analysis was conducted on PHI5000 XPS spectrometer using monochromatic Al K α radiation at 1486.6 eV. All the XPS spectra were corrected by referencing the

position of the C-C peak in C 1s spectra with a binding energy at 284.8 eV. Spectra curve fitting was finished with the help of the PHI-MultiPak software adopting a combined Gaussian-Lorentzian profile after a Shirley type background subtraction. Raman spectra were recorded from 200 to 3000 cm⁻¹ with a confocal microprobe Raman system using 532-nm excitation laser (HORIBA LABRAM HR800) with 1% of the maximum power (50 mW). Nitrogen adsorption/desorption experiments were conducted on an ASAP 2020M+C. The samples were degassed in vacuum at 200 °C for 12 h in prior to the adsorption measurements. The specific surface area was determined from the Brunauer-Emmett-Teller (BET) method and the corresponding pore size distribution by density function theory (DFT). ¹H NMR (Bruker AVANCE III 400) was used to identify the electrolyte component and the CDCl₃ was selected as the solvent.

Electrochemical measurement

CM@NaK or K electrodes were assembled into symmetric cells respectively, which were tested at 0.05, 0.1, 0.25, 0.5 and 1 mA cm⁻² with the deposition/stripping time of 2 h. An asymmetric capacitor was evaluated with R2032 coin-type cells, consisting of a CM@NaK or K anode, a AC cathode and two pieces of glass fiber separators (GF/A, Whatman) with ~70 μ L electrolyte added in cell. The K anode has a typical mass of 30 mg with 16 mm in diameter by pressing K chunks on the stainless steel sheet. The electrolyte is 0.5 M KPF₆ in diethylene glycol dimethyl ether (DEGDME). The cells were galvanostatically cycled on a LAND battery tester. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) tests were conducted on an electrochemical workstation (Bio-Logic VMP3, France).

Fig. S1 (a) Raman spectrum and XRD pattern, and (b) XPS spectrum of CM (inset: the chart shows the percentages of carbon and oxygen). High-resolution (c) C 1s and (d) O 1s XPS spectra of CM.

Fig. S2 Mass variation of CM with two typical initial weight after adsorbing liquid Na-K upon time.

Fig. S3 Illustration of the flexible CM and CM@NaK with diverse shapes.

Fig. S4 Representative SEM image of (a) a CNT membrane prepared by vacuum filtration and (b) a carbon paper. The insets are the photos of a Na-K droplet on them at RT.

Substrates	Carbon fiber	Vacuum filtrated CNT membrane	Super-aligned CNT membrane
Contact angle (°)	115°	130°	40°

Table S1 The estimated contact angle of liquid Na-K alloy on different substrates.

Fig. S5 Electrochemical performance of the symmetric cells. Voltage versus time of a symmetric (a) CM@NaK/CM@NaK and (b) K/K cell cycled at various current densities with the stripping/plating time of 2 h. The electrolyte is 0.5 M KPF_6 in DEGDME.

Scheme 1. Schematic illustration of charging/discharging mechanism of the asymmetric PIC, composed of CM@NaK anode and AC cathode. The electrolyte is 0.5 M KPF₆ in DEGDME.

Fig. S6 (a) SEM image of AC, (b) XRD pattern of AC coated on the Al current collector, (c-d) Nitrogen adsorption/desorption isotherm of AC and its corresponding pore size distribution.

Fig. S7 (a) LSV of PIC with CM@NaK anode scanning from the open circuit voltage to 5.0 V, (b) CV curves of PIC with CM@NaK anode in the voltage range of 1.5-4.1 V and 0-4.5 V, (c-d) Electrolyte stability evaluation of EC-DEC and DEGDME in the presence of CM@NaK anode based on ¹H NMR spectra.

The newborn byproduct can be identified as potassium ethyl (C_2H_5K) from NMR results in **Figure S7**c, indicating that the EC-DEC electrolyte occur decomposition in the presence of liquid Na-K.

Fig. S8 Cyclic voltammograms of CM@NaK/AC at high scan rates.

Fig. S9 Electrochemical performance of the asymmetric PIC with K anode and AC cathode, tested between 1.5-4.1 V. The applied current densities are calculated based on the mass of AC electrode. (a-b) Galvanostatic discharge/charge profiles of PIC, at current densities from 0.6 to 19.2 A g⁻¹, The capacities are calculated based on AC electrode. (c-d) Cyclic voltammograms of PIC at various scan rates.

References

- X. Zhang, K. Jiang, C. Feng, P. Liu, L. Zhang, J. Kong, T. Zhang, Q. Li and S. Fan, *Adv. Mater.*, 2006, **18**, 1505-1510.
- D. Zhai, H.-H. Wang, J. Yang, K. C. Lau, K. Li, K. Amine and L. A. Curtiss, J.
 Am. Chem. Soc., 2013, 135, 15364-15372.