SUPPORTING INFORMATION

Highly Lewis Acidic Cationic Alkaline Earth Metal Complexes

Jürgen Pahl, Steffen Brand, Holger Elsen, Sjoerd Harder*

Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany. Fax: (+49) 9131-8527387. E-mail: sjoerd.harder@fau.de

Contents

3. References

1. Supporting Experimental Data	S1
1.1. General Experimental Procedures	S1
1.2. Synthesis	S 1
1.3 NMR spectra of synthesized compounds	S 7
1.4 Single crystal X-ray diffraction	S24
1.5 Lewis acidity quantification of (BDI)Mg $^{+}$ by the Gutmann-Beckett method	S34
2. Computational Details	S35

S47

1. Supporting Experimental Data

1.1. General Experimental Procedures

All experiments were conducted under an inert nitrogen atmosphere using standard Schlenk and glovebox techniques (MBraun, Labmaster SP). Toluene, *n*-hexane and benzene were degassed with nitrogen, dried over activated aluminium oxide (Solvent Purification System: Pure Solv 400–4–MD, Innovative Technology) and stored over 3Å molecular sieves. Fluorobenzene, chlorobenzene and bromobenzene were dried over calcium hydride, distilled under N₂ atmosphere and stored over molecular sieves 3Å. C₆D₆ and C₆D₅Br (99.6% D, Sigma Aldrich) were dried over 3Å molecular sieves. Et₃PO (Acros Organics), *n*PrMgCl in Et₂O (2M, Sigma Aldrich), and [Ph₃C⁺][(C₆F₅)₄B⁻] (Boulder Scientific) were used as received. BDI-H (BDI = HC{{Me}CN(2,6-*i*Pr₂C₆H₃)₂),^[S1] BDI-Li,^[S1] bis[p-tBu-benzyl]calcium,^[S2] [H(OEt₂)₂][BAr^F],^[S3] [(AM)CaH]₂^[S4] were synthesized according to a literature procedure. NMR spectra were recorded with a Bruker Avance III HD 400 MHz or a Bruker Avance III HD 600MHz spectrometer. The spectra were referenced to the respective residual signals of the deuterated solvents. Elemental analysis was performed with a Euro EA 3000 (Euro Vector) analyzer. All crystal structures have been measured on a SuperNova (Agilent) diffractometer with dual Cu and Mo microfocus sources and an Atlas S2 detector.

1.2. Synthesis

Synthesis of [(BDI)Mg(nPr)]₂

(BDI)Li (3.0120 g, 7.0937 mmol) was dissolved in toluene (20 ml) and a 2M solution of *n*PrMgCl in Et₂O (3.55 ml, 2.00 mol/l, 7.10 mmol) was added over the course of 5 min while cooling with a water bath. After 2 hours all volatiles were removed *in vacuo* resulting in a white solid which was extracted with toluene (4 x 5 ml) using a filter cannula. The extract was evaporated to dryness yielding the desired product as a white powder (2.738 g, 5.645 mmol, 80%). Crystals suitable for X-ray diffraction analysis (Supporting Information) were grown at -30°C from a saturated hexane solution. ¹H NMR (600 MHz, C₆D₆, 298K) δ 7.14 – 7.09 (m, 6H, Ar*H*), 4.94 (s, 1H, CC*H*C), 3.17 (hept, ³J_{HH} = 6.9 Hz, 4H, C*H*Me₂), 1.67 (s, 6H, CC*H*₃), 1.44 (m, 2H, CH₂CH₂CH₃), 1.27 (d, ³J_{HH} = 6.9 Hz, 12H, CH(C*H*₃))₂, 1.16 (d, ³J_{HH} = 6.9 Hz, 12H, CH(C*H*₃)₂), 0.78 (t, ³J_{HH} = 7.2 Hz, 3H, CH₂C*H*₃), -0.15 – -0.26 (m, 2H, MgC*H*₂) ppm. ¹³C

NMR (151 MHz, C_6D_6 , 298K) δ 168.9 (s, NC(CH₃)), 143.5 (s, ArC), 141.5 (s, ArC), 125.6 (s, ArC), 123.7 (s, ArC), 95.0 (s, CCHC), 28.3 (s, CHMe₂), 24.3 (s, CHCH₃), 23.2 (s, NC(CH₃)), 23.1 (s, CHCH₃), 22.2 (s, CH₂CH₃), 21.7 (s, CH₂CH₂CH₃), 8.8 (s, MgCH₂) ppm. Anal. Calcd for $C_{64}H_{96}Mg_2N_4$ (M = 970.12 g/mol): C, 79.24; H, 9.97; N, 5.78. Found: C, 79.43; H, 9.87; N, 5.68.

Synthesis of $[(BDI)Mg^{\dagger}][B(C_6F_5)_4^{-}]$

 $[(BDI)Mg(nPr)]_2$ (0.168 g, 0.347 mmol) and $[Ph_3C^+][B(C_6F_5)_4^-]$ (0.304 g, 0.330 mmol) were dissolved in chlorobenzene (2 ml) and stirred until the solution became almost colorless (1 min). All volatiles were removed under reduced pressure resulting in a sticky orange oil. After addition of hexane (4 ml) the biphasic system was allowed to stand at room temperature overnight, resulting in the formation of colorless crystals embedded in a sticky orange material which complicates work-up and lowers the yield. The crystals were successively washed with bromobenzene (1 x 0.2 ml + 1 x 0.1 ml) and hexane (1 ml) and dried under vacuum. Yield: 12%, 0.043 g, 0.038 mmol. ¹H NMR (600 MHz, C_6D_5Br , 298K) δ 7.18 (t, ${}^{3}J_{HH}$ = 7.7 Hz, 2H, ArH), 7.06 (d, ${}^{3}J_{HH}$ = 7.7 Hz, 4H, ArH), 4.97 (s, 1H, CCHC), 2.77 (hept, ${}^{3}J_{HH}$ = 6.9 Hz, 4H, CHMe₂), 1.59 (s, 6H, CCH₃), 1.06 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 12H, CHCH₃), 0.91 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 12H, CHCH₃) ppm. ¹³C NMR (151 MHz, C₆D₅Br, 298K) δ 173.7 (s, NC(CH₃)), 149.1 (br d, ${}^{1}J_{CF}$ = 240 Hz, B(C₆F₅)₄), 142.4 (s, ArC), 141.8 (s, ArC), 138.1 (br t, ${}^{1}J_{CF}$ = 237 Hz, B(C₆F₅)₄), 127.7 (s, ArCH), 125.1 (s, ArCH), 97.1 (s, CCHC), 29.1 (s, CHMe₂), 24.6 (s, CHCH₃), 24.5 (s, NC(CH₃)), 24.5 (s, CHCH₃) ppm. ¹⁹F NMR (565 MHz, C₆D₅Br, 298K) δ -131.4 (d, ³J_{FF} = 21 Hz, 8F, o-CF), -159.7 (t, ³J_{FF} = 21 Hz, 4F, p-CF), -164.9 (t, ³J_{FF} = 21 Hz, 8F, m-CF) ppm. ¹¹B NMR (193 MHz, C₆D₅Br, 298K) δ -15.7 (s, B(C₆F₅)₄) ppm. Anal. Calcd for C₅₃H₄₁MgN₂BF₂₀ (M = 1121.01 g/mol): C, 56.79; H, 3.69; N, 2.50. Found: C, 56.94; H, 3.68; N, 2.55.

Synthesis of $[(BDI)Mg^+ \cdot C_6H_6][B(C_6F_5)_4^-]$

[(BDI)Mg(*n*Pr)]₂ (0.6286 g, 0.6480 mmol) and [Ph₃C⁺][B(C₆F_{5)4⁻}] (1.010 g, 1.095 mmol) were dissolved in a mixture of chlorobenzene (9 ml) and benzene (1 ml). The brownish solution was stirred until colorless (1 min). Subsequently all volatiles were removed under reduced pressure and the material was washed with a 1:1 mixture of benzene and hexane (7 x 5 ml). The resulting white powder was dried *in vacuo* yielding 1.231g (94%) of the desired product. Suitable crystals for X-ray diffraction were obtained by slowly cooling a saturated chlorobenzene/benzene (2:1) solution from 60°C to room temperature. ¹H NMR (600 MHz, C₆D₅Br, 298K) δ 7.20 (t, ³J_{HH} = 7.7 Hz, 2H, ArH), 7.16 (s, 6H, C₆H₆), 7.08 (d, ³J_{HH} = 7.7 Hz, 4H, ArH), 4.89 (s, 1H, CCHC), 2.69 (hept, ³J_{HH} = 6.9 Hz, 4H, CHMe₂), 1.55 (s, 6H, CCH₃), 1.02 (d, ³J_{HH}

= 6.9 Hz, 12H, CHCH₃), 1.00 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 12H, CHCH₃) ppm. 13 C NMR (151 MHz, C₆D₅Br, 298K) δ 173.1 (s, NC(CH₃)), 148.8 (br d, ${}^{1}J_{CF}$ = 242 Hz, B(C₆F₅)₄), 142.0 (s, ArC), 141.6 (s, ArC), 137.8 (br t, ${}^{1}J_{CF}$ = 243 Hz, B(C₆F₅)₄), 128.9 (s, ArCH), 127.4 (s, ArCH), 124.8 (s, C₆H₆), 96.6 (s, CCHC), 28.7 (s, CHMe₂), 24.3 (s, CHCH₃), 24.3 (s, NC(CH₃)), 24.0 (s, CHCH₃) ppm. 19 F NMR (565 MHz, C₆D₅Br, 298K) δ -131.4 (d, ${}^{3}J_{FF}$ = 19 Hz, 8F, *o*-C*F*), -160.6 (t, ${}^{3}J_{FF}$ = 21 Hz, 4F, *p*-C*F*), -165.6 (t, ${}^{3}J_{FF}$ = 21 Hz, 8F, *m*-C*F*) ppm. 11 B NMR (193 MHz, C₆D₅Br, 298K) δ -16.0 (s, *B*(C₆F₅)₄) ppm. Anal. Calcd for C₅₉H₄₇MgN₂BF₂₀ (M = 1199.12 g/mol): C, 59.10; H, 3.95; N, 2.34. Found: C, 59.04; H, 3.60; N, 2.09.

Synthesis of $[(BDI)Mg^{+} (OPEt_3)_2][B(C_6F_5)_4]$

[(BDI)Mg⁺·C₆H₆][B(C₆F₅)₄⁻] (0.0381 g, 0.0318 mmol) and OPEt₃ (0.0095 g, 0.0708 mmol) were dissolved in chlorobenzene (0.5 ml) and layered with hexane (1 ml) in a vial in the glovebox. The crystalline product was isolated after 2 days as colorless crystalline blocks. Yield: 71%, 0.0315 g, 0.0227 mmol. ¹H NMR (600 MHz, C₆D₅Br, 298K) δ 7.13 – 7.05 (m, 6H, Ar*H*), 4.76 (s, 1H, CC*H*C), 2.98 (hept, ³*J*_{*HH*} = 6.9 Hz, 4H, *CH*Me₂), 1.57 (s, 6H, CC*H*₃), 1.28 – 1.20 (m, 12H, PC*H*₂CH₃), 1.13 (d, ³*J*_{*HH*} = 6.9 Hz, 12H, CH*CH*₃), 1.07 (d, ³*J*_{*HH*} = 6.9 Hz, 12H, CH*CH*₃), 0.65 – 0.52 (m, 18H, PCH₂C*H*₃) ppm. ¹³C NMR (151 MHz, C₆D₅Br, 298K) δ 170.2 (s, NC(CH₃)), 149.2 (br d, ¹*J*_{*CF*} = 242.9 Hz, B(*C*₆F₅)₄), 145.0 (s, Ar*C*), 142.0 (s, Ar*C*), 140.4 – 135.6 (m, B(*C*₆F₅)₄), 125.9 (s, Ar*C*H), 124.6 (s, Ar*C*H), 95.2 (s, CCHC), 28.0 (s, CHMe₂), 25.9 (s, CHCH₃), 24.8 (s, CHCH₃), 24.7 (s, NC(CH₃)), 18.7 (d, ¹*J*_{*CF*} = 21.0 Hz, 4F, *p*-C*F*), -165.4 (t, ³*J*_{*FF*} = 19.6 Hz, 8F, *m*-C*F*) ppm. ¹¹B NMR (193 MHz, C₆D₅Br, 298K) δ -15.6 (s, *B*(C₆F₅)₄) ppm. Anal. Calcd for C₆₅H₇₁MgN₂P₂O₂BF₂₀ (M = 1389.33 g/mol): C, 56.19; H, 5.15; N, 2.02. Found: C, 56,51; H, 5.13; N, 1.94.

Synthesis of $[(BDI)Mg^{+}(OPEt_3)(PhF)][B(C_6F_5)_4^{-}]$

[(BDI)Mg⁺·C₆H₆][B(C₆F₅)₄⁻] (0.1763 g, 0.1470 mmol) and OPEt₃ (0.0176 g, 0.131 mmol) were dissolved in fluorobenzene (0.5 ml) and heated to 80°C for 2.5 days. The solution was allowed to cool to room temperature and was layered with hexane (0.7 ml). After 24h the glass wall of the reaction vessel was scratched with a spatula initiating crystallization of the biphasic system. After 1h the supernatant was decanted from the colorless crystals. The crystals were washed with hexane (0.5 ml) and dried *in vacuo*. Yield: 82%, 0.1444 g, 0.1069 mmol. ¹H NMR (600 MHz, C₆D₅Br, 298K) δ 7.14 – 7.07 (m, 4H, ArH), 7.04 – 7.01 (m, 4H, ArH),

6.98 – 6.89 (m, 3H, Ar*H*), 4.93 (s, 1H, CC*H*C), 2.88 (hept, ${}^{3}J_{HH}$ = 6.8 Hz, 4H, C*H*Me₂), 1.57 (s, 6H, CC*H*₃), 1.10 – 1.00 (m, 18H, PC*H*₂CH₃, CHC*H*₃), 0.95 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 12H, CHC*H*₃), 0.25 (dt, ${}^{3}J_{PH}$ = 18.0, ${}^{3}J_{HH}$ 7.7 Hz, 9H, PCH₂C*H*₃) ppm. 13 C NMR (151 MHz, C₆D₅Br, 298K) δ 172.2 (s, NC(CH₃)), 163.4 (d, ${}^{1}J_{CF}$ = 242 Hz, *Ph*F), 149.1 (br d, ${}^{1}J_{CF}$ = 239 Hz, B(*C*₆F₅)₄), 142.7 (s, Ar*C*), 142.2 (s, Ar*C*), 138.1 (pseudo t, ${}^{1}J_{CF}$ = 252 Hz, B(*C*₆F₅)₄), 130.7 (d, ${}^{3}J_{CF}$ = 8 Hz, *Ph*F), 127.0 (s, Ar*C*), 125.10 (d, ${}^{4}J_{CF}$ = 2.7 Hz, *Ph*F), 124.7 (s, Ar*C*), 115.6 (d, ${}^{2}J_{CF}$ = 21 Hz, *Ph*F), 96.2 (s, CCHC), 28.6 (s, CHMe₂), 25.2 (s, CHCH₃), 24.3 (s, NC(CH₃)) , 24.0 (s, CHCH₃), 18.1 (d, ${}^{1}J_{PC}$ = 67 Hz, PCH₂CH₃), 4.4 (d, ${}^{2}J_{PC}$ = 5 Hz, PCH₂CH₃) ppm. 31 P NMR (243 MHz, C₆D₅Br, 298K) δ 72.8 (*P*OEt₃) ppm. 19 F NMR (565 MHz, C₆D₅Br, 298K) δ -113.7 (s, 1F, Ph*F*), -130.8 (d, ${}^{3}J_{FF}$ = 8.0 Hz, 8F, *o*-C*F*), -161.1 (t, ${}^{3}J_{FF}$ = 20 Hz, 4F, *p*-C*F*), -165.9 (t, ${}^{3}J_{FF}$ = 20 Hz, 8F, *m*-C*F*) ppm. 11 B NMR (193 MHz, C₆D₅Br, 298K) δ -15.6 (s, *B*(C₆F₅)₄) ppm. Anal. Calcd for C₆₅H₆₁MgOPN₂BF₂₁ (M = 1351.27 g/mol): C, 57.78; H, 4.55; N, 2.07. Found: C, 58.69; H, 4.54; N, 2.00.

$[(BDI)Mg^{+} \cdot EtC \equiv CEt][B(C_6F_5)_4^{-}]$

 $[(BDI)Mg(nPr)]_2$ (0.0825 g, 0.0850 mmol) and $[Ph_3C^+][B(C_6F_5)_4^-]$ (0.1501 g, 0.1627 mmol) were dissolved in chlorobenzene (1.9 ml). The brownish solution was stirred until it became colorless (1 min) and 3-hexyne (0.1 ml) was added. After 18 h all volatiles were removed under reduced pressure resulting in a sticky oil. The material was layered with *n*-hexane (2) ml) and left at room temperature for 30 days. The product was isolated as colorless crystals in a yield of 46% (0.0903 g, 0.0741 mmol). ¹H NMR (600 MHz, C₆D₅Br, 298K) δ 7.13 (t, ³J_{HH} = 7.7 Hz, 2H, ArH), 7.03 (d, ${}^{3}J_{HH}$ = 7.7 Hz, 4H, ArH), 4.98 (s, 1H, CCHC), 2.83 (hept, ${}^{3}J_{HH}$ = 6.8 Hz, 4H, CHMe₂), 1.60 (s, 6H, CCH₃), 1.42 (br, 4H, CCH₂CH₃), 1.05 (d, ³J_{HH} = 6.9 Hz, 12H, CHCH₃), 0.97 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 12H, CHCH₃), 0.76 (br , 6H, CH₂CH₃) ppm. 13 C NMR (151 MHz, C₆D₅Br, 298K) δ 173.5 (s, NC(CH₃)), 149.1 (br d, ¹J_{CF} = 244 Hz, B(C₆F₅)₄), 142.5 (s, ArC), 142.4 (s, ArC), 138.1 (pseudo t, ${}^{1}J_{CF}$ = 243 Hz, B($C_{6}F_{5}$)₄), 127.7 (s, ArC), 125.2 (s, ArC), 97.0 (s, CCHC), 28.9 (s, CHMe₂), 24.6 (s, CHCH₃), 24.6 (s, CHCH₃), 24.5 (s, NC(CH₃)), 14.5 (s, CCH₂CH₃), 12.9 (s, CH₂CH₃) ppm. The quaternary acetylene carbon atom could not be observed; also not at 333K. ¹⁹F NMR (565 MHz, C₆D₅Br, 298K) δ -130.8 (d, ${}^{3}J_{FF}$ = 19 Hz, 8F, *o*-CF), -160.7 (t, ${}^{3}J_{FF}$ = 21 Hz, 4F, *p*-CF), -165.6 (t, ${}^{3}J_{FF}$ = 21 Hz, 8F, *m*-CF) ppm. 11 B NMR (193 MHz, C₆D₅Br, 298K) δ -15.6 (s, B(C₆F₅)₄). Anal. Calcd. for C₅₉H₅₁MgBF₂₀N₂ (M=1203.15 g/mol): C 58.90, H 4.27, N 2.33; found: C 58.30, H 4.20, N 2.25. Although the C value is outside the range viewed as establishing analytical purity, it is provided to illustrate the best value obtained to date.

Synthesis of $[(BDI)H_2^+][B(C_6F_5)_4^-]$

A mixture of $[H(OEt_2)_2^+][B(C_6F_5)_4^-]$ (1.0556 g, 1.2744 mmol) and BDI-H (0.5869 g, 1.4018 mmol) was dissolved in chlorobenzene (4 ml) and the resulting colorless solution was stirred over night at room temperature. All volatiles were removed *in vacuo*. The resulting white sticky solid was triturated with hexane (2x2 ml). Drying *in vacuo* affored $[(BDI)H_2^+][B(C_6F_5)_4^-]$ as a fine white solid in quantitative yield (1.3658 g, 1.2431 mmol).

¹H NMR (600 MHz, C₆D₅Br, 298K): δ major isomer: 7.10 (t, ³J_{HH} = 8 Hz, 2H, Ar*H*), 6.93 (s, 2H, N*H*), 6.85 (d, ³J_{HH} = 8 Hz, 4H, Ar*H*), 4.39 (s, 1H, C*H*), 2.37 (hept, ³J_{HH} = 7 Hz, 4H, C*H*Me₂), 2.10 (s, 6H, C*Me*), 0.92 (d, ³J_{HH} = 7 Hz, 12H, CH*Me*₂), 0.72 (d, ³J_{HH} = 7 Hz, 12H, CH*Me*₂). Minor isomer: 7.20 (t, ³J_{HH} = 8 Hz, 1H, Ar*H*), 7.14 (d, ³J_{HH} = 8 Hz, 2H, Ar*H*), 6.98 (d, ³J_{HH} = 8 Hz, 2H, Ar*H*), 5.05 (bs, 1H, C*H*), 2.69 (hept, ³J_{HH} = 7 Hz, 2H, C*H*Me₂), ~2.37 (omitted by major isomer, 2H, C*H*Me₂), 2.15 (bs, 3H, C*Me*), 1.77 (bs, 3H, C*Me*), 1.10 (d, ³J_{HH} = 7 Hz, 6H, CH*Me*₂), 1.09 (d, ³J_{HH} = 7 Hz, 6H, CH*Me*₂), 0.96 (d, ³J_{HH} = 7 Hz, 6H, CH*Me*₂), 0.89 (d, ³J_{HH} = 7 Hz, 6H, CH*Me*₂) ppm. Both NH signals and one ArH signal could not be observed. ¹³C{¹H} NMR (100 MHz, C₆D₅Br, 298K): δ 172.31 (2x C(CMe₃)=NAr), 148.9 (d, ¹J_{CF} = 245 Hz, [B(C₆F₅)₄⁻]), 144.89 (2x C-Ar), 136.8 (d, ¹J_{CF} = 245 Hz, [B(C₆F₅)₄⁻]), 131.0 (2x CH-Ar), 124.74 (4x CH-Ar), 92.50 (CH), 28.81 (4x CHMe₂), 24.27 (4x CH*Me*₂), 22.88 (2x CMe₂), 22.70 (4xCH*Me*₂) ppm. ¹⁹F{¹H} NMR (565 MHz, C₆D₅Br, 298K): δ -131.6 (m, 8F, *o*-C*F*, [B(C₆F₅)₄⁻]), -161.9 (t, ³J_{FF} = 21 Hz, 4F, *p*-C*F*, [B(C₆F₅)₄⁻]), -165.8 (m, 8F, *m*-C*F*, [B(C₆F₅)₄⁻]), ppm. ¹¹B{¹H} NMR (193 MHz, C₆D₅Br, 298K): δ - 16.1 (s, [B(C₆F₅)₄⁻]). ppm. Anal. Calcd. for C₅₃H₄₃BF₂₀N₂ (M=1098.72 g/mol): C, 57.94; H, 3.94; N, 2.55. Found: C, 58.22; H, 3.80; N, 2.46.

Synthesis of $[(BDI)Ca^+ \cdot C_6H_6][B(C_6F_5)_4^-]$

A solution of *bis*[*p*-*t*Bu-benzyl]calcium (85.4 mg, 0.255 mmol) in chlorobenzene (2 ml) was added to a stirred solution of $[(BDI)H_2^+][B(C_6F_5)_4^-]$ (192.4 mg, 0.232 mmol) in chlorobenzene (1 ml). A yellow slime formed, which dissolved again after the mixture was heated to 65°C over night. All volatiles were removed *in vacuo*. The resulting yellow-brown foam was dissolved in benzene (0.5 mL) and layered with hexane (0.6 ml). Upon storage at room temperature small crystals growed, which were washed with a mixture of benzene/hexane (1:1) and dried *in vacuo*. Yield: 23%, 64.9 mg, 0.053 mmol. ¹H NMR (600 MHz, C₆D₆, 298K): δ 7.16 (s, 6H, benzene), 7.09 (t, ³J_{HH} = 8 Hz, 2H, ArH), 7.01 (d, ³J_{HH} = 8 Hz, 4H, ArH), 4.68 (s, 1H, CH), 2.51 (hept, ³J_{HH} = 7 Hz, 4H, CHMe₂), 1.40 (s, 6H, CMe), 1.02 (d, ³J_{HH} = 7 Hz, 12H, CHMe₂), 0.95 (d, ³J_{HH} = 7 Hz, 12H, CHMe₂) ppm. ¹³C{¹H} NMR (100 MHz, C₆D₆, 298K): δ 167.7 (2x

C(CMe)=NAr), 149.1 (d, ${}^{1}J_{CF}$ = 245 Hz, [B(C₆F₅)₄⁻]), 144.3 (2x *C*-Ar), 141.2 (4x *C*-Ar), 137.3 (d, ${}^{1}J_{CF}$ = 244 Hz, [B(C₆F₅)₄⁻]), 128.6 (benzene), 126.3 (2x *C*H-Ar), 124.4 (4x *C*H-Ar), 94.0 (*C*H), 28.8 (4x *C*HMe₂), 24.4 (4x CH*Me*₂), 24.1 (2x CMe₂), 24.0 (4xCH*Me*₂) ppm. ${}^{19}F{}^{1}H{}$ NMR (565 MHz, C₆D₆, 298K): δ -131.4 (m, 8F, *o*-C*F*, [B(C₆F₅)₄⁻]), -161.0 (t, ${}^{3}J_{FF}$ = 21 Hz, 4F, *p*-C*F*, [B(C₆F₅)₄⁻]), -165.7 (m, 8F, *m*-C*F*, [B(C₆F₅)₄⁻]) ppm. ${}^{11}B{}^{1}H{}$ NMR (193 MHz, C₆D₆, 298K): δ -16.0 (s, , [B(C₆F₅)₄⁻]) ppm. Anal. Calcd. for C₅₉H₄₇BCaF₂₀N₂ (M=1214.90 g/mol): C, 58.33; H, 3.90; N, 2.31. Found: C, 56.61; H, 3.86; N, 2.01. Although the C value is outside the range viewed as establishing analytical purity, it is provided to illustrate the best value obtained to date.

1.3. NMR Spectra of Synthesized Compounds

1.3.1. Spectra of [(BDI)Mg(nPr)]₂

Figure S1: ¹H NMR spectrum of [(BDI)Mg(*n*Pr)]₂ in C₆D₆

Figure S2: ¹³C{¹H} NMR spectrum of $[(BDI)Mg(nPr)]_2$ in C₆D₆

1.3.2. Spectra of $[(BDI)Mg^{+}][B(C_{6}F_{5})_{4}^{-}]$

Figure S3: ¹H NMR spectrum of $[(BDI)Mg^{+}][B(C_{6}F_{5})_{4}^{-}]$ in C₆D₅Br

1.3.3. Spectra of [(BDI)Mg⁺·C₆H₆][B(C₆F₅)₄⁻]

Figure S7: ¹H NMR spectrum of $[(BDI)Mg^+ C_6H_6][B(C_6F_5)_4^-]$ in C_6D_5Br

Figure S8: ¹³C{¹H} NMR spectrum of $[(BDI)Mg^+ \cdot C_6H_6][B(C_6F_5)_4^-]$ in C_6D_5Br

*				
	73.9 mmol/l	δ (C ₆ H ₆) = 7.15		L.
	53.9 mmol/l	δ (C ₆ H ₆) = 7.16		
	36.1 mmol/l	$\delta (C_6 H_6) = 7.18$	~	
	19.0 mmol/l	δ (C ₆ H ₆) = 7.19		N.
	9.5 mmol/l	δ (C ₆ H ₆) = 7.21		٨
	2.8 mmol/l	δ (C ₆ H ₆) = 7.21		l
*	1.0 mmol/l	δ (C ₆ H ₆) = 7.21		
7.5 7.0	6.5 6.0 5.5 5.0	4.5 4.0 3.5 3.0 Chemical shift [ppm]	2.5 2.0 1.5 1.0	0 0.5

Figure S11: ¹H NMR spectra of $[(BDI)Mg^+ C_6H_6][B(C_6F_5)_4^-]$ in C_6D_5Br with varying concentrations. The C_6H_6 signal is marked by *. Note that also the signals of the CH_3 groups belonging to the *iPr* (doublets around 1 ppm) change upon dilution.

Figure S12: Selective NOESY spectrum (irradiation frequency: 1.00 ppm; iPr-Me signal) of $[(BDI)Mg^+ C_6H_6][B(C_6F_5)_4^-]$ in C_6D_5Br

1.3.4. Spectra of $[(BDI)Mg^{+}(OPEt_3)(PhF)][B(C_6F_5)_4]$

Figure S13: ¹H NMR spectrum of $[(BDI)Mg^+ (OPEt_3)(PhF)][B(C_6F_5)_4^-]$ in C_6D_5Br

1.3.5. Spectra of $[(BDI)Mg^{+}(OPEt_3)_2][B(C_6F_5)_4^{-}]$

Figure S18: ¹H NMR spectrum of [(BDI)Mg⁺·(OPEt₃)₂][B(C₆F₅)₄⁻] in C₆D₅Br

1.3.6. Synthesis of [(BDI)Mg⁺·EtC=CEt][B(C₆F₅)₄⁻]

Figure S24: ¹³C{¹H} NMR spectrum of $[(BDI)Mg^+ EtC \equiv CEt][B(C_6F_5)_4]$ in C_6D_5Br

1.3.7. Spectra of $[(BDI)H_2^+][B(C_6F_5)_4^-]$

Figure S27: ¹H NMR spectrum of $[(BDI)H_2^+][B(C_6F_5)_4^-]$ in C_6D_5Br

Figure S28: ${}^{13}C{}^{1}H$ NMR spectrum of $[(BDI)H_2^+][B(C_6F_5)_4^-]$ in C_6D_5Br

1.3.8. Spectra of [(BDI)Ca⁺·C₆H₆][B(C₆F₅)₄⁻]

Figure S31: ¹H NMR spectrum of $[(BDI)Ca^+ \cdot C_6H_6][B(C_6F_5)_4^-]$ in C_6D_6

Figure S32: ¹³C{¹H} NMR spectrum of $[(BDI)Ca^+ \cdot C_6H_6][B(C_6F_5)_4^-]$ in C_6D_6

1.4 Single Crystal X-Ray Diffraction

Single crystal X-ray diffraction data for all compounds were collected on a SuperNova diffractometer (Rigaku Oxford diffraction) with Atlas S2 detector using a CuK_{α} microfocus source. All crystals were maintained at 100 K during data collection. Using Olex2,^[S5] the structures were solved by Direct Methods (ShelXT)^[S6] and refined with ShelXL^[S7] using Least Squares minimization. The hydrogen atoms have been placed on calculated positions and were refined isotropically in a riding model unless noted otherwise. The asymmetric unit of $[(BDI)Mg(nPr)]_2$ contains half a dimer and the two hydrogen atoms at the α -carbon of the *n*-propyl group were localized and refined isotropically. Complex [(BDI)Mg⁺][B(C_6F_5)₄⁻] crystallizes with two separate molecules in the asymmetric unit with geometric parameter. No higher symmetry could be detected. similar Complex $[(BDI)Mg^{+} \cdot C_{6}H_{6}][B(C_{6}F_{5})_{4}]$ crystallizes with one free benzene molecule in the asymmetric unit which anisotropically. Complex $[(BDI)Mg^{+} \cdot (OPEt_{3})(PhF)]$ has been refined $[B(C_6F_5)_4^-]$ and $[(BDI)Mg^{+}(OPEt_{3})_{2}][B(C_{6}F_{5})_{4}^{-}]$ crystallize with one complete ion pair in their respective asymmetric units; cocrystallized solvent molecules were not found. In complex $[(BDI)Mg^{+}(OPEt_{3})_{2}][B(C_{6}F_{5})_{4}^{-}]$, two of the three Et groups of one of the OPEt₃ ligands were disordered and refined over two positions with an approximate ratio of 80:20. The C-C bond length of one Et group was idealized (SADI) and refined with Rigid Bond Restraints (RIGU).^[S8]

Crystal structure data for the complexes (BDI)Mg(nPr) 1822418, $[(BDI)Mg^{+}][B(C_{6}F_{5})_{4}^{-}]$ 1822419, $[(BDI)Mg^{+} \cdot C_{6}H_{6}][B(C_{6}F_{5})_{4}^{-}]$ 1822420, $[(BDI)Mg^{+} \cdot (OPEt_{3})(C_{6}H_{5}F)][B(C_{6}F_{5})_{4}^{-}]$ 1822422, $[(BDI)Mg^{+} \cdot (OPEt_{3})_{2}][B(C_{6}F_{5})_{4}^{-}]$ 1822423, $[(BDI)Ca^{+} \cdot C_{6}H_{6}][B(C_{6}F_{5})_{4}^{-}]$ 1844572, $[(BDI)Mg^{+} \cdot EtC \equiv CEt][B(C_{6}F_{5})_{4}^{-}]$ 1844571 and $[(BDI)H_{2}^{+}][B(C_{6}F_{5})_{4}^{-}]$ 1847903 have been deposited with the Cambridge Crystallographic Data Centre.

Identification code	[(BDI)Mg(<i>n</i> Pr)] ₂	[(BDI)Mg ⁺][B(C ₆ F ₅) ₄ ⁻]	[(BDI)Mg ⁺ ·C ₆ H ₆] [B(C ₆ F ₅)₄ [−]]
Empirical formula	$C_{64}H_{96}Mg_2N_4$	$C_{53}H_{41}BF_{20}MgN_2$	$C_{65}H_{53}BF_{20}MgN_2$
Formula weight	970.06	1121.00	1277.21
Temperature/K	100.00(10)	100.01(10)	100
Crystal system	triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1
a/Å	11.6151(6)	15.0751(3)	12.6783(4)
b/Å	12.8269(9)	18.2135(4)	13.1414(4)
c/Ă	13.1163(9)	19.1996(4)	19.5127(5)
α/°	76.087(6)	79.2972(18)	100.801(2)
β/°	74.884(5)	86.7245(15)	101.644(2)
۲/°	67.493(6)	72.6916(18)	110.656(3)
Volume/Å ³	1721.0(2)	4945.35(18)	2858.37(14)
Z	1	4	2
ρ _{calc} g/cm³	0.936	1.506	1.484
µ/mm⁻¹	0.565	1.355	1.248
F(000)	532.0	2280.0	1308.0
Crystal size/mm ³	0.23 × 0.14 × 0.11	0.29 × 0.19 × 0.13	0.28 × 0.17 × 0.08
Crystal color	colorless	colorless	colorless
Radiation	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)
20 range for data collection/°	7.07 to 147.434	6.14 to 147.708	7.494 to 136.232
Index ranges	-14 ≤ h ≤ 13, -14 ≤ k	-18 ≤ h ≤ 18, -22 ≤ k ≤	-14 ≤ h ≤ 15, -15 ≤ k ≤
index ranges	≤ 15, -16 ≤ l ≤ 15	20, -22 ≤ l ≤ 23	15, -21 ≤ l ≤ 23
Reflections collected	10517	43018	17441
Independent reflections	6601 [$R_{int} = 0.0339$,	18997 [R _{int} = 0.0425,	10342 [$R_{int} = 0.0235$,
	$R_{sigma} = 0.0535$]	$R_{sigma} = 0.0474]$	$R_{sigma} = 0.0335$]
Data/restraints/paramete rs	6601/0/335	18997/0/1407	10342/0/836
Goodness-of-fit on F ²	1.037	1.036	1.021
Final R indexes [I>=2σ	$R_1 = 0.0511, wR_2 =$	$R_1 = 0.0415$, $wR_2 =$	$R_1 = 0.0365, wR_2 =$
(I)]	0.1388	0.1058	0.0931
Final R indexes [all data]	$R_1 = 0.0598, wR_2 =$	$R_1 = 0.0522, wR_2 =$	$R_1 = 0.0401, wR_2 =$
	0.1459	0.1125	0.0963
Largest diff. peak/hole / e Å ⁻³	0.38/-0.40	0.40/-0.31	0.78/-0.29

Table S1. Crystal data.

Identification code	[(BDI)Mg⁺·(OPEt₃)	[(BDI)Mg ⁺ ·(OPEt ₃) ₂]	[(BDI)Mg⁺·EtCCEt]	
	(PhF)][B(C ₆ F₅)₄ [−]]	[B(C ₆ F ₅) ₄ ⁻]	[B(C ₆ F ₅)₄ [−]]	
Empirical formula	$C_{65}H_{61}BF_{21}MgN_2OP$	$C_{65}H_{71}BF_{20}MgN_2O_2P_2$	$C_{59}H_{51}BF_{20}MgN_2$	
Formula weight	1351.24	1389.29	1203.14	
Temperature/K	100.01(10)	100.00(10)	99.99(10)	
Crystal system	triclinic	triclinic	monoclinic	
Space group	P-1	P-1	P2 ₁ /c	
a/Å	12.6579(4)	12.9094(5)	14.3528(6)	
b/Å	15.3343(5)	15.1447(6)	20.1560(9)	
c/Å	17.5503(6)	16.9144(7)	19.2715(8)	
α/°	92.793(3)	94.761(3)	90	
β/°	107.979(3)	92.981(3)	100.557(4)	
γ/°	99.369(2)	96.921(3)	90	
Volume/Å ³	3179.12(19)	3265.1(2)	5480.8(4)	
Z	2	2	4	
ρ _{calc} g/cm³	1.412	1.413	1.458	
µ/mm⁻¹	1.417	1.606	0.142	
F(000)	1388.0	1436.0	2464.0	
Crystal size/mm ³	0.38 × 0.29 × 0.10	0.28 × 0.22 × 0.20	0.347 × 0.187 × 0.073	
Crystal color	colorless	colorless	colorless	
Radiation	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)	ΜοΚα (λ = 0.71073)	
20 range for data collection/°	7.474 to 147.298	5.902 to 147.362	5.956 to 59.682	
Index ranges	-15 ≤ h ≤ 15, -19 ≤ k ≤ 14, -21 ≤ l ≤ 21	-13 ≤ h ≤ 15, -18 ≤ k ≤ 18, -15 ≤ l ≤ 20	-13 ≤ h ≤ 19, -24 ≤ k ≤ 27, -25 ≤ l ≤ 26	
Reflections collected	26083	20397	33685	
Independent reflections	12436 [R _{int} = 0.0219, R _{sigma} = 0.0288]	12574 [R _{int} = 0.0287, R _{sigma} = 0.0392]	13472 [R _{int} = 0.0258, R _{sigma} = 0.0372]	
Data/restraints/param eters	12436/0/842	12574/29/894	13472/0/760	
Goodness-of-fit on F ²	1.025	1.016	1.017	
Final R indexes [I>=2σ	$R_1 = 0.0343, WR_2 =$	$R_1 = 0.0439, wR_2 =$	$R_1 = 0.0413$, w $R_2 = 0.0907$	
(I)] Final D indexes [s''	0.0879	U.1146	, , , , , , , , , , , , , , , , , , , ,	
rınaı א indexes [all data]	$R_1 = 0.0376, WR_2 = 0.0906$	$K_1 = 0.0503, WK_2 = 0.1208$	$R_1 = 0.0600, wR_2 = 0.1001$	
Largest diff. peak/hole / e Å ⁻³	0.56/-0.44	0.64/-0.40	0.31/-0.30	

Table S2. Crystal data (continued).

Identification code	[(BDI)H2 ⁺][B(C6F₅)4 [−]]	[(BDI)Ca ^{+.} C ₆ H ₆] [B(C ₆ F ₅)₄ [−]]
Empirical formula	$C_{53}H_{43}BF_{20}N_2$	$C_{65}H_{53}BCaF_{20}N_2$
Formula weight	1098.70	1292.98
Temperature/K	100.0(2)	100.0(2)
Crystal system	monoclinic	monoclinic
Space group	P2₁/n	P2 ₁ /c
a/Å	10.73722(14)	15.4894(2)
b/Å	32.4655(4)	16.6388(2)
c/Å	14.61307(20)	22.8557(3)
α/°	90	90
β/°	100.9705(13)	94.3470(10)
γ/°	90	90
Volume/Å ³	5000.86(12)	5873.54(13)
Z	4	4
ρ _{calc} g/cm ³	1.459	1.462
µ/mm⁻¹	1.211	1.875
F(000)	2240.0	2648.0
Crystal size/mm ³	0.3596 × 0.1036 × 0.0656	0.278 × 0.209 × 0.088
Crystal color colorless		colorless
Radiation	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)
20 range for data collection/°	6.736 to 136.234	6.578 to 146.282
Index ranges	-9 ≤ h ≤ 12, -38 ≤ k ≤ 38, -15 ≤ l ≤ 17	-18 ≤ h ≤ 16, -14 ≤ k ≤ 20, -25 ≤ l ≤ 28
Reflections collected	17824	20692
Independent reflections	9060 [R _{int} = 0.0409, R _{sigma} = 0.0524]	11345 [R _{int} = 0.0376, R _{sigma} = 0.0503]
Data/restraints/paramet ers	9060/0/703	11345/0/812
Goodness-of-fit on F ²	1.050	1.035
Final R indexes [I>=2σ (I)]	R ₁ = 0.0438, wR ₂ = 0.1113	R ₁ = 0.0447, wR ₂ = 0.1178
Final R indexes [all data]	R ₁ = 0.0504, wR ₂ = 0.1179	R ₁ = 0.0493, wR ₂ = 0.1239
Largest diff. peak/hole / e Å ⁻³	0.36/-0.29	0.60/-0.38

 Table S3. Crystal data (continued).

Figure S35: Crystal structure of [(BDI)Mg(*n*Pr)]₂. Hydrogen atoms and *iso*-propyl groups were omitted for clarity. Selected bond lengths (Å) and angles (°): Mg1-N1 2.1017(12), Mg1-N2 2.0943(12), Mg1-C30 2.2558(16), Mg1-C30' 2.2853(16), Mg1-C31 2.779(2), N2-Mg1-N1 92.77(5), Mg1-C30-Mg1' 77.09(5).

Figure S36: ORTEP representation of $[(BDI)Mg(nPr)]_2$ (probability level 50%). Hydrogen atoms were omitted for clarity.

Figure S37: ORTEP representation of $[(BDI)Mg^+][B(C_6F_5)_4^-]$ (probability level 50%). Hydrogen atoms were omitted for clarity. Selected bond lengths (Å) and angles (°): Mg1-N1 1.9878(16), Mg1-N2 1.9836(15), Mg1-F1 2.0290(12), Mg1-F6 2.0560(10), F1-C30 1.406(2), F6-C36 1.4161(18), N2-Mg1-N1 97.13(6), F1-Mg1-F6 84.36(4). These values relate to one of the two molecules in the asymmetric unit. The other molecule shows similar geometric parameter.

Figure S38: ORTEP representation of $[(BDI)Mg^+ C_6H_6][B(C_6F_5)_4^-]$ (probability level 50%). Hydrogen atoms and a cocrystallized C_6H_6 molecule were omitted for clarity. Selected bond lengths (Å) and angles (°): Mg1-N1 1.9852(13), Mg1-N2 1.9943(13), Mg1-F1 2.0463(9), Mg1-C54 2.3673(17), Mg1-C55 2.6858(18), Mg1-C59 2.8101(19), F1-C30 1.3861(16), N1- Mg1-N2 97.13(6)

Figure S39: Solid state structure of $[(BDI)Mg^+(OPEt_3)(PhF)][B(C_6F_5)_4^-]$. Hydrogen atoms, *iso*-propyl groups and $[B(C_6F_5)_4^-]$ were omitted for clarity. Selected bond lengths (Å) and angles (°): Mg1-N1 1.9941(11), Mg1-N2 2.0001(11), Mg1-O1 1.8695(10), Mg1-F1 2.0502(9), F1-C36 1.4025(16), N1-Mg1-N2 96.62(5)

Figure S40: ORTEP representation of $[(BDI)Mg^+ (OPEt_3)(PhF)][B(C_6F_5)_4^-]$ (probability level 50%). Hydrogen atoms were omitted for clarity.

Figure S41: Solid state structure of $[(BDI)Mg^+ (OPEt_3)_2][B(C_6F_5)_4^-]$. Hydrogen atoms, *iso*-propyl groups and $[B(C_6F_5)_4^-]$ were omitted for clarity. Selected bond lengths (Å) and angles (°): Mg1-N1 2.0415(15), Mg1-N2 2.0457(16), Mg1-O1 1.9418(14), Mg1-O2 1.9112(15), N1-Mg1-N2 93.66(6)

Figure S42: ORTEP representation of $[(BDI)Mg^+ (OPEt_3)_2][B(C_6F_5)_4^-]$ (probability level 50%). Hydrogen atoms were omitted for clarity.

Figure S43: ORTEP representation of $[(BDI)Mg^+ CH_3CH_2CCCH_2CH_3][B(C_6F_5)_4]$ (probability level 50%). Hydrogen atoms were omitted for clarity.

Figure S44: ORTEP representation of $[(BDI)H_2^+][B(C_6F_5)_4^-]$ (probability level 50%). Hydrogen atoms were omitted for clarity.

Figure S45: ORTEP representation of $[(BDI)Ca^+ C_6H_6][B(C_6F_5)_4^-]$ (probability level 50%). Hydrogen atoms and a cocrystallized C_6H_6 molecule were omitted for clarity.

1.5 Lewis acidity quantification of (BDI)Mg⁺ by the Gutmann-Beckett method

The direct synthesis of $[(BDI)Mg^{+}(OPEt_{3})(PhF)][B(C_{6}F_{5})_{4}^{-}]$ and $[(BDI)Mg^{+}(OPEt_{3})_{2}][B(C_{6}F_{5})_{4}^{-}]$ with the respective ³¹P NMR chemical shifts can be found in the experimental section 1.2. The resulting acceptor numbers are 70.3 for $[(BDI)Mg^{+}(OPEt_{3})(PhF)][B(C_{6}F_{5})_{4}^{-}]$ and 56.0 for $[(BDI)Mg^{+}(OPEt_{3})_{2}][B(C_{6}F_{5})_{4}^{-}]$.

Competition experiments

[(BDI)Mg⁺·C₆H₆][B(C₆F₅)₄⁻] (0.0189 g, 0.0157 mmol) and (C₆F₅)₃B·OPEt₃ (0.0101 g, 0.0156 mmol) were dissolved in C₆D₅Br (0.5 ml). The ³¹P NMR spectrum showed only one resonance at 76.0 ppm indicating that the Et₃PO ligand is fully bound to B(C₆F₅)₃. After heating the sample to 60°C (one day) the ³¹P NMR signal shifted to 72.9 ppm. This chemical shift is almost equal to that for [(BDI)Mg⁺·(OPEt₃)(PhF)][B(C₆F₅)₄⁻] in C₆D₅Br (72.8 ppm), indicating full transfer of the Et₃PO ligand from B to Mg. Subsequent addition of a second equivalent of (C₆F₅)₃B·OPEt₃ (0.0103 g) and heating the sample to 60°C (one day) resulted in a single ³¹P NMR signal at 66.3 ppm which is equal to that for the *bis*-adduct [(BDI)Mg⁺·(OPEt₃)₂][B(C₆F₅)₄⁻] in C₆D₅Br. This suggests that despite their low acceptor numbers both, (BDI)Mg⁺ (AN = 70.3) and even (BDI)Mg⁺·(OPEt₃) (AN = 56.0), can compete with the strong Lewis acid B(C₆F₅)₃ (AN = 77.1).

Similar, one Et₃PO ligand could be transferred from [(BDI)Mg⁺·(OPEt₃)₂][B(C₆F₅)₄⁻] to [(BDI)AIMe⁺][B(C₆F₅)₄⁻] giving a mixture of (BDI)Mg⁺·OPEt₃ and [(BDI)AIMe⁺·OPEt₃] [B(C₆F₅)₄⁻]. Transfer of Et₃PO from (BDI)Mg⁺·OPEt₃ to (BDI)AIMe⁺ was not observed (also not at 100°C). As also the reverse ligand transfer from [(BDI)AIMe⁺·OPEt₃][B(C₆F₅)₄⁻] to (BDI)Mg⁺ does not proceed, this seems kinetically restricted. In order to evaluate the kinetic Lewis acidity differences, a substoichiometric quantity of Et₃PO was added to a vigorously stirred equimolar solution of [(BDI)Mg⁺·C₆H₆][B(C₆F₅)₄⁻] and [(BDI)AIMe⁺][B(C₆F₅)₄⁻] in C₆D₅Br at room temperature. The ³¹P NMR signals at 81.6 and 66.3 ppm (ratio ~ 40/60) are assigned to [(BDI)Mg⁺·(OPEt₃)₂][B(C₆F₅)₄⁻] and [(BDI)AIMe⁺ (AN = 89.7) and (BDI)Mg⁺ (AN = 70.3) or (BDI)Mg⁺·(OPEt₃) (AN = 56.0), most of the Et₃PO (nearly 60%) is bound to Mg. The cationic Mg complex (BDI)Mg⁺ is therefore slightly more Lewis acidic than (BDI)AIMe⁺.

2. Computational Details

General

All calculations were carried out using Gaussian 16 A.^[S9] All methods were used as implemented. All structures were fully optimized on a ω B97XD/6-31+G** level of theory. In order to determine zero point energies and to characterize the structures as minima frequency analysis has been applied.^[S10-13] Energies were calculated on ω B97XD/6-311+G** level of theory. Charges were calculated via NBO analysis.^[S14] Molecules were drawn and evaluated using Molecule V2.3.^[S15] Topological analyses were carried out using AIMAll V17 using the wavefunctions of the geometry optimizations.^[S16-17]

Charges

Molecule	Atom or part	NPA Charge
$(BDI)Mg(C_6H_6)^{(+)}$	Mg	+1.820
	BDI	-0.870
	C ₆ H ₆	+0.051
$(BDI)Ca(C_6H_6)^{(+)}$	Са	+1.786
	BDI	-0.828
	C ₆ H ₆	+0.041
$(BDI)Mg(CH_3CH_2C \equiv CCH_2CH_3)^{(+)}$	Mg	+1.826
	BDI	-0.865
	3-Hexyne	+0.042

Coordination Energies

 $(BDI)M^{(+)} + C_6H_6 \rightarrow (BDI)Mg^{(+)} - C_6H_6$

Metal	$\Delta E [kcal/mol]$
(BDI)Mg ⁽⁺⁾	-36.1
(BDI)Ca ⁽⁺⁾	-34.3

$(BDI)M^{(+)} + Hexyne \rightarrow (BDI)Mg^{(+)} --- Hexyne$

Metal	$\Delta E [kcal/mol]$
(BDI)Mg ⁽⁺⁾	-43.1

AIM

Calculated bond distances, electron densities in the BCP at the C-C bonds and the bond ellipticities of the C-C bonds in free benzene (or alkyne) are compared with those in Mg-bound benzene (or alkyne).

Bond distance (Å)	Electron density ρ (a.u.)	Bond ellipticity ε (au)
Benzene	0.3084	0.2044
C-C 1.394Å		
(BDI)Mg(C ₆ H ₆) ⁽⁺⁾ Mg 2.731Å 2.702Å 2.702Å	0.3046 0.3064 0.3056 0.3030 0.3042	0.1974 0.1900 0.1952 0.1989 0.2022 0.1986
1.400Å 1.398Å 1.402Å		
Hexyne		
1.209Å	0.3963	0.0009
(BDI)Mg(Hexyne) ⁽⁺⁾ N N Mg 2.435Å / \2.435Å	N N Mg 0.0266 0.3946	N N Mg 0.0822

XYZ Coordinates

73

(BDI)Mg			
(+)			
Mg	-0.000045	-0.001639	-0.704801
Ν	-1.505358	-0.136778	0.545784
Ν	1.505619	0.134208	0.545425
С	-2.817446	-0.362181	0.019409
С	-1.257923	-0.247343	1.856981
С	3.820618	-0.614135	0.145177
С	0.000397	-0.002095	2.443017
Н	0.000589	-0.002501	3.525692
С	1.258436	0.244147	1.856715
С	2.817149	0.362156	0.018733
С	-3.818941	0.616115	0.146238
С	5.071712	-0.338780	-0.412314
Н	5.872285	-1.064410	-0.318189
С	-3.032620	-1.540120	-0.725067
С	3.029844	1.540643	-0.725606
С	1.849155	2.466409	-0.985334
Н	1.245415	2.490690	-0.071348
С	-3.512778	1.969045	0.774762
Η	-2.747504	1.830759	1.543398
С	4.292233	1.774497	-1.267388
Н	4.487610	2.683745	-1.825554
С	5.314214	0.846898	-1.095396
Н	6.297194	1.040966	-1.511221
С	3.517138	-1.967977	0.772993
Н	2.750939	-1.831730	1.541075
С	-2.906132	2.898615	-0.288840
Н	-1.992827	2.462107	-0.713193
Н	-2.643144	3.868423	0.144441
Н	-3.611222	3.066963	-1.109195
С	-5.070617	0.343455	-0.411274
Н	-5.869735	1.070650	-0.316915
С	2.378630	0.653969	2.782493
Н	3.148919	-0.119433	2.848626
Н	2.004243	0.854832	3.785616
Н	2.868689	1.554335	2.399798
С	-4.295525	-1.771253	-1.266825
Н	-4.492860	-2.680008	-1.825095
С	-1.853948	-2.468557	-0.984463
Н	-1.251238	-2.495150	-0.069900
С	-2.378213	-0.656757	2.782812
Н	-3.148370	0.116787	2.848738
Н	-2.003934	-0.857551	3.785988
Н	-2.868420	-1.557094	2.400213
С	0.973567	1.879517	-2.130575

Н	1.262835	2.292440	-3.101160
Н	-0.097989	2.116259	-2.024816
Н	1.154401	0.796721	-2.300483
С	-5.315554	-0.841550	-1.094661
Н	-6.298942	-1.033495	-1.510508
С	2.214393	3.915557	-1.310480
Н	2.829833	4.346079	-0.516852
Н	1.308601	4.521997	-1.403053
Н	2.763464	3.998853	-2.253334
С	4.724112	-2.625542	1.447684
Н	5.476286	-2.947568	0.720667
Н	4.404214	-3.516229	1.995602
Н	5.206650	-1.945933	2.156508
С	-4.718718	2.629171	1.448815
Н	-5.469535	2.953351	0.721352
Н	-4.397118	3.518822	1.997421
Н	-5.203439	1.950382	2.156932
С	-0.975348	-1.882879	-2.128135
Н	-1.261292	-2.297340	-3.099041
Н	0.096034	-2.119187	-2.018989
Н	-1.156320	-0.800425	-2.299789
С	2.913443	-2.898422	-0.291537
Н	1.999766	-2.463528	-0.716763
Н	2.651937	-3.868894	0.141147
Н	3.619723	-3.065100	-1.111205
С	-2.222593	-3.916462	-1.311327
Н	-2.839968	-4.346162	-0.518753
Н	-1.318270	-4.525152	-1.403490
Н	-2.770869	-3.997465	-2.254846

85

(BDI)Mg(C	C6H6)(+)		
С	-1.421359	-0.878093	-2.721556
Mg	0.050330	-0.191623	-0.481621
Ν	1.559817	0.083817	0.793263
Ν	-1.417792	0.117088	0.829316
С	2.565351	0.652989	2.969590
С	-2.331854	0.525702	3.081900
С	1.378343	0.371585	2.079416
С	-1.175727	0.343118	2.124372
С	0.109802	0.457116	2.684970
С	2.852530	-0.116109	0.216009
С	-2.754823	0.080746	0.322740
С	3.576429	0.981846	-0.288862
С	-3.447352	1.280278	0.071135
С	4.727211	0.732262	-1.041880
С	-4.697433	1.203034	-0.549441
С	5.160831	-0.563997	-1.282994
С	-5.254720	-0.018986	-0.899804

С	3.307468	-1.440560	0.029808
С	-3.303080	-1.170769	-0.035038
С	4.462620	-1.633890	-0.733233
С	-4.561452	-1.196251	-0.637447
Н	-2.422567	-1.290803	-2.682116
Н	2.402881	0.256494	3.973519
Н	-2.579013	1.589352	3.163564
Н	0.125812	0.666078	3.748136
Н	2.689291	1.737604	3.059819
Н	-3.229534	0.004066	2.746757
Н	3.491531	0.240503	2.567592
Н	-2.062986	0.172410	4.078443
С	3.170550	2.420496	0.001954
С	-2.878698	2.644692	0.441963
Н	5.297881	1.566875	-1.439124
Н	-5.248404	2.115575	-0.756763
Н	6.053232	-0.741599	-1.873998
Н	-6.230887	-0.057319	-1.371972
С	2.698579	-2.677950	0.695006
С	-2.533448	-2.459224	0.228922
Н	4.831233	-2.644818	-0.886251
Н	-5.010736	-2.144221	-0.913065
С	-0.305016	-1.719289	-2.681578
С	0.987563	-1.176681	-2.711357
С	1.160980	0.211001	-2.779135
С	-1.250295	0.507913	-2.778996
С	0.038974	1.052383	-2.807067
Н	-0.442336	-2.794169	-2.620924
Н	1.858499	-1.821815	-2.664897
Η	2.163458	0.625982	-2.783850
Η	-2.120458	1.154969	-2.779977
Η	0.169106	2.128637	-2.853902
С	-2.415170	3.420913	-0.798982
С	-3.877874	3.478200	1.256859
Η	-1.994453	2.491556	1.065303
С	-2.941972	-3.629384	-0.670909
Η	-1.473122	-2.259066	0.018315
С	-2.607964	-2.880730	1.703781
С	2.871702	3.221916	-1.271847
Н	2.253069	2.401117	0.597369
С	4.252806	3.129995	0.831253
Η	3.173907	-3.529052	0.193625
С	3.094628	-2.763429	2.177371
С	1.185646	-2.898821	0.553772
Н	2.589269	4.248089	-1.018714
Н	3.743857	3.271424	-1.931623
Н	2.046900	2.782585	-1.840047
Н	3.907397	4.120618	1.142332
Н	4.511186	2.558733	1.726768

5.170319	3.265214	0.249491
2.831360	-3.745306	2.582991
4.170041	-2.617391	2.308602
2.569295	-2.010352	2.771058
0.934765	-3.923088	0.846645
0.605991	-2.236446	1.204888
0.855161	-2.792043	-0.486425
-2.061064	-3.815600	1.861731
-2.177063	-2.126572	2.365243
-3.649308	-3.041500	2.000299
-2.236714	-4.456138	-0.543529
-3.933453	-4.013100	-0.411805
-2.959117	-3.357206	-1.731691
-3.393613	4.382449	1.637295
-4.731209	3.795528	0.649352
-4.269488	2.913933	2.108190
-2.056693	4.415690	-0.517601
-1.592188	2.904786	-1.303990
-3.231834	3.548342	-1.517823
	5.170319 2.831360 4.170041 2.569295 0.934765 0.605991 0.855161 -2.061064 -2.177063 -3.649308 -2.236714 -3.933453 -2.959117 -3.393613 -4.731209 -4.269488 -2.056693 -1.592188 -3.231834	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

85

(BDI)Ca(C6H6)(+)		
Ca	0.094425	0.028334	0.599626
Ν	-1.371437	-0.110816	-1.205465
Ν	1.430911	-0.204867	-1.290597
С	-0.029985	-0.454076	-3.164834
Н	-0.070729	-0.610063	-4.236492
С	-1.273034	-0.316785	-2.508984
С	-2.573003	0.116440	-0.494447
С	1.253576	-0.386022	-2.588955
С	2.660196	-0.196833	-0.598694
С	-3.325588	-0.964994	0.014650
С	-2.862622	1.446449	-0.092861
С	-2.521735	-0.455214	-3.350428
Н	-2.780892	-1.516469	-3.439935
Н	-2.367096	-0.067727	-4.359084
Н	-3.375258	0.053775	-2.896617
С	-0.107371	-1.127548	3.310467
Н	-0.227603	-2.201465	3.413109
С	-1.236888	-0.306727	3.213879
Н	-2.232752	-0.738373	3.220143
С	-1.082426	1.079720	3.097549
Н	-1.961141	1.711285	3.020332
С	2.459885	-0.483605	-3.492965
Н	2.943784	0.497260	-3.564932
Н	2.190057	-0.806086	-4.499017
Н	3.203982	-1.175113	-3.086247
С	-2.996064	-2.400506	-0.363947
Н	-2.195012	-2.373782	-1.108169

С	3.138149	-1.408721	-0.035302
С	3.241870	1.041380	-0.243917
С	-4.675115	0.604665	1.285702
Н	-5.499774	0.793811	1.965268
С	1.330531	0.817267	3.148472
Н	2.326375	1.246340	3.106327
С	1.176356	-0.567416	3.273170
Н	2.054558	-1.202138	3.332882
С	-4.372668	-0.695720	0.899188
Н	-4.966543	-1.517533	1.290080
С	0.199792	1.640381	3.067967
Н	0.319518	2.715593	2.980253
С	-3.923564	1.664544	0.788147
Н	-4.174075	2.677023	1.089343
С	2.528988	-2.743903	-0.463175
Н	2.394028	-2.703098	-1.549632
С	-4.195542	-3.115133	-0.999279
Н	-5.016554	-3.238103	-0.285542
Н	-3.905989	-4.111650	-1.346039
Н	-4.578844	-2.552574	-1.855227
С	4.269980	1.055428	0.703072
Н	4.729619	1.999272	0.983111
С	1.130121	-2.977097	0.140374
Н	1.134762	-2.803867	1.225421
Н	0.807324	-4.011215	-0.010406
Н	0.372450	-2.358813	-0.357868
С	-2.468353	-3.182717	0.847541
Н	-1.578506	-2.704886	1.277661
Н	-2.187928	-4.200969	0.561577
Η	-3.222646	-3.249946	1.638952
С	4.169974	-1.341600	0.902684
Η	4.562595	-2.253413	1.339891
С	-2.059118	2.610755	-0.660176
Η	-1.061953	2.231051	-0.925476
С	4.724508	-0.121456	1.283701
Η	5.528220	-0.095418	2.012487
С	2.750246	2.334782	-0.879445
Н	2.118220	2.063556	-1.729647
С	-1.875066	3.774445	0.319216
Н	-2.813541	4.303175	0.510951
Η	-1.174969	4.504618	-0.096959
Η	-1.477871	3.441199	1.285046
С	1.881303	3.147675	0.091238
Η	0.960330	2.617083	0.376344
Н	1.556613	4.087324	-0.365344
Н	2.425387	3.384910	1.012142
С	3.428383	-3.946039	-0.162232
Н	4.440510	-3.798889	-0.548790
Η	3.016209	-4.842240	-0.633854

Н	3.497915	-4.147814	0.912550
С	3.903369	3.193896	-1.413255
Н	4.525074	3.594468	-0.606112
Н	3.510919	4.044584	-1.978098
Н	4.548852	2.612165	-2.076835
С	-2.682453	3.105493	-1.974624
Н	-2.724645	2.306581	-2.718639
Н	-2.095198	3.928045	-2.394132
Н	-3.702423	3.464406	-1.801855

,	7	2
	1	3

(BDI)Ca(+)	charges		
Ca	-0.000217	-0.001274	-1.109229
Ν	-1.418716	0.084754	0.706456
Ν	1.418583	-0.084673	0.706358
С	-2.678457	0.102447	0.054388
С	-1.261324	0.119001	2.023085
С	3.115988	-1.295771	-0.561448
С	-0.000002	0.000389	2.641423
Н	0.000042	0.000589	3.724433
С	1.261273	-0.118331	2.023028
С	2.678318	-0.102301	0.054270
С	-3.116077	1.295892	-0.561408
С	4.260344	-1.261800	-1.365134
Н	4.614240	-2.174731	-1.835842
С	-3.375215	-1.115146	-0.155911
С	3.375039	1.115293	-0.156130
С	2.856680	2.413686	0.455791
Н	2.531779	2.196618	1.478832
С	-2.355302	2.600494	-0.369845
Н	-1.577980	2.425478	0.380996
С	4.515866	1.094950	-0.957609
Н	5.076157	2.008726	-1.121130
С	4.959495	-0.080509	-1.559724
Н	5.850765	-0.069392	-2.178106
С	2.355466	-2.600478	-0.369537
Н	1.577956	-2.425332	0.381089
С	-1.671976	3.039227	-1.674867
Н	-1.004577	2.263198	-2.097663
Н	-1.055791	3.930354	-1.526563
Н	-2.405151	3.249948	-2.459075
С	-4.260465	1.261908	-1.365036
Н	-4.614318	2.174812	-1.835824
С	2.471290	-0.319932	2.904614
Н	2.884944	-1.319773	2.731692
Н	2.222198	-0.228554	3.961824
Н	3.264429	0.394587	2.665865
С	-4.516062	-1.094817	-0.957376
Н	-5.076409	-2.008567	-1.120834

С	-2.857003	-2.413491	0.456284
Н	-2.533075	-2.196432	1.479645
С	-2.471247	0.321156	2.904663
Н	-2.884499	1.321148	2.731645
Н	-2.222179	0.229801	3.961881
Н	-3.264673	-0.393067	2.665988
С	1.616812	2.926228	-0.299958
Н	1.803163	2.974338	-1.380637
Н	1.343146	3.932847	0.030283
Н	0.743772	2.298050	-0.080749
С	-4.959666	0.080626	-1.559529
Н	-5.850958	0.069506	-2.177881
С	3.911001	3.520698	0.539355
Н	4.823440	3.170211	1.029560
Н	3.519194	4.359877	1.120536
Н	4.179732	3.907629	-0.449423
С	3.249471	-3.727563	0.163793
Н	4.024549	-4.006243	-0.556798
Н	2.654070	-4.620774	0.374853
Н	3.746200	-3.422012	1.088236
С	-3.249154	3.728054	0.162720
Н	-4.023913	4.006690	-0.558229
Н	-2.653546	4.621170	0.373597
Н	-3.746276	3.423050	1.087136
С	-1.616290	-2.925721	-0.298365
Н	-1.801208	-2.972592	-1.379371
Н	-1.343542	-3.932868	0.031013
Н	-0.743267	-2.298256	-0.077066
С	1.672562	-3.040075	-1.674501
Н	1.005224	-2.264404	-2.098081
Н	1.056491	-3.931224	-1.525860
Н	2.405991	-3.251142	-2.458378
С	-3.911093	-3.520798	0.538804
Н	-4.824000	-3.170661	1.028382
Н	-3.519516	-4.359981	1.120131
Н	-4.178952	-3.907591	-0.450266
	10		
CALLA	12		
Сопо	0 600101	1 011121	0.000101
С u	0.090191	-1.211131	-0.000101
п	1.22/132	-2.1348//	0.000138
С u	1.394109	-0.007090	0.000020
п	2.4/98/8	-0.013907	0.000310
с u	-0./03/40	-1.203303 2.140056	-0.000103
II C	-1.2312/8	-2.140930	0.000132
с u	0.703071 1.251626	1.203208 2.140716	0.000009
II C	1.231030	2.140/10	-0.000137
с u	-0.090310	1.211030 2.154627	-0.000010
11	-1.22/320	2.13403/	-0.000137

С	-1.394107	0.007959	0.000028
Η	-2.479877	0.013929	0.000508

	89		
(BDI)MgH	exyne(+)		
Mg	-0.000078	0.000371	0.245846
N	1.485928	0.031908	-1.073232
Ν	-1.486003	-0.031737	-1.073306
С	1.273326	0.023002	-2.393027
С	2.826485	0.068555	-0.569437
С	0.000003	-0.000048	-2.989100
Н	0.000030	-0.000125	-4.071145
С	-1.273351	-0.023055	-2.393090
C	-2.826554	-0.068512	-0.569504
C	3.476087	-1.141110	-0.260974
C	3.416783	1.315080	-0.288013
Ċ	2.467197	0.038908	-3.315887
Н	3.079891	0.928033	-3.136909
Н	2.161952	0.028290	-4.361480
Н	3.108280	-0.827975	-3.127241
C	2.808265	-2.478528	-0.544167
Н	2.061954	-2.321458	-1.328728
C	-3.476257	1.141106	-0.261051
C	2.687534	2.610938	-0.612581
Н	1.984760	2.405107	-1.425710
С	-4.721617	1.079808	0.367959
Н	-5.242649	1.997214	0.622178
С	4.662650	1.327641	0.341279
Н	5.139784	2.274209	0.573455
С	4.721516	-1.079896	0.367911
Н	5.242473	-1.997342	0.622142
С	0.608492	0.050478	2.603532
С	-3.416704	-1.315079	-0.287967
С	-2.808545	2.478560	-0.544333
Н	-2.062533	2.321585	-1.329199
С	-2.467187	-0.039206	-3.315989
Н	-3.079684	-0.928475	-3.137049
Н	-2.161911	-0.028508	-4.361573
Н	-3.108470	0.827527	-3.127343
С	5.308756	0.142289	0.674958
Н	6.277208	0.171376	1.163539
С	-0.608422	-0.050593	2.603496
С	1.863672	3.081817	0.595026
Н	1.147151	2.319506	0.931514
Н	1.290613	3.982253	0.354856
Н	2.514478	3.306440	1.446811
С	3.618984	3.729305	-1.091750
Н	4.267525	4.097171	-0.290428
Η	3.030118	4.579776	-1.447205

Η	4.256338	3.389859	-1.913126
С	2.065750	-2.977571	0.704589
Н	2.767393	-3.156998	1.526237
Η	1.530962	-3.909901	0.500555
Н	1.328156	-2.248672	1.068937
С	-4.662505	-1.327723	0.341458
Н	-5.139519	-2.274326	0.573738
С	-5.308696	-0.142420	0.675144
Н	-6.277093	-0.171580	1.163832
С	3.781806	-3.547300	-1.052299
Н	4.359637	-3.182907	-1.906383
Н	3.229460	-4.436566	-1.369517
Н	4.487443	-3.863412	-0.277634
С	2.062624	0.129912	2.837443
Н	2.304583	1.167350	3.089325
Н	2.614812	-0.101688	1.923065
С	-2.062583	-0.129850	2.837311
Н	-2.304755	-1.167302	3.088926
Н	-2.614681	0.102063	1.922956
С	-2.687405	-2.610909	-0.612549
Н	-1.984644	-2.405059	-1.425682
С	-1.863506	-3.081775	0.595035
Н	-1.146854	-2.319527	0.931358
Н	-1.290573	-3.982297	0.354884
Н	-2.514265	-3.306266	1.446891
С	2.496349	-0.824183	3.957733
Н	2.271185	-1.860526	3.694935
Н	1.994341	-0.586893	4.898385
Н	3.574592	-0.732605	4.105374
С	-2.065562	2.977427	0.704218
Н	-2.766927	3.156916	1.526088
Н	-1.530670	3.909674	0.500080
Н	-1.327973	2.248406	1.068357
С	-3.618836	-3.729290	-1.091724
Н	-4.267338	-4.097204	-0.290394
Н	-3.029952	-4.579731	-1.447224
Н	-4.256231	-3.389845	-1.913069
C	-3.782244	3.547447	-1.051912
Н	-4.360469	3.183207	-1.905791
Н	-3.229982	4.436720	-1.369255
H	-4.487520	3.863505	-0.276895
C	-2.496202	0.824074	3.957790
H	-3.574471	0.732663	4.105342
H	-2.270822	1.860440	3.695254
Н	-1.994298	0.586476	4.898419
	16		

Hexyne			
С	-0.582043	-0.360622	0.164117

С	0.582064	-0.361047	-0.163524
С	-2.000784	-0.347866	0.533902
Н	-2.095511	-0.013901	1.573660
Н	-2.387004	-1.373299	0.502752
С	2.000850	-0.348999	-0.533157
Н	2.095655	-0.017208	-1.573604
Н	2.387153	-1.374329	-0.499831
С	-2.846650	0.551479	-0.377323
Н	-2.788237	0.214858	-1.415901
Н	-2.493848	1.585515	-0.336271
Н	-3.895191	0.531232	-0.065738
С	2.846570	0.552312	0.376252
Н	3.895209	0.531164	0.065050
Η	2.787770	0.218113	1.415585
Η	2.493959	1.586312	0.332689

3. References

- [S1] M. Stender, R. J. Wright, B. E. Eichler, J. Prust, M. M. Olmstead, H. W. Roesky and P. P. Power, J. Chem. Soc., Dalton Trans., 2001, 3465–3469.
- [S2] S. Harder, S. Müller and E. Hübner, *Organometallics*, 2004, **23**,178–183.
- [S3] P. Jutzi, C. Müller, A. Stammler and H.-G. Stammler, *Organometallics*, 2000, **19**, 1442–1444.
- [S4] A. Causero, G. Ballmann, J. Pahl, H. Zijlstra, C. Färber and S. Harder, *Organometallics*, 2016, 35, 3350–3360.
- [S5] O. V. Dolomanov, L. J. Bourhis, R.J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, 42, 339–341.
- [S6] G. M. Sheldrick, *Acta Cryst. A*, 2015, **71**, 3–8.
- [S7] G. M. Sheldrick, *Acta Cryst. C*, 2015, **71**, 3–8.
- [S8] A. Thorn, B. Dittrich and G. M. Sheldrick, Acta Cryst. A, 2012, 68, 448–451.
- [S9] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Rev. A.03, Wallingford CT, 2016
- [S10] J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615–6620
- [S11] W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory by W.J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, John Wiley, New York, 548pp
- [S12] T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, J. Comp. Chem. 1983, 4, 294– 301
- [S13] R. C. Binning, L. A. Curtiss, J. Comput. Chem. 1990, 11, 1206–1216
- [S14] A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735-746
- [S15] N. van Eikema Hommes, Molecule, Erlangen, 2016.
- [S16] R. F. W. Bader, Chem. Rev. 1991, 91, 893–928
- [S17] T. A. Keith, AIMAll (Version 17.01.25), TK Gristmill Software, Overland Park KS USA, 2017