Electronic Supplementary Information

Spontaneous separation of on-surface synthesized tris-helicenes into two-dimensional homochiral domains

Jingyi Li^a, Kévin Martin^b, Narcis Avarvari^b, Christian Wäckerlin^{a,*} and Karl-Heinz Ernst^{a,c}

^a Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland; e-mail: christian.waeckerlin@empa.ch

^b Laboratoire Moltech Anjou, Université d'Angers, Angers, France

^b Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland

Detailed Methods

The experiments were performed in ultra-high vacuum on Au(111) and Cu(111) single crystals (MaTecK GmbH., 99.999% purity, < 0.1° miscut) prepared by cycles of Ar⁺ ion sputtering and annealing. STM images were recorded with a PtIr (90% Pt) tip in constant current mode (Specs Aarhus 150). XP spectra were obtained in normal emission using Al K α X-rays. The binding energy scale was calibrated using the Cu2p_{3/2} (932.7 eV) and Au4f_{7/2} (84.0 eV) core levels. Background spectra obtained on clean samples were subtracted. The molecules were thermally sublimed from a quartz crucible kept at 100 °C.

The structures were relaxed on Au(111) and Cu(111) slabs (4 layers) using molecular mechanics (Hyperchem 8.0, Amber force field). The frontier orbitals (cutoff 0.001 $e/Å^3$) were calculated using extended Hückel calculations in Hyperchem. To compare with the STM images, the highest 2*n* occupied orbitals were considered. *n* corresponds to the number of [4]helicene units.

Table S1 Imaging parameters. The images were obtained at 120 K because on Au(111) the molecules were highly mobile at room temperature. Also the organometallic complexes on Cu(111) were highly mobile.

Figure	Bias voltage (mV)	Tunnel current setpoint (pA)
1b, s <i>tar</i> -tris[4]H	15	60
1c, anchor-tris[4]H	15	60
1d, <i>anti</i> -bis[4]H	15	180
1e, <i>syn</i> -bis[4]H	15	600
2a	7	190
2b	5	140
2c	1	190
4a, including insets	110	360
4b	575	40

Table S2 Abundance of defective *vs.* intact molecules. Since the organic species exist as dimers and trimers and the organometallic species as trimers and tetramers, the abundances are provided with respect to monomer units, *e.g.* in trimers intact and impurity arms are counted.

Organic species on Au(111) (ann. at 473 K)			
	Count (#)	Abundance (%)	
total	2578	100	
total intact	2159	83.7 ± 0.7	
total impurities	419	16.3 ± 0.7	
Organometallic species on Cu(111) (ann. at 356 K)			
	Count (#)	Abundance (%)	
total	630	100	
total intact	611	97.0 ± 0.7	
total impurities	19	3.0 ± 0.7	

Table S3 Abundance of intact organic species formed on Au(111) by annealing to 473 K). An area of 2500 nm² was evaluated. Note that the amount of self-assembled domains of *star*-tris[4]H is hard to quantify because of the large domains. A rough estimate yields that 10 to 30% of the surface of Au(111) is covered with self-assembled *star*-tris[4]H. The species affected by this are designed with "*". Abbreviations: A: abundance; SA: self-assembled; non-SA: non self-assembled.

	Count (#)	A. (%)	A. (%)	A. (%)	A. (%)
total molecules	567	100			
total bis[4]H	307	54 ± 2	100		
syn-bis[4]H	135		44 ± 3	100	
(<i>P, P</i>)- <i>syn</i> -bis[4]H	84			62 ± 4	
(<i>M, M</i>)- <i>syn</i> -bis[4]H	51			38 ± 4	
anti-bis[4]H	172		56 ± 3		
total tris[4]H*	260	46 ± 2	100		
anchor-tris[4]H	113		43 ± 3		
star-tris[4]H*	147		57 ± 3	100	
(<i>P, P, P</i>)- <i>star</i> -tris[4]H	73			50 ± 4	100
SA (<i>P, P, P</i>)- <i>star</i> -tris[4]H*	34				56 ± 6
non-SA (<i>P, P, P</i>)- <i>star</i> -tris[4]H	27				44 ± 6
(<i>M, M, M</i>)- <i>star</i> -tris[4]H	74			50 ± 4	100
SA (<i>M, M, M</i>)- <i>star</i> -tris[4]H*	39				45 ± 5
non-SA (<i>M, M, M</i>)- <i>star</i> -tris[4]H	47				55 ± 5

Table S4 Abundance of intact organometallic species formed on Cu(111) by annealing to 356 K.

	Count (#)	Abundance (%)
Total	159	100
Cu-tris[4]H	25	16 ± 3
Cu-tetra[4]H	134	84 ± 3

	Count (#)	Abundance (%)	Abundance (%)
total molecules	280	100	
total bis[4]H	267	95 ± 1	100
syn-bis[4]H	183		69 ± 3
<i>anti</i> -bis[4]H	84		31 ± 3
total tris[4]H	13	5 ± 1	100
star-tris[4]H	6		46 ± 14
anchor-tris[4]H	7		54 ± 14

Table S5 Abundance of intact organic species formed on Cu(111) by annealing to 443 K.

Figure S1: C 1s XP spectra of Figure 3 shown without offset. The spectra are normalized with respect to the intensity of the substrate Au $4f_{7/2}$ and Cu $2p_{5/2}$ substrate signal. Green arrows indicate preparations which were derived from each other. a) The minor reduction (13%) of the C 1s signal on Au(111) shows that the favoured formation of *star*-tris[4]H with respect to *anchor*-tris[4]H cannot be explained by to more facile desorption of *anchor*-tris[4]H. b) The C1s spectra obtained after deposition at 356 K on Cu(111)

exhibits more spectral weight at lower binding energy, supporting the presence of organometallic C-Cu bonds.

Figure S2: Overlay of the EHT models (shaded red) onto STM images of (a) *anchor*-tris[4]H and (b) *star*tris[4]H on Au(111) (from Figure 1) and of (c) Cu-tris[4]H and (d) Cu-tetra[4]H on Cu(111) (from Figure 4a). The positions of the atoms are highlighted by empty (C and H) and green-filled (Cu) circles. Anchortris[4]H appears significantly smaller than Cu-tris[4]H, consistent with the presence of organometallic C-Cu bonds in Cu-tris[4]H. (c,d) Note that the EHT simulations fail to reproduce the contrast of organometallic complexes. 3 and 4 adatoms were used to simulate Cu-tris[4]H and Cu-tetra[4]H, respectively. The presence of additional Cu adatoms in the centers cannot be excluded. The simulated C-Cu bond lengths are 1.99 \pm 0.01 Å for all C-Cu bonds in Cu-tris[4]H and Cu-tetra[4]H. These are typical values for organometallic bonds. (a-d) The apparent lengths of the molecules (defined by the cutoff of the electron density in EHT) is reported in Table S6. **Table S6** Apparent lengths of the molecules shown in Figure S2. Note that Cu-tris[4]H is significantly longer than *anchor*-tris[4]H which has the same shape.

Figure	Species	Length (nm)
а	anchor-tris[4]H	1.79
b	<i>star</i> -tris[4]H	1.64
С	Cu-tris[4]H	2.02
d	Cu-tetra[4]H	2.14