Supplementary Information

ESIPT-based fluorescence probe for the rapid detection of hypochlorite (HOCl/ClO⁻)

Luling Wu^a, Qingye Yang^b, Liyuan Liu^a, Adam C. Sedgwick^{a*}, Alexander J. Cresswell^{a*}, Steven D. Bull^{a*}, Chusen Huang^{b*} and Tony D. James^{a,c*}

^aDepartment of Chemistry, University of Bath, Bath, BA2 7AY, U.K.

^bThe Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.

^cDepartment of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 Japan.

Email: T.D.James@bath.ac.uk, A.J.Cresswell@bath.ac.uk, A.C.Sedgwick@bath.ac.uk, S.D.Bull@bath.ac.uk, huangcs@shnu.edu.cn

Content

- 1. Reaction mechanisms
- 2. Methods
- 3. UV analysis
- 4. Fluorescence analysis
- 5. Mass spec analysis
- 6. HClO/ClO⁻ detection in water samples
- 7. Cell imaging experiments
- 8. Synthetic experiments
- **9.** NMR
- 10. References

1. Reaction mechanisms

The mechanism for the hydrolysis of the thiocarbamate of **TCBT-OMe** with hypochlorite involves the sulfur of the thiocarbonyl reacting with an electrophilic halogen atom.¹⁻³ The charged intermediate then undergoes base-catalysed nucleophilic attack by H_2O to afford a tetrahedral intermediate, which results in the elimination of the ESIPT fluorophore producing a fluorescence response.

Addition of HOCI/CIO⁻ to TCBT-OMe:

Scheme S1. Reaction mechanism of TCBT-OMe with HClO

Addition of Hg^{2+} and H_2O_2 to TCBT-OMe:

Scheme S2. Reaction of TCBT-OMe with $Hg^{2\scriptscriptstyle +}$ or $Hg^{2\scriptscriptstyle +}$ and H_2O_2

2. Methods

2.1 Spectroscopic Materials and Methods

All spectroscopic measurements except pH titration were performed in 0.1 M phosphate buffer (pH 7.4, 1% DMSO, v/v, 1 mM CTAB) at room temperature. Absorption spectra were recorded using a CARYWINUV UV-Visible spectrophotometer. Fluorescence spectra were recorded using a perkinelmer LS50 scanning spectrofluorometer. Samples for absorption and fluorescence measurements were contained in 1 cm×1 cm quartz cuvettes (3.5 mL volume). pH effect on the fluorescence intensity of **TCBT-OMe** toward HOCl was tested in water solution (containing 1% DMSO, 1 mM CTAB).

2.2 Generation of various ROSs

ROO•

ROO was generated from 2,2'-azobis (2-amidinopropane) dihydrochloride. AAPH (2, 2' azobis (2-amidinopropane) dihydrochloride,1 M) was added into deionizer water, and then stirred at 37 °C for 30min;

·O2

Superoxide was generated from KO_2 . KO_2 and 18-crown-6 ether (2.5 eq) was dissolved in DMSO to afford a 0.25 M solution.

•НО

Hydroxyl radical was generated by the Fenton reaction. To prepare •OH solution, hydrogen peroxide $(H_2O_2, 10 \text{ eq})$ was added to Fe(ClO₄)₂ in deionized water.

ONOO⁻

Simultaneously, 0.6 M KNO₂, 0.6 M in HC1, 0.7 M in H₂O₂ was added at to a 3 M NaOH solution at 0 °C. The concentration of peroxynitrite was estimated by using extinction co-efficient of 1670 cm⁻¹M⁻¹ at 302 nm in 0.1 M sodium hydroxide aqueous solutions.

OCI

The concentration of ^{-}OCl was determined from the absorption at 292 nm ($\varepsilon = 350 \text{ M}^{-1}\text{cm}^{-1}$).

H_2O_2

The concentration of H_2O_2 was determined from the absorption at 240 nm ($\varepsilon = 43.6 \text{ M}^{-1}\text{cm}^{-1}$).

3. UV Analysis

Fig. S1. UV spectra of TCBT-OMe (5 μ M), with and without HClO/ClO⁻ (10 μ M) in PBS pH 7.4, containing 1% DMSO, 1 mM CTAB.

Fig. S2. UV spectra of **TCBT-OMe** (5 μ M) with and without the addition of Hg²⁺ (15 μ M) and H₂O₂ (120 μ M) in PBS pH 7.4, containing 1% DMSO, 1 mM CTAB. Each measurement was taken 14 min after Hg²⁺ addition.

4. Fluorescence analysis

4.1 Fluorescence response of TCBT-OMe to HOCl

Fig. S3. Fluorescence intensity changes (I/I_{HOCI}) for **TCBT-OMe** (5 μ M) with the addition of HOCl (0 - 18 μ M) in PBS pH 7.4, containing 1% DMSO, 1 mM CTAB at 25 °C. Fluorescence intensities were measured with λ ex = 310 nm, λ em = 472 nm.

Fig. S4 - Fluorescence intensity over time of **TCBT-OMe** (5 μ M) with the addition of HOCl (20 M) in PBS pH 7.4, containing 1% DMSO, 1 mM CTAB at 25 °C. λ ex = 310 nm/ λ em = 472 nm

4.2 Determination of detection limit

The detection limit (CDL) was calculated by IUPAC assay. CDL = 3 sbm^{-1} (sb is the ratio of signal and noise, m is the slope of linear equation). The sb was determined through standard deviation (11 times) of F₄₇₂ for **TCBT-OMe** at 5 µM without addition of HOCl or Hg²⁺. According the linear equation (Y = 26.87312 + 71.48 X) of **TCBT-OMe** to HOCl concentration (from 0 to 0.67 µM, Fig. S4), which was calculated as about 0.16 nM. According the linear equation (Y = 26.17956 + 58.46 X) of **TCBT-OMe** to Hg²⁺ concentration (from 0 to 1.88 µM, Fig. S5), which was calculated as about 34.7 nM.

Fig. S5. Fluorescence intensity versus concentration of HClO for the calculation of the limit of detection for **TCBT-OMe** in PBS pH 7.4, containing 1% DMSO, 1 mM CTAB at 25 °C. Fluorescence intensities were measured with $\lambda_{ex} = 310$ nm, $\lambda_{em} = 472$ nm. Error bar represents s.d. LOD is 0.16 nM.

Fig. S6. Effects of pH on the fluorescence response of **TCBT-OMe** (5 μ M) for HOCl (35 μ M) in water (containing 1% DMSO, 1 mM CTAB). λ_{ex} = 410 nm, λ_{em} = 472 nm. Each measurement was acquired 15 min after HOCl addition. Slit widths: ex = 6 nm em = 4 nm.

Fig. S7. Fluorescence intensity versus concentration of Hg^{2+} for the calculation of the limit of detection for **TCBT-OMe** in PBS pH 7.4, containing 1% DMSO, 1 mM CTAB at 25 °C. Fluorescence intensities were measured with $\lambda_{ex} = 310$ nm, $\lambda_{em} = 472$ nm. Error bar represents s.d. LOD is 34.7 nM.

4.4. Fluorescence response of TCBT-OMe to Hg²⁺ with the addition of H₂O₂

Fig. S8. Fluorescence spectra of **TCBT-OMe** (5 μ M) in the presence of Hg²⁺ (9 μ M) and increasing concentrations of H₂O₂ (final concentration: 0, 20, 40, 80, 100, 120, 140 μ M and 180 μ M) in PBS buffer (pH 7.4, containing 1% DMSO, 1 mM CTAB). 14 min wait before measurement in buffer solution. $\lambda_{ex} = 310$ nm/ $\lambda_{em} = 472$ nm. Error bars represent s.d.

4.5 Selectivity of TCBT-OMe for Hg²⁺

Fig. S9. Selectivity bar chart of **TCBT-OMe** in PBS pH 7.4, containing 120 μ M H₂O₂, 1% DMSO, 1 mM CTAB with addition of Hg²⁺ (9 μ M) and other metal cations. 1, Hg²⁺; 2, blank; 3, Na⁺; 4, K⁺; 5, Mg²⁺; 6, Ca²⁺; 7, Fe²⁺; 8, Fe³⁺; 9, Al³⁺; 10, Cu²⁺; 11, Zn²⁺; 12, Pb²⁺; 13, Cd²⁺; 14, Mn²⁺; 15, Li⁺; 16, Cr²⁺; 17, Ag⁺; 18, Ni²⁺; 19, Cd²⁺; 20, Rh³⁺. Note: The concentration of **TCBT-OMe** and each interfering species are 5 μ M and 15 μ M respectively, 15 min wait before measurement in buffer solution. $\lambda_{ex} = 310$ nm/ $\lambda_{em} = 472$ nm Error bars represent s.d.

4.6 Time-dependent fluorescence response of TCBT-OMe to Hg²⁺

Fig. S10 Fluorescence intensity over time for **TCBT-OMe** (5 μ M) in the presence of Hg²⁺ (9 μ M) and H₂O₂ (120 μ M) in PBS pH 7.4, containing 1% DMSO, 1 mM CTAB at 25 °C. $\lambda_{ex} = 310$ nm/ $\lambda_{em} = 472$ nm

5. Mass spec analysis

	-,			.,, -									
100 x10 2. 1. 1.	s.5 0 5 0						=S OCH ₃	367.0596	D		+MS, 1.0-1.3mi	in #(119-154),	-Spectral Bkgrnd
0.	101.1	079		236	6.0729				44	9.1607			
0.	0	0		200	<u> </u>		300	· · · ·	400		500	600	m/z
Gen	erate Molecu	# 1 88 2 101 3 107 4 236 5 245 6 345 7 346 8 367 9 368 10 369 ular For	m/z .0217 1 .1079 2 .0478 1 .0729 1 .0386 1 .0386 1 .0386 1 .0386 1 .0386 1 .0386 1 .0386 1 .0386 1 .0396 1 .0596 1 .0557 1 mula Pa	I 11189 20658 4040 7367 5696 51403 9771 39074 25790 3391 ramete	I % 8.0 14.9 10.1 12.5 11.3 37.0 7.0 100.0 18.5 9.6	Area 191 470 95 468 663 2621 509 7784 1397 738	S/N 3606.8 4702.5 2819.8 1231.0 1078.1 2133.3 395.2 3676.3 670.6 342.7						
Cha	rge Tolerand	ce Sea	rchRadiu	is H/C	Ratic	min.	H/C Rati	o max.	Electron	Conf.	Nitrogen Rule	sigma limit	
posi	tive 25 pp	m	0.05 m	/z		0		3		both	true	0.05	
Exp	ected Formu	la C	17H16N	20282					Add	duct(s):	H, Na		
#	meas. m/z	theo. r	n/z Er	r[ppm]	Sig	ma		F	ormula				
1	345.0798	345.0	726	21.00	0.0	141	C 17 I	H 17 N 2	0252				
1	367.0596	367.0	545	13.90	0.0	144	C 17 H 16	N 2 Na 1	0252				

+MS, 1.0-1.3min #(119-154), -Spectral Bkgrnd

Fig. S11. HRMS spectrum of TCBT-OMe before the addition of specific analyte

+MS	, 1	.0-1.3m	in ‡	#(119 -	·154)), -S	pec	tral B	kgrnd						
Intens.	E						-						+MS, 1.0-1.3m	in #(119-154), -	Spectral Bkgrnd
x10 ³ 3 2 1						236	0828	190 020		Ľ≯ N ⊦		474.	1994		
0	1	100	,		200	<u>,</u>	L	80.039	00	372.247	400	. , I	500	600	
		100			200			0			100				
			#	m/z		Ι	I %	Area	S/N						
			1 2	36.0828	288	61	12.8	587	1485.2						
			2 2	80.0394	128	56	5.7	593	1076.1						
			3 4	73.2001	506	45	22.4	4465	1031.3						
			4 4	74.1994	2258	11	100.0	19204	4655.1						
			5 4	75.1984	732	19	32.4	5979	1528.2						
			6 4	76.1963	223	49	9.9	1843	472.3						
			7 4	95.1806	244	82	10.8	2161	680.8						
			8 4	96.1774	1046	41	46.3	9721	2958.8						
		1	9 4	197.1800	322	48	14.3	2/98	927.5						
		1	0 4	98.1779	94	02	4.2	827	275.1						
Gene	rate	e Molecul	lar F	ormula	Para	nete	rs								
Charg	ge	Tolerance	e S	earchRa	adius	H/C	Ratio	min.	H/C Ratio	o max.	Electro	n Conf.	Nitrogen Rule	sigma limit	
positi	ve	25 ppn	n	0.0	5 m/z			0		3		both	true	0.05	
Expe	cted	d Formula	a	C14H	11NO2	2S					A	dduct(s)	: H, Na		
#	mea	as. m/z	theo	o. m/z	Err[p	pm]	Sig	ma		F	ormula				
1	2	80.0394	280	0.0403		2.90	0.0	376 (C 14 H 11 M	1 1 Na 1	0251				

Fig. S12. HRMS spectrum of TCBT-OMe + HClO.

Fig. S13. HRMS spectrum of TCBT-OMe + Hg^{2+} .

+MS, 1.0-1.3min #(119-154), -Spectral Bkgrnd

Fig. S14. HRMS spectrum of TCBT-OMe + Hg^{2+} + H_2O_2 .

6. HClO/ClO⁻ detection in water samples

Table S1. Recovery of HClO/ClO⁻ in three water samples. (Sample A, tap water from University of Bath; Sample B, water from Avon River in Bath; Sample B, water from Roman Bath spa in Bath) in the presence of CTAB (1 mM) and **TCBT-OMe**

Туре	Added (µM)	Found (µM)	R.S.D (%)	Recovery (%)
sample A	2.81	2.72±0.03	4.9	96.80
	5.97	5.89±0.01	5.3	98.66
	12.84	12.76±0.14	4.5	99.38
sample B	2.81	2.78±0.25	3.4	98.93
	5.97	5.86±0.09	4.5	98.15
	12.84	13.01±0.14	5.8	101.32
sample C	2.81	3.08±0.18	6.1	95.73
	5.97	6.24±0.21	4.7	102.85
	12.84	13.91±0.27	5.2	100.86

7. Cell imaging experiments

Cell imaging experiment method

The HeLa cells were seeded into confocal Petri dishes in complete medium, and then incubated for 12 h under standard culture conditions. After the cells had attached, the cells were washed with DMEM for three times. (a) 10 μ L of **TCBT-OMe** stock solution (8 mM) was loaded into the HeLa cells for 30 min; (b) HeLa cells pretreated with **TCBT-OMe** (40 μ M) for another 30 min after preincubation with 1.2 μ g mL⁻¹ for 90 min; (c) HeLa cells pretreated with **TCBT-OMe** (40 μ M) for another 30 min after preincubation with 250 μ M ABAH for 70 min; (d) HeLa cells loaded with **TCBT-OMe** (40 μ M) for 30 min followed by the addition of 8 μ M NaOCl for 5 min. Finally, cells were washed twice with 2 mL of DMEM respectively, then 2 mL of fresh DMEM was added into the confocal dish as the culture medium for confocal microscopy study. Fluorescence images were collected by Leica TCS SP5 II confocal laser scanning microscopy using an HC× PLAPO 63× oil objective (NA: 1.40) and **TCBT-OMe** was excited at 405 nm and the emissions were collected in the range of 420-590 nm (yellow channel).

8. Synthetic experiments

Scheme S3. Synthesis of TCBT-OMe

2-(Benzo[d]thiazol-2-yl)-6-methoxyphenol

HBT-OMe was synthesized according to the similar procedures.⁴ In brief, A solution of 2aminothiophenol (0.9 mL, 12.6 mmol) and *o*-vanilin (1.44 g, 9.45 mmol) in EtOH (30 mL), aq H₂O₂ (30%, 56.8 mmol) and aq HCl (32% HCl, 28.35 mmol) was stirred at room temperature for 2 h. The solution was quenched by 35 mL H₂O. The precipitate was filtered, dried and recrystallized from EtOH to afford the title compound as a light yellow solid (2.20 g, 68%) ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.1 Hz, 1H), 7.94 – 7.87 (m, 1H), 7.52 (ddd, *J* = 8.3, 7.4, 1.2 Hz, 1H), 7.45 – 7.39 (m, 1H), 7.35 (dd, *J* = 7.9, 1.3 Hz, 1H), 6.99 (dt, *J* = 7.8, 3.9 Hz, 1H), 6.94 – 6.89 (m, 1H), 3.97 (s, 3H); ¹³C NMR (500 MHz, CDCl₃) δ 169.31 (s), 151.66 (s), 148.96 (s), 148.22 (s), 132.63 (s), 126.64 (s), 125.50 (s), 122.17 (s), 121.42 (s), 119.96 (s), 119.09 (s), 116.77 (s), 114.07 (s), 56.22 (s). HRMS (ES⁺): calc. for C₁₄H₁₁NO₂S [M+Na]⁺ 280.0403, found 280.0435.

O-(2-(Benzo[d]thiazol-2-yl)-6-methoxyphenyl) dimethylcarbamothioate

Dimethylthiocarbamoyl chloride (5.0 g, 14.4 mmol, 4 eq) was slowly added into the solution of **HBT-OMe** (0.94 g, 3.6 mmol, 1 eq) in dry CH₂Cl₂ (30 mL). *N*-diisopropylethylamine (1.25 mL, 7.2 mmol, 2 eqiv) was then added dropwise to the reaction mixture, which was then stirred at rt until the reaction reached completion. After the removal of CH₂Cl₂, the residues were purified through silica column chromatography to obtain **TCBT-OMe** as a light-yellow solid (180 mg, 72%). ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 8.7 Hz, 1H), 7.99 (d, J = 10.2 Hz, 1H), 7.91 (d, J = 7.5 Hz, 1H), 7.49 (ddd, J = 7.2, 4.7, 1.2 Hz, 1H), 7.42 – 7.34 (m, 2H), 7.11 (d, J = 8.2 Hz, 1H), 3.90 (s, 3H), 3.53 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 186.64 (s), 162.40 (s), 152.64 (s), 152.33 (s), 141.22 (s), 135.80 (s), 128.15 (s), 126.60 (s), 126.08 (s), 125.12 (s), 123.29 (s), 121.33 (s), 121.20 (s), 114.27 (s), 56.39 (s), 43.64 (s), 39.21 (s). HRMS (ES⁺): calc. for C₁₇H₁₆N₂O₂S₂ [M+H]⁺ 345.0726, found 345.0751.

9. NMR

Fig. S15. ¹H NMR spectrum of HBT-OMe.

Fig. S16. ¹³C NMR spectrum of HBT-OMe.

Fig. S18. ¹³C NMR spectrum of TCBT-OMe.

10. References

- 1. A. Corsaro and V. Pistara, *Tetrahedron*, 1998, **54**, 15027-15062.
- 2. H. Singh, P. Singh and N. Malhotra, J. Chem. Soc. Perkin Trans. 1, 1981, 2647-2649.
- 3. B. C. Zhu, P. Li, W. Shu, X. Wang, C. Y. Liu, Y. Wang, Z. K. Wang, Y. W. Wang and B. Tang, *Anal. Chem.*, 2016, **88**, 12532-12538.
- 4. X. Yang, Y. Guo and R. M. Strongin, Angew, Chem, Int, Ed., 2011, 50, 10690-10693.