Supporting Information

A portal to a class of novel sultones functionalized pyridines via an

annulative SuFEx process employing earth abundant Nickel catalyst

Xing Chen,^a Gao-Feng Zha,^a Wan-Yin Fang,^a K.P. Rakesh,^a Hua-Li Qin * ^a

^a State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, Hubei Province, 430070, P. R. China

Table of Content

1. General Considerations	S2
2. Optimization of the Reaction Conditions	S3
3. Procedures and Characterizations for the Syntheses of 3	S7
4. Procedures and Characterizations for the Syntheses of 5	S26
5. Scaled-up reaction	S32
6. References	S33
7. Spectra	

1. General Considerations

All reactions were carried out under an air atmosphere. Unless otherwise specified, NMR spectra are recorded in CDCl₃ on a 500 MHz (for ¹H), 471 MHz (for ¹⁹F), or 126 MHz (for ¹³C) spectrometer. All chemical shifts are reported in ppm relative to TMS (¹H NMR, 0 ppm) as an internal standard. The HPLC experiments were carried out on a Waters e2695 instrument (column: J&K, RP-C18, 5 μ m, 4.6 × 150 mm), and the yields of the products were determined by using the corresponding pure compounds as the external standards. The coupling constants are reported in Hertz (Hz). The following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, Melting points were measured and uncorrected. MS experiments were all purchased from commercial sources and used without further purification.

2. Optimization of the Reaction Conditions.

Table 1 Screening of Ni Catalyst and additive^a

la la	SO ₂ F + N - 2a	Ni Cat. (20 mol%) Or Additive (2.0 equiv) <i>i</i> -PrOH, r.t	S S Ja
Entry	Catalyst	Additive	Yield (3a , %) ^b
1	Ni(acac) ₂	NaHCO ₃	35
2	NiBr ₂	NaHCO ₃	16
3	Ni(OAc) ₂ 4H ₂ O	NaHCO ₃	N.A
4	NiCl ₂	NaHCO ₃	16
5	NiI ₂	NaHCO ₃	7
6	Ni(NO ₃) ₂ ·6H ₂ O	NaHCO ₃	40
7	Ni(OTf) ₂	NaHCO ₃	14
8	Ni(NO ₃) ₂ ·6H ₂ O	DBU	36
9	Ni(NO ₃) ₂ ·6H ₂ O	DIPEA	55
10	Ni(NO ₃) ₂ ·6H ₂ O	Cs ₂ CO ₃	35

^aReaction conditions: (*E*)-2-phenylethenesulfonyl fluoride (**1a**, 0.1 mmol), 2-acetyl pyridine (**2a**, 0.2 mmol, 2.0 equiv), catalyst (20 mol%), additive (0.2 mmol, 2.0 equiv), *i*-PrOH (1 mL) were added to a round-bottle flask (25 mL) and reacted at room temperature for 24 h. ^bThe yield was determined by HPLC using **3a** as the external standard ($t_{\rm R} = 12.2 \text{ min}$, $\lambda_{\rm max} = 246.5 \text{ nm}$, methanol / water = 60 : 40 (v / v)).

1	DCM	40
2	THF	30
3	MeCN	69
4	Acetone	29
5	DMF	27
6	DMSO	65
7	<i>i</i> -PrOH	55
8	t-BuOH	56

^aReaction conditions: (*E*)-2-phenylethenesulfonyl fluoride (**1a**, 0.1 mmol), 2-acetyl pyridine (**2a**, 0.2 mmol, 2.0 equiv), Ni(NO₃)₂·6H₂O (20 mol%), DIPEA (0.2 mmol, 2.0 equiv), solvent (1 mL) were added to a round-bottle flask (25 mL) and reacted at room temperature for 24 h. ^bThe yield was determined by HPLC using **3a** as the external standard ($t_R = 12.2 \text{ min}$, $\lambda_{max} = 246.5 \text{ nm}$, methanol / water = 60 : 40 (v / v)).

Table 3 Screening of Additive^a

SO ₂ F ta	Ni(NO ₃) ₂ ·6H ₂ O (20 mol%) Additive (2.0 equiv) MeCN, r.t 2a) $0,0$ N $3a$
Entry	Additive	Yield (3a , %) ^b
1	NaHCO ₃	48
2	KHCO ₃	47
3	Na ₂ CO ₃	56
4	K ₂ CO ₃	91
5	Cs ₂ CO ₃	36
6	Na ₃ PO ₄	68
7	K ₃ PO ₄	84
8	K ₂ HPO ₄	33
9	NaOAc	16
10	CH ₃ COOK	27
11	Et ₃ N	44
12	DBU	N.A
13	TMEDA	16

14	DABCO	<1
15	DIEA	69

^aReaction conditions: (*E*)-2-phenylethenesulfonyl fluoride (**1a**, 0.1 mmol), 2-acetyl pyridine (**2a**, 0.2 mmol, 2.0 equiv), Ni(NO₃)₂·6H₂O (20 mol%), additive (0.2 mmol, 2.0 equiv), MeCN (1 mL) were added to a round-bottle flask (25 mL) and reacted at room temperature for 24 h. ^bThe yield was determined by HPLC using **3a** as the external standard ($t_R = 12.2 \text{ min}$, $\lambda_{max} = 246.5 \text{ nm}$, methanol / water = 60 : 40 (v / v)).

+ 1a	Ni(NO ₃) ₂ .6H ₂ O (X mol%) K ₂ CO ₃ (2.0 equiv) MeCN, r.t	N 3a
Entry	Catalyst Loading (X mol%)	Yield (3a , %) ^b
1	/	7
2	1	50
3	5	69
4	10	77
5	20	91
6	50	92

Table 4 Screening of Catalyst Loading^a

^aReaction conditions: (*E*)-2-phenylethenesulfonyl fluoride (**1a**, 0.1 mmol), 2-acetyl pyridine (**2a**, 0.2 mmol, 2.0 equiv), Ni(NO₃)₂·6H₂O (X mol%), K₂CO₃ (0.2 mmol, 2.0 equiv), MeCN (1 mL) were added to a round-bottle flask (25 mL) and reacted at room temperature for 24 h. ^bThe yield was determined by HPLC using **3a** as the external standard ($t_{\rm R} = 12.2 \text{ min}$, $\lambda_{\rm max} = 246.5 \text{ nm}$, methanol / water = 60 : 40 (v / v)).

Table 5 Screening of Additive Loading^a

Entry	Additive Loading (X equiv)	Yield (3a , %) ^b
1	/	21
2	0.5	52
3	1.0	55
4	1.5	77
5	2.0	91

^aReaction conditions: (*E*)-2-phenylethenesulfonyl fluoride (**1a**, 0.1 mmol), 2-acetyl pyridine (**2a**, 0.2 mmol, 2.0 equiv), Ni(NO₃)₂·6H₂O (20 mol%), K₂CO₃ (X mmol, X equiv), MeCN (1 mL) were added to a round-bottle flask (25 mL) and reacted at room temperature for 24 h. ^bThe yield was determined by HPLC using **3a** as the external standard ($t_{\rm R} = 12.2 \text{ min}$, $\lambda_{\rm max} = 246.5 \text{ nm}$, methanol / water = 60 : 40 (v / v)).

Table 6 Screening the Ratio of Reactants^a

SO ₂ F + 1a	N (NO ₃) ₂ ·6H ₂ O (20 mol%) K ₂ CO ₃ (X equiv) MeCN, r.t	O O S J J J a
Entry	Ratio (1a: 2a)	Yield (3a , %) ^b
1	1:1	74
2	1:1.5	85
3	1:2	91

^aReaction conditions: (*E*)-2-phenylethenesulfonyl fluoride (**1a**, 0.1 mmol), 2-acetyl pyridine **2a**, Ni(NO₃)₂·6H₂O (20 mol%), K₂CO₃ (0.2 mmol, 2.0 equiv), MeCN (1 mL) were added to a roundbottle flask (25 mL) and reacted at room temperature for 24 h. ^bThe yield was determined by HPLC using **3a** as the external standard ($t_R = 12.2 \text{ min}$, $\lambda_{max} = 246.5 \text{ nm}$, methanol / water = 60 : 40 (v / v)).

Table 7 Screening the different Lewis acid under the optimal conditions^a

Entry	Lewis acid	Yield (3a , %) ^b
1	Ni(acac) ₂	92
2	NiBr ₂	56
3	NiCl ₂	66
4	Ni(NO ₃) ₂ ·6H ₂ O	91
5	Ni(OTf) ₂	76
6	Ni(OAc) ₂ 4H ₂ O	24
7	AlCl ₃	N.A
8	$ZnCl_2$	25
9	FeCl ₃	N.A
10	Cu(OTf) ₂	40
11	AgOTf	3
12	Cu(NO ₃) ₂ ·2.5H ₂ O	17
13	AgNO ₃	N.A
14	$Co(acac)_2$	48

^aReaction conditions: (*E*)-2-phenylethenesulfonyl fluoride (**1a**, 0.1 mmol), 2-acetyl pyridine **2a**, Lewis acid (20 mol%), K₂CO₃ (0.2 mmol, 2.0 equiv), MeCN (1 mL) were added to a round-bottle flask (25 mL) and reacted at room temperature for 24 h. ^bThe yield was determined by HPLC using **3a** as the external standard ($t_{\rm R} = 12.2 \text{ min}$, $\lambda_{\rm max} = 246.5 \text{ nm}$, methanol / water = 60 : 40 (v / v)).

3. Procedures and Characterizations for the Syntheses of 3.

3.1 Preparation of Substrates

All the (hetero)arylethenesulfonyl fluorides 1 were prepared according to the literatures.^[1, 2] The 2-acetyl azaarenes 2aa, 2ae, 2af, 2ah, 2ai were purchased from commercial sources, 2ab, 2ac, 2ad, 2ag, 2aj were prepared according to the literatures. ^[3, 4] All the homemade starting materials are identical to those reported regarding the ¹H and ¹³C NMR and melting points (if applicable).

3.2 Procedures for Annulative SuFEx Reaction of 2-Acetyl Azaarenes with (Hetero)arylethenesulfonyl Fluorides

oven-dried round-bottle (25)An flask mL) was charged with (hetero)arylethenesulfonyl fluoride (1, 0.5 mmol), 2-acetyl azaarene (2, 1.0 mmol, 2.0 equiv), Ni(NO₃)₂·6H₂O (29.1 mg, 20 mol%), K₂CO₃ (138.2 mg, 1.0 mmol, 2.0 equiv), and MeCN (2 ml). The resulting mixture was stirred at room temperature under air atmosphere for 24-36 h with monitoring by TLC. The crude products were purified by column chromatography (Petroleum ether / ethyl acetate as eluent) on silica gel to give 3.

3.3 Syntheses of 3

4-Phenyl-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3a**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 129 mg, 90% yield. Mp 112-114 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, *J* = 4.1 Hz, 1H), 7.78 (td, *J* = 7.8 Hz, *J* = 1.6 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.40 (t, *J* = 7.1 Hz, 2H), 7.36-7.32 (m, 3H), 7.29 (dd, *J* = 6.7 Hz, *J* = 5.1 Hz, 1H), 6.70 (d, *J* = 1.5 Hz, 1H), 4.39 (ddd, *J* = 12.1 Hz, *J* = 6.3 Hz, *J* = 2.3 Hz, 1H), 3.69 (dd, *J* = 13.9 Hz, *J* = 6.2 Hz, 1H), 3.37 (dd, *J* = 13.6 Hz, *J* = 12.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.4, 149.2, 139.1, 137.1, 129.4, 128.3, 127.7, 124.1, 119.0, 108.1, 50.8, 41.2. ESI-MS HRMS calculated for C₁₅H₁₄NO₃S [M+H]⁺ 288.0689, found 288.0685.

6-(Pyridin-2-yl)-4-(p-tolyl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3b**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 146 mg, 97% yield. Mp 101-103 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, *J* = 3.7 Hz, 1H), 7.79 (t, *J* = 7.5 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.32-7.25 (m, 5H), 6.70 (s,

1H), 4.39-4.35 (m, 1H), 3.68 (dd, J = 13.8 Hz, J = 6.1 Hz, 1H), 3.35 (t, J = 12.8 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.4, 149.2, 138.9, 137.1, 135.7, 128.1, 127.3, 124.1, 119.0, 107.9, 50.7, 40.8, 15.8. ESI-MS HRMS calculated for C₁₆H₁₆NO₃S [M+H]⁺ 302.0845, found 302.0844.

4-(4-Ethylphenyl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3c**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. Light yellow solid, 140 mg, 89% yield. Mp 111-113°C. ¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, *J* = 3.7 Hz, 1H), 7.77 (t, *J* = 7.8 Hz, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.29-7.23 (m, 5H), 6.69 (s, 1H), 4.38-4.34 (m, 1H), 3.67 (dd, *J* = 14.0 Hz, *J* = 6.6 Hz, 1H), 3.35 (t, *J* = 13.4 Hz, 1H), 2.66 (q, *J* = 7.4 Hz, 2H), 1.24 (t, *J* = 7.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.3, 149.2, 144.5, 137.0, 136.3, 128.8, 127.6, 124.0, 118.9, 108.4, 50.9, 40.9, 28.5, 15.6. ESI-MS HRMS calculated for C₁₇H₁₈NO₃S [M+H]⁺ 316.1002, found 316.1003.

4-(4-Methoxyphenyl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3d**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 140 mg, 88% yield. Mp 107-109 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, *J* = 4.0 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.29-7.23 (m, 3H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.68 (d, *J* = 1.4 Hz, 1H), 4.34 (ddd, *J* = 11.6 Hz, *J* = 6.0 Hz, *J* = 2.0 Hz, 1H), 3.82 (s, 3H), 3.66 (dd, *J* = 13.8 Hz, *J* = 6.2 Hz, 1H), 3.33 (t, *J* = 13.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.5, 149.6, 149.3, 149.1, 137.1, 131.1, 128.8, 124.1, 118.9, 114.7, 108.4, 55.4, 51.0, 40.5. ESI-MS HRMS calculated for C₁₆H₁₆NO₄S [M+H]⁺ 318.0795, found 318.0793.

4-([1,1'-Biphenyl]-4-yl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3e**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. Light yellow solid, 127 mg, 70% yield. Mp 176-178 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.58 (dd, J = 4.8 Hz, J = 0.8 Hz, 1H), 7.78 (td, J = 7.9 Hz, J = 1.8 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.60-7.58 (m, 2H), 7.46 (t, J = 7.3 Hz, 2H), 7.41-7.36 (m, 3H), 7.29 (ddd, J = 7.5 Hz, J = 4.7 Hz, J = 0.9 Hz, 1H), 6.75 (d, J = 2.1 Hz, 1H), 4.44 (ddd, J = 12.1 Hz, J = 6.3 Hz, J = 2.6 Hz, 1H), 3.73 (ddd, J = 13.9 Hz, J= 6.3 Hz, J = 0.8 Hz, 1H), 3.41 (dd, J = 13.7 Hz, J = 12.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.4, 149.2, 141.3, 140.3, 138.0, 137.1, 128.9, 128.11, 128.08, 127.7, 127.1, 124.1, 119.0, 108.0, 50.8, 40.9. ESI-MS HRMS calculated for C₂₁H₁₈NO₃S [M+H]⁺ 364.1002, found 364.0996.

4-(4-Phenoxyphenyl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3f**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. Yellow solid, 123 mg, 65% yield. Mp 111-113 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, *J* = 3.5 Hz, 1H), 7.76 (t, *J* = 7.5 Hz, 1H), 7.66 (d, *J* = 7.8 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.28-7.26 (m, 3H), 7.13 (t, *J* = 7.1 Hz, 1H), 7.01 (d, *J* = 7.0 Hz, 4H), 6.69 (s, 1H), 4.39-4.36 (m, 1H), 3.69 (dd, *J* = 13.9 Hz, *J* = 5.8 Hz, 1H), 3.35 (t, *J* = 12.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.4, 156.8, 149.6, 149.3, 149.2, 137.1, 133.6, 129.9, 129.1, 124.2, 123.7, 119.4, 119.2, 119.0, 108.2, 50.9, 40.6. ESI-MS HRMS calculated for C₂₁H₁₈NO₄S [M+H]⁺ 380.0951, found 380.0948.

4-(4-(Methylthio)phenyl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3g**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. Yellow solid, 135 mg, 81% yield. Mp 91-92 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, *J* = 3.5 Hz, 1H), 7.78 (t, *J* = 7.7 Hz, 1H), 7.66 (d, *J* = 7.8 Hz, 1H), 7.29-7.21 (m, 5H), 6.67 (s, 1H), 4.37-4.33 (m, 1H), 3.66 (dd, *J* = 13.7 Hz, *J* = 6.1 Hz, 1H), 3.33 (t, *J* = 12.4 Hz, 1H), 2.48 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.4, 149.2, 138.9, 137.1, 135.7, 128.1, 127.2, 124.1, 119.0, 107.9, 50.7, 40.7, 15.7. ESI-MS HRMS calculated for C₁₆H₁₆NO₃S₂ [M+H]⁺ 334.0566, found 334.0561.

4-(4-Fluorophenyl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3h**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 115 mg, 75% yield. Mp 115-117 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, *J* = 3.8 Hz, 1H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.32-7.29 (m, 3H), 7.09 (t, *J* = 8.4 Hz, 2H), 6.68 (s, 1H), 4.40-4.37 (m, 1H), 3.68 (dd, *J* = 13.8 Hz, *J* = 6.3 Hz, 1H), 3.33 (t, *J* = 13.1 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -113.5 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 162.5 (d, *J* = 247.1 Hz), 149.6, 149.5, 149.1, 137.1, 134.9 (d, *J* = 2.7 Hz), 129.4 (d, *J* = 8.2 Hz), 124.2, 119.0, 116.3 (d, *J* = 20.9 Hz), 107.7, 50.9, 40.5. ESI-MS HRMS calculated for C₁₅H₁₃FNO₃S [M+H]⁺ 306.0595, found 306.0591.

4-(4-Chlorophenyl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3i**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 113 mg, 70% yield. Mp 94-96 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (s, 1H), 7.78 (t, *J* = 7.4 Hz, 1H), 7.66 (d, *J* = 7.7 Hz, 1H), 7.37 (d, *J* = 8.1 Hz, 2H), 7.30-7.26 (m, 3H), 6.66 (s, 1H), 4.39-4.36 (m, 1H), 3.67 (dd, *J* = 13.7 Hz, *J* = 6.1 Hz, 1H), 3.32 (t, *J* = 12.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.0, 137.5, 137.1, 134.2, 129.5, 129.1, 124.3, 119.0, 107.4, 50.6, 40.6. ESI-MS HRMS calculated for C₁₅H₁₃ClNO₃S [M+H]⁺ 322.0299, found 322.0295.

Note: In the ¹³C NMR spectrum of 3i, theoretically, there should be thirteen peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

4-(4-Bromophenyl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3j**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. Yellow solid, 124 mg, 68% yield. Mp 135-137 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (dq, J = 4.7 Hz, J = 0.9 Hz, 1H), 7.78 (td, J = 7.8 Hz, J = 1.7 Hz, 1H), 7.66 (d, J = 8.1 Hz, 1H), 7.53 (dt, J = 8.4 Hz, J = 1.9 Hz, 2H), 7.29 (ddd, J = 7.6 Hz, J = 4.7 Hz, J = 0.9 Hz, 1H), 7.21 (dt, J = 8.4 Hz, J = 1.9 Hz, 2H), 6.67 (d, J = 2.0 Hz, 1H), 4.36 (ddd, J = 12.0 Hz, J = 6.4 Hz, J = 2.7 Hz, 1H), 3.67 (ddd, J = 13.9 Hz, J = 6.5 Hz, J = 1.0 Hz, 1H), 3.32 (dd, J = 13.7 Hz, J = 12.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.69, 149.67, 149.0, 138.1, 137.1, 132.5, 129.4, 124.3, 122.3, 119.0, 107.2, 50.6, 40.7. ESI-MS HRMS calculated for $C_{15}H_{13}BrNO_3S$ [M+H]⁺ 365.9794, found 365.9788.

6-(Pyridin-2-yl)-4-(4-(trifluoromethoxy)phenyl)-3,4-dihydro-1,2-oxathiine 2,2dioxide (**3k**). Petroleum ether / ethyl acetate = 5 : 1 (v / v) as eluent for column chromatography. Light yellow solid, 147 mg, 79% yield. Mp 125-126 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (dq, *J* = 4.6 Hz, *J* = 0.8 Hz, 1H), 7.78 (td, *J* = 7.8 Hz, *J* = 1.7 Hz, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.37 (dt, *J* = 8.7 Hz, *J* = 2.0 Hz, 2H), 7.30 (ddd, *J* = 7.5 Hz, *J* = 4.7 Hz, *J* = 0.9 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 2H), 6.68 (d, *J* = 1.9 Hz, 1H), 4.42 (ddd, *J* = 12.0 Hz, *J* = 6.4 Hz, *J* = 2.7 Hz, 1H), 3.69 (ddd, *J* = 13.8 Hz, *J* = 6.2 Hz, *J* = 0.9 Hz, 1H), 3.35 (dd, *J* = 13.9 Hz, *J* = 12.0 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -57.9 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 149.7, 149.0, 137.8, 137.1, 129.2, 124.3, 121.9, 120.4 (q, *J* = 258.0 Hz), 119.0, 107.3, 50.6, 40.6. ESI-MS HRMS calculated for C₁₆H₁₃F₃NO₄S [M+H]⁺ 372.0512, found 372.0508.

Note: In the ¹³C NMR spectrum of 3k, theoretically, there should be fourteen peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

Ethyl 4-(2,2-dioxido-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiin-4-yl)benzoate (**31**). Petroleum ether / ethyl acetate = 5 : 1 (v / v) as eluent for column chromatography. White solid, 79 mg, 44% yield. Mp 135-137 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (dq, *J* = 4.8 Hz, *J* = 1.0 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 2H), 7.78 (td, *J* = 7.7 Hz, *J* = 1.6 Hz, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.41 (d, J = 8.2 Hz, 2H), 7.29 (ddd, J = 7.5 Hz, J = 4.7 Hz, J = 0.9 Hz, 1H), 6.70 (d, J = 2.0 Hz, 1H), 4.45 (ddd, J = 12.1 Hz, J = 6.3 Hz, J = 2.6 Hz, 1H), 4.39 (q, J = 7.2 Hz, 2H), 3.70 (ddd, J = 13.9 Hz, J = 6.4 Hz, J = 0.9 Hz, 1H), 3.36 (dd, J = 13.7 Hz, J = 12.1 Hz, 1H), 1.40 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 149.8, 149.7, 149.0, 143.8, 137.1, 130.62, 130.58, 127.7, 124.3, 119.0, 107.1, 61.2, 50.5, 41.1, 14.3. ESI-MS HRMS calculated for C₁₈H₁₈NO₅S [M+H]⁺ 360.0900, found 360.0895.

6-(Pyridin-2-yl)-4-(m-tolyl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3m**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 134 mg, 89% yield. Mp 87-89 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, *J* = 4.4 Hz, 1H), 7.78 (t, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.30-7.28 (m, 2H), 7.15 (d, *J* = 7.6 Hz, 1H), 7.11 (d, *J* = 7.5 Hz, 2H), 6.70 (d, *J* = 1.8 Hz, 1H), 4.35 (ddd, *J* = 12.0 Hz, *J* = 6.1 Hz, *J* = 2.2 Hz, 1H), 3.67 (dd, *J* = 13.9 Hz, *J* = 6.3 Hz, 1H), 3.36 (t, *J* = 12.7 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.3, 149.2, 139.2, 139.0, 137.1, 129.2, 129.0, 128.3, 124.7, 124.1, 119.0, 108.3, 50.8, 41.2, 21.4. ESI-MS HRMS calculated for C₁₆H₁₆NO₃S [M+H]⁺ 302.0845, found 302.0844.

4-(3-Methoxyphenyl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3n**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. Light yellow solid, 140 mg, 88% yield. Mp 85-87 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.56 (dq, *J* = 4.7 Hz, *J* = 0.9 Hz, 1H), 7.77 (td, *J* = 7.8 Hz, *J* = 1.7 Hz, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.32-7.27 (m, 2H), 6.90 (d, *J* = 7.7 Hz, 1H), 6.88-6.86 (m, 1H), 6.85 (t, J = 1.9 Hz, 1H), 6.70 (d, J = 1.9 Hz, 1H), 4.35 (ddd, J = 12.2 Hz, J = 6.2 Hz, J = 2.6 Hz, 1H), 3.82 (s, 3H), 3.69 (ddd, J = 13.7 Hz, J = 6.2 Hz, J = 0.9 Hz, 1H), 3.37 (dd, J = 13.9 Hz, J = 12.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 160.3, 149.6, 149.3, 149.2, 140.5, 137.1, 130.4, 124.1, 119.8, 119.0, 113.6, 113.4, 108.0, 55.4, 50.7, 41.2. ESI-MS HRMS calculated for C₁₆H₁₆NO₄S [M+H]⁺ 318.0795, found 318.0790.

4-(3-Fluorophenyl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**30**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 122 mg, 80% yield. Mp 109-111 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, *J* = 3.2 Hz, 1H), 7.78 (t, *J* = 7.4 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.39-7.35 (m, 1H), 7.30 (t, *J* = 6.0 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 2H), 6.69 (s, 1H), 4.41-4.38 (m, 1H), 3.69 (dd, *J* = 13.2 Hz, *J* = 5.8 Hz, 1H), 3.35 (t, *J* = 13.0 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -111.2 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 163.2 (d, *J* = 248.0 Hz), 149.7, 149.6, 149.0, 141.4 (d, *J* = 6.4 Hz), 137.1, 130.0 (d, *J* = 9.1 Hz), 124.3, 123.4 (d, *J* = 3.7 Hz), 119.0, 115.4 (d, *J* = 20.9 Hz), 114.8 (d, *J* = 21.8 Hz), 107.2, 50.6, 40.9 (d, *J* = 1.8 Hz). ESI-MS HRMS calculated for C₁₅H₁₃FNO₃S [M+H]⁺ 306.0595, found 306.0595.

4-(3-Bromophenyl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3p**). Petroleum ether / ethyl acetate = 5 : 1 (v / v) as eluent for column chromatography. Yellow solid, 95 mg, 52% yield. Mp 115-116 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.58-8.57 (m, 1H), 7.78 (td, *J* = 7.9 Hz, *J* = 1.8 Hz, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.49-7.47 (m, 2H), 7.30 (ddd, J = 7.6 Hz, J = 4.7 Hz, J = 0.7 Hz, 1H), 7.28-7.26 (m, 2H), 6.67 (d, J = 2.2 Hz, 1H), 4.36 (ddd, J = 12.1 Hz, J = 6.4 Hz, J = 2.7 Hz, 1H), 3.68 (ddd, J = 13.9 Hz, J = 6.4 Hz, J = 0.9 Hz, 1H), 3.34 (dd, J = 13.8 Hz, J = 12.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.7, 149.6, 149.0, 141.2, 137.1, 131.5, 130.9, 130.8, 126.4, 124.3, 123.3, 119.0, 107.0, 50.6, 40.9. ESI-MS HRMS calculated for C₁₅H₁₃BrNO₃S [M+H]⁺ 365.9794, found 365.9790.

6-(Pyridin-2-yl)-4-(o-tolyl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3q**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 138 mg, 92% yield. Mp 139-140 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, *J* = 2.3 Hz, 1H), 7.78 (t, *J* = 7.1 Hz, 1H), 7.67 (d, *J* = 7.7 Hz, 1H), 7.27-7.21 (m, 5H), 6.69 (s, 1H), 4.62-4.60 (m, 1H), 3.65 (dd, *J* = 13.6 Hz, *J* = 5.8 Hz, 1H), 3.31 (t, *J* = 12.9 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.5, 149.3, 137.13, 137.06, 135.3, 131.1, 128.2, 128.0, 127.2, 124.1, 118.9, 108.5, 49.6, 37.6, 19.3. ESI-MS HRMS calculated for C₁₆H₁₆NO₃S [M+H]⁺ 302.0845, found 302.0843.

3r

4-(2-Methoxyphenyl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3r**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. Yellow solid, 144 mg, 91% yield. Mp 53-55 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.60 (s, 1H), 7.79 (s, 1H), 7.69 (d, *J* = 6.9 Hz, 1H), 7.31-7.30 (m, 3H), 7.00-6.98 (m, 1H), 6.95 (d, *J* = 7.3 Hz, 1H), 6.74 (s, 1H), 4.78 (s, 1H), 3.90 (s, 3H), 3.86-3.83 (m, 1H), 3.35 (t, *J* = 12.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 156.6, 149.53, 149.47, 149.45, 137.1, 129.4, 128.7, 127.0, 124.0, 121.1, 118.8, 110.7, 108.4, 55.5, 48.8, 35.4. ESI-MS HRMS calculated for C₁₆H₁₆NO₄S [M+H]⁺ 318.0795, found 318.0790.

4-(2,4-Dimethylphenyl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3s**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. white solid, 140 mg, 89% yield. Mp 104-106 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, *J* = 3.8 Hz, 1H), 7.78-7.75 (m, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.29-7.28 (m, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 7.04 (d, *J* = 6.6 Hz, 2H), 6.67 (d, *J* = 1.4 Hz, 1H), 4.56 (ddd, *J* = 11.8 Hz, *J* = 5.8 Hz, *J* = 2.2 Hz, 1H), 3.63 (dd, *J* = 13.8 Hz, *J* = 6.1 Hz, 1H), 3.31 (t, *J* = 13.4 Hz, 1H), 2.40 (s, 3H), 2.31 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.4, 149.3, 137.9, 137.0, 135.1, 134.1, 131.9, 127.9, 127.8, 124.0, 118.8, 108.8, 49.7, 37.3, 21.0, 19.2. ESI-MS HRMS calculated for C₁₇H₁₈NO₃S [M+H]⁺ 316.1002, found 316.1001.

4-(3,5-Dimethoxyphenyl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3t**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 139 mg, 80% yield. Mp 115-116 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, *J* = 4.5 Hz, 1H), 7.80 (t, *J* = 7.8 Hz, 1H), 7.69 (d, *J* = 7.9 Hz, 1H), 7.32-7.30 (m, 1H), 6.99 (s, 1H), 6.94 (s, 2H), 6.71 (d, *J* = 2.0 Hz, 1H), 4.33 (ddd, *J* = 12.2 Hz, *J* = 6.1 Hz, *J* = 2.3 Hz, 1H), 3.68 (dd, *J* = 13.7 Hz, *J* = 6.2 Hz, 1H), 3.38 (t, *J* = 12.7 Hz, 1H), 2.34 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.5, 149.6, 149.3, 149.2, 141.3, 137.0, 124.1, 118.9, 107.9, 105.8, 99.7, 55.5, 50.6, 41.4. ESI-MS HRMS calculated

for C₁₇H₁₈NO₅S [M+H]⁺ 348.0900, found 348.0894.

4-(4-Bromo-3-methylphenyl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3u**). Petroleum ether / ethyl acetate = 5 : 1 (v / v) as eluent for column chromatography. Yellow solid, 139 mg, 73% yield. Mp 136-138 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (dq, J = 4.6 Hz, J = 0.7 Hz, 1H), 7.77 (td, J = 7.8 Hz, J = 1.7 Hz, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.29 (ddd, J = 7.5 Hz, J = 4.8 Hz, J = 0.9 Hz, 1H), 7.18 (d, J = 2.2 Hz, 1H), 7.01 (dd, J = 8.1 Hz, J = 2.3 Hz, 1H), 6.66 (d, J = 1.9 Hz, 1H), 4.32 (ddd, J = 12.6 Hz, J = 6.2 Hz, J = 2.6 Hz, 1H), 3.66 (ddd, J = 13.8 Hz, J = 6.3 Hz, J = 1.0 Hz, 1H), 3.32 (dd, J = 13.9 Hz, J = 12.2 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.5, 149.1, 139.1, 138.3, 137.1, 133.2, 130.1, 126.6, 124.3, 124.2, 119.0, 107.5, 50.6, 40.7, 23.0. ESI-MS HRMS calculated for C₁₆H₁₅BrNO₃S [M+H]⁺ 379.9951, found 379.9943.

4-(Naphthalen-1-yl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3v**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 89 mg, 53% yield. Mp 159-160 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, *J* = 3.8 Hz, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.80 (t, *J* = 7.6 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 7.2 Hz, 1H), 7.58-7.53 (m, 2H), 7.49 (t, *J* = 7.9 Hz, 1H), 7.32-7.29 (m, 1H), 6.89 (s, 1H), 5.20 (s, 1H), 3.89 (dd, *J* = 13.9 Hz, *J* = 6.0 Hz, 1H), 3.49-3.44 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.8, 149.7, 149.3, 137.1, 134.7, 134.1, 130.4, 129.5, 129.0, 127.2, 126.3, 126.0, 125.8, 124.1, 122.0, 118.9, 108.4, 50.0, 37.3. ESI-MS HRMS calculated for C₁₉H₁₆NO₃S [M+H]⁺ 338.0845, found 338.0840.

4-(Naphthalen-2-yl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3w**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 125 mg, 74% yield. Mp 154-156 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.58 (d, *J* = 4.4 Hz, 1H), 7.89-7.83 (m, 3H), 7.81-7.78 (m, 2H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.54-7.50 (m, 2H), 7.43-7.41 (m, 1H), 7.30 (dd, *J* = 7.0 Hz, *J* = 5.0 Hz, 1H), 6.81 (d, *J* = 1.9 Hz, 1H), 4.57 (ddd, *J* = 12.1 Hz, *J* = 6.2 Hz, *J* = 2.3 Hz, 1H), 3.77 (dd, *J* = 13.8 Hz, *J* = 6.2 Hz, 1H), 3.46 (t, *J* = 13.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.5, 149.3, 137.1, 136.3, 133.5, 133.0, 129.4, 127.9, 127.8, 126.8, 126.7, 126.5, 125.2, 124.2, 119.0, 108.0, 50.8, 41.4. ESI-MS HRMS calculated for C₁₉H₁₆NO₃S [M+H]⁺ 338.0845, found 338.0841.

6-(Pyridin-2-yl)-4-(thiophen-3-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3x**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 123 mg, 84% yield. Mp 87-89 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, J = 3.4 Hz, 1H), 7.77 (t, J = 8.7 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.38 (s, 1H), 7.30-7.26 (m, 1H), 7.24 (s, 1H), 7.06 (d, J = 4.6 Hz, 1H), 6.72 (s, 1H), 4.54-4.51 (m, 1H), 3.72 (dd, J = 14.1 Hz, J = 6.6 Hz, 1H), 3.39 (t, J = 12.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.2, 148.8, 139.2, 137.1, 127.4, 126.4, 124.1, 122.5, 119.0, 107.7, 50.1, 36.4. ESI-MS HRMS calculated for C₁₃H₁₂NO₃S₂ [M+H]⁺ 294.0253, found 294.0249.

4-(Dibenzo[b,d]thiophen-4-yl)-6-(pyridin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3y**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. Light yellow solid, 139 mg, 71% yield. Mp 159-161 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.58 (d, *J* = 4.6 Hz, 1H), 8.19-8.16 (m, 1H), 8.14 (d, *J* = 7.8 Hz, 1H), 7.87-7.84 (m, 1H), 7.80 (t, *J* = 7.6 Hz, 1H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.52-7.47 (m, 3H), 7.45 (d, *J* = 7.3 Hz, 1H), 7.30 (dd, *J* = 7.0 Hz, *J* = 5.0 Hz, 1H), 6.85 (d, *J* = 2.0 Hz, 1H), 4.72 (ddd, *J* = 11.8 Hz, *J* = 6.4 Hz, *J* = 2.6 Hz, 1H), 3.87 (dd, *J* = 13.9 Hz, *J* = 6.4 Hz, 1H), 3.64 (t, *J* = 12.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 150.3, 149.7, 149.2, 138.8, 138.0, 137.1, 136.9, 135.6, 133.0, 127.3, 126.0, 125.5, 124.9, 124.2, 122.7, 121.9, 121.6, 119.0, 106.9, 48.2, 40.8. ESI-MS HRMS calculated for C₂₁H₁₆NO₃S₂ [M+H]⁺ 394.0566, found 394.0565.

6-(Pyridin-2-yl)-4-(1-tosyl-1H-indol-3-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3z**). Petroleum ether / ethyl acetate = 5 : 1 (v / v) as eluent for column chromatography. White solid, 120 mg, 50% yield. Mp 188-190 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, *J* = 4.3 Hz, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.80-7.77 (m, 3H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.58 (s, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.31-7.25 (m, 4H), 6.75 (d, *J* = 3.6 Hz, 1H), 4.66-4.62 (m, 1H), 3.76 (dd, *J* = 13.9 Hz, *J* = 6.3 Hz, 1H), 3.47 (dd, *J* = 13.7 Hz, *J* = 11.5 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.5, 149.0, 145.4, 137.1, 135.4, 135.0, 130.1, 128.5, 127.0, 125.4, 124.3, 123.9, 123.6, 119.6, 119.0, 114.1, 106.6, 48.9, 32.7, 21.6. ESI-MS HRMS calculated for C₂₄H₂₁N₂O₅S₂ [M+H]⁺ 481.0886, found 481.0877.

Note: In the ¹³C NMR spectrum of 3z, theoretically, there should be twenty-two peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

6-(4-Methylpyridin-2-yl)-4-phenyl-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3aa**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 123 mg, 82% yield. Mp 145-147 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.41 (d, *J* = 4.1 Hz, 1H), 7.51 (s, 1H), 7.39-7.31 (m, 5H), 7.10 (s, 1H), 6.68 (s, 1H), 4.39-4.38 (m, 1H), 3.69 (dd, *J* = 13.7 Hz, *J* = 6.1 Hz, 1H), 3.36 (t, *J* = 12.7 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.5, 149.4, 149.1, 148.4, 139.1, 129.4, 128.2, 127.7, 125.0, 120.0, 107.9, 50.8, 41.2, 21.2. ESI-MS HRMS calculated for C₁₆H₁₆NO₃S [M+H]⁺ 302.0845, found 302.0844.

6-(4-Methoxypyridin-2-yl)-4-phenyl-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3ab**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 122 mg, 77% yield. Mp 135-137 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.36 (d, *J* = 5.5 Hz, 1H), 7.40-7.38 (m, 2H), 7.35-7.31 (m, 3H), 7.19 (d, *J* = 2.5 Hz, 1H), 6.79 (dd, *J* = 5.6 Hz, *J* = 2.4 Hz, 1H), 6.71 (d, *J* = 2.4 Hz, 1H), 4.37 (ddd, *J* = 12.2 Hz, *J* = 6.3 Hz, *J* = 2.6 Hz, 1H), 3.90 (s, 3H), 3.69 (ddd, *J* = 13.9 Hz, *J* = 6.4 Hz, 1H), 3.36 (dd, *J* = 13.8 Hz, *J* = 12.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 150.9, 150.8, 149.2, 139.0, 129.4, 128.2, 127.7, 110.1, 108.4, 105.3, 55.5, 50.8, 41.2. ESI- MS HRMS calculated for $C_{16}H_{16}NO_4S [M+H]^+ 318.0795$, found 318.0792.

6-(5-Methylpyridin-2-yl)-4-phenyl-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3ac**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 100 mg, 66% yield. Mp 165-167 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.39 (s, 1H), 7.58-7.55 (m, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.35-7.31 (m, 3H), 6.63 (d, J =2.2 Hz, 1H), 4.37 (ddd, J = 12.2 Hz, J = 6.3 Hz, J = 2.6 Hz, 1H), 3.68 (ddd, J = 13.9Hz, J = 6.4 Hz, J = 0.9 Hz, 1H), 3.35 (dd, J = 13.7 Hz, J = 12.3 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 150.2, 149.5, 146.7, 139.2, 137.3, 134.0, 129.3, 128.2, 127.7, 118.5, 107.0, 50.8, 41.2, 18.3. ESI-MS HRMS calculated for C₁₆H₁₆NO₃S [M+H]⁺ 302.0845, found 302.0845.

6-(5-Bromopyridin-2-yl)-4-phenyl-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3ad**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. Yellow solid, 82 mg, 45% yield. Mp 174-176 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, *J* = 1.8 Hz, 1H), 7.90 (dd, *J* = 8.4 Hz, *J* = 2.3 Hz, 1H), 7.56 (d, *J* = 8.3 Hz, 1H), 7.42-7.39 (m, 2H), 7.37-7.34 (m, 1H), 7.32-7.30 (m, 2H), 6.71 (d, *J* = 1.9 Hz, 1H), 4.37 (ddd, *J* = 12.1 Hz, *J* = 6.3 Hz, *J* = 2.6 Hz, 1H), 3.69 (ddd, *J* = 13.9 Hz, *J* = 6.4 Hz, *J* = 0.9 Hz, 1H), 3.36 (dd, *J* = 13.9 Hz, *J* = 12.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 150.8, 148.7, 147.7, 139.6, 138.9, 129.4, 128.3, 127.6, 121.2, 120.0, 108.7, 50.8, 41.3. ESI-MS HRMS calculated for C₁₅H₁₃BrNO₃S [M+H]⁺ 365.9794, found 365.9792.

6-(6-Methylpyridin-2-yl)-4-phenyl-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3ae**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 68 mg, 45% yield. Mp 107-109 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.64 (t, J = 7.5 Hz, 1H), 7.47 (d, J = 7.4 Hz, 1H), 7.40 (d, J = 6.9 Hz, 2H), 7.36-7.33 (m, 3H), 7.14 (d, J = 7.5 Hz, 1H), 6.73 (s, 1H), 4.38-4.37 (m, 1H), 3.67 (dd, J = 14.3 Hz, J =6.5 Hz, 1H), 3.36 (t, J = 13.0 Hz, 1H), 2.52 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.6, 149.6, 148.5, 139.3, 137.1, 129.4, 128.2, 127.8, 123.9, 115.9, 107.6, 50.8, 41.3, 24.6. ESI-MS HRMS calculated for C₁₆H₁₆NO₃S [M+H]⁺ 302.0845, found 302.0845.

6-(6-Bromopyridin-2-yl)-4-phenyl-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3af**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 90 mg, 49% yield. Mp 164-166 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.64-7.61 (m, 2H), 7.48-7.45 (m, 1H), 7.43-7.40 (m, 2H), 7.37-7.34 (m, 1H), 7.32-7.31 (m, 2H), 6.75 (d, J = 2.2 Hz, 1H), 4.38 (ddd, J = 12.2 Hz, J = 6.4 Hz, J = 2.7 Hz, 1H), 3.69 (ddd, J = 13.9 Hz, J = 6.2 Hz, J = 0.8 Hz, 1H), 3.37 (dd, J = 13.9 Hz, J = 12.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 150.1, 147.9, 141.9, 139.3, 138.7, 129.4, 128.5, 128.4, 127.7, 117.6, 109.5, 50.8, 41.4. ESI-MS HRMS calculated for C₁₅H₁₃BrNO₃S [M+H]⁺ 365.9794, found 365.9788.

6-(3,5-Dichloropyridin-2-yl)-4-phenyl-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3ag**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. White solid, 60 mg, 34% yield. Mp 152-153 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.50 (d, *J* = 1.9 Hz, 1H), 7.81 (d, *J* = 2.0 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.37-7.34 (m, 3H), 6.02 (d, *J* = 2.0 Hz, 1H), 4.40 (ddd, *J* = 12.1 Hz, *J* = 6.3 Hz, *J* = 2.5 Hz, 1H), 3.68 (ddd, *J* = 13.9 Hz, *J* = 6.4 Hz, 1H), 3.38 (dd, *J* = 13.7 Hz, *J* = 12.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 147.6, 146.5, 146.2, 138.7, 138.0, 132.8, 131.0, 129.5, 128.4, 127.6, 113.4, 50.9, 41.6. ESI-MS HRMS calculated for C₁₅H₁₂Cl₂NO₃S [M+H]⁺ 355.9909, found 355.9905.

4-Phenyl-6-(pyrazin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3ah**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. Brown solid, 45 mg, 31% yield. Mp 164-166 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.92 (s, 1H), 8.60 (d, *J* = 2.0 Hz, 1H), 8.53 (s, 1H), 7.41 (t, *J* = 7.1 Hz, 2H), 7.36 (t, *J* = 7.0 Hz, 1H), 7.31 (d, *J* = 7.1 Hz, 2H), 6.73 (d, *J* = 2.0 Hz, 1H), 4.41 (ddd, *J* = 12.0 Hz, *J* = 6.2 Hz, *J* = 2.4 Hz, 1H), 3.73 (dd, *J* = 13.9 Hz, *J* = 6.2 Hz, 1H), 3.40 (t, *J* = 12.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 147.8, 145.2, 144.8, 144.1, 140.4, 138.6, 129.5, 128.5, 127.6, 110.2, 50.9, 41.4. ESI-MS HRMS calculated for C₁₄H₁₃N₂O₃S [M+H]⁺ 289.0641, found 289.0639.

4-Phenyl-6-(thiazol-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3ai**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. Light yellow solid, 53 mg, 36% yield. Mp 93-95 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 3.2 Hz, 1H), 7.45 (d, J = 3.0 Hz, 1H), 7.42-7.39 (m, 2H), 7.36 (dt, J = 7.2 Hz, J = 2.7 Hz, 1H), 7.33-7.31 (m, 2H), 6.52 (d, J = 2.0 Hz, 1H), 4.39 (ddd, J = 12.2 Hz, J = 6.2 Hz, J = 2.7 Hz, 1H), 3.71 (ddd, J = 13.8 Hz, J = 6.2 Hz, J = 0.9 Hz, 1H), 3.39 (dd, J = 14.0 Hz, J = 12.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.9, 145.3, 144.2, 138.4, 129.5, 128.5, 127.6, 120.6, 107.5, 51.1, 41.3. ESI-MS HRMS calculated for C₁₃H₁₂NO₃S₂ [M+H]⁺ 294.0253, found 294.0251.

4-Phenyl-6-(quinolin-2-yl)-3,4-dihydro-1,2-oxathiine 2,2-dioxide (**3aj**). Petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. Red solid, 51 mg, 30% yield. Mp 172-174 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.24 (d, *J* = 8.7 Hz, 1H), 8.02 (d, *J* = 8.5 Hz, 1H), 7.83 (t, *J* = 8.5 Hz, 2H), 7.73-7.70 (m, 1H), 7.57-7.53 (m, 1H), 7.45-7.42 (m, 2H), 7.39-7.36 (m, 3H), 6.93 (d, *J* = 2.0 Hz, 1H), 4.45 (ddd, *J* = 12.0 Hz, *J* = 6.2 Hz, *J* = 2.6 Hz, 1H), 3.72 (ddd, *J* = 13.7 Hz, *J* = 6.2 Hz, *J* = 0.8 Hz, 1H), 3.42 (dd, *J* = 13.8 Hz, *J* = 12.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.8, 149.3, 147.8, 139.1, 137.2, 130.1, 129.6, 129.4, 128.3, 128.1, 127.8, 127.6, 127.2, 116.7, 109.0, 50.8, 41.4. ESI-MS HRMS calculated for C₁₉H₁₆NO₃S [M+H]⁺ 338.0845, found 338.0844.

4. Procedures and Characterizations for the Syntheses of 5.

4.1 Preparation of Substrates

All the substituted-ethenesulfonyl fluorides **1** were prepared according to the literatures.^[1, 2] All the homemade starting materials are identical to those reported regarding the ¹H and ¹³C NMR and melting points (if applicable). 6,7-dihydroquinolin-8(5*H*)-one (**4**) was purchased from commercial sources.

4.2 Procedures for Annulative SuFEx Reactions of Substituted-Ethenesulfonyl Fluorides with 6,7-Dihydroquinolin-8(5*H*)-One

An oven-dried round-bottle flask (25 mL) was charged with substitutedethenesulfonyl fluoride (1, 0.5 mmol), 6,7-dihydroquinolin-8(5*H*)-one (4, 147.2 mg, 1.0 mmol, 2.0 equiv), Ni(NO₃)₂·6H₂O (29.1 mg, 20 mol%), K₂CO₃ (138.2 mg, 1.0 mmol, 2.0 equiv), and MeCN (2 ml). The resulting mixture was stirred at room temperature under air atmosphere for 24 h. The crude products were purified by column chromatography (Petroleum ether / ethyl acetate as eluent) on silica gel to give **5**.

4.3 Syntheses of 5

4-Phenyl-3,4,5,6-tetrahydro-[1,2]oxathiino[5,6-h]quinoline 2,2-dioxide (**5a**). Petroleum ether / ethyl acetate = 2 : 1 (v / v) as eluent for column chromatography. White solid, 155 mg, 99% yield. Mp 178-180 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, *J* = 4.3 Hz, 1H), 7.42-7.38 (m, 3H), 7.36-7.33 (m, 1H), 7.29-7.27 (m, 2H), 7.15 (dd, *J* = 7.7 Hz, *J* = 5.1 Hz, 1H), 4.26 (dd, *J* = 11.6 Hz, *J* = 6.7 Hz, 1H), 3.69 (dd, *J* = 14.0 Hz, *J* = 6.7 Hz, 1H), 3.49 (dd, *J* = 13.9 Hz, *J* = 11.6 Hz, 1H), 2.89-2.82 (m, 1H), 2.77-2.71 (m, 1H), 2.20-2.08 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.8, 147.0, 144.5, 138.0, 134.9, 131.3, 129.5, 128.5, 128.3, 123.4, 120.5, 51.6, 46.1, 26.3, 25.0. ESI-MS HRMS calculated for C₁₇H₁₆NO₃S [M+H]⁺ 314.0845, found 314.0844.

4-(P-tolyl)-3,4,5,6-tetrahydro-[1,2]oxathiino[5,6-h]quinoline 2,2-dioxide (**5b**). Petroleum ether / ethyl acetate = 2 : 1 (v / v) as eluent for column chromatography. White solid, 162 mg, 99% yield. Mp 87-89 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.47 (d, J = 4.6 Hz, 1H), 7.40 (d, J = 7.4 Hz, 1H), 7.18-7.11 (m, 5H), 4.21 (dd, J = 11.6 Hz, J = 6.9 Hz, 1H), 3.65 (dd, J = 14.0 Hz, J = 6.8 Hz, 1H), 3.45 (dd, J = 13.9 Hz, J = 11.6Hz, 1H), 2.85-2.78 (m, 1H), 2.74-2.68 (m, 1H), 2.33 (s, 3H), 2.17-2.06 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.6, 147.0, 144.2, 138.3, 134.9, 131.4, 130.1, 128.2, 123.3, 120.9, 51.6, 45.6, 26.3, 25.0, 21.1. ESI-MS HRMS calculated for C₁₈H₁₈NO₃S [M+H]⁺ 328.1002, found 328.1003.

Note: In the ¹³C NMR spectrum of **5b**, theoretically, there should be sixteen peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

4-(4-Phenoxyphenyl)-3,4,5,6-tetrahydro-[1,2]oxathiino[5,6-h]quinoline 2,2-dioxide (**5c**). Petroleum ether / ethyl acetate = 1 : 1 (v / v) as eluent for column chromatography. White solid, 194 mg, 96% yield. Mp 178-180 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, *J* = 4.5 Hz, 1H), 7.42 (d, *J* = 7.5 Hz, 1H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.5 Hz, 2H), 7.16-7.13 (m, 2H), 7.02 (d, *J* = 7.9 Hz, 2H), 7.00 (t, *J* = 8.5 Hz, 2H), 4.25 (dd, *J* = 11.5 Hz, *J* = 6.9 Hz, 1H), 3.70 (dd, *J* = 14.1 Hz, *J* = 6.7 Hz, 1H), 3.49 (dd, *J* = 13.7 Hz, *J* = 11.6 Hz, 1H), 2.90-2.84 (m, 1H), 2.78-2.72 (m, 1H),

2.22-2.13 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 157.7, 156.4, 147.7, 147.0, 144.3, 134.9, 132.3, 131.4, 130.0, 129.7, 124.0, 123.4, 120.6, 119.4, 119.2, 51.6, 45.3, 26.3, 25.0. ESI-MS HRMS calculated for C₂₃H₂₀NO₄S [M+H]⁺ 406.1108, found 406.1103.

4-(4-Chlorophenyl)-3,4,5,6-tetrahydro-[1,2]oxathiino[5,6-h]quinoline 2,2-dioxide (**5d**). Petroleum ether / ethyl acetate = 1 : 1 (v / v) as eluent for column chromatography. White solid, 172 mg, 99% yield. Mp 98-100 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.50 (d, *J* = 4.2 Hz, 1H), 7.42 (d, *J* = 7.3 Hz, 1H), 7.36 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 7.16 (dd, *J* = 7.3 Hz, *J* = 4.9 Hz, 1H), 4.25 (dd, *J* = 11.0 Hz, *J* = 6.8 Hz, 1H), 3.69 (dd, *J* = 14.0 Hz, *J* = 6.7 Hz, 1H), 3.46 (dd, *J* = 13.9 Hz, *J* = 11.6 Hz, 1H), 2.89-2.82 (m, 1H), 2.77-2.71 (m, 1H), 2.19-2.07 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.7, 146.7, 144.6, 136.5, 135.0, 134.4, 131.4, 129.7, 123.5, 119.9, 51.4, 45.4, 26.3, 25.0. ESI-MS HRMS calculated for C₁₇H₁₅CINO₃S [M+H]⁺ 348.0456, found 348.0452.

Note: In the ¹³C NMR spectrum of **5d**, theoretically, there should be fifteen peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

4-(4-Bromophenyl)-3,4,5,6-tetrahydro-[1,2]oxathiino[5,6-h]quinoline 2,2-dioxide (5e). Petroleum ether / ethyl acetate = 1 : 1 (v / v) as eluent for column chromatography. White solid, 195 mg, 99% yield. Mp 99-101 °C. ¹H NMR (500 MHz, CDCl₃) δ ¹H NMR (500 MHz, CDCl₃) δ 8.49 (d, J = 4.6 Hz, 1H), 7.52 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 7.5 Hz, 1H), 7.18 (d, J = 8.4 Hz, 2H), 7.15 (dd, J = 8.4 Hz, J = 4.8 Hz, 1H), 4.24 (dd, J = 11.0 Hz, J = 6.7 Hz, 1H), 3.69 (dd, J = 14.0 Hz, J = 6.9 Hz, 1H), 3.45 (dd, J = 13.9 Hz, J = 11.3 Hz, 1H), 2.88-2.82 (m, 1H), 2.77-2.71 (m, 1H), 2.19-2.06 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.7, 146.8, 144.6, 137.0, 135.0, 132.7, 131.4, 130.0, 123.5, 122.5, 119.8, 51.3, 45.4, 26.3, 25.0. ESI-MS HRMS calculated for C₁₇H₁₅BrNO₃S [M+H]⁺ 391.9951, found 391.9945.

4-(3-Fluorophenyl)-3,4,5,6-tetrahydro-[1,2]oxathiino[5,6-h]quinoline 2,2-dioxide (**5f**). Petroleum ether / ethyl acetate = 1 : 1 (v / v) as eluent for column chromatography. White solid, 160 mg, 97% yield. Mp 172-174 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.50 (d, *J* = 4.7 Hz, 1H), 7.42 (d, *J* = 7.4 Hz, 1H), 7.28-7.26 (m, 2H), 7.15 (dd, *J* = 7.5 Hz, *J* = 4.9 Hz, 1H), 7.08 (t, *J* = 8.5 Hz, 2H), 4.27 (dd, *J* = 11.3 Hz, *J* = 6.9 Hz, 1H), 3.69 (dd, *J* = 14.1 Hz, *J* = 6.9 Hz, 1H), 3.47 (dd, *J* = 14.0 Hz, *J* = 11.4 Hz, 1H), 2.89-2.82 (m, 1H), 2.77-2.71 (m, 1H), 2.19-2.07 (m, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ -113.0 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 162.6 (d, *J* = 247.9 Hz), 148.0, 146.9, 144.5, 134.9, 133.7 (d, *J* = 2.7 Hz), 131.3, 130.0 (d, *J* = 8.2 Hz), 123.5, 120.1, 116.5 (d, *J* = 21.8 Hz), 51.6, 45.3, 26.3, 25.0. ESI-MS HRMS calculated for C₁₇H₁₅FNO₃S [M+H]⁺ 332.0751, found 332.0748.

Note: In the 13 C NMR spectrum of **5f**, theoretically, there should be seventeen peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

Note: In the ¹³C NMR spectrum of **5g**, theoretically, there should be eighteen peaks. Due to the compact overlaying, it is difficult to specify the overlaying peaks.

5h

4-(Naphthalen-2-yl)-3,4,5,6-tetrahydro-[1,2]oxathiino[5,6-h]quinoline 2,2-dioxide (**5h**). Petroleum ether / ethyl acetate = 1 : 1 (v / v) as eluent for column chromatography. White solid, 176 mg, 97% yield. Mp 119-121 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.53 (d, *J* = 4.3 Hz, 1H), 7.89 (d, *J* = 8.6 Hz, 1H), 7.85 (t, *J* = 9.3 Hz, 2H), 7.78 (s, 1H), 7.55-7.51 (m, 2H), 7.42 (d, *J* = 7.3 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.16 (dd, *J* = 7.2 Hz, *J* = 5.0 Hz, 1H), 4.40 (dd, *J* = 11.3 Hz, *J* = 6.8 Hz, 1H), 3.75 (dd, *J* = 14.0 Hz, *J* = 6.7 Hz, 1H), 3.61 (t, *J* = 11.7, 1H), 2.88-2.82 (m, 1H), 2.76-

2.70 (m, 1H), 2.24-2.10 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.8, 147.0, 144.5, 135.2, 134.9, 133.5, 133.1, 131.4, 129.7, 127.88, 127.85, 127.81, 127.0, 126.7, 125.2, 123.4, 120.5, 51.5, 46.2, 26.3, 25.1. ESI-MS HRMS calculated for C₂₁H₁₈NO₃S [M+H]⁺ 364.1002, found 364.0996.

4-(Thiophen-2-yl)-3,4,5,6-tetrahydro-[1,2]oxathiino[5,6-h]quinoline 2,2-dioxide (**5i**). Petroleum ether / ethyl acetate = 1 : 1 (v / v) as eluent for column chromatography. Light yellow solid, 142 mg, 89% yield. Mp 132-134 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, *J* = 4.5 Hz, 1H), 7.43 (d, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 5.0 Hz, 1H), 7.16 (dd, *J* = 7.5 Hz, *J* = 5.0 Hz, 1H), 7.04 (d, *J* = 3.0 Hz, 1H), 7.00 (t, *J* = 5.1 Hz, 1H), 4.61 (dd, *J* = 11.5 Hz, *J* = 6.7 Hz, 1H), 3.77 (dd, *J* = 14.0 Hz, *J* = 6.7 Hz, 1H), 3.59 (dd, *J* = 13.8 Hz, *J* = 11.4 Hz, 1H), 2.90-2.83 (m, 1H), 2.81-2.75 (m, 1H), 2.32-2.22 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.7, 147.0, 143.6, 140.5, 134.9, 131.5, 127.4, 127.3, 126.1, 123.5, 120.1, 51.9, 40.9, 26.3, 24.6. ESI-MS HRMS calculated for C₁₅H₁₄NO₃S₂ [M+H]⁺ 320.0410, found 320.0405.

(*E*)-4-styryl-3,4,5,6-tetrahydro-[1,2]oxathiino[5,6-h]quinoline 2,2-dioxide (**5j**). Petroleum ether / ethyl acetate = 2 : 1 (v / v) as eluent for column chromatography. Gray solid, 103 mg, 61% yield. Mp 87-89 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.48 (d, *J* = 3.9 Hz, 1H), 7.42 (d, *J* = 7.4 Hz, 2H), 7.39 (d, *J* = 7.2 Hz, 2H), 7.33 (t, *J* = 7.2 Hz, 2H), 7.28 (d, *J* = 6.9 Hz, 1H), 6.66 (d, *J* = 15.5 Hz, 1H), 6.20 (dd, *J* = 15.5 Hz, *J* = 9.6 Hz, 1H), 3.80 (dd, *J* = 15.2 Hz, *J* = 7.8 Hz, 1H), 3.62 (dd, *J* = 14.9 Hz, *J* = 7.7 Hz, 1H), 3.42 (dd, J = 13.9 Hz, J = 8.5 Hz, 1H), 2.92-2.78 (m, 2H), 2.52-2.46 (m, 1H), 2.40-2.34 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 147.7, 146.9, 143.6, 135.6, 135.4, 134.9, 131.3, 128.8, 128.5, 126.6, 125.2, 123.4, 119.7, 49.5, 43.8, 26.3, 25.0. ESI-MS HRMS calculated for C₁₉H₁₈NO₃S [M+H]⁺ 340.1002, found 340.0997.

3,4,5,6-Tetrahydro-[1,2]oxathiino[5,6-h]quinoline 2,2-dioxide (**5k**). Petroleum ether / ethyl acetate = 1 : 1 (v / v) as eluent for column chromatography. White solid, 44 mg, 37% yield. Mp 187-189 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.48 (d, *J* = 4.1 Hz, 1H), 7.43 (d, *J* = 7.5 Hz, 1H), 7.13 (dd, *J* = 7.5 Hz, *J* = 4.9 Hz, 1H), 3.44 (t, *J* = 6.9 Hz, 2H), 2.93-2.90 (m, 4H), 2.46 (t, *J* = 8.2 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.6, 146.9, 144.0, 134.8, 130.7, 123.1, 117.5, 44.0, 28.4, 26.3, 26.2. ESI-MS HRMS calculated for C₁₁H₁₂NO₃S [M+H]⁺ 238.0532, found 238.0528.

5. Scaled-up reaction.

An oven-dried reaction flask (100 mL) was charged with (*E*)-2-phenylethene-1sulfonyl fluoride (**1a**, 0.93 g, 5.0 mmol), 6,7-dihydroquinolin-8(5*H*)-one (**4**, 1.47 g, 10.0 mmol, 2.0 equiv), Ni(NO₃)₂·6H₂O (0.29 g, 20 mol%), K₂CO₃ (1.38 g, 1.0 mmol, 2.0 equiv), and MeCN (20 ml). The resulting mixture was stirred at room temperature under air atmosphere for 24 h, The crude products were purified by column chromatography on silica gel (Petroleum ether / ethyl acetate = 2 : 1 (v / v) as eluent) to give **5a** as white solid, 1.49 g, 95% yield.

6. Reference

[1] H.-L. Qin, Q. Zheng, G. A. L. Bare, P. Wu and K. B. Sharpless, Angew. Chem. Int.

Ed., 2016, **55**, 14155–14158.

[2] G.-F. Zha, Q. Zheng, J. Leng, P. Wu, H.-L. Qin and K. B. Sharpless, *Angew. Chem. Int. Ed.*, 2017, **56**, 4849-4852.

[3] D. Bhuniya, R. Mukkavilli, R. Shivahare, D. Launay, R.T. Dere, A. Deshpande, A. Verma, P. Vishwakarma, M. Moger, A. Pradhan, H. Pati, V.S. Gopinath, S. Gupta, S. K. Puri and D. Martin, *Eur. J. Med. Chem.* 2015, **102**, 582-593.

[4] M. Y. Fosso, H. LeVine 3rd, K. D. Green, O. V. Tsodikov and S. Garneau-Tsodikova, *Org. Biomol. Chem.*, 2015, **13**, 9418-9426.

7. Spectra

3a, ¹H NMR, 500 MHz, CDCl₃

3c, ¹³C NMR, 126 MHz, CDCl₃

3d, ¹H NMR, 500 MHz, CDCl₃

3e, ¹H NMR, 500 MHz, CDCl₃

S38

3i, ¹H NMR, 500 MHz, CDCl₃

3i, ¹³C NMR, 126 MHz, CDCl₃

3j, ¹H NMR, 500 MHz, CDCl₃

3j, ¹³**C** NMR, 126 MHz, CDCl₃

3k, ¹³C NMR, 126 MHz, CDCl₃

3l, ¹H NMR, 500 MHz, CDCl₃

3m, ¹H NMR, 500 MHz, CDCl₃

3n, ¹³C NMR, 126 MHz, CDCl₃

30, ¹⁹F NMR, 376 MHz, CDCl₃

30, ¹³C NMR, 126 MHz, CDCl₃

S45

3t, ¹H NMR, 500 MHz, CDCl₃

S47

3u, ¹³C NMR, 126 MHz, CDCl₃

3v, ¹H NMR, 500 MHz, CDCl₃

3v, ¹³C NMR, 126 MHz, CDCl₃

3w, ¹H NMR, 500 MHz, CDCl₃

3y, ¹H NMR, 500 MHz, CDCl₃

3y, ¹³C NMR, 126 MHz, CDCl₃

S52

3ac, ¹H NMR, 500 MHz, CDCl₃

3ad, ¹³C NMR, 126 MHz, CDCl₃

3af, ¹H NMR, 500 MHz, CDCl₃

3ag, ¹³C NMR, 126 MHz, CDCl₃

3ai, ¹H NMR, 500 MHz, CDCl₃

3aj, ¹³C NMR, 126 MHz, CDCl₃

5b, ¹H NMR, 500 MHz, CDCl₃

5b, ¹³C NMR, 126 MHz, CDCl₃

5g, ¹³C NMR, 126 MHz, CDCl₃

12

PPM

5i, ¹H NMR, 500 MHz, CDCl₃

5j, ¹³C NMR, 126 MHz, CDCl₃

S66