## Supporting Information for

## The efficiency of ${ }^{18} \mathrm{~F}$ labelling of prostate specific membrane antigen ligand via strain-promoted azide-alkyne reaction: reaction speed versus hydrophilicity.

Mengzhe Wang, ${ }^{\text {a }}$ Christopher D. McNitt, ${ }^{\text {b }}$ Hui Wang, ${ }^{\text {a }}$ Xiaofen Ma, ${ }^{\text {a,c* }}$ Sarah M. Scarry, ${ }^{\text {d }}$ Zhanhong Wu, ${ }^{\text {a }}$ Vladimir V. Popik, ${ }^{\text {b* }}$ and Zibo Lia*
a Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
${ }^{\mathrm{b}}$ Department of Chemistry, University of Georgia, Athens Georgia 30602, USA
${ }^{\text {c D Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, }}$ Guangdong, China, 510317
${ }^{\text {d Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University }}$ of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA

General Methods and Materials. All organic solvents were dried and freshly distilled before use; tetrahydrofuran was distilled from sodium/benzophenone ketyl and dichloromethane was distilled from $\mathrm{CaH}_{2}$. Azido-PEG2-NHS ester was purchased from BroadPharm (San Diego, CA). Other reagents were obtained from Aldrich or VWR and used as received. Photo-ODIBO-EG ${ }_{4}$-Tos ${ }^{1}$ and BCN 4-nitrophenyl chloroformate ${ }^{2}$ were prepared as reported previously. Thin-layer chromatography (TLC) was preformed using commercial silica gel $60 \mathrm{~F}_{254}$ coated aluminumbacked sheets. Visualization was accomplished with UV light ( 254 nm ) and $\mathrm{KMnO}_{4}$ stain by heating. Purification was carried out on an automated flash chromatography/medium-pressure liquid chromatography (MPLC) system using normal-phase silica flash columns (4, 12, 24 or 40 g) or reverse-phase C-18 columns (15,50, 150 g ). Flash chromatography was performed using $40-63 \mu \mathrm{~m}$ silica gel. NMR spectra were recorded in $\mathrm{CDCl}_{3}, \mathrm{D}_{2} \mathrm{O}$ and DMSO- $\mathrm{d}_{6}$ using 400 MHz instrument. Chemical shifts are reported in parts per million ( ppm ) and are referenced to the center line of the solvent (for $\mathrm{CDCl}_{3}, \delta 7.26 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR and 77.2 for ${ }^{13} \mathrm{C}$ NMR; for $\mathrm{D}_{2} \mathrm{O}, \delta 4.79 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR; for DMSO- $\mathrm{d}_{6}$, $\delta 2.50 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR and 39.5 for ${ }^{13} \mathrm{C}$ NMR). Coupling constants are given in hertz (Hz). HRMS data were collected with a hybrid linear trap quadrupole Fourier Transform (LTQ FT) and an electrospray ion source (ESI). Spectroscopic data for the known compounds prepared according to the methodology described in the paper match with those reported in the literature. The preparative photolyses were conducted using a Rayonet photoreactor equipped with sixteen 4 W 350 nm fluorescent lamps. PSMA- $\mathrm{NH}_{2}$ was synthesized according to the procedures adapted from previously reported methods ${ }^{4,5}$.


## Tri-tert-butyl-(9S,13S)-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-

tricarboxylate (PSMA-S1). ${ }^{1,2}$ In a flame-dried and argon purged round-bottom flask was added triphosghene ( $0.132 \mathrm{~g}, 0.444 \mathrm{mmol}, 0.37$ equiv) followed by anhydrous DCM ( 2.24 mL )._The mixture was cooled to $-78^{\circ} \mathrm{C}$ for 10 mins. In a 20 mL flame-dried and argon-purged scintillation vial was added 2-amino-6-benzyloxycarbonylamino-hexanoic acid tert-butyl ester hydrochloride ( $447 \mathrm{mg}, 1.19 \mathrm{mmol}, 1.0$ equiv) to this was added DCM ( 2.24 mL ) and DIPEA ( $0.459 \mathrm{~mL}, 2.64$ $\mathrm{mmol}, 2.2$ equiv) this mixture was stirred at rt for 10 mins. After 10 mins stirring at rt , this solution was then slowly added in small aliquots to the triphosghene solution at $-78^{\circ} \mathrm{C}$ over 3 h . After 3 h , a solution of L-glutamic acid di-tert-butyl ester hydrochloride ( $355 \mathrm{mg}, 1.19 \mathrm{mmol}, 1.0$ equiv) in

DCM ( 2.24 mL ) and DIPEA ( $0.459 \mathrm{~mL}, 2.64 \mathrm{mmol}, 2.2$ equiv) this mixture was stirred at rt for 10 mins. After 10 mins, this solution was added to the reaction mixture containing triphosghene in one portion at $-78{ }^{\circ} \mathrm{C}$. The reaction was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. After stirring for 45 mins the mixture was warmed to rt and the reaction was concentrated to dryness, diluted with 10 mL EtOAc, washed with 2 N aqueous sodium bisulfate $\left(\mathrm{NaHSO}_{4}\right)(2 \times 10 \mathrm{~mL})$, brine $(2 \times 10 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was filtered and concentrated by rotary evaporation to yield crude product as a pale yellow oil. The crude oil was purified by normal phase MPLC eluting from 100\% hexanes to 70:30 EtOAc:hexanes. Like fractions were combined and concentrated to give PSMA-S1 as a colorless sticky oil ( $491 \mathrm{mg}, 65 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.38-7.27$ ( m , $5 \mathrm{H}), 5.22-5.04(\mathrm{~m}, 4 \mathrm{H}), 4.33(\mathrm{qd}, J=7.8,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{q}, J=9.9,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.19$ $(\mathrm{m}, 2 \mathrm{H}), 2.12-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.20(\mathrm{~m}, 33 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.6,172.5,172.5,157.0,156.7,136.8,128.6,128.2,128.1,82.2,81.9,80.7,66.7$, $53.4,53.1,40.8,32.8,31.7,29.5,28.5,28.2,28.2,28.1,22.4$; HRMS (LTQ FT) calcd for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 644.3553$, found 644.3541 .


## Di-tert-butyl (((S)-6-amino-1-(tert-butoxy)-1-oxohexan-2-yl)carbamoyl)-L-glutamate (PSMA-

 S2). ${ }^{1,2}$ In a flame-dried and argon purged round-bottom flask was added argon was added 10\% $\mathrm{Pd} / \mathrm{C}$ ( $332 \mathrm{mg}, 0.303 \mathrm{mmol}, 0.4$ equiv) the reaction vessel was slowly purged with argon to this was then added toluene ( 4.84 mL ) to make a slurry of the $\mathrm{Pd} / \mathrm{C}$ mixture and wash the walls of the roundbottom flask. To this mixture was then added EtOH ( 13.3 mL ) and the flask was purged again with argon. To the reaction flask was then added tri-tert-butyl( $9 S, 13 S$ )-3,11-dioxo-1-phenyl-2-oxa-4,10,12-triazapentadecane-9,13,15-tricarboxylate PSMA-S1 ( $470 \mathrm{mg}, 0.757 \mathrm{mmol}, 1.0$ equiv) as a solution in EtOH ( 8.84 mL ) and toluene ( 4.03 mL ). The reaction mixture was purged with argon for about 5 mins. After purging with argon, the reaction round bottom flask was fitted with a $\mathrm{H}_{2}$ gas balloon and purged. The mixture was stirred at rt under $\mathrm{H}_{2}$ and monitored by TLC (10:90 MeOH:DCM and 70:30 EtOAc:hexanes, staining with $\mathrm{KMnO}_{4}$ ). The reaction mixture was stirred overnight at rt . After stirring for about 24 h , the flask was purged with argon to remove the $\mathrm{H}_{2}$. Thereaction mixture was filtered through a pad of celite and the celite was washed with fresh EtOH. The filtrate was concentrated by rotary evaporation to give crude product as a thick pale yellow oil. The crude oil was purified by reverse-phase chromatography eluting with $100 \%$ water to 60:40 $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$. Like fractions were combined and concentrated (the organic solvent was removed by rotary evaporation and the aqueous was removed by lyophilization) to give PSMA-S2 as a pale pink thick oil ( $260 \mathrm{mg}, 70 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) ס $5.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.37-4.27$ (m, 2H), $2.74(\mathrm{~s}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 1 \mathrm{H}), 2.39-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.72(\mathrm{~m}, 2 \mathrm{H})$, 1.71 - 1.57 (m, 1H), 1.57 - 1.33 (m, 33H); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 172.6,172.4,156.9$, 82.1, 81.7, 80.5, 53.4, 53.0, 32.6, 31.6, 28.3, 28.1, 28.0, 28.0, 22.3; HRMS (LTQ FT) calcd for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 488.3330$, found 488.3326 .

(((S)-5-Amino-1-carboxypentyl)carbamoyl)-L-glutamic acid (TFA salt) (PSMA-NH2). ${ }^{1,2}$ In a 20 mL flame-dried and argon purged reaction vial was added di-tert-butyl (((S)-6-amino-1-(tert-butoxy)-1-oxohexan-2-yl)carbamoyl)-L-glutamate PSMA-S2 ( $210 \mathrm{mg}, 0.432 \mathrm{~mL}$ ) was added using 3.0 mL of anhydrous DCM. The mixture was cooled using an ice bath and to the mixture was added $20 \%$ TFA in DCM ( $5.0 \mathrm{~mL}, 64.8 \mathrm{mmol}, 150$ equiv). The reaction mixture was warmed to rt and monitored by TLC (10:90 MeOH:DCM and 70:30 EtOAc:hexanes, staining with $\mathrm{KMnO}_{4}$ ) and LC-MS analysis. After 5 h , the starting material was consumed and the reaction mixture was concentrated by rotary evaporation to give crude product as a pale yellow thick oil. The crude oil was purified by reverse phase chromatography eluting with $100 \%$ water to $90: 10 \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$. Like fractions were combined and concentrated (the organic solvent was removed by rotary evaporation and the water was removed by lyophilization) to give isolated product as an off-white solid. This solid was then dissolved in $\mathrm{MeOH}(0.50 \mathrm{~mL})$ and ether $(5.0 \mathrm{~mL})$ and product was precipitated from the mixture. The precipitated product was then washed with fresh $\mathrm{Et}_{2} \mathrm{O}(4 \times 10$ mL ) and dried under high vacuum. It was observed in the ${ }^{1} \mathrm{H}$ NMR that the final product had residual ether remaining ( $<10 \%$ ) even after multiple cycles of re-dissolving product in $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{D}_{2} \mathrm{O}$ and freeze drying overnight to remove the $\mathrm{Et}_{2} \mathrm{O}$ (4 cycles of re-dissolving and lyophilizing) or drying the solid under high vacuum with mild heating ( $50^{\circ} \mathrm{C}$ for 6 h ). PSMA- $\mathrm{NH}_{2}$ was afforded as a fluffy cotton-like white solid with $<10 \%$ ether remaining in the sample ( $91 \mathrm{mg}, 59 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ ) $\delta 4.20(\mathrm{td}, J=9.2,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 2H), $2.26-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ ) $\delta-75.51$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 7.72(\mathrm{~s}, 3 \mathrm{H}), 6.41-6.26(\mathrm{~m}, 2 \mathrm{H}), 4.14$

- $4.02(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.57(\mathrm{~m}$, 2H), $1.59-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.27(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO-d $\mathrm{d}_{6}$ ) $\mathbf{1 7 4 . 4 , ~ 1 7 4 . 1 , ~}$ 173.7, 157.3, 52.1, 51.7, 38.7, 31.7, 29.9, 27.5, 26.7, 22.1.; HRMS (LTQ FT) calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{7}$ $[\mathrm{M}+\mathrm{H}]^{+}: 320.1452$, found 320.1449 .



BCN-EG ${ }_{3}$. Triethylene glycol amine ( $1.53 \mathrm{~g}, 10.3 \mathrm{mmol}$ ) was added to a mixture of BCN 4nitrophenyl chloroformate ( $2.50 \mathrm{~g}, 7.93 \mathrm{mmol}$ ) and triethylamine ( $2.41 \mathrm{~g}, 23.8 \mathrm{mmol}$ ) in DMF ( 240 mL ). The mixture was stirred for 24 h , solvent evaporated in vacuo, and purified by flash chromatography ( $1: 9 \mathrm{EtOAc} /$ hexanes to $100 \% \mathrm{EtOAc}$ ) to provide $2.56 \mathrm{~g}(87 \%)$ of $\mathrm{BCN}^{-\mathrm{EG}_{3}}$ as a clear oil, which was used in the next step without further purification.

 $(3.08 \mathrm{~g}, 9.47 \mathrm{mmol})$, triphenyl phosphine $(3.72 \mathrm{~g}, 14.20 \mathrm{mmol})$, and DIPEA ( $3.67 \mathrm{~g}, 28.4 \mathrm{mmol}$ ) in DCM ( 65 mL ). The mixture was stirred at $\mathrm{r} . \mathrm{t}$. for 3 h and concentrated in vacuo. The crude mixture was purified by flash chromatography (1:1 EtOAc/hexanes) to give $1.51 \mathrm{~g}(41 \%)$ of $\mathrm{BCN}^{-E G_{3}-\mathrm{Br}}$ as a clear oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}: 5.16$ (br s, 1H), 3.95 (d, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.79 (t, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.61 (m, 4H), 3.55 (t, J $=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H}), 1.34$ (m, 2H), 0.69 (m, 3H).
${ }^{13}$ C-NMR: 156.8, 98.8, 71.2, 70.4, 70.20, 70.16, 69.09, 40.8, 33.3, 30.2, 23.8, 22.8, 21.4.
HRMS: $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BrNO}_{4}$, calc. $[\mathrm{M}+\mathrm{H}] 388.1123$, found 388.1118

$B^{B C N}-E_{3}-\mathbf{F}$. TBAF ( $1.1 \mathrm{~mL}, 1 \mathrm{M}$ solution, 1.08 mmol ) was added to a solution of $\mathrm{BCN}^{-E G_{3}-\mathrm{Br}(350}$ $\mathrm{mg}, 0.9 \mathrm{mmol}$ ) in acetonitrile ( 10 mL ); the mixture was refluxed for 2.5 h , and cooled to r.t. DCM $(15 \mathrm{~mL})$ and water ( 10 mL ) were added to the mixture, the organic layer was separated, washed with water and brine. $\mathrm{BCN}^{-\mathrm{EG}_{3}-\mathrm{F} \text { was purified by column chromatography (EtOAc/Hexanes, 1: }}$ 20 , then 1:10), and was isolated as a colorless oil ( $212 \mathrm{mg}, 72 \%$ ). The product is a mixture of exo-/endo- isomers in 1:3 ratio.
${ }^{1} \mathrm{H}-\mathrm{NMR}: 5.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.58\left(\mathrm{dt}, \mathrm{J}_{\mathrm{d}}=32 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{t}}=4.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.96(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{dt}$, $\left.\mathrm{J}_{\mathrm{d}}=25 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{t}}=4.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.70-3.60(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~m}$, 2 H ), 2.26 ( $\mathrm{m}, 2 \mathrm{H}$ ), $2.14(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 0.72(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR: 156.8, $98.8,83.1(\mathrm{~d}, \mathrm{~J}=168 \mathrm{~Hz}), 70.7,70.4(\mathrm{~d}, \mathrm{~J}=19 \mathrm{~Hz}), 70.2,70.2,69.0,40.7,33.25$, 29.0, 22.8, 21.4.

HRMS: $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{FNO}_{4}$, calc. $[\mathrm{M}+\mathrm{H}] 328.1919$, found 328.1924


ODIBO-EG ${ }_{4}$-Tos. Photo-ODIBO-EG4-Tos ( $0.390 \mathrm{~g}, 0.61 \mathrm{mmol}$ ) in methanol ( 600 mL ) was irradiated for 20 minutes at 350 nm . The reaction mixture was then concentrated in vacuo and purified via flash chromatography (1:1 hexanes: acetone) to afford ODIBO-EG ${ }_{4}$-Tos ( 0.290 g , $78 \%$ ) as a faint yellow oil.
${ }^{1}$ H-NMR: 7.79-7.81 (d, J = 8.2 Hz, 2H), 7.33-7.35 (d, J = 8.1 Hz, 2H), 7.21-7.27 (m, 3H), 7.107.12 (dd, J =7.2, 2.1 Hz, 1H), 7.03 (d, 2.5 Hz, 1H), 6.89-6.92 (dd, J = 8.4, 2.5 Hz, 1H), 5.16-5.19 (d, J = 12.0 Hz, 1H), 4.52-4.55 (d, J = 12.0 Hz, 1H), 4.15-4.17 (m, 4H), 3.86-3.88 (t, J = 4.7 Hz, 2H), 3.65-3.73 (m, 6H), 3.60 (s, 4H), 2.44 (s, 3H), 1.32 (s, 9H).
${ }^{13}$ C-NMR: 167.35, 158.78, 149.15, 147.00, 144.99, 133.22, 130.03, 128.19, 126.92, 125.61, $123.75,121.41,118.36,117.92,117.70,114.66,114.22,110.76,78.08,71.07,70.98,70.90$, 70.79, 69.84, 69.45, 68.91, 67.93, 34.60, 31.60, 21.86.

HRMS: $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{O}_{8} \mathrm{~S}^{+}$, calc. $[\mathrm{M}+\mathrm{H}] 609.2517$, found 609.2499 .


ODIBO-EG ${ }_{4}$-F: TBAF ( $0.424 \mathrm{~mL}, 1 \mathrm{M} \mathrm{THF}$ ) was added to a solution of ODIBO-EG ${ }_{4}$-Tos $(0.129 \mathrm{~g}$, 0.212 mmol ) in THF ( 5 mL ) and refluxed for 30 minutes. The reaction mixture was then concentrated in vacuo, re-dissolved into ethyl acetate ( 150 mL ), washed with saturated ammonium chloride ( $2 \times 50 \mathrm{~mL}$ ), brine ( $1 \times 50 \mathrm{~mL}$ ), and dried over $\mathrm{MgSO}_{4}$. The organic layer was then filtered, concentrated in vacuo, and purified via flash chromatography ( $2: 1$ hexanes: acetone) to afford ( $0.071 \mathrm{~g}, 73 \%$ ) of ODIBO-EG4-F as a faint yellow oil.
${ }^{1}$ H-NMR: 7.22-7.26 (m, 3H), 7.10-7.12 (m, 1H), 7.03-7.04 (d, J = $\left.2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.90-6.93$ (dd, J = 8.4, 2.6 Hz, 1H), 5.17-5.20 (d, J = 12.0 Hz, 1H), 4.62-4.64 (t, J = 4.2 Hz, 1H), 4.53-4.56 (d, J = $12.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $4.50-4.52(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.16-4.18(\mathrm{t}, 4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.87-3.89(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}$, 2 H ), 3.78-3.80 (t, J = 4.2 Hz, 1H), 3.70-3.76 (m, 9H), $1.32(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR: 167.34, 158.79, 149.14, 146.99, 126.92, 125.61, 123.75, 121.40, 118.37, 117.92, 117.70, 114.66, 114.22, 110.75, 83.37 (d, ${ }^{1}$ JCF = 168 Hz ), 78.08, 71.09, 71.04, 70.92, 70.88, $70.62\left(\mathrm{~d},{ }^{2} \mathrm{JCF}=20 \mathrm{~Hz}\right), 69.83,67.93,34.60,31.60$.

HRMS: $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{FO}_{5}{ }^{+}$, calc. $[\mathrm{M}+\mathrm{H}] 457.2385$, found 457.2389.

$+\mathrm{N}$



PSMA- $\mathrm{N}_{3}$ : PSMA- $\mathrm{NH}_{2}(1 \mathrm{mg}, 3.13 \mu \mathrm{~mol})$ was dissolved in $30 \mu \mathrm{~L}$ of anhydrous DMSO and mixed with another $30 \mu \mathrm{~L}$ of DMSO containing $\mathrm{N}_{3}-\mathrm{NHS}(1.4 \mathrm{mg}, 4.66 \mu \mathrm{~mol}) .10 \mu \mathrm{~L}$ of DIPEA was added to the mixture and incubated at room temperature for 30 min . The reaction was loaded on HPLC for analysis and further purification to yield 1.4 mg of PSMA-N ${ }_{3}$

ESI-MS: $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{10}{ }^{+}$, Calc. $[\mathrm{M}+\mathrm{H}] 504.50$, found 505.30




ODIBO-EG ${ }_{4}$-F-PSMA- ${ }_{3}$ : PSMA- $_{3}(10 \mu \mathrm{~g}, 0.02 \mu \mathrm{~mol})$ was dissolved in $10 \mu \mathrm{~L}$ of DMSO. ODIBO$E G_{4}-F(15 \mu \mathrm{~g}, 0.03 \mu \mathrm{~mol})$ was dissolved in $10 \mu \mathrm{~L}$ of DMSO and added to the previous solution. The mixture was incubated at room temperature for 5 min before loading on HPLC for analysis.

ESI-MS: $\mathrm{C}_{46} \mathrm{H}_{65} \mathrm{FN}_{6} \mathrm{O}_{15}{ }^{+}$, Calc. $[\mathrm{M}+\mathrm{H}] 961.05$, found 961.00



BCN-EG $_{3}$-F-PSMA- $\mathbf{N}_{3}$ : PSMA- ${ }_{3}(10 \mu \mathrm{~g}, 0.02 \mu \mathrm{~mol})$ was dissolved in $10 \mu \mathrm{~L}$ of DMSO. $\mathrm{BCN}^{-E G}{ }_{3}{ }^{-}$ F ( $65 \mu \mathrm{~g}, 0.2 \mu \mathrm{~mol}$ ) was dissolved in $10 \mu \mathrm{~L}$ of DMSO and added to the previous solution. The mixture was incubated at room temperature for 5 min before loading on HPLC for analysis.

ESI-MS: $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{FN}_{7} \mathrm{O}_{14}{ }^{+}$, Calc. $[\mathrm{M}+\mathrm{H}] 832.89$, found 832.10


## Kinetic experiments.

The kinetics of the reactions of ODIBO-EG ${ }_{4}$ and $\mathrm{BCN}-\mathrm{EG}_{3}$ with water-soluble azide $\mathrm{NH}_{2}-\mathrm{EG}_{4}-\mathrm{N}_{3}$ was studied in methanol or PBS (with $5 \%$ of MeOH for solubility, $\mathrm{pH}=7.4$ ) at $25.0 \pm 0.1^{\circ} \mathrm{C}$. The accurate rate measurements were conducted under pseudo-first order conditions, using variable concentrations of the azide at 10 -fold or higher excess. Consumption of ODIBO-EG $4_{4}$ was followed by the decay of the characteristic alkyne peak at 321 nm , while the progress of the reaction BCN -
$\mathrm{EG}_{3}$ was monitored by the formation of triazole band at 231 nm . The rates were measured in triplicate at each azide concentration. The second order rate constants have been calculated by the least squares analysis of the observed rate constant dependence on the azide concentration.

|  | $k\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ <br> in PBS | $k\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ <br> in MeOH |
| :--- | :--- | :--- |
| ODIBO-EG $_{4}$ | $7.9 \pm 0.3$ | $1.40 \pm 0.04$ |
| ${\text { BCN }-\mathrm{EG}_{3}}$ | $0.29 \pm 0.01$ | $0.051 \pm 0.004$ |

## Radiochemistry Experiment

Analytical reverse-phase HPLC was performed on a SPD-M30A photodiode array detector (Shimadzu) and model 105S single-channel radiation detector (Carroll \& Ramsey Associates) using Gemini $5 \mu \mathrm{C} 18$ column ( $250 \times 4.6 \mathrm{~mm}$ ). The flow was $1 \mathrm{~mL} / \mathrm{min}$. Solvent A is $0.1 \%$ TFA in water and solvent $B$ is $0.1 \%$ TFA in acetonitrile. The mobile phase was $5 \%$ solvent $B$ and $95 \%$ solvent $A$ from 0 to 2 min and ramped to $95 \%$ solvent $B$ and $5 \%$ solvent $A$ in 20 min .

## Radiochemistry

The radiolabeling of ${ }^{18} \mathrm{~F}-2$ was based on the following protocol. 2 mg of 1 was dissolved in $20 \mu \mathrm{~L}$ of anhydrous acetonitrile and added with 7.4 GBq of TBA ${ }^{18} \mathrm{~F}$. The reaction was sealed and heated at $85^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was then quenched with 1 mL of $5 \%$ acetic acid and passed through aluminum column (Sep-Pak) to remove unreacted ${ }^{18} \mathrm{~F}$. The crude was loaded on HPLC for purification and the fraction containing ${ }^{18} \mathrm{~F}-2$ was collected.

For ${ }^{18} \mathrm{~F}-4,2 \mathrm{mg}$ of 3 was dissolved in $100 \mu \mathrm{~L}$ in DMSO, THF or acetonitrile and added with 370 MBq of $\mathrm{TBA}{ }^{18} \mathrm{~F}$. The reaction was sealed and heated and room temperature, $60^{\circ} \mathrm{C}, 80^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ for 10,20 or 30 min . The reaction was quenched with 1 mL of $5 \%$ acetic acid and passed through aluminum column (Sep-Pak). The crude was loaded on HPLC for purification and the fraction containing ${ }^{18} \mathrm{~F}-4$ was collected. For large scale reaction, 2 mg of 3 was dissolved in $20 \mu \mathrm{~L}$ of acetonitrile and added with 7.4 GBq of $\mathrm{TBA}^{18} \mathrm{~F}$. The reaction was sealed and heated at $80^{\circ} \mathrm{C}$ for 10 min . The following procedures are the same as previously described.

For ${ }^{18} \mathrm{~F}-6$, the pH of 185 MBq of ${ }^{18} \mathrm{~F}-2$ was adjusted to 7 with 0.1 N NaOH followed by adding 10 $\mu \mathrm{g}$ of 5 . The mixture was incubated at room temperature for 5 min before loading on HPLC for analysis and purification.

For ${ }^{18} \mathrm{~F}-7$, the pH of 185 MBq of ${ }^{18} \mathrm{~F}-4$ was adjusted to $5.5,7$ or 8.5 with 0.25 M of ammonium acetate buffer ( pH 5.5 ), 0.1 N NaOH or 1 M borate buffer ( pH 8.5 ). 10 or $50 \mu \mathrm{~g}$ of 5 was added to the solution and incubated at room temperature, $40^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ for 15 min . The mixture was loaded on HPLC for analysis and purification.

Both ${ }^{18} \mathrm{~F}-6$ and ${ }^{18} \mathrm{~F}-7$ collected from HPLC was reconstituted in 1X PBS and adjusted to pH 7 with 0.1 N NaOH . The solution was then subjected to rotary evaporation to remove the acetonitrile. The final solution was used for further in vivo experiments.


Figure S1. Radio HPLC profile of (a) ${ }^{18} \mathrm{~F}-2$ and (b) ${ }^{18} \mathrm{~F}-4$. UV HPLC profile of (c) ${ }^{19} \mathrm{~F}-2$ and (d) ${ }^{19} \mathrm{~F}-4$


Figure S2. Radio HPLC profile of (a) ${ }^{18} \mathrm{~F}-6$ and (b) ${ }^{18} \mathrm{~F}-7$. UV HPLC profile of (c) ${ }^{19} \mathrm{~F}-6$ and (d) ${ }^{19} \mathrm{~F}-7$

## In vitro cell binding assay

The PSMA specificity of substrates PSMA-617, ${ }^{19} \mathrm{~F}-6$ and ${ }^{19} \mathrm{~F}-7$ were evaluated using NAALADase enzyme activity of PSMA as described with modification. ${ }^{3}$ In brief, rhPSMA (R\&D system) was diluted to $0.4 \mu \mathrm{~g} / \mathrm{mL}$ in assay buffer containing 50 mM HEPES and 0.1 M NaOH ( pH 7.5 ). The substrate was diluted to $40 \mu \mathrm{M}$ in assay buffer. Then $125 \mu \mathrm{~L}$ of diluted rhPSMA and $125 \mu \mathrm{~L}$ of diluted substrate were combined. For positive control, $125 \mu \mathrm{~L}$ of Ac-Asp-Glu (Sigma Aldrich) was used. For negative control, inactivate $125 \mu \mathrm{~L}$ of rhPSMA by heating it at $95^{\circ} \mathrm{C}$ for 5 min , then combined with $125 \mu \mathrm{~L}$ of Ac-Asp-Glu substrate. The mixture was incubated at $37^{\circ} \mathrm{C}$ for 1 hour. The reaction was stopped by heating at $95^{\circ} \mathrm{C}$ for 5 min , then cooled down to room temperature. Orthophthaldiadehyde (OPA) was prepared in OPA buffer to concentration of 15 mM with 0.2 M NaOH and $0.1 \% \beta$-Mercaptoethanol ( $\mathrm{v} / \mathrm{v}$ ), and $250 \mu \mathrm{~L}$ of OPA solution was added to all vials, vortexed, incubated at room temperature for 10 min . Then $200 \mu \mathrm{~L}$ aliquot was transferred to a F16 black Maxisorp plate (Nunc). The signal was read at excitation and emistion wavelength of 330 nm and 450 nm (top read), respectively in endpoint mode. The NAALADase specific activity was calculated according to manufacturer's instruction.

## Small animal PET imaging

Animal procedures were performed according to a protocol approved by the UNC Institutional Animal Care and Use Committee. LNCap tumor bearing mice were intravenously injected with
3.7 MBq ( $\sim 100 \mu \mathrm{Ci}$ ) of ${ }^{18} \mathrm{~F}-6$ or ${ }^{18} \mathrm{~F}-7$. At 40 min and 120 min post injection, a $10-\mathrm{min}$ static emission scan was acquired with a small animal PET scanner (GE eXplore, Vista). In the blocking study, $100 \mu \mathrm{~g}$ of the unlabeled 5 was coinjected with ${ }^{18} \mathrm{~F}-7$ and imaged at 120 min post injection. The region of interests (ROIs) were calculated as percentage of injected dose per gram of tissue based on the assumption of $1 \mathrm{~g} / \mathrm{mL}$ of tissue density.

## Synthesis of MSA-azide

1 mg of mouse serum albumin (Sigma) was dissolved in 100 uL water. 50 eq of azide-NHS (broadpharm) was dissolved in 20uL DMSO and added to the MSA solution. 6uL of 20x borate buffer was added to adjust the pH to 8.5. The mixture was incubated at room temperature for 3 h and purified with PD-10 column.

## Synthesis of ${ }^{18} \mathrm{~F}$-BCN-MSA

111 MBq of ${ }^{18} \mathrm{~F}-\mathrm{BCN}$ was adjusted to pH 7.0 using 0.1 N NaOH followed by adding 100 ug of the MSA-azide. The reaction was purified by PD-10 column and desired fraction containing ${ }^{18} \mathrm{~F}$ - BCN MSA was collected.

## ${ }^{18}$ F-BCN-HSA imaging

3.7 MBq of ${ }^{18} \mathrm{~F}-\mathrm{BCN}$ and ${ }^{18} \mathrm{~F}-\mathrm{BCN}-\mathrm{HSA}$ was intravenously injected into non-tumor bearing animals. At 1 h post injection, animals were subjected to 10 min static emission scan. ${ }^{18} \mathrm{~F}-\mathrm{BCN}-\mathrm{HSA}$ demonstrated prominent blood activity in heart region at 1 h post injection. In contrast, ${ }^{18} \mathrm{~F}-\mathrm{BCN}$ did not have significant uptake in heart region. Overall, radiolabeling of large molecules is more complicated. The hydrophilicity of final agents, position of modification, degree of modification, and charge change could all affect the distribution of the final agents.









[^0]
[^0]:    ${ }^{1}$ M. Boudjemeline, M., C. D. McNitt, T. A. Singleton, V. V. Popik, A. P. Kostikov, Org. Biomol. Chem., 2018, 16, 363-366.
    ${ }^{2}$ J. Dommerholt, S. Schmidt, R. Temming, L. J. A. Hendriks, F. P. J. T. Rutjes, J. C. M. van Hest, D. J. Lefeber, P. Friedl, and F. L. van Delft, Angew. Chem. Int. Ed., 2010, 49, 9422-9425. ${ }^{3}$ R.E. Carter, A. R. Feldman, J.T. Coyle, PNAS, 1996. 93. 749-753.
    ${ }^{4}$ Preparation of glutamic acid-based peptidomimetic prostate-specific membrane antigen PSMA binding agents for imaging use, Wang, Eric; Kolb, Hartmuth C.; Szardenings, Anna Katrin; Liu, Changhui; Walsh, Joseph C.; Chen, Gang; Sinha, Anjana; Kasi, Dhanalakshmi; Yu, Chul; Gangadharmath, Umesh B.; Zhang, Wei; Zhao, Tieming; Mocharla, Vani P. Assignee: Siemens Medical Solutions USA, Inc., USA, PCT Int. Appl., 2013028664; WO 2013028664 A1, 28 Feb 2013.
    ${ }^{5}$ Preparation of heterodimers of glutamic acid for diagnosis and therapy of diseases, Babich, John W.; Zimmerman, Craig N.; Maresca, Kevin P. Assignee: Molecular Insight Pharmaceuticals, Inc., USA, PCT Int. Appl., 2008058192; WO 2008058192A2, 15 May 2008.

