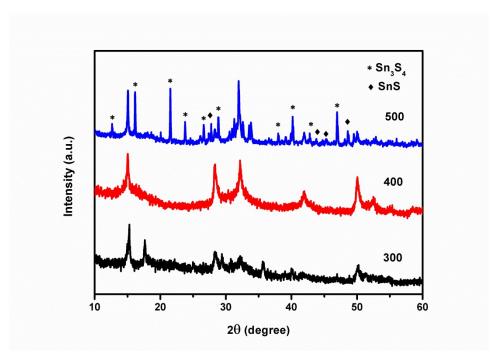
Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Versatile Strategy for Ultrathin SnS₂ Nanosheets Confined in N-Doped Graphene Sheets Composite for High Performance Lithium and Sodium-ion batteries


Experimental Section

Synthesis of SnS₂/3DNG: The graphene oxide (GO) was synthesized by a modified Hummers method as the previous report [28]. Briefly, 50 mg GO powder was dissolved in 30 mL of deionized water by ultrasonic dispersion for 30 min forming yellow solution. After that, 2 mmol of SnCl₄•5H₂O and 4 mmol CH₄N₂S were added into above solution unter magnetic stirring for 1h. The homogeous mixture was transferred to a refrigerator and frozening for overnight. Then, the precursors were obtained by freez-drying treatment for 24 h and then heated at 400 °C for 2 h under Ar atmosphere, and the final black powder is denoted as SnS₂/NGS.

Material Characterization: The X-ray powder diffraction (XRD) pattern was recorded by a Bruker D8 ADVANCE X-ray diffractometer with Cu K_{α} radiation ($\lambda = 0.15418$ nm) at a scanning rate of 4° min⁻¹. Field-emmision scanning electron microscopy (SEM) images were obtained on a ZEISS microscope with an accelerating voltage of 20 kV. Transmission electron microscopy (TEM) images and high-resolution TEM (HRTEM) images were obtained by a JEOL JEM-2000CX

instrument. Nitrogen adsorption and desorption isotherm was characterized by a ASAP2020. The XPS experiments were carried out on a PHI-5400 electron spectrometer. The Raman spectrum was performed by a Raman spectrometer (Horiba Xplora). The thermogravimetric analysis (TGA) was conducted on a thermogravimetric analyzer (TGA, SDTA851).

Electrochemical Measurements: The working electrode was prepared by mixing the SnS₂/3DNG powder, acetylene black, and polyvinylidene difluoride (PVDF) in a weight ratio of 70:20:10. The slurry was pasted to Cu foil for LIBs and SIBs, and then dried at 100 °C overnight under vacuum. CR2032-type coin cells were assembled in an argon-filled glovebox. For LIBs half-cells, Li-metal foil use as counter electrode, and 1.0 M LiPF₆ dissolved in ethylene carbonate (EC)/dimethl carbonat (DMC)/diethyl carbonate (DEC) (1:1:1 by volume) use as electrolyte. For SIBs half-cells, Na-metal foil used as counter electrode, and 1.0 M NaClO₄ in propylene carbonate (PC) with 2% fluoroethylene carbonate (FEC) used as electrolyte. Glass fiber membrane (Whatman GF/D) used as separator. The charge-discharge tests were carried out on LAND CT2001A systems. The cyclic voltammetry (CV) curves electrochemical impedance spectroscopy (EIS) were tested on VSP electrochemical workstation (Bio-logic, France).

Figure S1. XRD patterns of the precursors are annealed at different temperatures.

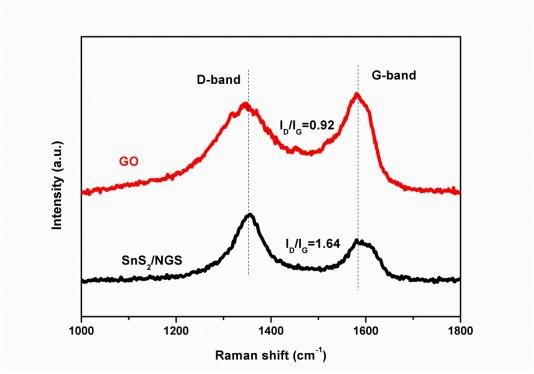


Figure S2. Raman spectra of GO and SnS₂/NGS.

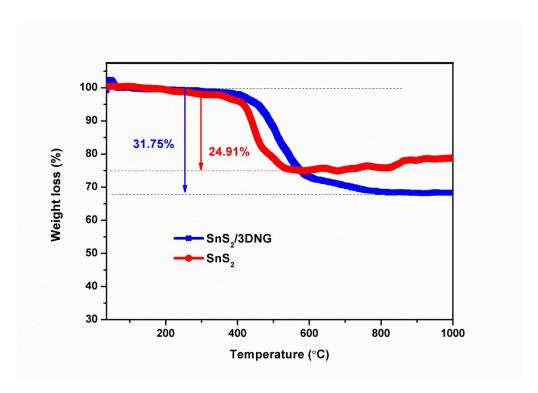


Figure S3. TGA curves in the air atmosphere of the SnS₂ and SnS₂/NGS.

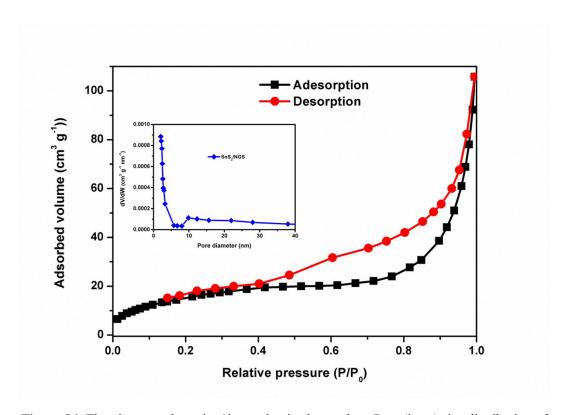
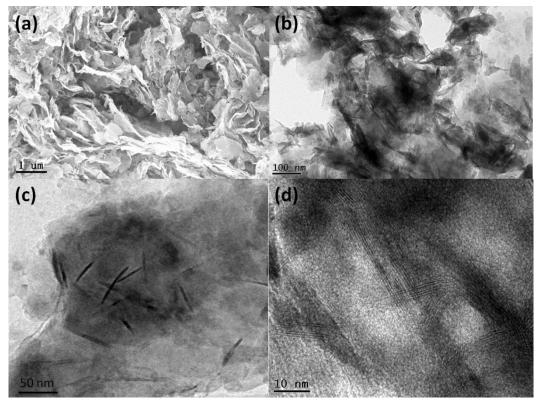
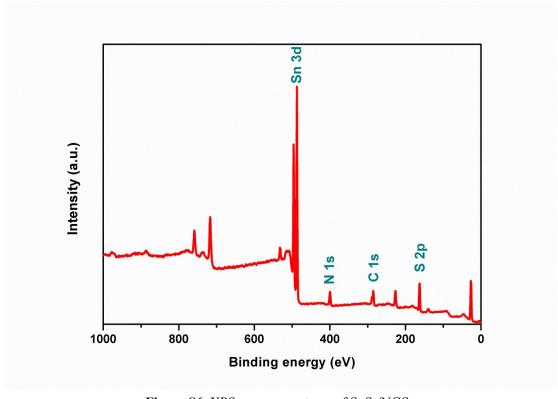




Figure S4. The nitrogen adsorption/desorption isotherm plots. Pore (inset) size distribution of SnS_2/NGS .

 $\label{eq:Figure S5} \textbf{Figure S5}. \ \ \text{The detail morphology of $SnS_2/NGS}. \ \ \textbf{(a) SEM image}, \ \textbf{(b) and (d) TEM images}, \ \textbf{(d)} \\ HRTEM \ \ \textbf{image}.$

Figure S6. XPS survey spectrum of SnS₂/NGS.

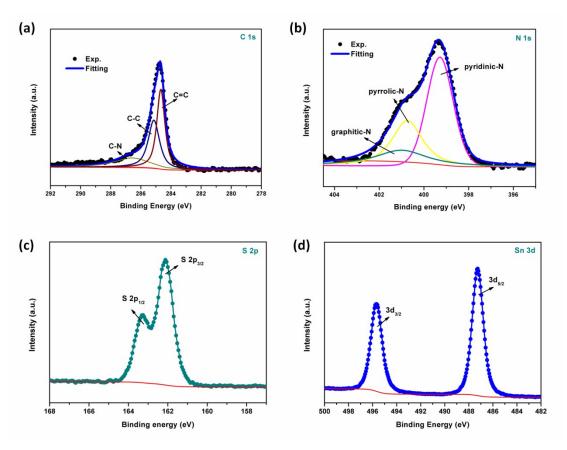
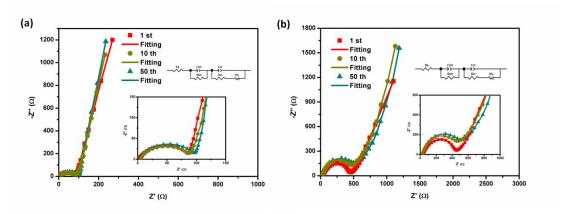
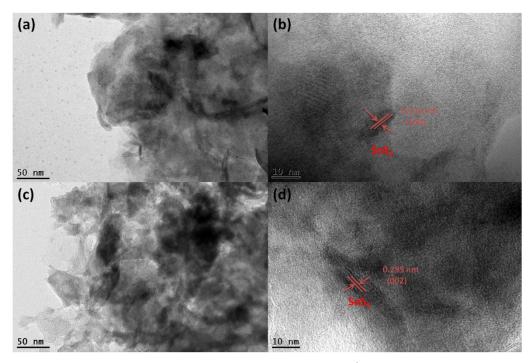




Figure S7. High-resolution XPS spectra of (a) C 1s, (b) N 1s, (c) S 2p and (d) Sn 3d of the SnS_2/NGS .

Figure S8. Nyquist plots of SnS₂/NGS electrode at different cycles for (a) LIBs, (b) SIBs. Insets depict the equivalent circuit and enlarged spectra high frequency.

Figure S9. TEM images of SnS_2/NGS after 50 cycles at 0.1 A g^{-1} . (a, b) lithium-ion battery (c, d) sodium-ion battery.

Table S1. Equivalent circuit parameters of the SnS₂/NGS electrode for LIBs and SIBs.

Sample		Cycle number	R _s /Ohm	R _{int} /Ohm	R _{ct} /Ohm
SnS ₂ /NGS	for	1st cycle	2.5	67.8	10.1
LIBs		10 th cycle	4.4	64.6	12.4
		50 th cycle	5.6	54.8	17.6
SnS ₂ /NGS SIBs	for	1st cycle	24.0	383.4	24.7
		10 th cycle	32.2	358.0	45.7
		50th cycle	20.2	358.8	36.2

Table S2. Comparison of the electrochemical performance for SnS_2 -based anode in the previous literature with our sample

Electrode materials	Application	Rate perfomance	Cycling performance	Ref
SnS ₂ /G-As	LIBs	240 mAh g ⁻¹ at	656 mAh g ⁻¹ at 50 mA	1
		1000 mA g^{-1}	g-1 after 30 cycles	
SnS ₂ /VACNTs	LIBs	223 mAh g ⁻¹ at	551 mAh/g at 100 mA	2
		2000 mA g ⁻¹	g ⁻¹ after 100 cycles	

	LIBs	200 mAh g ⁻¹ at	914 mAh g ⁻¹ at 800 mA	
SnS ₂ -NGS		10000 mA g ⁻¹	g ⁻¹ after 150 cycles	3
	SIBs	148 mAh g ⁻¹ at	450 mAh g ⁻¹ at 200 mA	
		10000 mA g ⁻¹	g-1 after 100 cycles	
Net-like SnS ₂	LIBs	358.71 mAh g ⁻¹ at	401.31 mAh g ⁻¹ at 100	4
		800 mA g ⁻¹	mA g ⁻¹ after 100 cycles	
c-SnS ₂ NSA	SIBs	140 mAh g ⁻¹ at	420 mAh g ⁻¹ at 500 mA	5
		5000 mA g ⁻¹	g-1 after 100 cycles	
SnS ₂ -G	LIBs	498 mAh g ⁻¹ at	826 mAh g ⁻¹ at 500 mA	6
		8000 mA g ⁻¹	g-1 after 200 cycles	
SnS ₂ /NRGO	LIBs	402 mAh g ⁻¹ at	297 mAh g ⁻¹ at 200 mA	7
		2000 mA g ⁻¹	g-1 after 200 cycles	
SnS ₂ /graphene	SIBs	321 mAh g ⁻¹ at	458 mAh g ⁻¹ at 500 mA	8
		5000 mA g ⁻¹	g ⁻¹ after 250 cycles	
LL-SnS ₂ /G	LIBs	567.78 mAh g ⁻¹ at	696.27 mAh g ⁻¹ at 200	9
		2000 mA g ⁻¹	mA g ⁻¹ after 180 cycles	
	LIBs	488 mAh g ⁻¹ at	763 mAh g ⁻¹ at 500 mA	
SnS ₂ /NGS		8000 mA g ⁻¹	g-1 after 200 cycles	This
	SIBs	364 mAh g ⁻¹ at	453 mAh g ⁻¹ at 500 mA	work
		5000 mA g ⁻¹	g ⁻¹ after 200 cycles	

Reference

- 1 X. Jiang, X. Yang, Y. Zhu, J. Shen, K. Fan, C. Li, J. Power Sources, 2013, 237, 178-186.
- W. Deng, X. Chen, Z. Liu, A. Hu, Q. Tang, Z. Li, Y. Xiong, J. Power Sources, 2015, 277, 131-138.
- 3 Y. Jiang, Y. Feng, B. Xi, S. Kai, K. Mi, J. Feng, J. Zhang, S. Xiong, J. Mater. Chem. A, 2016, 4, 10719-10726.
- 4 L. Yin, S. Chai, J. Huang, X. Kong, J. Wang, Y. Liu, Preparation and enhanced lithium-ion storage performance of 3D network-like SnS₂ anode, J. Alloys and Compd. 2017, 727, 1006-1013.
- 5 Y. Wang, J. Zhou, J. Wu, F. Chen, P. Li, N. Han, W. Huang, Y. Liu, H. Ye, F. Zhao, Y. Li, J. Mater. Chem. A, 2017, 5, 25618-25624.
- 6 Q. Zhang, Y. Sun, X. Zhang, J. Guo, Mater. Lett., 2016, 185, 311-314.
- D. H. Youn, S. K. Stauffer, P. Xiao, H. Park, Y. Nam, A. Dolocan, G. Henkelman, A. Heller, C. B. Mullins, ACS Nano, 2016, 10, 10778-10788.

- 8 X. Li, X. Sun, Z. Gao, X. Hu, R. Ling, S. Cai, C. Zheng, W. Hu, ChemSusChem, 2018, 11, 1549-1557.
- 9 J. Xia, J. Xie, H. Yan, Y. Yuan, M. Chen, C. Huang, Y. Zhang, S. Nie, X. Y. Wang, Electrochim. Acta, 2018, 269, 452-461.