Supporting Information

Rhodium-catalyzed oxidative C–H/C–H cross-coupling of aniline with heteroarene: *N*-nitroso group enabled mild conditions

Shuang He, Guangying Tan, Anping Luo and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education,

College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR

China

Fax: 86-28-85412203; E-mail: jsyou@scu.edu.cn

Table of Contents

I. General remarks	S2
II. General procedure for the synthesis of <i>N</i> -nitrosoaniline substrates	S2
III. Optimization of the reaction conditions	S3
IV.General procedure for the synthesis of heteroarylated products	S4
V. Procedure for the synthesis of 3a on a 4 mmol scale	S5
VI. General procedure for the conversion of 3a and 3b	S6
VII. Mechanitic study	S8
VIII. Experimental data for the described compounds	S16
IX. References	S33
X. ¹ H NMR and ¹³ C NMR spectra of compounds	S34
XI. X-ray crystallographic data of complex 6	

I. General remarks

NMR spectra were obtained on an Agilent 400-MR DD2 spectrometer. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ or DMSO- d_6 as the internal reference (CDCl₃: $\delta = 7.26$; DMSO- d_6 : $\delta = 2.50$). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ or DMSO- d_6 as the internal standard (CDCl₃: $\delta = 77.16$; DMSO- d_6 : $\delta = 39.52$). High-resolution mass spectra (HRMS) were obtained with a Shimadzu LCMS-IT-TOF (ESI). Melting points were determined with XRC-1 and are uncorrected.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. RhCl₃ $3H_2O$ were purchased from Shanxi Kaida Chemical Engineering (China) CO., Ltd. AgSbF₆ was purchased from Alfa Aesar. Ag salts (AgOAc and Ag₂CO₃) and Cu salts were purchased from Beijing Ou He Chemical Engineering (China) Co., Ltd. [Cp*RhCl₂]₂,¹ [Cp*Rh(MeCN)₃][SbF₆]₂,² Rh(PPh₃)₃Cl,³ Substrates **1**,⁴ were prepared according to the literature procedures. Dichloroethane (DCE), toluene, 1,4-dioxane, tetrahydrofuran (THF), and *N*,*N*-dimethylformamide (DMF) were dried with an innovative technology solvent purification system (model no.: PS-MD-5).

II. General procedure for the synthesis of *N*-nitrosoaniline substrates⁴

General procedure for the synthesis of *N*-nitrosoaniline substrates according to an already reported method:

Aniline (0.05 mol, 1.0 equiv.) was dissolved in a 1:2 mixture of acetonitrile and water (30 mL) and cooled to 0 $^{\circ}$ C (ice bath). Concentrated aqueous HCl (7.3 mL, 0.24 mol) was added dropwise. The mixture was stirred vigorously for half an hour, while maintained at 0 $^{\circ}$ C. To this mixture was added an aqueous solution (13 mL) of NaNO₂ (3.5 g, 0.05 mol) over the course of 10 min. The reaction was allowed to proceed for 1 h. The mixture was then extracted with CH₂Cl₂. The combined organic layer was

washed with brine, dried over Na_2SO_4 , concentrated under reduced pressure, and purified by flash silica gel column chromatography to give the corresponding *N*-nitrosoaniline substrates.

III. Optimization of the reaction conditions

An oven-dried Schlenk test tube with a magnetic stirring bar was charged with *N*-methyl-*N*-phenylnitrous amide **1a** (0.2 mmol, 1.0 equiv.), benzothiophene **2a** (0.6 mmol, 3.0 equiv.), [Rh] catalyst (5.0 mol%), AgSbF₆ (20 mol%, if required), oxidant (2.0 equiv.), additive (1.0 equiv.), base (30 mol%, if required) and solvent under an N₂ atmosphere. The mixture was stirred at the designed temperature for 24 h. After the reaction was cooled down to ambient temperature, it was diluted with 3 mL of CH₂Cl₂, filtered through a celite pad, and then washed with 15-20 mL of CH₂Cl₂. The combined organic phase was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) to provide the desired product **3a**.

	$[Cp*RhCl_2]_2 (5.0 \text{ mol}\%) \qquad \qquad$					
	Н Н	oxi add so	idant (2.0 equiv.) ditive (1.0 equiv.) lvent, temp. 24 h	S		
	1a	2a		3a		
Entry	Oxidant	Additive	Solvent	Temp.	Yield ^b	
	(2.0 equiv.)	(1.0 equiv.)	(mL)	(°C)	(%)	
1	Ag ₂ CO ₃	PivOH	toluene (1.0)	100	14	
2	AgOAc	PivOH	toluene (1.0)	100	11	
3	Ag ₂ O	PivOH	toluene (1.0)	100	23	
4	Cu(OAc) ₂	PivOH	toluene (1.0)	100	8	
5	Ag ₂ O	PivOH	DCE (1.0)	100	43	
6	Ag ₂ O	PivOH	DMF (1.0)	100	16	
7	Ag ₂ O	PivOH	<i>t</i> -AmylOH (1.0)	100	nd	

Table S1. Optimization of the heteroarylation reaction of 1a and 2a^a

8	Ag ₂ O	PivOH	dioxane (1.0)	100	52
9	Ag ₂ O	PivOH	DCM (1.0)	100	39
10	Ag ₂ O	PivOH	MeOH (1.0)	100	43
11	Ag ₂ O	PivOH	THF (1.0)	100	71
12	Ag ₂ O	PivOH	THF (0.5)	100	75
13	Ag ₂ O	PivOH/NaOAc	THF (0.5)	100	84
14	Ag ₂ O	PivOH/NaOAc	THF (0.5)	60	82
15	Ag ₂ O	PivOH/NaOAc	THF (0.5)	40	51
16^c	Ag ₂ O	PivOH/NaOAc	THF (0.5)	rt	24
17^d	Ag ₂ O	PivOH	THF (0.5)	60	60
18^e	Ag ₂ O	PivOH	THF (0.6)	60	nr
19	Ag ₂ O	_	THF (0.5)	60	45
20^{f}	Ag ₂ O	PivOH/NaOAc	THF (0.5)	60	51
21 ^{<i>g</i>}	Ag ₂ O	PivOH/NaOAc	THF (0.5)	60	nd

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.6 mmol, 3.0 equiv.), $[RhCp*Cl_2]_2$ (5.0 mol%), AgSbF₆ (20 mol%, if required), oxidant (2.0 equiv.), additive (1.0 equiv.) and base (30 mol%, if required) under an N₂ atmosphere. ^{*b*} Isolated yield. ^{*c*} 36 h. ^{*d*} 1.5 equiv. Ag₂O₂ ^{*e*} Without AgSbF₆. ^{*f*} [Cp*Rh(MeCN)₃][SbF₆]₂ (5.0 mol%). ^{*g*} [Rh(Ph₃P)₃Cl] (5.0 mol%). nd: not detected. nr: no reaction.

IV. General procedure for the synthesis of heteroarylated products

(i) The reaction of *N*-phenylpivalamide with benzothiophene under the standard conditions

An oven-dried Schlenk tube with a magnetic stir bar was charged with $[RhCp*Cl_2]_2$ (6.2 mg, 5.0 mol%), AgSbF₆ (13.8 mg, 20 mol%), Ag₂O (92.0 mg, 2.0 equiv.), PivOH (20.4 mg, 1.0 equiv.), NaOAc (4.9 mg, 30 mol%), *N*-phenylpivalamide **1u** (0.2 mmol, 1.0 equiv.), benzothiophene **2a** (0.6 mmol, 3.0 equiv.), and THF (0.5 mL) under an N₂ atmosphere. The mixture was stirred at 60 °C for 24 h. After the reaction was cooled down to ambient temperature, it was diluted with 3 mL of CH₂Cl₂. The solution was

filtered through a celite pad and washed with 15-20 mL of CH₂Cl₂. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) on silica gel to provide the corresponding product *N*-(2-(benzo[*b*]thiophen-2-yl)phenyl)pivalamide (**3u**) as white solid (19.8 mg, 32%). ¹H NMR (400 MHz, CDCl₃): δ = 1.18 (s, 9H), 7.17 (td, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.34 (d, *J* = 0.4 Hz, 1H), 7.37-7.46 (m, 4H), 7.81-7.84 (m, 1H), 7.88-7.90 (m, 1H), 7.96 (s, 1H), 8.41 (dd, *J* = 8.4 Hz, 1.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 27.6, 40.1, 121.5, 122.4, 123.8, 124.05, 124.08, 124.5, 124.9, 125.0, 129.8, 131.0, 136.0, 139.7, 140.0, 140.4, 176.7 ppm.

(ii) General procedure for the oxidative C–H/C–H cross-coupling of *N*-nitrosoanilines with heteroarenes

An oven-dried Schlenk tube with a magnetic stir bar was charged with $[RhCp*Cl_2]_2$ (6.2 mg, 5.0 mol%), AgSbF₆ (13.8 mg, 20 mol%), Ag₂O (92.0 mg, 2.0 equiv.), PivOH (20.4 mg, 1.0 equiv.), NaOAc (4.9 mg, 30 mol%), *N*-nitrosoaniline **1** (0.2 mmol, 1.0 equiv.), heteroarene **2** (0.6 mmol, 3.0 equiv.), and THF (0.5 mL) under an N₂ atmosphere. The mixture was stirred at 60 °C for 24 h. After the reaction was cooled down to ambient temperature, it was diluted with 3 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 15-20 mL of CH₂Cl₂. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel to provide the corresponding products **3** or **4**.

V. Procedure for the synthesis of 3a on a 4 mmol scale

An oven-dried Schlenk tube with a magnetic stir bar was charged with [RhCp*Cl₂]₂ (124.0 mg, 5.0 mol%), AgSbF₆ (273.5 mg, 20 mol%), Ag₂O (1838.5 mg, 2.0 equiv.), (408.4)1.0 (98.4 **PivOH** mg, equiv.), NaOAc mg, 30 mol%), N-methyl-N-phenylnitrous amide 1a (4.0 mmol, 1.0 equiv.), benzothiophene 2a (12.0 mmol, 3.0 equiv.), and THF (10 mL) under an N₂ atmosphere. The mixture was stirred at 60 °C for 24 h. After the reaction was cooled down to ambient temperature, it was diluted with 15 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 30-50 mL of CH₂Cl₂. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) to provide the product **3a** (814.9 mg, 76% yield).

VI. General procedure for the conversion of 3a and 3b⁵

An oven-dried Schlenk tube with a magnetic stir bar was charged with N-(2-(benzo[*b*]thiopene-2-yl)phenyl)-*N*-methylnitrous amide (**3a**) (53.6 mg, 0.2 mmol, 1.0 equiv.), Fe powder (44.7 mg, 4.0 equiv.), NH₄Cl (31.8 mg, 3.0 equiv.), and 75% ethanol aqueous solution (2 mL). The mixture was stirred at 100 °C for 24 h. After being cooled to room temperature, the mixture was extracted with CH₂Cl₂ and then washed and dried. The solution was concentrated by vacuum and separated on a silica gel column using petroleum ether/CH₂Cl₂ (20:1, v/v) as eluent to give the corresponding pure denitrosation product 2-(benzo[*b*]thiophen-2-yl)-*N*-methylaniline (**5a**) as yellow solid (41.1 mg, 86%). M.p.: 47-49 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.87 (s, 3H), 4.54 (s, 1H), 6.73 (d, *J* = 8.4 Hz, 1H), 6.79 (t, *J* = 7.6 Hz, 1H),

7.31-7.41 (m, 5H), 7.79 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 30.8$, 110.2. 116.8, 119.5, 122.3, 122.8, 123.5, 124.3, 124.6, 130.1, 131.1, 140.0, 140.4, 141.6, 146.9 ppm. HRMS (ESI): calcd for C₁₅H₁₄NS [M+H]⁺ 240.0847, found 240.0843.

An oven-dried Schlenk tube with a magnetic stir bar was charged with N-(2-(benzo[b]thiopene-2-yl)phenyl)-N-methylnitrous amide (3a) (53.6 mg, 0.2 mmol, 1.0 equiv.), Zn powder (25.6 mg, 2.0 equiv.), NH₄Cl (12.7 mg, 1.2 equiv.), and 75% methanol aqueous solution (2 mL). The mixture was stirred at 45 °C for 8 h. After being cooled to room temperature, the mixture was extracted with CH₂Cl₂ and then washed and dried. The solution was concentrated by vacuum and separated on a silica gel column using petroleum ether/EtOAc (10:1, v/v) as eluent to give the corresponding pure reduced product 1-(2-(benzo[b]thiophen-2-yl)phenyl)-1-methylhydrazine (5b) as yellow oil (32.5 mg, 64%). ¹H NMR (400 MHz, CDCl₃): δ = 2.92 (s, 3H), 3.72 (s, 2H), 7.13 (t, *J* = 6.8 Hz, 1H), 7.29-7.36 (m, 4H), 7.60-7.64 (m, 2H), 7.78 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 47.6, 118.3, 122.0, 122.2, 123.5, 124.0, 124.2, 124.3, 128.1, 129.1, 130.7, 139.7, 141.0, 142.5, 152.1 ppm. HRMS (ESI): calcd for $C_{15}H_{15}N_2S$ [M+H]⁺ 255.0956, found 255.0952.

An oven-dried Schlenk tube with a magnetic stir bar was charged with N-(2-(benzo[b]thiophen-2-yl)phenyl)-N-benzylnitrous amide (**3b**) (34.4 mg, 0.1 mmol, 1.0 equiv.), 5% Pd/C (40.0 mg), NaH₂PO₂•H₂O (42.4 mg, 4.0 equiv.) and 75% methanol aqueous solution (2 mL) under an N₂ atmosphere. The mixture was stirred

at 140 °C for 24 h. After being cooled to room temperature, the solution was filtered through a celite pad and washed with 10-20 mL of CH₂Cl₂. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 2/1, v/v) to give 2-(benzo[*b*]thiophen-2-yl)aniline **5c** as yellow solid (17.5 mg, 78% yield). M.p.: 122-124 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 5.27 (s, 2H), 6.66 (t, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 7.10 (t, *J* = 7.2 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.32-7.41 (m, 2H), 7.56 (s, 1H), 7.84 (d, *J* = 7.2 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 115.9, 116.7, 117.8, 121.8, 122.0, 123.5, 124.1, 124.4, 129.2, 130.3, 138.5, 140.4, 141.6, 145.8 ppm. HRMS (ESI): calcd for C₁₄H₁₂NS [M+H]⁺ 226.0690, found 226.0693.

VII. Mechanitic study

(i) H/D exchange experiments

An oven-dried Schlenk tube with a magnetic stir bar was charged with $[RhCp*Cl_2]_2$ (6.2 mg, 5.0 mol%), AgSbF₆ (13.8mg, 20 mol%), Ag₂O (92.0 mg, 2.0 equiv.), PivOD (20.6 mg, 1.0 equiv.), NaOAc (4.9 mg, 30 mol%), *N*-methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol, 1.0 equiv.), CD₃OD (0.1 mL) and THF (0.5 mL) under an N₂ atmosphere. The mixture was stirred at 60 °C for 2 h and then diluted with 3 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 15-20 mL of CH₂Cl₂. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc, 20/1, v/v) to provide [D_n]-**1a**. The deuterated ratio was calculated from ¹H NMR analysis.

-7.552 -7.532 -7.457 -7.457 -7.380 -7.380 -7.344 -7.342

An oven-dried Schlenk tube with a magnetic stir bar was charged with $[RhCp*Cl_2]_2$ (6.2 mg, 5.0 mol%), AgSbF₆ (13.8 mg, 20 mol%), Ag₂O (92.0 mg, 2.0 equiv.), PivOD (20.6 mg, 1.0 equiv.), NaOAc (4.9 mg, 30 mol%), benzothiophene **2a** (26.8 mg, 0.2 mmol, 1.0 equiv.), CD₃OD (0.1 mL) and THF (0.5 mL) under an N₂ atmosphere. The mixture was stirred at 60 °C for 2 h and then diluted with 3 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 15-20 mL of CH₂Cl₂. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc, 30/1, v/v) to provide [D]-**2a**. The deuterated ratio was calculated from ¹H NMR analysis

An oven-dried Schlenk tube with a magnetic stir bar was charged with [RhCp*Cl₂]₂ (6.2 mg, 5.0 mol%), AgSbF₆ (13.8 mg, 20 mol%), Ag₂O (92.0 mg, 2.0 equiv.), PivOD (20.6 mg, 1.0 equiv.), NaOAc (4.9 mg, 30 mol%), *N*-methyl-*N*-phemylnitrous amide **1a** (27.2 mg, 0.2 mmol, 1.0 equiv.), benzothiophene **2a** (80.4 mg, 0.6 mmol), CD₃OD (0.1 mL) and THF (0.5 mL) under an N₂ atmosphere. The mixture was stirred at 60 $^{\circ}$ C

for 2 h and then diluted with 3 mL of CH_2Cl_2 . The solution was filtered through a celite pad and washed with 15-20 mL of CH_2Cl_2 . The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc, 60/1, v/v) to provide $[D_n]$ -1a, [D]-2a, and 3a (11.3 mg, 21% yield). The deuterated ratio was calculated from ¹H NMR analysis.

(ii) Kinetic isotope experiments

An oven-dried Schlenk tube with a magnetic stir bar was charged with $[Cp*RhCl_2]_2$ (6.2 mg, 5.0 mol%), AgSbF₆ (13.8 mg, 20 mol%), Ag₂O (92.0 mg, 2.0 equiv.), PivOD (20.6 mg, 1.0 equiv.), NaOAc (4.9 mg, 30 mol%), *N*-methyl-*N*-phemylnitrous amide **1a** (27.2 mg, 0.2 mmol, 1.0 equiv.) or $[D_5]$ -**1a** (28.2 mg, 0.2 mmol, 1.0 equiv.), benzothiophene **2a** (80.4 mg, 0.6 mmol) and THF (0.5 mL) under an N₂ atmosphere. The resulting mixture was stirred at 60 °C for 2 h and then diluted with 3 mL of CH₂Cl₂. The mixture was filtered through a celite pad and washed with 15-20 mL of CH₂Cl₂. The yield of **3a** or $[D_4]$ -**3a** was determined by ¹H NMR analysis of the crude

product using dibromomethane (0.1 mmol, 7 μ L) as internal standard. A kinetic isotope effect (KIE) value ($k_{\rm H}/k_{\rm D} = 1.02$) was obtained.

An oven-dried Schlenk tube with a magnetic stir bar was charged with $[Cp*RhCl_2]_2$ (6.2 mg, 5.0 mol%), AgSbF₆ (13.8 mg, 20 mol%), Ag₂O (92.0 mg, 2.0 equiv.), PivOD (20.6 mg, 1.0 equiv.), NaOAc (4.9 mg, 30 mol%), *N*-methyl-*N*-phemylnitrous amide **1a** (27.2 mg, 0.2 mmol, 1.0 equiv.), benzothiophene **2a** (80.4 mg, 0.6 mmol) or [D]-**2a** (81.0 mg, 0.6 mmol) and THF (0.5 mL) under an N₂ atmosphere. The resulting mixture was stirred at 60 °C for 2 h and then diluted with 3 mL of CH₂Cl₂. The mixture was filtered through a celite pad and washed with 15-20 mL of CH₂Cl₂. The yield of **3a** was determined by ¹H NMR analysis of the crude product using dibromomethane (0.1 mmol, 7 µL) as internal standard. A significant kinetic isotope effect (KIE) value ($k_H/k_D = 2.93$) was obtained.

(iii) Synthesis of the cyclometalated Rh(III) complex 6⁴

A Schlenk tube with a magnetic bar was charged with **1m** (42.8 mg, 0.2 mmol, 1.0 equiv), [RhCp*Cl₂]₂ (62.6 mg, 0.5 equiv.), AgSbF₆ (143.6 mg, 2.1 equiv.), AgOAc (36.5 mg, 1.1 equiv.), and MeOH (2 mL) under an N₂ atmosphere and stirred overnight at room temperature. NaCl (17.4 mg, 1.5 equiv.) was added and the resulting mixture was stirred at room temperature for another 3 h. The solution was filtered through a celite pad and washed with 10-20 mL of CH₂Cl₂. The filtrate was concentrated and the residue was purified by column chromatography on alumina (CH₂Cl₂/EtOAc = 20/1, v/v) to provide the complex **6** as red orange solid (45.7 mg, 47%). ¹H NMR (400 MHz, CDCl₃): δ = 1.69 (s, 15H), 3.57 (s, 3H), 6.88 (d, *J* = 8.4 Hz, 1H), 7.27 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H), 7.79 (d, *J* = 2.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 9.2, 31.5, 99.2, 99.3, 113.7, 120.5, 126.8, 138.1, 141.41,

141.43, 163.2, 163.5 ppm. HRMS (ESI): calcd for $C_{17}H_{21}BrN_2ORh [M-Cl]^+$ 450.9887, found 450.9881.

(iv) Complex 6-catalyzed heteroarylation of *N*-(4-bromophenyl)-*N*-methylnitrous amide 1m

An oven-dried Schlenk tube with a magnetic bar was charged with **1m** (42.8 mg, 0.2 mmol, 1.0 equiv.), **2a** (80.4 mg, 3.0 equiv.), complex **6** (9.7 mg, 10 mol%), AgSbF₆ (6.8 mg, 10 mol%), Ag₂O (92.0 mg, 2.0 equiv.), PivOH (20.4 mg, 1.0 equiv.), NaOAc (4.9 mg, 30 mol%) and THF (0.5 mL) under an N₂ atmosphere. The mixture was stirred at 60 °C for 24 h and then diluted with 3 mL of CH₂Cl₂. The solution was filtered through a celite pad and washed with 15-20 mL of CH₂Cl₂. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel to provide **3m** as inseparable yellow solid mixture of *syn* and *anti* isomers (43.6 mg, 63% yield).

VIII. Experimental data for the described compounds

N-(2-(Benzo[*b*]thiopene-2-yl)phenyl)-*N*-methylnitrous amide (3a)

Following the general procedure. *N*-Methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **3a** as inseparable yellow solid mixture of *syn* and *anti* isomers (44.0 mg, 82% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 13:1. The NMR

data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.13 (s, 3H), 7.24 (s, 1H), 7.33-7.39 (m, 2H), 7.47 (d, *J* = 6.4 Hz, 1H), 7.51-7. 58 (m, 2H), 7.75 (t, *J* = 8.4 Hz, 2H), 7.82 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.6, 122.3, 124.0, 124.1, 124.8, 125.0, 127.5, 129.6, 129.7, 130.6, 131.7, 139.2, 140.0, 140.55, 140.60 ppm. HRMS (ESI): calcd for C₁₅H₁₂N₂NaOS [M+Na]⁺ 291.0568, found 291.0562.

N-(2-(Benzo[*b*]thiophen-2-yl)phenyl)-*N*-benzylnitrous amide (3b)

Following the general procedure. *N*-Benzyl-*N*-phenylnitrous amide **1b** (42.4 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **3b** as inseparable yellow oily mixture of syn and *anti* isomers (58.5 mg, 85% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 1:0.37. ¹H NMR (400 MHz, DMSO-*d*₆) (*syn* and *anti* isomers): δ = 4.91 (s, 2H × 1), 6.74 (d, *J* = 8.0 Hz, 1H × 0.37), 6.98-7.00 (m, 2H × 1), 7.14-7.29 (m, 4H × 1 + 3H × 0.37), 7.36-7.43 (m, 4H × 1 + 3H × 0.37), 7.48-7.55 (m, 4H × 0.37), 7.62 (t, *J* = 7.2 Hz, 1H × 1), 7.69 (m, 1H × 0.37), 7.79-7.87 (m, 2H × 1 + 1H × 0.37), 7.97 (m, 1H × 1 + 1H × 0.37) ppm. ¹³C NMR (100 MHz, CDCl₃) (*syn* and *anti* isomers): δ = 50.2, 57.5, 122.7, 122.8, 123.4, 124.44, 124.47, 124.50, 125.1, 125.2, 125.3, 125.4, 128.1, 128.6, 128.9, 128.96, 129.02, 129.1, 129.2, 129.3, 129.8, 130.0, 130.46, 130.49, 131.1, 131.4, 131.7, 132.1, 134.1, 135.0, 135.8, 138.55, 138.64, 139.1, 139.9, 140.0, 140.1, 140.3. HRMS (ESI): calcd for C₂₁H₁₆N₂NaOS [M+Na]⁺ 367.0881, found 367.0882.

N-(2-(Benzo[*b*]thiopene-2-yl)phenyl)-*N*-isopropylnitrous amide (3c)

Following the general procedure. N-Isopropyl-N-phenylnitrous amide 1c (32.8 mg,

0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **3c** as inseparable yellow oily mixture of *syn* and *anti* isomers (49.2 mg, 83% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 1:0.57. ¹H NMR (400 MHz, CDCl₃) (*syn* and *anti* isomers): δ = 0.95 (d, *J* = 7.6 Hz, 3H × 1), 1.18 (d, *J* = 7.6 Hz, 3H × 1), 1.43 (d, *J* = 7.6 Hz, 6H × 0.57), 4.56 (m, 1H × 1), 4.96 (m, 1H × 1), 7.00 (dd, *J* = 7.6 Hz, 1.6 Hz, 1H × 1), 7.11 (s, 1H × 1), 7.30-7.38 (m, 2H × 1 + 4H × 0.57), 7.44-7.53 (m, 2H × 1 + 1H × 0.57), 7.59 (t, *J* = 7.6 Hz, 1H × 0.57), 7.67 (dd, *J* = 7.6 Hz, 1.2 Hz, 1H × 1), 7.74-7.77 (m, 3H × 0.57), 7.81 (t, *J* = 7.6 Hz, 2H × 1) ppm. ¹³C NMR (100 MHz, CDCl₃) (*syn* and *anti* isomers): δ = 19.2, 21.6, 22.5, 29.9, 48.6, 57.2, 122.23, 122.24, 123.2, 124.1, 124.2, 124.5, 124.76, 124.85, 124.9, 129.0, 129.3, 129.6, 130.0, 130.23, 130.25, 131.5, 131.9, 133.3, 134.2, 136.2, 137.0, 139.1, 134.0, 140.1, 140.2, 140.4, 140.6 ppm. HRMS (ESI): calcd for C₁₇H₁₆N₂NaOS [M+Na]⁺ 319.0881, found 319.0879.

N-(2-(Benzo[*b*]thiopene-2-yl)-6-methylphenyl)-*N*-methylnitrous amide (3e)

Following the general procedure. *N*-Methyl-*N*-(*o*-tolyl)nitrous amide **1e** (30.0 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **3e** as inseparable yellow oily mixture of *syn* and *anti* isomers (45.7 mg, 81% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 10:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.18 (s, 3H), 3.18 (s, 3H), 7.34-7.43 (m, 2H), 7.46 (s, 1H), 7.54-7.61 (m, 2H), 7.73 (dd, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.84-7.89 (m, 1H), 7.93-7.98 (m, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 17.6, 35.3, 122.2, 123.9, 124.0, 124.8, 124.9, 128.6, 130.1, 131.6, 131.7, 136.7, 138.5, 138.8, 139.3, 139.7 ppm. HRMS (ESI): calcd for C₁₆H₁₄N₂NaOS [M+Na]⁺ 305.0725, found 305.0717.

N-(2-(Benzo[b]thiopene-2-yl)-5-methylphenyl)-N-methylnitrous amide (3f)

Following the general procedure. *N*-Methyl-*N*-(*m*-tolyl)nitrous amide **1f** (30.0 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **3f** as inseparable yellow solid mixture of *syn* and *anti* isomers (44.0 mg, 78% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 14:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 2.47 (s, 3H), 3.12 (s, 3H), 7.20 (s, 1H), 7.28 (s, 1H), 7.31-7.38 (m, 3H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.76 (d, *J* = 7.2 Hz, 1H), 7.82(d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.2, 35.6, 122.2, 123.6, 124.0, 124.76, 124.81, 127.6, 128.1, 130.5, 131.4, 139.4, 140.0, 140.1, 140.3 140.4 ppm. HRMS (ESI): calcd for C₁₆H₁₄N₂NaOS [M+Na]⁺ 305.0725, found 305.0721.

N-(2-(Benzo[*b*]thiopene-2-yl)-4-methylphenyl)-*N*-methylnitrous amide (3g)

Following the general procedure. *N*-Methyl-*N*-(*p*-tolyl)nitrous amide **1g** (30.0 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **3g** as inseparable yellow solid mixture of *syn* and *anti* isomers (44.0 mg, 78% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 12:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 2.49 (s, 3H), 3.12 (s, 3H), 7.22 (s, 1H), 7.34-7.38 (m, 4H), 7.55 (s, 1H), 7.76 (d, *J* = 7.2 Hz, 1H), 7.81 (d, *J* = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.3, 35.6, 122.2, 123.8, 124.0, 124.8, 124.9, 127.3, 130.2, 130.3, 132.1, 138.2, 139.4, 139.9, 140.0, 140.5 ppm. HRMS (ESI): calcd for C₁₆H₁₄N₂NaOS

[M+Na]⁺ 305.0725, found 305.0720.

N-(2-(Benzo[*b*]thiopene-2-yl)-6-methoxyphenyl)-*N*-methylnitrous amide (3h)

Following the general procedure. *N*-(2-Methoxyphenyl)-*N*-methylnitrous amide **1h** (33.2 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 30/1, v/v) afforded **3h** as inseparable yellow solid mixture of *syn* and *anti* isomers (48.3 mg, 81% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 10:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.23 (s, 3H), 3.87 (s, 3H), 7.32-7.41 (m, 3H), 7.49 (dd, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.53 (s, 1H), 7.64 (t, *J* = 8.0 Hz, 1H), 7.85 (dd, *J* = 6.8 Hz, 2.0 Hz, 1H), 7.92-7.98 (m, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 35.3, 56.4, 112.8, 122.2, 123.9, 124.0, 124.7, 124.9, 128.0, 131.2, 132.8, 138.5, 139.3, 139.7, 155.6 ppm. HRMS (ESI): calcd for C₁₆H₁₄N₂NaO₂S [M+Na]⁺ 321.0674, found 321.0669.

N-(2-(Benzo[*b*]thiopene-2-yl)-4-methoxyphenyl)-*N*-methylnitrous amide (3i)

Following the general procedure. *N*-(4-Methoxyphenyl)-*N*-methylnitrous amide **1i** (33.2 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 30/1, v/v) afforded **3i** as inseparable brown oily mixture of *syn* and *anti* isomers (45.9 mg, 77% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 10:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.12 (s, 3H), 3.92 (s, 3H), 7.03 (dd, *J* = 8.4 Hz, 2.8 Hz, 1H), 7.23-7.24 (m, 2H), 7.32-7.39 (m, 3H), 7.75-7.77 (m, 1H), 7.81-7.83 (m, 1H)

ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.9, 56.0, 114.7, 116.6, 122.4, 124.1, 124.2, 124.9, 125.1, 129.0, 132.1, 133.9, 139.2, 140.0, 140.6, 160.3 ppm. HRMS (ESI): calcd for C₁₆H₁₄N₂NaO₂S [M+Na]⁺ 321.0674, found 321.0669.

N-(2-(Benzo[*b*]thiopene-2-yl)-5-fluorophenyl)-*N*-methylnitrous amide (3j)

Following the general procedure. *N*-(3-Fluorophenyl)-*N*-methylnitrous amide **1j** (30.8 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc =60/1, v/v) afforded **3j** as inseparable yellow oily mixture of *syn* and *anti* isomers (43.5 mg, 76% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 10:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.21 (s, 3H), 7.37-7.44 (m, 2H), 7.48-7.53 (m, 1H), 7.65-7.71 (m, 2H), 7.80 (dd, *J* = 9.2 Hz, 2.8 Hz, 1H), 7.86-7.90 (m, 1H), 7.95-8.00 (m, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 35.2, 116.8 (d, *J* = 23 Hz), 118.7 (d, *J* = 17 Hz), 122.2, 123.0 (d, *J* = 3 Hz), 124.1, 124.7, 125.1, 126.8 (d, *J* = 3 Hz), 130.7, 131.2 (d, *J* = 10 Hz), 139.1, 140.0, 142.0 (d, *J* = 4 Hz), 159.6 (d, *J* = 247 Hz) ppm. HRMS (ESI): calcd for C₁₅H₁₁FN₂NaOS [M+Na]⁺ 309.0474, found 309.0468.

N-(2-(Benzo[*b*]thiopene-2-yl)-4-chlorophenyl)-*N*-methylnitrous amide (3k)

Following the general procedure. *N*-(4-Chlorophenyl)-*N*-methylnitrous amide **1k** (34.0 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 4/1, v/v) afforded **3k** as inseparable yellow oily mixture of *syn* and *anti* isomers (50.7 mg, 84% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 13:1. The NMR data listed here represent peak information only for the major *syn* isomer.

¹H NMR (400 MHz, CDCl₃): δ = 3.10 (s, 3H), 7.26 (s, 1H), 7.36-7.38 (m, 2H), 7.41 (s, 1H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.73 (s, 1H), 7.78 (d, *J* = 6.8 Hz, 1H), 7.82 (d, *J* = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.5, 122.4, 124.3, 124.7, 125.1, 125.4, 128.8, 129.5, 131.4, 132.3, 135.5, 137.8, 139.2, 139.8, 140.7 ppm. HRMS (ESI): calcd for C₁₅H₁₁ClN₂NaOS [M+Na]⁺ 325.0178, found 325.0175.

N-(2-(Benzo[b]thiopene-2-yl)-5-bromophenyl)-N-methylnitrous amide (31)

Following the general procedure. *N*-(3-Bromophenyl)-*N*-methylnitrous amide **11** (42.8 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 4/1, v/v) afforded **31** as inseparable yellow solid mixture of *syn* and *anti* isomers (56.7 mg, 82% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 10:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.22 (s, 3H), 7.36-7.43 (m, 2H), 7.57 (d, *J* = 0.4 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 1H), 7.85-7.90 (m, 2H), 7.93 (d, *J* = 1.6 Hz, 1H), 7.96-8.00 (m, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 35.3, 122.0, 122.3, 124.1, 124.3, 124.8, 125.1, 129.7, 130.2, 132.6, 132.7, 137.6, 139.3, 139.8, 140.6 ppm. HRMS (ESI): calcd for C₁₅H₁₁BrN₂NaOS [M+Na]⁺ 368.9673, found 368.9665.

N-(2-(Benzo[*b*]thiopene-2-yl)-4-bromophenyl)-*N*-methylnitrous amide (3m)

Following the general procedure. *N*-(4-Bromophenyl)-*N*-methylnitrous amide **1m** (42.8 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 4/1, v/v) afforded **3m** as inseparable yellow solid mixture of *syn* and *anti* isomers (59.5 mg, 86% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately

13:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.10 (s, 3H), 7.27 (s, 1H), 7.33-7.41 (m, 3H), 7.65 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H), 7.77-7.83 (m, 2H), 7.89 (d, *J* = 2.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.5, 122.4, 123.4, 124.3, 124.7, 125.0, 125.4, 128.9, 132.42, 132.43, 134.3, 137.6, 139.6, 139.8, 140.7 ppm. HRMS (ESI): calcd for C₁₅H₁₁BrN₂NaOS [M+Na]⁺ 368.9673, found 368.9667.

N-(2-(Benzo[*b*]thiopene-2-yl)-4-(trifluoromethyl)phenyl)-*N*-methylnitrous amide (3n)

Following the general procedure. *N*-Methyl-*N*-(4-(trifluoromethyl)phenyl)nitrous amide **1n** (40.8 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 4/1, v/v) afforded **3n** as inseparable yellow solid mixture of *syn* and *anti* isomers (48.4 mg, 72% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 14:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.13 (s, 3H), 7.32 (s, 1H), 7.36-7.42 (m, 3H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 7.2 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 1H), 8.00 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.3, 122.4, 124.3, 125.0, 125.1, 125.5, 126.3 (q, *J* = 4 Hz), 127.9, 128.8 (q, *J* = 4 Hz), 131.3, 131.6, 131.9, 137.7, 139.8, 140.7, 143.4 ppm. HRMS (ESI): calcd for C₁₆H₁₂F₃N₂NaOS [M+H]⁺ 337.0622, found 337.0619.

N-(4-Acetyl-2-(benzo[*b*]thiophen-2-yl)phenyl)-*N*-methylnitrous amide (30)

Following the general procedure. N-(4-Acetylphenyl)-N-methylnitrous amide **10** (35.6 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification

via column chromatography on silica gel (petroleum ether/EtOAc = 5/1, v/v) afforded **3o** as inseparable yellow oily mixture of *syn* and *anti* isomers (45.9 mg, 74% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 15:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 2.69 (s, 3H), 3.11 (s, 3H), 7.30 (s, 1H), 7.34-7.40 (m, 2H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.77-7.83 (m, 2H), 8.06-8.09 (m, 1H) 8.28 (d, *J* = 1.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 26.9, 35.3, 122.3, 124.2, 124.6, 125.0, 125.2, 127.4, 129.2, 130.5, 131.8, 137.5, 138.3, 139.8, 140.6, 144.0, 196.6 ppm. HRMS (ESI): calcd for C₁₇H₁₄N₂NaO₂S [M+Na]⁺ 333.0674, found 333.0671.

N-(2-(Benzo[*b*]thiophen-2-yl)-4-formylphenyl)-*N*-methylnitrous amide (3p)

Following the general procedure. *N*-(4-Formylphenyl)-*N*-methylnitrous amide **1p** (32.8 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 5/1, v/v) afforded **3p** as inseparable yellow oily mixture of *syn* and *anti* isomers (30.2 mg, 51% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 15:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.12 (s, 3H), 7.32 (s, 1H), 7.36-7.42 (m, 2H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 8.03 (d, *J* = 7.6 Hz, 1H), 8.22 (s, 1H), 10.13 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.3, 122.4, 124.3, 124.8, 125.1, 125.4, 127.9, 130.2, 131.1, 133.1, 136.6, 137.9, 139.8, 140.6, 145.1, 190.7 ppm. HRMS (ESI): calcd for C₁₆H₁₂N₂NaO₂S [M+Na]⁺ 319.0517, found 319.0515.

Methyl 3-(benzo[b]thiophen-2-yl)-2-(methyl(nitroso)amino)benzoate (3q)

Following the general procedure. Methyl 2-(methyl(nitroso)amino)benzoate **1q** (38.8 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc/CH₂Cl₂ = 20/1/1, v/v/v) afforded **3q** as inseparable yellow oily mixture of *syn* and *anti* isomers (49.6 mg, 76% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 1:0.13. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.13 (s, 3H), 3.83 (s, 3H), 7.25 (s, 1H), 7.33-7.40 (m, 2H), 7.64 (t, *J* = 8.0 Hz, 1H), 7.74-7.84 (m, 2H), 7.90 (dd, *J* = 8.0 Hz, 1.6 Hz, 1H), 8.02-8.06 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.7, 52.9, 122.2, 124.2, 124.7, 124.9, 125.2, 129.8, 130.6, 131.2, 133.2, 135.0, 137.9, 139.2, 139.8, 140.7, 165.9 ppm. HRMS (ESI): calcd for C₁₇H₁₄N₂NaO₃S [M+Na]⁺ 349.0623, found 349.0623.

N-(2-(Benzo[*b*]thiophen-2-yl)-5-chloro-4-methylphenyl)-*N*-methylnitrous amide (3r)

Following the general procedure. *N*-(3-Chloro-4-methylphenyl)-*N*-methylnitrous amide **1r** (36.8 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 4/1, v/v) afforded **3r** as inseparable yellow solid mixture of *syn* and *anti* isomers (52.5 mg, 83% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 12:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 2.50 (s, 3H), 3.10 (s, 3H), 7.21 (s, 1H), 7.33-7.39 (m, 2H), 7.48 (s, 1H), 7.60 (s, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 20.0, 35.5, 122.4, 124.17, 124.18, 125.0, 125.2, 128.0, 129.0, 133.5, 135.2, 138.0, 138.3, 139.1, 140.0, 140.6 ppm. HRMS (ESI): calcd for C₁₆H₁₃ClN₂NaOS [M+Na]⁺ 339.0335, found 339.0343.

N-(3-(Benzo[*b*]thiopene-2-yl)naphthalene-2-yl)-*N*-methylnitrous amide (3s)

Following the general procedure. *N*-Methyl-*N*-(naphthalen-2-yl)nitrous amide **1s** (37.2 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **3s** as inseparable yellow oily mixture of *syn* and *anti* isomers (49.6 mg, 78% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 15:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.17 (s, 3H), 7.29 (s, 1H), 7.37-7.41 (m, 2H), 7.58-7.62 (m, 2H), 7.78 (d, *J* = 6.8 Hz, 1H), 7.84 (d, *J* = 7.2 Hz, 1H), 7.92-7.94 (m, 3H), 8.19 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.8, 122.3, 124.0, 124.1, 124.8, 125.0, 126.4, 127.9, 128.0, 128.2, 128.4, 131.4, 133.0, 133.3, 138.3, 139.5, 140.2, 140.5 ppm. HRMS (ESI): calcd for C₁₉H₁₅N₂OS [M+H]⁺ 319.0905, found 319.0897.

8-(Benzo[b]thiopene-2-yl)-1-nitroso-1,2,3,4-tetrahydroquiline (3t)

Following the general procedure. 1-Nitroso-1,2,3,4-tetrahydroquinoline **1t** (32.4 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **3t** as yellow solid (38.8 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): δ = 2.06-2.12 (m, 2H), 2.74 (t, *J* = 5.6 Hz, 2H), 3.95 (t, *J* = 6.4 Hz, 2H), 7.26-7.35 (m, 5H), 7.56 (d, *J* = 7.4 Hz, 1H), 7.73 (t, *J* = 8.4 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.8, 27.8, 43.4, 122.2, 123.0, 123.7, 124.3, 124.4, 127.0, 128.5, 128.7, 131.2, 133.6, 135.6, 140.1, 140.4, 142.1 ppm. HRMS (ESI): calcd for C₁₇H₁₄N₂NaOS [M+Na]⁺ 317.0725, found 317.0721.

N-(2-(5-Methylthiopene-2-yl)phenyl)-*N*-methylnitrous amide (4a)

Following the general procedure. *N*-Methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol) and 2-methylthiophene **2b** (58.8 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **4a** as inseparable yellow oily mixture of *syn* and *anti* isomers (41.3 mg, 89% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 15:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 2.48 (s, 3H), 3.12 (s, 3H), 6.70 (d, *J* = 3.2 Hz, 1H), 6.80 (d, *J* = 3.2 Hz, 1H), 7.38-7.45 (m, 2H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.4, 35.4, 126.1, 127.2, 127.5, 128.5, 129.7, 130.9, 131.0, 136.4, 139.9, 142.0 ppm. HRMS (ESI): calcd for C₁₂H₁₃N₂OS [M+H]⁺ 233.0749, found 233.0748.

N-(2-(5-Methoxythiopene-2-yl)phenyl)-*N*-methylnitrous amide (4b)

Following the general procedure. *N*-Methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol) and 2-methoxythiophene **2c** (68.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 40/1, v/v) afforded **4b** as inseparable yellow oily mixture of *syn* and *anti* isomers (44.6 mg, 90% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 13:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.15 (s, 3H), 3.89 (s, 3H), 6.14 (d, *J* = 3.6 Hz, 1H), 6.63 (d, *J* = 4.0 Hz, 1H), 7.36-7.42 (m, 2H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.4, 60.3, 104.6, 124.5, 125.2, 127.6, 128.2, 129.7, 130.7, 130.9, 139.8, 168.0 ppm. HRMS (ESI): calcd for C₁₂H₁₂N₂NaO₂S [M+Na]⁺ 271.0517, found 271.0515.

N-Methyl-*N*-(2-(5-phenylthiophen-2-yl)phenyl)nitrous amide (4c)

Following the general procedure. *N*-Methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol) and 2-phenylthiophene **2d** (96.0 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 20/1, v/v) afforded **4c** as inseparable yellow solid mixture of *syn* and *anti* isomers (54.7 mg, 93% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 15:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.16 (s, 3H), 6.97 (d, *J* = 3.6 Hz, 1H), 7.26 (d, *J* = 3.2 Hz, 1H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.59 (d, *J* = 7.2 Hz, 2H), 7.68 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.5, 123.8, 125.9, 127.7, 128.1, 128.3, 128.9, 129.08, 129.09, 129.12, 129.8, 130.6, 131.0, 133.8, 138.1, 140.1, 146.1 ppm. HRMS (ESI): calcd for C₁₇H₁₄N₂NaOS [M+Na]⁺ 317.0725, found 317.0718.

N-(2-(5-Chlorolthiopene-2-yl)phenyl)-*N*-methylnitrous amide (4d)

Following the general procedure. *N*-Methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol) and 2-chlorothiophene **2e** (70.8 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **4d** as inseparable yellow oily mixture of *syn* and *anti* isomers (43.8 mg, 87% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 12:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.14 (s, 3H), 6.79 (d, *J* = 2.8 Hz, 1H), 6.86 (d, *J* = 2.8 Hz, 1H), 7.39 (d, *J* = 7.2 Hz, 1H), 7.46-7.53 (m, 2H), 7.58 (d, *J* = 7.2 Hz 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.4, 126.6, 127.0, 127.6, 129.3, 129.8, 130.0, 131.0, 131.7, 137.5, 140.1 ppm. HRMS (ESI): calcd for C₁₁H₉ClN₂NaOS [M+Na]⁺ 275.0022,

found 275.0026.

N-(2-(5-Bromolthiopene-2-yl)phenyl)-N-methylnitrous amide (4e)

Following the general procedure. *N*-Methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol) and 2-bromothiophene **2f** (97.2 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **4e** as inseparable brown oily mixture of *syn* and *anti* isomers (52.1 mg, 88% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 12:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.13 (s, 3H), 6.76 (d, *J* = 2.8 Hz, 1H), 7.01 (d, *J* = 3.2 Hz, 1H), 7.39 (d, *J* = 7.6 Hz, 1H), 7.46-7.53 (m, 2H), 7.57 (d, *J* = 7.6 Hz 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.4, 114.0, 127.5, 127.6, 129.4, 129.8, 129.9, 130.7, 131.0, 140.0, 140.4 ppm. HRMS (ESI): calcd for C₁₁H₉BrN₂NaOS [M+Na]⁺ 318.9517, found 318.9515.

N-(2-(4,5-Dibromolthiopene-2-yl)phenyl)-N-methylnitrous amide (4f)

Following the general procedure. *N*-Methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol) and 2,3-dibromolthiophene **2g** (143.9 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **4f** as inseparable brown oil mixture of *syn* and *anti* isomers (63.6 mg, 85% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 10:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.17 (s, 3H), 6.87 (s, 1H), 7.40-7.42 (m, 1H), 7.52-7.54 (m, 2H), 7.57-7.59 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.6, 112.9, 114.6, 127.7, 129.1, 129.5, 129.99, 130.02, 130.8, 140.1, 140.4 ppm. HRMS (ESI): calcd for C₁₁H₈Br₂N₂NaOS [M+Na]⁺ 396.8622, found 396.8629.

N-(2-(5-Acetylthiopene-2-yl)phenyl)-*N*-methylnitrous amide (4g)

Following the general procedure. *N*-Methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol) and 2-acetylthiophene **2h** (75.6 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 10/1, v/v) afforded **4g** as inseparable yellow solid mixture of *syn* and *anti* isomers (28.1 mg, 54% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 12:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 2.56 (s, 3H), 3.12 (s, 3H), 6.97 (d, *J* = 4.0 Hz, 1H), 7.44-7.46 (m, 1H), 7.53-7.57 (m, 2H), 7.61 (d, *J* = 3.6 Hz, 1H), 7.64-7.67 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 26.8, 35.5, 127.5, 128.2, 129.8, 129.9, 130.2, 131.4, 133.0, 140.4, 145.2, 147.4, 190.6 ppm. HRMS (ESI): calcd for C₁₃H₁₂N₂NaO₂S [M+Na]⁺ 283.0517, found 283.0509.

Ethyl 5-(2-(methyl(nitroso)amino)phenyl)thiophene-2-carboxylate (4h)

Following the general procedure. *N*-Methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol) and ethyl thiophene-2-carboxylate **2i** (93.6 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 20/1, v/v) afforded **4h** as inseparable yellow solid mixture of *syn* and *anti* isomers (30.7 mg, 53% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 12:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 1.37 (t, *J* = 7.2 Hz, 3H), 3.11 (s, 3H), 4.33-4.38 (m, 2H), 6.96 (d, *J* = 4.0 Hz, 1H), 7.43-7.45 (m, 1H), 7.52-7.57 (m, 2H), 7.64-7.66 (m, 1H), 7.72 (d, *J* = 4.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.5, 35.4, 61.5, 127.6, 127.8, 129.75, 129.84, 130.0, 131.4, 133.8, 135.0, 140.4, 145.7, 162.0 ppm. HRMS (ESI): calcd for C₁₄H₁₄N₂NaO₃S [M+Na]⁺ 313.0623, found 313.0620.

N-(2-(5-Formylthiopene-2-yl)phenyl)-*N*-methylnitrous amide (4i)

Following the general procedure. *N*-Methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol) and 2-thiophencarboxaldehyde **2j** (67.2 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 10/1, v/v) afforded **4i** as inseparable brown oily mixture of *syn* and *anti* isomers (25.1 mg, 51% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 12:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.13 (s, 3H), 7.07 (d, *J* = 3.6 Hz, 1H), 7.44-7.46 (m, 1H), 7.56-7.58 (m, 2H), 7.66-7.71 (m, 2H), 9.88 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.5, 127.5, 128.3, 129.5, 129.9, 130.5, 131.4, 136.8, 140.4, 144.4, 148.8, 182.9 ppm. HRMS (ESI): calcd for C₁₂H₁₀N₂NaO₂S [M+Na]⁺ 269.0361, found 269.0356.

N-(2-(5-Chlorobenzo[*b*]thiophen-2-yl)phenyl)-*N*-methylnitrous amide (4j)

Following the general procedure. *N*-Methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol) and 5-chlorobenzothiophene **2k** (100.8 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **4j** as inseparable yellow solid mixture of *syn* and *anti* isomers (51.3 mg, 85% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 12:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.13 (s, 3H), 7.18 (s, 1H), 7.32 (d, *J* = 8.8 Hz, 1H), 7.46 (d, *J* = 6.8 Hz, 1H), 7.53-7.59 (m, 2H), 7.71-7.74 (m, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.5, 123.2, 123.3, 123.5, 125.4, 127.5, 129.8, 129.9, 130.2, 131.1, 131.6, 138.6, 140.6, 141.0, 141.4 ppm. HRMS (ESI): calcd for C₁₅H₁₁ClN₂NaOS [M+Na]⁺

N-(2-(5-Methylfuran-2-yl)phenyl)-*N*-methylnitrous amide (4k)

Following the general procedure. *N*-Methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol) and 2-methylfuran **2l** (49.2 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **4k** as inseparable yellow oily mixture of *syn* and *anti* isomers (37.2 mg, 86% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 12:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 2.32 (s, 3H), 3.26 (s, 3H), 6.03 (s, 1H), 6.17 (s, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 13.7, 35.1, 108.2, 110.8, 127.58, 127.61, 127.8, 128.0, 129.7, 137.9, 148.1, 153.2 ppm. HRMS (ESI): calcd for C₁₂H₁₃N₂O₂ [M+H]⁺ 217.0977, found 217.0979.

N-(2-(Benzofuran-2-yl)phenyl)-*N*-methylnitrous amide (41)

Following the general procedure. *N*-Methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol) and benzofuran **2m** (70.8 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 60/1, v/v) afforded **4l** as inseparable yellow oily mixture of *syn* and *anti* isomers (35.8 mg, 71% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 12:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 3.31 (s, 3H), 6.66 (s, 1H), 7.22 (d, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.48-7.61 (m, 4H), 8.03 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 35.2, 106.2, 111.4, 121.5, 123.4, 125.2, 127.0, 127.9, 128.8, 129.2, 129.7, 129.8, 139.4, 151.8, 154.9 ppm. HRMS (ESI): calcd for

 $C_{15}H_{12}N_2NaO_2$ [M+Na]⁺ 275.0796, found 275.0789.

N-Methyl-*N*-(2-(1-methyl-1*H*-indol-3-yl)phenyl)nitrous amide (4m)

Following the general procedure. *N*-Methyl-*N*-phenylnitrous amide **1a** (27.2 mg, 0.2 mmol) and 1-methyl-1*H*-indole **2n** (78.6 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 40/1, v/v) afforded **4m** as inseparable burgundy solid mixture of *syn* and *anti* isomers (23.9 mg, 45% yield). By ¹H NMR, the *syn:anti* ratio was determined to be approximately 11:1. The NMR data listed here represent peak information only for the major *syn* isomer. ¹H NMR (400 MHz, CDCl₃): δ = 2.93 (s, 3H), 3.80 (s, 3H), 6.93 (s, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 33.1, 35.3, 109.7, 112.1, 119.6. 120.4, 122.5, 126.7, 127.2, 127.3, 128.2, 129.4, 130.9, 131.8, 137.0, 140.8 ppm. HRMS (ESI): calcd for C₁₆H₁₅N₃NaO [M+Na]⁺ 288.1113, found 288.1108.

IX. References

- (1) J. W. Kang, K. Moseley and P. M. Maitlis, J. Am. Chem. Soc., 1969, 91, 5970.
- (2) Y. Li, B.-J. Li, W.-H. Wang, W.-P. Huang, X.-S. Zhang, K. Chen and Z.-J. Shi, *Angew. Chem., Int. Ed.*, 2011, **50**, 2115.
- (3) (*a*) J. A. Osborn and G. Wolkinson, *Inorg. Syn.*, 1967, **10**, 67; (*b*) J. Wang, X. Tong, X. Xie and Z. Zhang, *Org. Lett.*, 2010, **12**, 5370.
- (4) B. Liu, Y. Fan, Y. Gao, C. Sun, C. Xu and J. Zhu, J. Am. Chem. Soc., 2013, 135, 468.
- (5) (a) T. Gao and P. Sun, J. Org. Chem., 2014, 79, 9888; (b) C. Song, C. Yang, F. Zhang, J. Wang and J. Zhu, Org. Lett., 2016, 18, 4510; (c) X. Huang, J. Huang, C. Du, X. Zhang, F. Song and J. You, Angew. Chem., Int. Ed., 2013, 52, 12970.

X. ¹H NMR and ¹³C NMR spectra of compounds

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

140.47 140.02 139.392 139.392 138.18 139.27 130.27 130.27 130.27 130.27 124.88 124.88 124.76 1124.33 124.76 1122.25 1122.25

-35.61 -21.28

3.918 3.338 3.858 3.107 -3.107

S42

-7.824 -7.7866 -7.777 -7.776 -7.7866 -7.771 -7.478 -7.478 -7.478 -7.478 -7.478 -7.478 -7.478 -7.478 -7.478 -7.478 -7.478 -7.478 -7.478 -7.478 -7.7579 -7.7599

--3.098

140.71 133.84 133.76 133.75 131.25 131.25 131.25 131.25 123.51 122.41 122.41 122.41 122.41 -35.53

-35.32

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

-3.919-3.109 -2.688 _N_{_N}_O S 0 30 8.288
 8.284
 8.284
 8 090 8 087 8 085 8 085 8 069 8 066 -7.825 -7.807 -7.804 -7.786 -7.786 -7.769 -7.769 ~7.590 7.382 7.374 7.374 7.355 7.355 7.337 7.337 7.237 MW MM 7.8 7.7 fl (ppm) 8.3 8.2 8.1 7.9 7.6 7.5 7.4 7.3 7.2 8.0 3.00 ± 3.04 ≠ $\begin{array}{c} 0.95 \\ 1.03 \\ 2.08 \\ 1.098 \\ 1.098 \\ 2.17 \\ 0.93 \\ 1.03 \\$ 0.20-14 7 13 12 3 2 0 -1 11 10 9 8 6 f1 (ppm) 5 1 4 144,01 140,56 140,56 133,53 137,53 137,53 137,53 137,53 130,54 127,37 127,47 -35.30 -26.91 | _N_{_N}_0 ő -138.29 -137.53 -129.19 125.25 124.96 124.17 -122.31-144.01-131.79 -130.54-127.3730 135 133 fl (ppm) 143 141 139 137 131 129 127 125 123 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 fl (ppm) ò -10 60 50 40 30 20 10

-3.998 -3.173

$\begin{array}{c} 7.594 \\ 7.576 \\ 7.576 \\ 7.576 \\ 7.516 \\ 7.4198 \\ 7.4198 \\ 7.4164 \\ 7.4164 \\ 7.4164 \\ 7.7402 \\ 7.7392 \\ 7$ -3.918

-3.136

-35,40

 $\begin{pmatrix} 140.44\\ 140.05\\ 130.69\\ 129.84\\ 127.52\\ -113.96 \end{pmatrix}$

S58

-35.59

-9,883 7,697 7,697 7,560 7,560 7,568 1,7,558 1

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

-13.72

$\begin{bmatrix} 7.873 \\ 7.853 \\ 7.785 \\ 7.788 \\ 7.788 \\ 7.7325 \\ 6.773 \\ 6.773 \\ 6.773 \\ 6.773 \\ 6.728 \end{bmatrix}$ -4.540 -2.870

XI. X-ray crystallographic data of complex 6

Figure S1. ORTEP diagram of complex **6** (CCDC: 1838256). Thermal ellipsoids are shown at the 50% probability level.

Table S2.	Crystal	data and	structure	refinement	for co	mplex 6	•

Identification code	hs-x-2		
Empirical formula	C ₁₇ H ₂₁ BrClN ₂ ORh		
Formula weight	487.63		
Temperature/K	295.4(2)		
Crystal system	orthorhombic		
Space group	Pbca		
a/Å	15.4304(5)		
b/Å	14.9823(4)		
c/Å	16.4747(5)		
α/°	90		
β/°	90		
$\gamma/^{\circ}$	90		
Volume/Å ³	3808.67(19)		
Z	8		

$\rho_{calc}g/cm^3$	1.701				
μ/mm^{-1}	11.034				
F (000)	1936.0				
Crystal size/mm ³	0.65 ×0.6 ×0.3				
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)				
2Θ range for data collection/° 9.826 to 134.146					
Index ranges	$-18 \le h \le 18, -15 \le k \le 17, -19 \le l \le 19$				
Reflections collected	19343				
Independent reflections	3400 [$R_{int} = 0.0867, R_{sigma} = 0.0414$]				
Data/restraints/parameters	3400/13/214				
Goodness-of-fit on F ²	1.082				
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0555, wR_2 = 0.1466$				
Final R indexes [all data]	$R_1 = 0.0587, wR_2 = 0.1519$				
Largest diff. peak/hole / e Å ⁻³	3 1.33/-1.81				