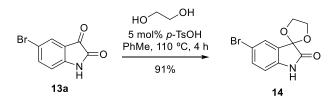
Supplemental material for:

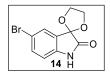
Cu(II)-PHOX Catalyzed Enantioselective Malonate Addition onto 3-Hydroxy 2-Oxindoles: Application in the Synthesis of Dimeric Pyrroloindoline Alkaloids*

K. Naresh Babu,^a Lakshmana K. Kinthada,^a Partha Pratim Das,^b and Alakesh Bisai^{*a}

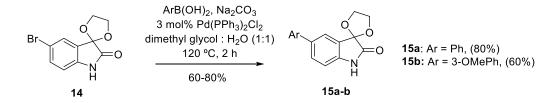
^aDepartment of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, MP - 462 066, India. ^bDepartment of Chemistry, Indian Institute of Technology Kanpur, UP – 208 016, India

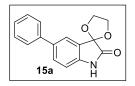

Table of Contents

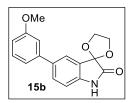
S2
S3
S4 - S5
S5
S6 – S8
S8 – S9
S9 - S10
S11 - S12
S12 - S13
S13
S13 – S15
S15 – S29
S29 - S30
S30 - S31
S31 – S32
S32 – S33
S33 – S34
S34 – S36
S36 – S37
S37
S38 – S143
S144 - S146
S147 – S198
S199 – S201
S201 – S206
S206 - S207
S207 – S211


Materials and Methods

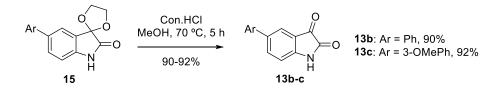
Unless otherwise stated, reactions were performed in oven-dried glassware fitted with rubber septa under an inert atmosphere and were stirred with Teflon-coated magnetic stirring bars. Liquid reagents and solvents were transferred via syringe using standard Schlenk techniques. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were distilled over sodium/benzophenone ketyl. Dichloromethane (CH_2Cl_2), toluene, and benzene were distilled over calcium hydride. All other solvents and reagents were used as received unless otherwise noted. Reaction temperatures above 23 °C refer to oil bath temperature. Thin layer chromatography was performed using silica gel 60 F-254 precoated plates (0.25 mm) and visualized by UV irradiation, anisaldehyde stain and other stains. Silica gel of particle size 100-200 mesh was used for flash chromatography. Melting points were recorded on a digital melting point apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded 400, 500 MHz spectrometers with ¹³C operating frequencies of 100, 125 MHz respectively. Chemical shifts (δ) are reported in ppm relative to the residual solvent (CDCl₃) signal ($\delta = 7.26$ for ¹H NMR and $\delta = 77.0$ for ¹³C NMR). Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, and number of hydrogen). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). IR spectra were recorded on a FT-IR system (Spectrum BX) and are reported in frequency of absorption (cm⁻¹). Only selected IR absorbencies are reported. High-Resolution Mass Spectrometry (HRMS) and Low-Resolution Mass Spectrometry (LRMS) data were recorded on MicrOTOF-Q-II mass spectrometer using methanol as solvent. Optical rotations were measured on an Autopol I automatic polarimeter. Enantiomeric excess was determined by chiral HPLC analysis performed on HPLC system with Daicel Chiralpak AD-H, Chiralpak OD-3, Chiralpak OZ-3 and Chiralpak IB, Chiralpak ID-3, columns.


Compounds 13b-c, 14 and 15a-b were synthesized as per literature known protocol.¹

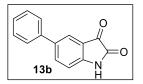

Synthetic preparation of compound 14: To the solution of 5-bromoisatin (750 mg, 3.3 mmol, 1.0 equiv) in toluene (30 mL) under nitrogen atmosphere at 25 °C was added ethylene glycol (3.6 mL, 62.4 mmol, 19.0 equiv) and *p*-toluenesulphonic acid (28.5 mg, 0.2 mmol, 0.05 equiv). Then the reaction mixture was placed over a pre heated oil bath maintaining temperature 110 °C and stirring was continued for 4 h. Upon completion of starting material (judged by TLC analysis under UV light and I₂ stain), reaction mixture was cooled down to room temperature to dryness and residue was diluted with dichloromethane (10 mL) and washed with saturated sodium bicarbonate solution (5 mL). Then the organic compound was extracted with dichloromethane (10 mL X 3). The combined organic layers were dried over anhydrous sodium sulphate and concentrated under reduced pressure. The crude product was purified through column chromatography using 30-40% (EtOAc/Hexane) as eluent to afford the desired product.


3-(5-Bromo-1*H***-indol-3-yl)-3-hydroxyindolin-2-one**:¹ Compound **14** was obtained as colorless solid. (3.3 mmol scale of reaction, 812 mg of product, 91% yield); $R_f = 0.60$ (50% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 7.47 (m, 1H), 7.43 - 7.41 (m, 1H), 6.72 (d, *J* = 8.3 Hz, 1H), 4.56 - 4.52 (m, 2H), 4.33 - 4.30 (m, 2H).

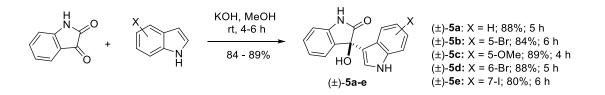
General procedure for the synthesis of compound 15a-b:¹ To a solution of 14 (1.0 equiv) in ethylene glycol dimethyl ether (4 mL) under nitrogen atmosphere at 25 °C was added dichloro bis(triphenylphosphine)palladium(II) (0.03 equiv.). After 15 minutes stirring, phenylboronic acid (1.5 equiv), sodium bicarbonate (3.0 equiv), and water (4 mL) was added simultaneously. Then the reaction mixture was placed over a pre heated oil bath maintaining temperature 120 °C and stirring was continued for 2 h. Upon completion of starting material (judged by TLC analysis under UV light and I₂ stain), the reaction mixture was cooled down to 25 °C and. evaporated to dryness and residue was diluted with dichloromethane (20 mL) and washed with 10% sodium hydroxide solution (15 mL). The aqueous layer was extracted with dichloromethane (10 mL X 3). The combined organic layers were dried over anhydrous sodium sulphate and concentrated under reduced pressure. The crude product was purified through column chromatography using 30-40% (EtOAc/Hexane) as eluent to afford the desired product.

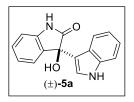


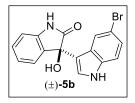
5'-Phenylspiro[[**1**,**3**]**dioxolane-2,3'-indolin**]-**2'-one**:¹ Compound **15a** was obtained as colorless solid (3.4 mmol scale of reaction, 720 mg of product, 80% yield); $R_f = 0.55$ (50% EtOAc in hexane); ¹H NMR (500 MHz, 0.5 mL CDCl₃) δ 8.41 (brs, 1H), 7.59 - 7.58 (m, 1H), 7.53 - 7.50 (m, 3H), 7.42 - 7.39 (m, 2H), 7.33 - 7.30 (m, 1H), 6.88 (d, J = 8.1 Hz, 1H), 4.60 - 4.58 (m, 2H), 4.36 - 4.34 (m, 2H).



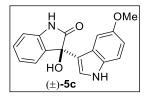
5'-(3-Methoxyphenyl)spiro[[1,3]dioxolane-2,3'-indolin]-2'-one:¹ Compound **15b** was obtained as colorless solid (3.3 mmol scale of reaction, 590 mg of product, 60% yield); R_f = 0.56 (50% EtOAc in hexane); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.67 (brs, 1H), 7.57 (d, J = 1.8 Hz, 1H), 7.50 (dd, J = 8.1, 1.9 Hz, 1H), 7.31 (t, J = 7.9 Hz, 1H), 7.11 -


7.05 (m, 2H), 6.88 - 6.84 (m, 2H), 4.60 - 4.57 (m, 2H), 4.36 - 4.33 (m, 2H), 3.84 (s, 3H); ¹³C NMR (120 MHz, CDCl₃) δ 175.8, 159.9, 141.9, 141.3, 136.7, 136.5, 129.8, 124.9, 124.1, 119.4, 112.6, 112.5, 111.0, 102.5, 65.9, 55.3; MP 150 - 152 °C.

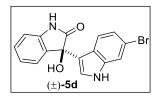

General procedure for the synthesis of compound 13b-c:¹ To the compound of **15** (1.0 equiv) in methanol (9 mL) at 25 °C was added conc. HCl (4 mL). Then the reaction mixture was placed over a pre heated oil bath maintaining temperature 70 °C for 5 h. Upon completion of starting material (judged by TLC analysis under UV light and cerium ammonium molybdate stain), the reaction mixture was evaporated to dryness. The residue was diluted with dichloromethane and washed with saturated sodium bicarbonate solution. Then the organic compound was extracted with dichloromethane (10 mL X 3). Then the combined organic layers were dried over anhydrous sodium sulphate and concentrated under reduced pressure. The crude product was purified through column chromatography using 35-45% (EtOAc/Hexane) as eluent to afford the desired product.


5-Phenylindoline-2,3-dione: Compound **13b** was obtained as colourless solid. (2.2 mmol scale of reaction; 400 mg of product; 80% yield; $R_f = 0.50$ (50% EtOAc in hexane); ¹H **NMR** (400 MHz, DMSO) δ 10.38 (s, 1H), 7.77 - 7.75 (m, 1H), 7.7 (dd, J = 8.1, 2.0 Hz, 1H), 7.51 - 7.48 (m, 2H), 7.45 - 7.36 (m, 2H), 7.37 - 7.32 (m, 1H), 2.27(DMSO).

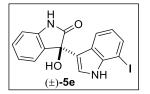
General procedure for the synthesis of 3-Hydroxy-3-indolyl-2-oxindole (\pm)-5a-e: In a round-bottom flask was charged with isatin (1.0 equiv) in MeOH (60 mL) under nitrogen atmosphere at 25 °C indole (1.2 equiv) and KOH (0.2 equiv) were added successively. Then the reaction mixture was then allowed to stir for 4 - 6 h. Upon completion of starting material (judged by TLC analysis under UV light and I₂ stain), the reaction mixture was quenched with water (60 mL) and organic compound was extracted with ethyl acetate (2 X 80 mL). The combined organic layers were dried over anhydrous sodium sulphate and concentrated under reduced pressure. The crude product was purified through column chromatography using hexane-EtOAc as eluent to afford the desired product.



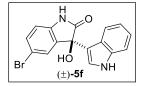
3-Hydroxy-3-(1*H***-indol-3-yl)indolin-2-one:²** Compound (±)-5a was obtained as a colorless solid (13.6 mmol scale of reaction, 3.2 g of product, 88% yield); $R_f = 0.30$ (50% EtOAc in hexane); ¹H NMR (400 MHz, DMSO) δ 10.94 (s, 1H), 10.32 (s, 1H), 7.31 - 7.28 (m, 2H), 7.24 - 7.19 (m, 2H), 7.06 (s, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.94 - 6.88 (m, 2H), 6.83 (t, J = 7.4 Hz, 1H), 6.37 (s, 1H), 3.68 (Water); **IR** (film) υ_{max} 3428, 2839, 2115, 1650, 1470, 1337, 1226, 1185, 1105, 940, 751 cm⁻¹; **MP** 350-352 °C.

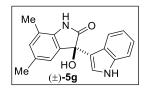


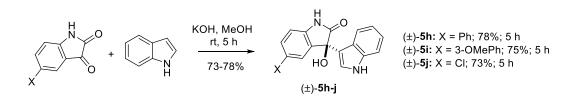
3-(5-Bromo-1*H***-indol-3-yl)-3-hydroxyindolin-2-one**: Compound (±)-**5b** was obtained as a colorless solid (6.8 mmol scale of reaction, 1.95 g of product, 84% yield); $R_f = 0.30$ (50% EtOAc in hexane); ¹**H NMR** (500 MHz, DMSO) δ 11.22 (s, 1H), 10.41 (s, 1H), 7.75 (s, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.32 - 7.28 (m, 2H), 7.21 (d, J = 8.2 Hz, 1H), 7.05 -

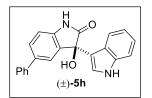

7.01 (m, 2H), 6.97 (d, J = 7.4 Hz, 1H), 6.55 (s, 1H); ¹³C NMR (125 MHz, DMSO) δ 178.8, 142.1, 136.0, 133.3, 129.8, 127.4, 125.6, 125.3, 124.2, 123.6, 122.4, 115.7, 114.1, 111.8, 110.3, 75.2; **IR** (film) 3420, 1792, 1644, 1469, 1245, 1170, 815, 697 cm⁻¹; **MP** 190 - 192 °C.

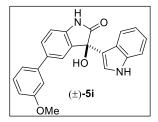
3-Hydroxy-3-(5-methoxy-1*H***-indol-3-yl)indolin-2-one**: Compound (±)-**5c** was obtained as a colorless solid. (6.5 mmol scale of reaction, 1.7 g of product, 89% yield); $R_f = 3.1$ (50% EtOAc in hexane); ¹**H NMR** (400 MHz, 0.5 mL CDCl₃, 0.1 mL DMSO-D₆) δ 9.64 (s, 1H), 9.54 (s, 1H), 7.17 (d, J = 6.9 Hz, 1H), 7.01 - 6.96 (m, 2H), 6.86 - 6.82 (m, 2H), 6.76 (t, J = 7.2 Hz, 1H), 6.69 (d, J = 7.4 Hz, 1H), 6.51 (d, J = 8.6 Hz, 1H), 5.49 (s, 1H), 3.49 (s, 3H), 2.69 (s, 1H); ¹³C NMR (100 MHz, 0.5 mL CDCl₃, 0.1 mL DMSO-D₆) δ 179.3, 153.4, 141.4, 132.8, 132.2, 129.1, 125.4, 124.9, 124.3, 122.1, 114.8, 112.0, 111.6, 110.0, 102.5, 75.6, 55.5; **IR** (film) v_{max} 3416, 2861, 2832, 2106, 1792, 1704, 1622, 1469, 1071, 904, 751 cm⁻¹; **MP** 194 - 196 °C.


3-(6-bromo-1*H***-indol-3-yl)-3-hydroxyindolin-2-one**: Compound (±)-5d was obtained as a colorless solid. (6.8 mmol scale of reaction, 2.05 g of product, 88% yield); $R_f = 2.5$ (50% EtOAc in hexane); ¹H NMR (400 MHz, DMSO-D₆) δ 11.14 (s, 1H), 10.38 (s, 1H), 7.57 (s, 1H), 7.44 (d, J = 8.6 Hz, 1H), 7.29 – 7.25 (m, 2H), 7.08 - 7.07 (m, 2H), 7.01 – 6.98 (m, 1H), 6.94 (d, J = 7.2 Hz, 1H), 6.49 (s, 1H); ¹³C NMR (100 MHz, DMSO-D₆) δ 178.8, 142.1, 138.2, 133.5, 129.7, 125.2, 125.1, 124.6, 122.8, 122.3, 122.0, 116.3, 114.6, 114.5, 110.3, 75.2, 75.2; **IR** (film) ν_{max} 3500, 2950, 2800, 2520, 1802, 1706, 1602, 1499, 1001, 984, 721 cm⁻¹; **MP** >260 °C.

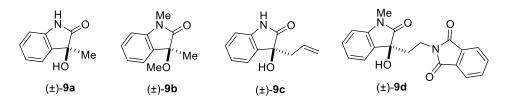

3-hydroxy-3-(7-iodo-1*H***-indol-3-yl)indolin-2-one**: Compound (±)-**5e** was obtained as a colorless solid. (6.5 mmol scale of reaction, 2.02 g of product, 80% yield); $\mathbf{R}_f = 2.9$ (50% EtOAc in hexane); ¹**H NMR** (400 MHz, DMSO-D₆) δ 10.9 (s, 1H), 10.40 (s, 1H), 7.48 – 7.42 (m, 2H), 7.29 – 7.24 (m, 2H), 7.07 (s, 1H), 7.99 – 6.93 (m, 2H), 6.74 (s, 1H), 6.47 (s, 1H); ¹³**C NMR** (100 MHz, DMSO-D₆) δ 178.6, 142.1, 138.9, 133.5, 130.6, 129.7, 125.9, 125.2, 124.8, 122.3, 121.0, 117.4, 110.2, 77.4, 75.5; **IR** (film) v_{max} 3560, 2960, 2852, 2116, 1709, 1662, 1409, 1001, 924, 701 cm⁻¹; **MP** >260 °C.


General procedure for the synthesis of 3-Hydroxy-3-indolyl-2-oxindole (\pm)-5f-g: In a round bottom flask was charged with isatin (1.0 equiv) in MeOH (60 mL) under nitrogen atmosphere at 25 °C indole (1.2 equiv) and KOH (0.2 equiv) were added successively. Then the reaction mixture was then allowed to stir for 5-6 h. Upon completion of starting material (judged by TLC analysis under UV light and I₂ stain), the reaction mixture was quenched with water (60 mL) and organic compound was extracted with ethyl acetate (2 X 80 mL). The combined organic layers were dried over anhydrous sodium sulphate and concentrated under reduced pressure. The crude product was purified through column chromatography using hexane-EtOAc as eluent to afford the desired product.

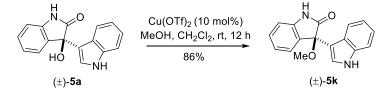

5-Bromo-3-hydroxy-3-(1*H*-indol-3-yl)indolin-2-one: Compound (±)-5**f** was obtained as a colorless solid. (3.3 mmol scale of reaction, 1.0 g of product, 84% yield); $R_f = 3.2$ (50% EtOAc in hexane); ¹H NMR (500 MHz, DMSO) δ 11.06 (s, 1H), 10.58 (s, 1H), 7.46 (d, *J* = 7.3 Hz, 1H), 7.38 (m, 3H), 7.19 (s, 1H), 7.08 (d, *J* = 12.6 Hz, 1H), 6.95 - 6.93 (m, 2H), 6.66 (s, 1H), (Water); ¹³C NMR (125 MHz, DMSO) δ 178.5, 141.4, 137.3, 136.3, 132.3, 127.9, 125.1, 124.1, 121.8, 120.4, 119.3, 115.1, 114.0, 112.4, 112.2, 75.3; **IR** (film) v_{max} 3416, 1792, 1644, 1492, 1335, 1247, 1177, 1121, 815, 715 cm⁻¹; **MP** 310 - 312 °C.


3-Hydroxy-3-(1*H***-indol-3-yl)-5,7-dimethylindolin-2-one**: Compound (±)-5g was obtained as a colorless solid (3.9 mmol scale of reaction, 1.0 g of product, 90% yield); $R_f = 0.55$ (50% EtOAc in hexane); ¹H NMR (500 MHz, 0.5 mL CDCl₃, 0.1 mL DMSO-D₆) δ 10.93 (s, 1H), 10.53 (s, 1H), 7.32 (dd, J = 47.6, 8.2 Hz, 2H), 7.02 (t, J = 7.6 Hz, 1H), 6.86 - 6.79 (m, 3H), 3.38 (s, 3H), 2.23 (d, J = 67.2 Hz, 3H); ¹³C NMR (125 MHz, DMSO-D₆) δ 179.7, 137.9, 137.4, 134.7, 130.5, 129.9, 126.2, 124.8, 123.3, 121.4, 121.3, 118.9, 118.6, 115.1, 112.0, 55.4, 21.2, 1; **IR** (film) v_{max} 3387, 3304, 2924, 2852, 1735, 1701, 1624, 1544, 1465, 1286, 1099, 740, 617 cm⁻¹; **MP** 210 - 212 °C.

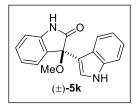
General procedure for the synthesis of 3-Hydroxy-3-indolyl-2-oxindoles (\pm) -5h-j is like synthesis of (\pm) -5f-g.



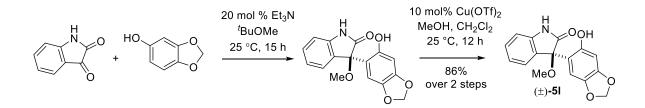
3-Hydroxy-3-(1*H*-indol-3-yl)-5-phenylindolin-2-one: Compound (±)-5h was obtained as a colorless solid (3.5 mmol scale of reaction, 930 mg of product, 78% yield); $R_f = 3.2$ (50% EtOAc in hexane); ¹H NMR (400 MHz, DMSO-D₆) δ 10.96 (s, 1H), 10.42 (s, 1H), 7.55 - 7.47 (m, 3H), 7.41 - 7.22 (m, 5H), 7.01 (s, 1H), 7.01 - 6.82 (m, 3H), 6.41 (s, 1H), 3.32 (Water); ¹³C NMR (125 MHz, DMSO-D₆) δ 178.9, 141.7, 140.6, 137.2, 134.6, 134.3, 129.4 (2C), 127.9, 127.2, 126.5 (2C), 125.3, 124.1, 123.4, 121.5, 120.7, 118.9, 115.7, 111.9, 110.5, 75.5; **IR** (film) ν_{max} 3415, 3387, 2922, 2850, 2357, 1714, 1624, 1389, 1172, 744, 694 cm⁻¹; **MP** > 300 °C.



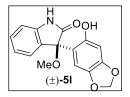
3-Hydroxy-3-(1*H*-indol-3-yl)-5-(3-methoxyphenyl)indolin-2-one: Compound (±)-5i was obtained as an orange solid (2.0 mmol scale of reaction, 555 mg of product, 75% yield); $\mathbf{R}_f = 3.3$ (50% EtOAc in hexane); ¹H NMR (400 MHz, DMSO-D₆) δ 10.96 (s,1H), 10.42 (s, 1H), 7.55 (d, J = 8.1 MHz, 1H), 7.49 (s, 1H), 7.42 (d, J = 8.1 MHz, 1H), 7.32 - 7.25 (m, 2H), 7.09 - 7.06 (m, 2H), 7.02 - 6.95 (m, 3H), 6.87 - 6.81 (m, 2H), 6.41 (s, 1H), 3.75 (s, 3H), 3.33 (Water); ¹³C NMR (125 MHz, DMSO-D₆) δ 183.7, 164.9, 146.8, 146.6, 142.0, 139.3, 138.9, 135.1, 132.8, 130.1, 128.4, 128.2, 126.3, 125.5, 123.7, 123.6, 120.5, 117.6, 116.7, 116.6, 115.2, 80.2, 60.3; **IR** (film) v_{max} 3388, 2926, 2355, 1712, 1641, 1624, 1579, 1477, 1392, 1165, 1082, 821, 740 cm⁻¹; **MP** > 300 °C.


Compound (\pm) -5j was prepared as per literature report.³

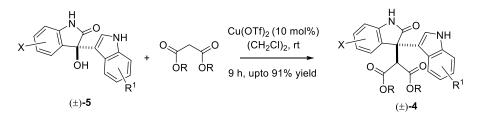
Compound (\pm) -9a⁴ and compounds (\pm) -9b-d⁵ were synthesized as per literature reports.



Synthetic procedure for the compound (\pm)-5k: In an oven-dried round bottom flask was charged with oxindole (\pm)-5a (1 g; 3.8 mmol; 1.0 equiv) in dichloromethane (15 mL) under nitrogen atmosphere at 25 °C Lewis acid (0.38 mmol, 10 mol %) and MeOH (765 µl; 18.9 mmol, 5.0 equiv) was added. Then the reaction mixture was allowed to stir for 12 h. Upon completion of starting material (judged by TLC analysis under UV light and I₂ stain), the reaction mixture was quenched with water (20 mL) and organic compound was extracted with ethyl acetate (2 X 30 mL). The combined organic layers were dried over anhydrous sodium sulphate and concentrated under reduced pressure. The crude product was purified through column chromatography using 25-40% (EtOAc/Hexane) as eluent to afford the desired product.

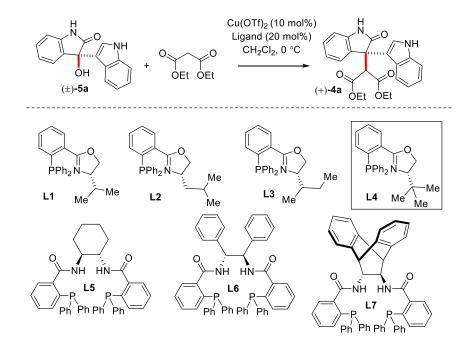

3-(1*H***-Indol-3-yl)-3-methoxyindolin-2-one**: Compound (±)-5k was obtained as an orange solid (3.0 mmol scale of reaction, 760 mg of product, 92% yield); $R_f = 3.3$ (50% EtOAc in hexane); ¹H NMR (400 MHz, DMSO- d_6) δ 11.08 (s, 1H), 10.58 (s, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.34 (dd, J = 13.9, 7.6 Hz, 3H), 7.06 (q, J = 8.1 Hz, 2H), 6.97 - 6.92 (m, 3H), 3.43 (Water), 3.15 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 176.4, 142.8, 137.2, 130.3, 128.8, 125.7, 125.5, 124.8, 122.4, 121.8, 121.4, 119.2, 113.2, 112.0, 110.5,

81.7, 52.3; **IR** (film) υ_{max} 3338, 2956, 2354, 1710, 1621, 1616, 1569, 1470, 1292, 1105, 1012, 921, 750 cm⁻¹.



Synthetic procedure for the compound (\pm)-51: In an oven-dried round bottom flask was charged with isatin (1g; 6.8 mmol; 1.0 equiv) in methyl *tert*-butyl ether (15 mL) under nitrogen atmosphere at 25 °C. To this solution, sesamol (8.2 mmol, 1.2 equiv) and Et₃N (1.3 mmol, 20 mol%) was added sequentially and the reaction mixture was allowed to stir for 15 h. Upon completion of starting material (judged by TLC analysis), the reaction mixture was quenched with water (20 mL) and organic compound was extracted with ethyl acetate (2 X 30 mL). Then the combined organic layers were dried over anhydrous sodium sulphate and concentrated under reduced pressure. This crude product was used for next step without purification.

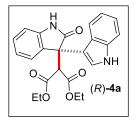
To the crude product of 3-hydroxy 2-oxindoles (~6.3 mmol; 1.0 equiv) in dichloromethane (30 mL) under nitrogen atmosphere at 25 °C Lewis acid (~0.63 mmol, 10 mol %) and MeOH (~31.5 mmol, 5.0 equiv) was added. Then the reaction mixture was allowed to stir for 12 h. Upon completion of starting material (judged by TLC analysis under UV light and I₂ stain), the reaction mixture was quenched with water (30 mL) and organic compound was extracted with ethyl acetate (2 X 40 mL). The combined organic layers were dried over anhydrous sodium sulphate and concentrated under reduced pressure. The crude product was purified through column chromatography using 30-40% (EtOAc/Hexane) as eluent to afford the desired product.



3-(6-Hydroxybenzo[*d*][1,3]dioxol-5-yl)-3-methoxyindolin-2-one: Compound (±)-5l was obtained as orange solid (6.8 mmol scale of reaction, 1.7 g of product, 86% yield over two steps); $R_f = 3.3$ (50% EtOAc in hexane); ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.50 (s, 1H), 9.19 (s, 1H), 7.21 (ddd, *J* = 7.8, 5.9, 3.0 Hz, 1H), 7.16 (s, 1H), 6.91 - 6.89 (m, 2H), 6.84 (d, *J* = 7.7 Hz, 1H), 6.27 (s, 1H), 5.93 (d, *J* = 8.6 Hz, 2H), 3.46 (Water), 3.04 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 176.3, 148.9, 147.2, 144.2, 140.0, 129.8, 128.7, 124.8, 122.1, 118.8, 109.7, 106.9, 101.2, 98.0, 81.0, 51.4; **IR** (film) v_{max} 3382, 2916, 2255, 1722, 1631, 1614, 1568, 1452, 1390, 1105, 1002, 911, 720 cm⁻¹.

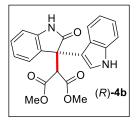
General procedure for the synthesis of (\pm) -4a-t: 3-Hydroxy 2-oxindoles (0.38 mmol; 1.0 equiv) was taken in dry dichloromethane (2 mL) under nitrogen atmosphere and 10 mol % Cu(OTf)₂ was added to this at room temperature under argon atmosphere. After 5 minutes stirring at room temperature, malonate (3 equiv) was added drop-wise over a period of 5 minutes. Then the reaction mixture was allowed to stir for 9 h. Upon completion of starting material (judged by TLC analysis under UV light and I₂ stain), the crude mixture was concentrated under reduced pressure and product was purified by column chromatography by using 25-40% (EtOAc/Hexane) as eluent to afford the desired products.

Table. Optimization of enantioselective malonate addition of (\pm) -**5a** with diethylmalonate.^{a,b}

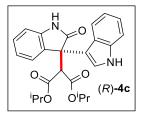


entry	catalyst	ligand	solvent	temp.	time	% yield	% ee
1	Cu(OTf) ₂	12 mol% L1	CH ₂ Cl ₂	25 °C	12 h	79%	52%
2	Cu(OTf) ₂	12 mol% L2	CH ₂ Cl ₂	25 °C	13 h	80%	38%
3	Cu(OTf) ₂	12 mol% L3	CH ₂ Cl ₂	25 °C	12 h	81%	51%
4	Cu(OTf) ₂	12 mol% L4	CH ₂ Cl ₂	25 °C	13 h	84%	72%
5	Cu(OTf) ₂	12 mol% L4	CH ₂ Cl ₂	0 °C	16 h	83%	82%
6	Cu(OTf) ₂	20 mol% L4	CH ₂ Cl ₂	0 °C	15 h	84%	92%
7	Cu(OTf) ₂	10 mol% L4	CH ₂ Cl ₂	0 °C	17 h	75%	80%
8 ^c	Cu(OTf) ₂	20 mol% L4	CH ₂ Cl ₂	0 °C	16 h	79%	86%
9	Cu(OTf) ₂	20 mol% L4	CH ₂ Cl ₂	-5 °C	16 h	75%	88%
10	Cu(OTf) ₂	20 mol% L4	CH ₂ Cl ₂	-5 °C	28 h	83%	94%
11	Cu(OTf) ₂	20 mol% L4	CH ₂ Cl ₂	-10 °C	45 h	69%	88%
12	Cu(OTf) ₂	20 mol% L4	CH ₂ Cl ₂	-15 °C	21 h	70%	75%
13	Cu(OTf) ₂	20 mol% L4	CH ₂ Cl ₂	0 - 25 °C	12 h	85%	82%
14	Cu(OTf) ₂	20 mol% L4	PhMe	0 °C	12 h	75%	71%
15	Cu(OTf) ₂	20 mol% L4	THF	0 °C	6 h	83%	14%
16	Cu(OTf) ₂	20 mol% L4	CHCl ₃	0 °C	9 h	55%	61%
17	Cu(OTf) ₂	20 mol% L4	(CH ₂ Cl) ₂	0 °C	20 h	55%	22%
18	Cu(OTf) ₂	20 mol% L4	DCB ^e	0 °C	15 h	85%	59%
19	Cu(OTf) ₂	20 mol% L5	CH ₂ Cl ₂	0 °C	19 h	78%	24%

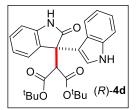
20	Cu(OTf) ₂	20 mol% L6	CH ₂ Cl ₂	0 °C	19 h	72%	39%
21	Cu(OTf) ₂	20 mol% L7	CH ₂ Cl ₂	0 °C	17 h	80%	40%
22	In(OTf) ₃	20 mol% L4	CH ₂ Cl ₂	0 °C	15 h	20%	00%
23	Cu(OTf) _. P hMe	12 mol% L4	CH ₂ Cl ₂	0 °C	17 h	82%	77%
24	Cu(OTf) P hMe	20 mol%	CH ₂ Cl ₂	0 °C	16 h	86%	83%


^aAll the reactions were carried out on a 0.08 mmol of **5a**, 0.23 mmol of dialkylmalonate in 3 mL of dichloromethane at 0 °C. ^bIsolated yields after column chromatography. ^cReactions were carried out on a 0.08 mmol of **5a**, 0.16 mmol of dialkylmalonate in 3 mL of dichloromethane at 0 °C.

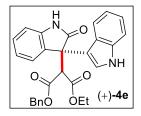
General procedure for the synthesis of enantioseletive compounds: (*R*)-4a-s, (+)-4t: An oven dried sample vial was charged with Lewis acid (0.1 equiv) and ligand (0.2 equiv) in dichloromethane (4 mL) at 25 °C under nitrogen atmosphere. The reaction mixture was stirred for 30 minutes to make the complex. After that the reaction vessel was cooled to 0 °C and malonate (3.0 equiv) was added to the mixture and stirring was continued for 15 minutes maintaining temperature 0 °C. Then, a solution of 3-hydroxy 2oxindole in dichloromethane (0.5 mL) was added slowly to the reaction mixture. Then the reaction mixture was allowed to stir for respective times at 0 °C for condition A and -5 °C for condition B. After complete consumption of starting material (as judged by running TLC), the crude mixture was concentrated under reduced pressure and purified by column chromatography by using 30-40% EtOAc-hexane mixture as eluent to afford the desired compound.



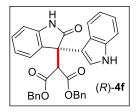
Diethyl (*R*)-2-(3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (*R*)-4a was obtained as yellow solid (0.08 mmol scale of reaction, 26 mg of product, 80% yield); $R_f = 0.50$ (50% EtOAc in hexane); ¹H NMR (400 MHz, 0.4 mL CDCl₃, 0.1 mL DMSO-D₆) δ 9.63 (brs, 1H), 9.49 (brs, 1H), 7.80 (d, J = 7.2 Hz, 1H), 7.63 (d, J = 7.7 Hz, 1H), 7.10 (t, J


= 8.3 Hz, 2H), 6.91 - 6.80 (m, 3H), 6.76 (d, J = 7.7 Hz, 1H), 6.51 - 6.50 (m, 1H), 4.99 (s, 1H), 3.77 - 3.66 (m, 4H), 0.76 (t, J = 14.2 Hz, 3H), 0.62 (t, J = 14.2 Hz, 3H); ¹³C NMR (100 MHz, 0.4 mL CDCl₃, 0.1 mL DMSO-D₆) δ 178.4, 167.3, 166.9, 142.5, 136.9, 129.8, 128.3, 126.9, 124.9, 124.2, 121.7, 121.4, 121.3, 118.8, 111.9, 111.2, 109.5, 61.1, 60.6, 56.4, 53.4, 13.2, 13.1; **IR** (film) v_{max} 3375, 2989, 2359, 1724, 1615, 1265, 1034, 747, 700 cm⁻¹; **HRMS** (ESI) m/z [M + H]⁺ Calcd for [C₁₉H₁₉N₂O₅]⁺ 407.1601; Found 407.1604; **MP** 170 - 172 °C; Enantiomeric excess of pure compound was determined via HPLC analysis using a Chiralpak ID-3 column; solvent: hexane/2-propanol = 50/50; flow rate: 1.0 mL/min; detection: at 254 nm): tR minor = 4.88 min, tR major = 5.92 min. [α]_D ^{23.0} = +128.6 (c = 0.18, CH₂Cl₂ for 94% ee).

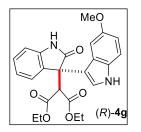
Dimethyl (*R***)-2-(3-(1***H***-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (***R***)-4b was obtained as a colorless solid (0.08 mmol scale of reaction, 24 mg of product, 82% yield); R_f = 0.48 (50% EtOAc in hexane); ¹H NMR (500 MHz, 0.4 mL CDCl₃, 0.1 mL DMSO-D₆) δ 9.25 (s, 1H), 9.18 (s, 1H), 7.87 (d,** *J* **= 7.6 Hz, 1H), 7.62 (d,** *J* **= 8.2 Hz, 1H), 7.20 (t,** *J* **= 7.1 Hz, 2H), 7.01 (q,** *J* **= 8.0 Hz, 2H), 6.95 (d,** *J* **= 7.9 Hz, 1H), 6.86 (d,** *J* **= 7.8 Hz, 1H), 6.65 (s, 1H), 5.15 (s, 1H), 3.40 (s, 3H), 3.38 (s, 3H); ¹³C NMR (125 MHz, 0.4 mL CDCl₃, 0.1 mL DMSO-D₆) δ 178.5, 168.0, 167.4, 142.4, 137.1, 129.8, 128.7, 127.1, 124.9, 124.4, 121.9, 121.7, 121.5, 119.4, 111.9, 111.5, 109.9, 56.5, 53.6, 52.4, 52.2; IR** (film) ν_{max} 3361, 3059, 2983, 2938, 2308, 1720, 1455, 1316, 1104, 1015, 913, 838, 743 cm⁻¹; **HRMS** (ESI) m/z [M + H]⁺ Calcd for [C₂₁H₁₉N₂O₅]⁺ 379.1288; Found 379.1309; **MP** 240 - 242 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak OZ-3 column; solvent: hexane/2-propanol = 70/30; flow rate: 1.0 mL/min; detection: at 254 nm): *t*_R minor = 11.71 min, *t*_R major = 14.29 min. [α]_D^{22.1} = +250.0 (*c* = 0.22, CHCl₃ for 89% ee).



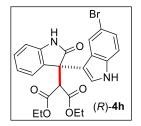
Diisopropyl (*R*)-2-(3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (*R*)-4c was obtained as a yellow solid (0.08 mmol scale of reaction, 27 mg of product, 79% yield); $R_f = 0.52$ (50% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.63 (brs, 1H), 8.15 (brs, 1H), 8.05 (d, J = 6.0 Hz, 1H), 7.92 (d, J = 6.3 Hz, 1H), 7.24 - 7.18 (m, 2H), 7.06 - 7.05 (m, 3H), 6.84 (m, 1H), 6.53 (s, 1H), 5.16 (s, 1H), 4.71 - 4.70 (m, 2H), 1.01-0.91 (m, 6H), 0.68 - 0.59 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 179.1, 167.1, 166.6, 141.9, 137.0, 129.9, 128.7, 127.5, 125.1, 124.2, 122.4, 122.3, 122.1, 119.6, 112.8, 111.3, 109.9, 69.5, 68.6, 56.8, 53.7, 21.3, 21.2, 20.6, 20.6; IR (film) υ_{max} 3340, 2975, 2340, 2320, 1720, 1620, 1600, 1265, 1005, 1051, 700, 692 cm⁻¹; HRMS (ESI) m/z [M + H]⁺ Calcd for [C₂₅H₂₇N₂O₅]⁺ 435.1914; Found 435.1900; MP 110 - 112 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak IB column; solvent: hexane/2-propanol = 40/30; flow rate: 1.0 mL/min; detection: at 254 nm): *t*_R minor = 5.45 min, *t*_R major = 6.32 min. [α]_D^{23.0} = +179.7 (*c* = 0.30, CHCl₃ for 89% ee).


Ditert-butyl (*R*)-2-(3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (*R*)-4d was obtained as a colorless solid. (0.08 mmol scale of reaction, 29 mg of product, 79% yield); $R_f = 0.56$ (50% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (brs, 1H), 8.11 - 8.02 (m, 3H), 7.28 - 7.25 (m, 2H), 7.12 - 7.04 (m, 3H), 6.88 (d, J = 7.7 Hz, 1H), 6.55 (s, 1H), 5.08 (s, 1H), 1.05 (s, 9H), 0.99 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 179.2, 166.8, 166.5, 141.7, 137.1, 130.4, 128.6, 127.7, 125.3, 124.2, 122.90, 122.4, 122.2, 119.6, 113.4, 111.2, 109.6, 82.6, 81.4, 58.1, 53.8, 27.3, 27.1; IR (film) ν_{max} 3340, 2975,

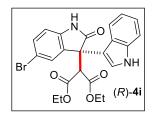
2340, 2320, 1720, 1620, 1600, 1265, 1051, 700, 692 cm⁻¹; **HRMS** (ESI) m/z [M + Na]⁺ Calcd for $[C_{27}H_{30}N_2O_5+Na]^+$ 485.2047; Found 485.2076; **MP** 138 - 140 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak OD-3 column; solvent: hexane/2-propanol = 50/50; flow rate: 1.0 mL/min; detection: at 254 nm): t_R minor = 4.78 min, t_R major = 6.86 min. $[\alpha]_D^{23.1}$ = +105.2 (c = 0.18, CHCl₃ for 77% ee).



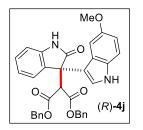
(+)-1-Benzyl-3-ethyl-2-(-3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (+)-4e was obtained as a yellow solid (0.08 mmol scale of reaction, 31 mg of product, 83% yield); $R_f = 0.56$ (50% EtOAc in hexane); ¹H NMR (400 MHz, DMSO-D₆) δ 10.97 (brs, 1H for major diastereomer + 1H for minor diastereome), 10.47 (brs, 1H for minor diastereomer), 10.46 (s, 1H for major diastereomer), 7.76 (d, J = 7.3 Hz, 1H for minor diastereomer), 7.71 (d, J = 7.3 Hz, 1H for major diastereomer), 7.53 (d, J = 8.0 Hz, 1H for major diastereomer), 7.49 (d, J = 8.1 Hz, 1H for minor diastereomer), 7.36 - 7.22 (m, 3H for major diastereomer + 3H for minor diastereomer), 7.27 - 7.16 (m, 2H for major diastereomer + 2H for minor diastereomer), 7.04 - 6.95 (m, 3H for major diastereomer + 3H for minor diastereomer), 6.90 - 6.83 (m, 3H for major diastereomer + 3H for minor diastereomer), 6.66 (s, 1H for minor diastereomer), 6.63 (s, 1H for major diastereomer), 5.02 (s, 1H for major diastereomer), 5.01 (s, 1H for minor diastereomer), 4.93 - 4.81 (m, 2H for major diastereomer + 2H for minor diastereomer), 4.35 (Water), 3.81 - 3.80 (m, 2H for major diastereomer + 2H for minor diastereomer), 0.80 (t, J = 6.9 Hz, 3H for major diastereomer), 0.65 (t, J = 6.8 Hz, 3H for for minor diastereomer); ¹³C NMR (100 MHz, DMSO-D₆) δ 178.1, 177.9, 167.4, 167.3, 166.90, 166.87, 143.5, 143.4, 137.4, 137.3, 135.7, 135.5, 130.2, 130.1, 129.13, 129.11, 128.8, 128.6, 128.5, 128.2, 127.9, 127.7, 127.2, 127.0, 125.3, 125.2, 124.92, 124.91, 121.8, 121.75, 121.72, 121.67, 121.63 (2 C), 119.2, 119.0, 112.5, 112.1, 111.9, 111.8, 110.2, 110.1, 66.9, 66.7, 61.7, 61.1, 56.65, 56.61, 53.5, 53.4, 13.7, 13.6; **IR** (film) v_{max} 3700, 3464, 2918, 2352, 1725, 1458,


1322, 1241, 1148, 738 cm⁻¹; **HRMS** (ESI) m/z [M + Na]⁺ Calcd for $[C_{28}H_{24}N_2O_5+Na]^+$ 491.1577; Found 491.1602; **MP** 190 - 192 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak AD-H column; solvent: hexane/2propanol = 50/50; flow rate: 1.0 mL/min; detection: at 254 nm): in case of minor diastereomer (t_R minor = 9.40 min, t_R major = 17.8.54 min. 84% ee), in case of major diastereomer (t_R minor = 11.88 min, t_R major = 22.05 min. 85% ee). [α]_D^{22.0} = +192.1 (c= 0.26, in CHCl₃).

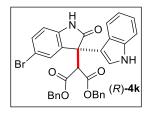
Dibenzyl (*R*)-2-(3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (*R*)-4f was obtained as a yellow solid (0.08 mmol scale of reaction 38 mg of product 90% yield); $R_f = 0.60$ (50% EtOAc in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 7.6 Hz, 1H), 7.97 (s, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.68 (s, 1H), 7.28 – 7.23 (m, 6H), 7.19 – 7.15 (m, 3H), 7.09 – 7.04 (m, 4H), 6.86 (d, J = 7.1 Hz, 2H), 6.73 (d, J = 7.7 Hz, 1H), 6.62 (d, J = 2.7 Hz, 1H), 5.37 (s, 1H), 4.91 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 178.0, 167.2, 166.7, 141.4, 136.9, 135.0, 134.7, 129.4, 128.7, 128.4, 128.2, 128.2, 128.1, 127.9, 127.9, 127.3, 124.9, 124.3, 122.3, 122.3, 122.0, 120.0, 112.3, 111.4, 109.8, 67.3, 67.0, 56.5, 53.4; **IR** (film) υ_{max} 3390, 2928, 2251, 1729, 1621, 1400, 1360, 1311, 1260, 1100, 1022, 756, 698 cm⁻¹; **HRMS** (ESI) m/z [M + H]⁺ Calcd for [C₃₃H₂₇N₂O₅]⁺ 531.1914; Found 531.1939; **MP** 180 - 182 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak OD-3 column; solvent: hexane/2-propanol = 50/50; flow rate: 1.0 mL/min; detection: at 254 nm): *t*_R minor = 4.69 min, *t*_R major = 9.21 min. [α]_D^{21.0} = +222.6 (*c* = 0.18, MeOH for >99% ee).



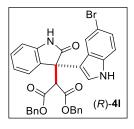
Diethyl (*R*)-2-(3-(5-methoxy-1*H*-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (*R*)-4g was obtained as a colorless solid (0.08 mmol scale of reaction, 27 mg of product, 73% yield); $R_f = 0.56$ (50% EtOAc in hexane); ¹H NMR (400 MHz, DMSO-D₆) δ 10.82 (s, 1H), 10.46 (s, 1H), 7.76 (d, J = 7.4 Hz, 1H), 7.27 (td, J = 7.7, 0.9 Hz, 1H), 7.16 (d, J = 8.8 Hz, 1H), 7.01 (t, J = 7.3 Hz, 1H), 6.90 (d, J = 7.7 Hz, 1H), 6.76 (d, J = 1.8 Hz, 1H), 6.66 - 6.63 (m, 2H), 4.86 (s, 1H), 3.90- 3.76 (m, 4H), 3.58 (s, 3H), 3.48 (Water), 0.79 (t, J = 7.1 Hz, 3H), 0.75 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-D₆) δ 178.2, 167.4, 167.0, 153.1, 143.6, 132.4, 130.2, 129.2, 127.3, 125.6, 125.3, 121.7, 112.6, 111.6, 111.4, 110.0, 103.6, 61.6, 61.0, 56.6, 55.6, 53.3, 13.7, 13.7; IR (film) υ_{max} 3381, 2982, 1715, 1471, 1371, 1299, 1246, 1189, 1031, 860, 816, 741 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ Calcd for [C₂₄H₂₄N₂O₆+Na]⁺ 459.1527; Found 459.1551; MP 130 - 132 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak IE-3 column; solvent: hexane/2-propanol = 50/50; flow rate: 1.0 mL/min; detection: at 254 nm): t_R minor = 8.60 min, t_R major = 10.81 min. [α]_D^{24.0} = +110.0 (c = 0.20, CHCl₃ for 76% ee).



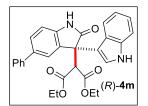
Diethyl (*R*)-2-(3-(5-bromo-1*H*-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (*R*)-4h was obtained as a brown solid (0.08 mmol scale of reaction, 30 mg of product, 77% yield); $R_f = 0.56$ (50% EtOAc in hexane); ¹H NMR (500 MHz, DMSO-D₆) δ 11.23 (s, 1H), 10.57 (s, 1H), 7.82 - 7.76 (m, 2H), 7.35 - 7.30 (m, 2H), 7.18 (d, J = 8.7 Hz, 1H), 7.08 (d, J = 7.8 Hz, 1H), 6.94 (t, J = 6.1 Hz, 1H), 6.73 (s, 1H), 4.91 (s, 1H), 3.93 - 3.81 (m, 4H), 0.84 (t, J = 7.1 Hz, 3H), 0.73 (t, J = 3.1 Hz, 3H); ¹³C NMR (125 MHz, DMSO-


D₆) δ 178.0, 167.2, 166.7, 143.4, 136.1, 129.8, 129.2, 127.0, 126.9, 126.6, 124.1, 124.1, 121.8, 114.2, 111.8, 111.8, 110.1, 61.6, 61.0, 56.7, 53.2, 13.7, 13.6; **IR** (film) v_{max} 3260, 3063, 2922, 2359, 1712, 1616, 1469, 1217, 1097, 1018, 746 cm⁻¹; **HRMS** (ESI) m/z [M + Na]⁺ Calcd for [C₂₃H₂₁BrN₂O₅+Na]⁺ 507.0526; Found 507.0534; **MP** 120 - 122 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak IB column; solvent: hexane/2-propanol = 70/30; flow rate: 1.0 mL/min; detection: at 254 nm): $t_{\rm R}$ minor = 4.72 min, $t_{\rm R}$ major = 6.65 min. [α]_D ^{24.1} = +198.2 (c = 0.19, CHCl₃ for 88% ee).

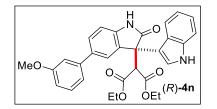
Diethyl (*R*)-2-(5-bromo-3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (*R*)-4i was obtained as a brown solid (0.08 mmol scale of reaction, 27 mg of product, 70% yield); $R_f = 0.60$ (50% EtOAc in hexane); ¹H NMR (100 MHz, DMSO-D₆) 11.02 (s, 1H), 10.65 (s, 1H), 7.96 - 7.95 (m, 1H), 7.50 (t, *J* = 6.7 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 1H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.92 - 6.87 (m, 2H), 6.70 (d, *J* = 2.7 Hz, 1H), 4.95 (s, 1H), 3.92 - 3.79 (m, 4H), 3.34 (s, 3H), 0.87 (t, *J* = 7.1 Hz, 3H), 0.71 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-D₆) δ 177.5, 167.3, 166.7, 142.9, 137.3, 132.6, 131.8, 129.8, 125.0, 124.7, 121.6, 119.1, 113.3, 112.2, 112.0, 111.1, 61.7, 61.1, 56.4, 53.6, 13.7, 13.6; IR (film) v_{max} 3381, 2982, 1715, 1471, 1371, 1299, 1246, 1189, 1031, 860, 816, 741 cm⁻¹; HRMS (ESI) m/z [M + Na]⁺ Calcd for [C₂₃H₂₁BrN₂O₅+Na]⁺ 507.0526; Found 507.0530; MP 180 - 182 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak IB column; solvent: hexane/2-propanol = 70/30; flow rate: 1.0 mL/min; detection: at 254 nm): *t*_R minor = 6.00 min, *t*_R major = 11.09 min. [α]_D ^{25.0} = +180.7 (*c* = 0.17, CHCl₃ for 88% ee).



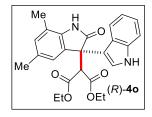
Dibenzyl (*R*)-2-(3-(5-methoxy-1*H*-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (*R*)-4j was obtained as a colorless solid (0.08 mmol scale of reaction, 36 mg of product, 80% yield); $R_f = 0.57$ (50% EtOAc in hexane; ¹H NMR (400 MHz, 0.5 mL CDCl₃, 0.1 mL DMSO-D₆) δ 9.05 (s, 1H), 8.95 (s, 1H), 7.91 (d, *J* = 7.5 Hz, 1H), 7.23 - 7.14 (m, 4H), 7.16 - 7.09 (m, 3H), 7.08 (d, *J* = 2.5 Hz, 1H), 7.03 - 6.92 (m, 3H), 6.87 - 6.78 (m, 2H), 6.76 (d, *J* = 7.7 Hz, 1H), 6.72 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.63 (d, *J* = 2.8 Hz, 1H), 5.24 (s, 1H), 4.91 - 4.68 (m, 4H), 3.62 (s, 3H), 2.36 (Water); ¹³C NMR (125 MHz, DMSO-D₆) δ 178.1, 167.1, 166.7, 153.5, 142.1, 134.8, 134.6, 132.0, 129.4, 128.4, 128.2, 128.1, 127.9, 127.8, 127.7, 127.2, 125.1, 124.9, 121.7, 112.3, 111.9, 111.4, 109.7, 103.0, 67.0, 66.7, 56.3, 55.4, 53.3; **IR** (film) v_{max} 3377, 2355, 1713, 1615, 1469, 1308, 1214, 1146, 735 cm⁻¹; **HRMS** (ESI) m/z [M + Na]⁺ Calcd for [C₃₄H₂₈N₂O₆+Na]⁺ 583.1840; Found 583.1855; **MP** 158 - 160 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak OD-3 column; solvent: hexane/2-propanol = 60/40; flow rate: 1.0 mL/min; detection: at 254 nm): t_R minor = 5.60 min, t_R major = 16.12 min. [α]_D^{22.5} = +70.0 (*c* = 0.10, MeOH for 96% ee).



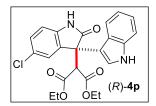
Dibenzyl (*R*)-2-(5-bromo-3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (*R*)-4k was obtained as a yellow solid (0.08 mmol scale of reaction, 36 mg of product, 74% yield); $R_f = 0.60$ (40% EtOAc in hexane); ¹H NMR (500 MHz, 0.5 mL CDCl₃, 0.1 mL DMSO-D₆) δ 9.66 - 9.64 (m, 2H), 7.99 - 7.96 (m, 1H), 7.79 - 7.74 (m, 1H), 7.29 - 7.16 (m, 5H), 7.13 - 7.01 (m, 4H), 6.99 - 6.88 (m, 3H), 6.71- 6.67 (m, 2H), 6.62 - 6.58 (m, 1H), 6.54 - 6.51(m, 1H), 5.23 - 5.20 (m, 1H), 4.84 - 4.82 (m, 2H), 4.74 - 4.72 (m,


2H), ; ¹³C NMR (125 MHz, DMSO) δ 177.6, 167.1, 166.6, 141.8, 137.2, 134.8, 134.7, 131.7, 131.4, 129.9, 128.4, 128.3, 128.1, 127.9, 127.8, 127.7, 127.6, 124.8, 124.5, 121.8, 121.7, 119.4, 114.0, 111.6, 111.4, 67.2, 66.9, 56.4, 53.7; **IR** (film) v_{max} 3388, 3066, 2924, 2854, 2840, 1728, 1620, 1471, 1465, 1442, 1311, 1273, 1250, 1217, 1145, 750, 686 cm⁻¹; **HRMS** (ESI) m/z [M + Na]⁺ Calcd for [C₃₃H₂₅BrN₂O₅+Na]⁺ 631.0839; Found 631.0839; **MP** 220 - 222 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak OD-3 column; solvent: hexane/2-propanol = 60/40; flow rate: 1.0 mL/min; detection: at 254 nm): $t_{\rm R}$ minor = 6.18 min, $t_{\rm R}$ major = 13.88 min. [α]_D^{25.0} = +120.0 (c = 0.16, CHCl₃ for 94% ee).

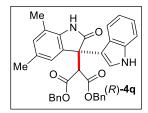
Dibenzyl (*R*)-2-(3-(5-bromo-1*H*-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (*R*)-4l was obtained as a colorless solid (0.08 mmol scale of reaction, 38 mg of product, 80% yield); $R_f = 0.55$ (50% EtOAc in hexane); ¹H NMR (400 MHz, 0.5 mL CDCl₃, 0.1 mL DMSO-D₆) δ 9.85 (br, 1H), 9.41 (br, 1H), 7.98 (s, 1H), 7.83 - 7.81 (m, 1H), 7.1 - 7.08 (m, 9H), 6.95 - 6.91 (m, 3H), 6.7 - 6.73 (m, 3H), 6.5 - 6.53 (m, 1H), 5.16 (s, 1H), 4.81 - 4.72 (m, 4H); ¹³C NMR (125 MHz, DMSO-D₆) δ 178.1, 167.2, 166.7, 142.4, 142.4, 135.9, 134.8, 134.7, 129.2, 128, 4128.4, 128.3, 128.1, 127.9, 127.7, 126.9, 126.6, 126.1, 124.5, 124.3, 121.8, 113.2, 112.7, 111.5, 110.1, 67.2, 66.9, 56.5, 53.4; **IR** (film) ν_{max} 3391, 2925, 2257, 1728, 1621, 1471, 1379, 1312, 1266, 1147, 1025, 1005, 755, 698 cm⁻¹; **HRMS** (ESI) m/z [M + Na]⁺ Calcd for [C₃₃H₂₅BrN₂O₅+Na]⁺ 631.0839; Found 631.0867; **MP** 110 - 112 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak OD-3 column; solvent: hexane/2-propanol = 60/40; flow rate: 1.0 mL/min; detection: at 254 nm): *t*_R minor = 4.65 min, *t*_R major = 9.13 min. [α]_D^{25.2} = +200.0 (*c* = 0.18, MeOH for 92% ee).



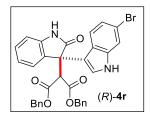
Diethyl (*R*)-2-(3-(1*H*-indol-3-yl)-2-oxo-5-phenylindolin-3-yl)malonate: Compound (R)-4m was obtained as a brown solid (0.08 mmol scale of reaction, 28 mg of product, 74% yield); $R_f = 0.55$ (40% EtOAc in hexane); ¹H NMR (500 MHz, 0.5 mL CDCl₃, 0.1 mL DMSO-D₆) δ 9.72 - 9.68 (m, 2H), 8.29 - 8.28 (m, 1H), 7.86 - 7.85 (m, 1H), 7.61 -7.48 (m, 3H), 7.42 - 7.35 (m, 2H), 7.31 - 7.24 (m, 2H), 7.06 - 6.97 (m, 3H), 6.73 - 6.71 (m, 1H) 5.21 (s, 1H), 3.94 - 3.83 (m, 4H), 2.73 (Water), 0.92 - 0.87 (m, 3 H), 0.78 - 0.75 (m, 3H): ¹³C NMR (125 MHz, 0.5 mL CDCl₃, 0.1 mL DMSO-D₆) δ 178.6, 167.4, 167.0, 142.1, 141.1, 137.2, 134.7, 130.6, 128.6, 127.2, 126.6, 126.5, 125.5, 125.1, 124.4, 121.9, 121.5, 119.1, 111.5, 110.0, 61.4, 60.8, 56.6, 53.7, 13.4, 13.2; **IR** (film) v_{max} 3394, 3062, 2926, 2357, 1720, 1624, 1473, 1307, 1236, 827, 746 cm⁻¹; **HRMS** (ESI) m/z [M + H]⁺ Calcd for [C₂₉H₂₇N₂O₅]⁺ 483.1914; Found 483.1906; **MP** 180 - 182 °C; Enantiomeric excess of pure compound was determined via HPLC analysis using a Chiralpak OD-3 column; solvent: hexane/2-propanol = 50/50; flow rate: 1.0 mL/min; detection: at 254 nm): $t_{\rm R}$ minor = 6.56 min, $t_{\rm R}$ major = 8.17 min. $[\alpha]_{\rm D}^{24.2}$ = +109.0 (c = 0.21, MeOH for 91% ee).



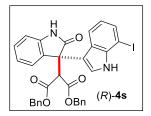
Diethyl (*R*)-2-(3-(1*H*-indol-3-yl)-5-(3-methoxyphenyl)-2-oxoindolin-3-yl)malonate: Compound (*R*)-4n was obtained as a colorless solid (0.08 mmol scale of reaction, 31 mg of product, 77% yield); $R_f = 0.56$ (40% EtOAc in hexane); ¹H NMR (400 MHz, 0.5 mL CDCl₃, 0.1 mL DMSO-D₆) δ 9.72 (brs, 1H), 9.68 (brs, 1H), 8.08 (s, 1H), 7.65 (d, *J* = 8.1 Hz, 1H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.16 - 7.08 (m, 2H), 67.01 - 6.99 (m, 1H), 6.94 (s, 1H), 6.89 - 6.86 (m, 1H) 6.82 - 6.80 (m, 2H), 6.67 - 6.65 (m, 1H), 6.55 (s, 1H), 5.00 (s, 1H), 3.75 - 3.67 (m, 7H), 2.65 (Water), 0.75 - 0.72 (m, 3H), 0.61 - 0.57(m, 3H); ¹³C NMR


(100 MHz, 0.5 mL CDCl₃, 0.1 mL DMSO-D₆) δ 178.5, 167.3, 166.9, 159.8, 142.6, 142.4, 137.2, 130.4, 130.6, 129.6, 127.2, 125.8, 120.5, 124.4, 121.9, 121.4, 119.2, 118.9, 112.5, 111.8, 111.7, 111.4, 109.9, 61.3, 60.7, 56.6, 55.2, 53.7, 13.4, 13.3; **IR** (film) v_{max} 3415, 2924, 2852, 1726, 1622, 1481, 1307, 1174, 1029, 848, 748 cm⁻¹; **HRMS** (ESI) m/z [M + H]⁺ Calcd for [C₃₀H₂₉N₂O₆]⁺ 513.2020; Found 513.2022; 513.2020; **MP** 270 - 272 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak ID-3 column; solvent: hexane/2-propanol = 50/50; flow rate: 1.0 mL/min; detection: at 254 nm): $t_{\rm R}$ minor = 5.05 min, $t_{\rm R}$ major = 6.26 min. [α]_D^{24.2} = +250.0 (c = 0.10, CHCl₃ for 88% ee).

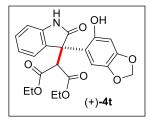
Diethyl (*R***)-2-(3-(1***H***-indol-3-yl)-5,7-dimethyl-2-oxoindolin-3-yl)malonate: Compound (***R***)-40 was obtained as a colorless solid (0.08 mmol scale of reaction, 27 mg of product, 79% yield); R_f = 0.56 (40% EtOAc in hexane); ¹H NMR (500 MHz, 0.5 mL CDCl₃, 0.1 mL DMSO-D₆) δ 9.47 - 9.45 (m, 2H), 7.74 - 7.72 (m, 1H), 7.48 (s, 1H), 7.12 - 7.08 (m, 1H), 6.93-6.84 (m, 2H), 6.75 - 6.74 (m, 1H), 6.51 - 6.50 (m, 1H), 5.01 (s, 1H), 3.77 - 3.67 (m, 4H), 2.56 (Water), 2.17 (s, 3H), 2.02 (s, 3H); ¹³C NMR (125 MHz, 0.5 mL CDCl₃, 0.1 mL DMSO-D₆) δ 179.1, 167.4, 167.1, 138.5, 137.1, 130.8, 130.3, 129.5, 125.1, 125.0, 124.5, 122.2, 121.4, 118.6, 112.3, 111.3, 61.2, 60.7, 56.5, 54.0, 21.2, 16.5, 13.2 (2c); IR** (film) ν_{max} 3444, 3386, 2920, 2848, 1707, 1624, 1456, 1261, 1103, 744 cm⁻¹; **HRMS** (ESI) m/z [M + H]⁺ Calcd for [C₃₀H₂₉N₂O₆]⁺ 457.1734; Found 457.1749; **MP** 190 - 192 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak ID-3 column; solvent: hexane/2-propanol = 70/30; flow rate: 1.0 mL/min; detection: at 254 nm): t_R minor = 7.09 min, t_R major = 10.79 min. [α]_D^{24.5} = +45.2 (*c* = 0.30, MeOH for 90% ee).



Diethyl (*R*)-2-(5-chloro-3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (*R*)-4**p** was obtained as a brown solid (0.08 mmol scale of reaction, 25 mg of product, 70% yield); $R_f = 0.55$ (40% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 8.09 (d, J = 2.6 Hz, 1H), 8.05 (d, J = 2.2 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.25 (d, J = 3.6 Hz, 1H), 7.24 – 7.23 (m, 1H), 7.15 – 7.05 (m, 2H), 6.76 (d, J = 8.3 Hz, 1H), 6.62 (d, J = 2.7 Hz, 1H), 5.19 (s, 1H), 4.00 – 3.84 (m, 4H), 0.90 (t, J = 7.1 Hz, 3H), 0.77 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.3, 167.3, 166.8, 140.4, 137.0, 131.5, 128.8, 127.8, 127.7, 124.8, 124.1, 122.4, 122.1, 119.9, 111.9, 111.4, 110.8, 61.9, 61.2, 56.4, 53.9, 13.5, 13.3; **IR** (film) ν_{max} 3389, 2990, 1721, 1620, 1461, 1381, 1289, 1256, 1159, 1011, 870, 800, 761, 720 cm⁻¹; **HRMS** (ESI) m/z [M + Na]⁺ Calcd for [C₂₃H₂₂ClN₂O₅]⁺ 441.1212; Found 441.1236; **MP** 192 - 194 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak OD-3 column; solvent: hexane/2-propanol = 70/30; flow rate: 1.0 mL/min; detection: at 254 nm): t_R minor = 5.10 min, t_R major = 7.48 min. [α]_D^{24.5} = +201.8 (c = 0.10, MeOH for 86% ee).

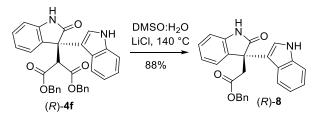

Dibenzyl (*R*)-2-(3-(1*H*-indol-3-yl)-5,7-dimethyl-2-oxoindolin-3-yl)malonate: Compound (*R*)-4**q** was obtained as a colourless solid (0.08 mmol scale of reaction, 34 mg of product, 78% yield); $R_f = 0.61$ (40% EtOAc in hexane); ¹H NMR (400 MHz, DMSO-D₆) δ 10.11 (s, 1H), 9.51 (s, 1H), 6.80 (d, *J* = 8.2 Hz, 1H), 6.51 - 6.30 (m, 8H), 6.23 - 6.18 (m, 3H), 6.08 - 5.97 (m, 4H), 5.77 (s, 1H), 4.29 (s, 1H) 4.12 - 4.01 (m, 4H), 1.31 (s, 3H), 1.28 (s, 3 H); ¹³C NMR (100 MHz, DMSO-D₆) δ 182.9, 172.1, 171.7, 144.1, 143.8, 142.2, 140.3, 140.2, 135.5, 134.9, 134.5, 133.5, 133.4, 133.2, 132.9, 132.7, 132.6, 130.0, 129.9, 126.7, 126.3, 123.8, 123.6, 116.9, 116.7, 71.8, 71.5, 61.5, 58.4, 26.1, 21.7; **IR**

(film) v_{max} 3385, 3064, 2924, 2854, 1718, 1612, 1471, 1465, 1311, 1273, 1217, 1155, 742, 696 cm⁻¹; **HRMS** (ESI) m/z [M + Na]⁺ Calcd for $[C_{35}H_{30}N_2O_5+Na]^+$ 581.2047; Found 581.2064; **MP** 201 - 203 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak AD-H column; solvent: hexane/2-propanol = 50/50; flow rate: 1.0 mL/min; detection: at 254 nm): t_R minor = 29.05 min, t_R major = 35.36 min. $[\alpha]_D^{25.0} = +45.9$ (c = 0.40, MeOH for 93% ee).

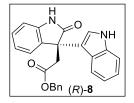


Dibenzyl (*R*)-2-(3-(6-bromo-1*H*-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (*R*)-4**r** was obtained as a yellow solid (0.08 mmol scale of reaction, 23 mg of product, 92% yield; $R_f = 0.60$ (40% EtOAc in hexane); ¹H NMR (400 MHz, DMSO-D₆) δ 11.14 (s, 1H), 10.53 (s, 1H), 7.73 (d, *J* = 7.6 Hz, 1H), 7.64 (d, *J* = 8.7 Hz, 1H), 7.55 (s, 1H), 7.37 - 7.30 (m, 2H), 7.29 - 7.28 (m, 2H), 7.22 (d, *J* = 7.1 Hz, 1H), 7.16 (t, *J* = 7.4 Hz, 2H), 7.06 - 6.98 (m, 4H), 6.88 (d, *J* = 7.8 Hz, 1H), 6.77 (d, *J* = 7.4 Hz, 2H), 6.67 (s, 1H), 5.12 (s, 1H), 5.00 - 4.80 (m, 4H); ¹³C NMR (100 MHz, DMSO-D₆) δ 177.7, 167.3, 166.7, 143.3, 138.4, 135.5, 135.5, 129.7, 129.2, 128.8, 128.6, 128.5, 128.3, 127.9, 127.8, 126.9, 126.2, 124.2, 123.7, 122.1, 121.8, 114.9, 114.6, 112.1, 110.3, 67.1, 66.8, 56.5, 53.2; **IR** (film) v_{max} 3455, 3364, 2994, 2830, 1717, 1622, 1491, 1409, 1301, 1221, 1210, 1100, 772, 636 cm⁻¹; **HRMS** (ESI) m/z [M + Na]⁺ Calcd for [C₃₃H₂₅BrN₂O₅+Na]⁺ 631.0835; Found 631.0839; **MP** 195 - 197 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak ID-3 column; solvent: hexane/2-propanol = 60/40; flow rate: 1.0 mL/min; detection: at 254 nm): *t*_R minor = 7.18 min, *t*_R major = 10.29 min. [α]_D^{22.2} = +95.9 (*c* = 0.18, CH₂Cl₂ for 98% ee).

S27

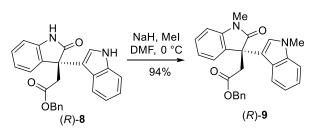


Dibenzyl (*R*)-2-(3-(7-iodo-1*H*-indol-3-yl)-2-oxoindolin-3-yl)malonate: Compound (*R*)-4s was obtained as a yellow solid (0.08 mmol scale of reaction, 44 mg of product, 85% yield); $R_f = 0.63$ (40% EtOAc in hexane); ¹H NMR (400 MHz, DMSO-D₆) δ 8.0 (s, 1H), 7.9 (d, *J* = 7.6 Hz, 1H), 7.9 (s, 1H), 7.8 (d, *J* = 8.2 Hz, 1H), 7.5 (d, *J* = 7.5 Hz, 1H), 7.25 – 7.14 (m, 7H), 7.06 – 7.00 (m, 3H), 6.84 – 6.78 (m, 3H), 6.69 (d, *J* = 7.7 Hz, 1H), 6.64 (d, *J* = 2.7 Hz, 1H), 5.27 (s, 1H), 4.95 – 4.86 (m, 4H); ¹³C NMR (100 MHz, DMSO-D₆) δ 177.9, 167.1, 166.6, 141.5, 138.4, 134.9, 134.6, 131.0, 129.0, 128.9, 128.4, 128.3, 128.2, 128.2, 128.1, 128.0, 127.3, 125.1, 124.6, 122.5, 122.3, 121.7, 114.1, 110.0, 76.9, 67.4, 67.1, 56.5, 53.6; **IR** (film) ν_{max} 3443, 3364, 2994, 2804, 1719, 1622, 1441, 1400, 1301, 1290, 1200, 1105, 792, 606 cm⁻¹; **HRMS** (ESI) m/z [M + H]⁺ Calcd for [C₃₃H₂₆IN₂O₅]⁺ 657.0881; Found 657.0853; **MP** 150 - 152 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak IC-3 column; solvent: hexane/2-propanol = 50/50; flow rate: 1.0 mL/min; detection: at 254 nm): t_R minor = 4.93 min, t_R major = 6.44 min. [α]_D^{20.6} = +243.2 (*c* = 0.15, CH₂Cl₂ for 90% ee).

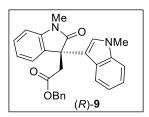


(+)-Diethyl 2-(3-(6-hydroxybenzo[*d*][1,3]dioxol-5-yl)-2-oxoindolin-3-yl)malonate: Compound (+)-4t was obtained as a colourless solid (0.08 mmol scale of reaction, 31 mg of product, 90% yield); $R_f = 0.52$ (40% EtOAc in hexane); ¹H NMR (400 MHz, Chloroform-*d*) δ 9.90 (s, 1H), 8.74 (s, 1H), 8.01 (d, *J* = 7.2 Hz, 1H), 7.30 (td, *J* = 7.7, 1.3 Hz, 1H), 7.16 (td, *J* = 7.7, 1.2 Hz, 1H), 6.93 (d, *J* = 7.7 Hz, 1H), 6.51 (s, 1H), 6.32 (s, 1H), 5.80 (dd, *J* = 20.8, 1.5 Hz, 2H), 5.33 (s, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 3.82 (qd, *J* = 7.1, 4.7 Hz, 2H), 1.09 (t, *J* = 7.1 Hz, 3H), 0.85 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz,

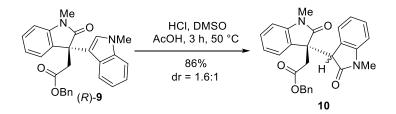
Chloroform-*d*) δ 182.0, 167.2, 166.6, 152.4, 148.5, 141.6, 140.7, 129.5, 128.3, 123.5, 113.6, 110.7, 108.7, 101.9, 101.3, 61.8, 61.5, 57.8, 54.4, 13.3, 13.4; **IR** (film) v_{max} 3355, 3264, 2920, 2884, 1719, 1622, 1451, 1465, 1311, 1273, 1217, 1155, 742, 696 cm⁻¹; **HRMS** (ESI) m/z [M + H]⁺ Calcd for [C₂₂H₂₂NO₈]⁺ 428.1340; Found 428.1331; **MP** 135 - 137 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak AD-H column; solvent: hexane/2-propanol = 50/50; flow rate: 1.0 mL/min; detection: at 254 nm): $t_{\rm R}$ minor = 7.17 min, $t_{\rm R}$ major = 24.25 min. [α]_D ^{23.1} = +34.2 (*c* = 0.16, MeOH for 50% ee).



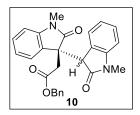
Synthetic procedure for the synthesis of compound (*R*)-8: To a stirred solution of (*R*)-4f (300 mg, 0.6 mmol; 1.0 equiv) in DMSO (5 mL) at 25 °C was added lithium chloride (96 mg, 2.3 mmol, 4.0 equiv) and H₂O (104 μ L, 5.6 mmol, 10.0 equiv). After 5 minutes starring, the reaction mixture was transferred to a pre-heated oil bath (140 °C) and stirring was continued for 24 h. After complete consumption of starting material (as judged by running TLC), reaction mixture was cooled down to 25 °C and quenched with water (4 mL). The organic compound was extracted with ethyl acetate (2 X 10 mL). Then the combined organic layers were dried over anhydrous sodium sulphate and concentrated under reduced pressure. The crude material was purified by column chromatography by using 20 - 30 % (EtOAc/Hexane) to afford compound (*R*)-8 as a colorless solid.



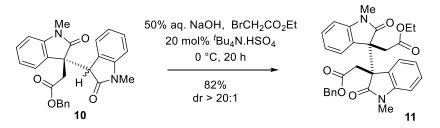
Benzyl (*R*)-2-(3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)acetate: Compound (*R*)-8 was obtained as a yellow solid (0.6 mmol scale of reaction, 195 mg of product, 80% yield); $R_f = 0.45$ (40% EtOAc in hexane); ¹H NMR (400 MHz, DMSO- d_6) δ 11.08 (s, 1H), 10.56


(s, 1H), 7.35 - 7.21 (m, 10H), 7.18 - 7.11 (m, 3H), 7.03 - 6.99 (m, 2H), 6.95 - 6.90 (m, 2H), 6.80 (t, J = 7.5 Hz, 1H), 4.92 (s, 3H), 3.63 (d, J = 16.0 Hz, 1H), 3.51 (d, J = 16.1 Hz, 2H), 3.44 (Water); ¹³C NMR (100 MHz, DMSO- d_6) δ 179.4, 169.9, 143.3, 137.2, 136.3, 133.1, 128.8, 128.6, 128.3, 128.1, 125.1, 124.4, 124.0, 121.8, 121.6, 119.8, 119.1, 114.2, 112.1, 109.9, 65.9, 49.8; **IR** (film) v_{max} 3415, 3310, 2929, 2802, 1728, 1642, 1619, 1480, 1327,1154, 1059, 878, 760 cm⁻¹; **HRMS** (ESI) m/z [M + Na]⁺ Calcd for [C₂₅H₂₀N₂O₃+Na]⁺ 419.1366; Found 419.1380; **MP** 165 - 167 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak OD-3 column; solvent: hexane/2-propanol = 50/50; flow rate: 1.0 mL/min; detection: at 254 nm): t_R minor = 5.71 min, t_R major = 13.53 min. [α]_D^{21.0} = +122.0 (c = 0.24, MeOH for 99% ee).

Synthetic procedure for compound (*R*)-9: Compound (*R*)-8 (200 mg, 0.5 mmol; 1.0 equiv) was taken in dimethyl sulfoxide (3 mL) under nitrogen atmosphere. The reaction mixture was cooled to 0 °C and potassium *tert*-butoxide (119 mg, 1.1 mmol, 2.2 equiv) was added to it. After 5 min of stirring, methyl iodide (66 μ L, 1.1 mmol, 2.2 equiv) was added at same temperature and stirring was continued for 3 h. Upon completion of starting material (as judged by running TLC), the reaction mixture was quenched with careful addition of water (2 mL) and organic compound was extracted with ethyl acetate (2 X 10 mL). The combined organic layers were dried over anhydrous sodium sulphate and concentrated under reduced pressure. The crude material was purified by column chromatography by using 20-30 % (EtOAc/Hexane) to afford compound (*R*)-9 as a white solid.

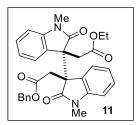


Benzyl (*R*)-2-(1-methyl-3-(1-methyl-1*H*-indol-3-yl)-2-oxoindolin-3-yl)acetate: Compound (*R*)-9 was obtained as a brown solid (0.5 mmol scale of reaction, 191 mg of product, 94% yield); $R_f = 0.53$ (40% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) 7.30 - 7.28 (m, 3H), 7.09 - 7.04 (m, 6H), 6.85 - 6.81 (m, 2H), 6.52 (d, *J* = 7.8 Hz, 1H), 6.47 (d, *J* = 7.8 Hz, 1H), 4.89 - 4.81 (m, 2H), 4.37 (d, *J* = 16.7 Hz, 1H), 3.80 (s, 1H), 3.42 (d, *J* = 16.8 Hz, 1H), 3.13 (s, 3H), 3.05 (s, 3H); ¹³C NMR (125 MHz) δ177.8, 169.6, 144.4, 137.7, 135.3, 131.4, 128.6, 128.5, 128.4, 127.1, 125.5, 123.9, 122.4, 121.9, 120.8, 119.5, 112.9, 109.5, 108.3, 66.5, 49.7, 40.9, 32.7, 26.3; IR (film) υ_{max} 3415, 2924, 2852, 1726, 1622, 1481, 1307,1174, 1029, 848, 748 cm⁻¹; HRMS (ESI) m/z [M + H]⁺ Calcd for [C₂₇H₂₅N₂O₃]⁺ 425.1860; Found 425.1883; MP 68 - 70 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak OD-3 column; solvent: hexane/2-propanol = 50/50; flow rate: 1.0 mL/min; detection: at 254 nm): *t*_R minor = 7.82 min, *t*_R major = 13.17 min. [α]_D^{24.1} = +12.5 (*c* = 0.19, CHCl₃ for 99.5% ee).

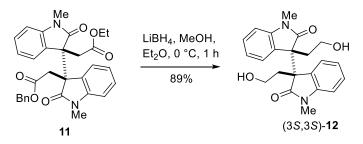


Synthetic procedure for compound 10: Compound (*R*)-9 (150 mg, 0.33 mmol; 1.0 equiv) was taken in acetic acid (3 mL) at 25 °C. To this solution was added HCl (61 μ L, 1.7 mmol, 5.0 equiv), followed by dimethyl sulfoxide (236 μ L, 3.3 mmol, 10.0 equiv). Then the reaction mixture was placed over a pre-heated oil bath maintaining 50 °C for 3 h. Upon completion of starting material (as judged by running TLC), the reaction mixture was quenched with sat. Na₂CO₃ (2 mL) and organic compound was extracted with ethyl acetate (2 X 10 mL). The combined organic layers were dried over anhydrous sodium sulphate and concentrated under reduced pressure. The crude material was purified by

column chromatography by using 20-30% (EtOAc/Hexane) to afford compound **10** as an orange solid.

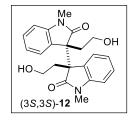


Benzyl 2-((3'*R*)-1,1'-dimethyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)acetate (10): Compound 10 (major diastereomer) was obtained as a orange colour gel (0.3 mmol scale of reaction, 85 mg of product, 50% yield); $R_f = 0.44$ (40% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.29 - 7.29 (m, 3H), 7.10 - 7.05 (m, 6H), 6.84 (td, J = 7.6, 1.4 Hz, 1H), 6.52 (d, J = 7.8 Hz, 1H), 6.47 (d, J = 7.8 Hz, 1H), 4.89 - 4.81 (m 2H), 4.37 (dd, J =16.8, 1.3 Hz, 1H), 3.80 (s, 1H), 3.44 - 3.39 (m, 1H), 3.13 (d, J = 1.4 Hz, 1H), 3.13 (s, 3H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 174.7, 169.7, 144.0, 143.9, 135.3, 128.7, 128.6, 128.4, 128.1, 128.1, 126.8, 124.3, 123.6, 122.4, 122.1, 121.9, 107.9, 107.6, 66.3, 51.3, 49.6, 37.5, 25.9, 25.8; **IR** (film) v_{max} 3425, 2914, 2862, 1721, 1612, 1482, 1317,1124, 1009, 808, 758 cm⁻¹; **HRMS** (ESI) m/z [M + H]⁺ Calcd for [C₂₇H₂₅N₂O₄]⁺ 441.1809; Found 441.1810

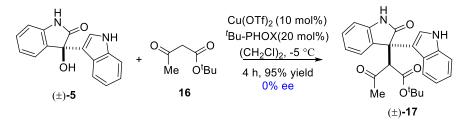


Synthetic procedure for compound 11: Compound 10 (100 mg, 0.2 mmol; 1.0 equiv) was taken in toluene (2 mL) under nitrogen atmosphere at 0 °C. To this solution was added tetrabutyl ammonium hydrogen sulphate (16 mg, 0.05 mmol, 20 mol%), followed by 50% aq. sodium hydroxide (742 μ L, 9.28 mmol, 40 equiv). After 5 minutes of stirring at 0 °C, bromoethyl acetate (53 μ L, 0.5 mmol, 2.0 equiv) was added to the reaction mixture. Then the reaction mixture allowed stirring for 20 h at the same temperature. Upon completion of starting material (monitored by running TLC), the reaction mixture

was diluted with water (2 mL) and organic compound was extracted with ethyl acetate (2 X 10 mL). Then the organic layer was dried with anhydrous sodium sulphate and concentrated in *vacuo*. The crude material was purified by column chromatography by using 20-30% (EtOAc/Hexane) to afford compound **11** as an orange solid.

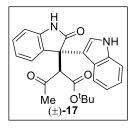


Benzyl 2-(3'-(2-ethoxy-2-oxoethyl)-1,1'-dimethyl-2,2'-dioxo-[3,3'-biindolin]-3yl)acetate: Compound 11 was obtained as a colourless solid (0.22 mmol scale of reaction, 98 mg of product, 85% yield); $R_f = 0.53$ (40% EtOAc in hexane); ¹H NMR (700 MHz) δ 7.19 - 7.17 (m, 3H), 6.96 - 6.91 (m, 2H), 6.31 - 6.29 (m, 1H), 6.20 - 6.19 (m, 1H), 4.68 - 4.62 (m, 2H), 4.02 (d, *J* = 16.0 Hz, 1H), 3.95 (d, *J* = 16.0 Hz, 1H), 3.73 - 3.64 (m, 2H) 3.18 (d, *J* = 16.0 Hz, 1H), 3.11 (d, *J* = 16.0 Hz, 1H), 3.00 (s, 3H), 0.83 (d, *J* = 7.11 Hz, 3H): ¹³C NMR (175 MHz) δ 176.6, 176.4, 169.7, 169.6, 143.8, 143.7, 135.2, 128.8, 128.7, 128.4, 128.3, 128.2, 126.8, 126.7, 122.8, 121.5, 121.4, 107.5, 107.3, 77.2, 77.1, 76.8, 66.4, 60.4, 52.5, 52.4, 33.9 (2C), 25.8, 25.5, 13.7; **IR** (film) v_{max} 3446, 3435, 2956, 2922, 2850, 2350, 2090, 1735, 1712, 1612, 1494, 1456, 1338, 1188, 1118, 1095, 906, 754 cm⁻¹; **HRMS** (ESI) m/z [M + H]⁺ Calcd for [C₂₃H₂₁N₂O₆]⁺ 549.1996; Found 549.2013; **MP** 135 - 137 °C.

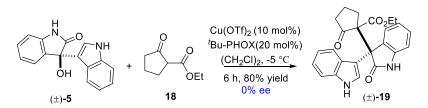


Synthetic procedure for the synthesis of compound (35,35)-12: Compound **11** (50 mg, 0.1 mmol; 1.0 equiv) was taken in diethyl ether (2 mL) under nitrogen atmosphere at 0 °C. To this solution was added LiBH₄ (225 µL, 0.45 mmol, 5.0 equiv) followed by

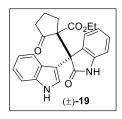
methanol (44 μ L, 0.9 mmol, 10.0 equiv). Then the reaction mixture allowed stirring for 1 h at the same temperature. Upon completion of starting material (monitored by running TLC), the reaction mixture was quenched with water (2 mL) and organic compound was extracted with ethyl acetate (2 X 5 mL). Then the organic layer was dried with anhydrous sodium sulphate and concentrated in *vacuo*. The crude material was purified by column chromatography by using 80 - 90% (EtOAc/Hexane) to afford compound (*S*,*S*)-**12** as a white crystalline solid.



(3*S*,3*S*)-Bis(2-hydroxyethyl)-1,1'-dimethyl-[3,3'-biindoline]-2,2'-dione: Compound (3*S*, 3'*S*)-12 was obtained as a colourless solid (0.1 mmol scale of reaction, 33 mg of product, 88% yield); $R_f = 0.20$ (in EtOAc); ¹H-NMR (400 MHz, CDCl₃) δ 7.03-6.99 (m, 4H), 6.81 (t, *J* = 7.5 Hz, 2H), 6.39 (d, *J* = 7.7 Hz, 2H), 3.42-3.36 (m, 2H), 3.22-3.17 (m, 2H), 3.13-3.06 (m, 2H), 3.03 (s, 6H), 2.63-2.55 (m, 2H); ¹³C NMR (175 MHz) δ178.1, 143.4, 128.4, 127.2, 123.5, 121.5, 107.5, 59.7.8, 54.9, 31.4, 25.7; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak AD-3 column; solvent: 2-propanol /hexane= 30/80; flow rate: 1.0 mL/min; detection: at 254 nm): *t*_R major = 16.66 min. *t*_R minor = 20.41 min. [α]_D^{23.0} = -145.2 (*c* = 0.4, CHCl₃ for 99.5% ee).

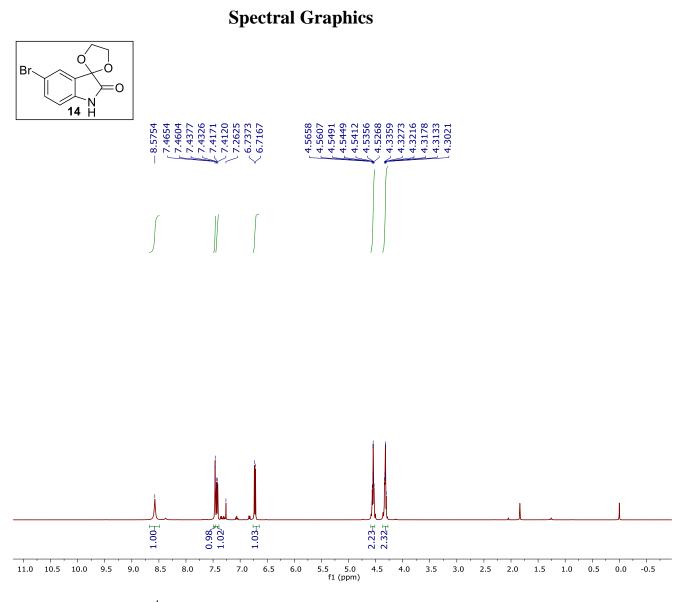


Synthesis of compound (\pm)-17 from enantioselective method: An oven dried sample vial was charged with Cu(OTf)₂ (0.1 equiv) and ^tBu-PHOX (0.2 equiv) in dichloromethane (4 mL) at 25 °C under nitrogen atmosphere. The reaction mixture was stirred for 30 minutes to make the complex. After that the reaction vessel was cooled to -

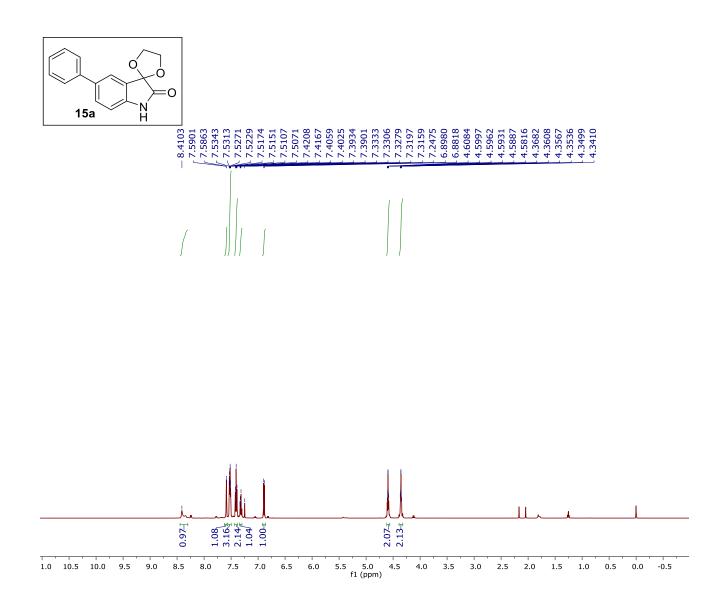

5 °C and *tert*-Butyl acetoacetate (3.0 equiv) was added to the mixture and stirring was continued for 15 minutes maintaining temperature -5 °C. Then, a solution of 3-hydroxy 2-oxindole in dichloromethane (0.5 mL) was added slowly to the reaction mixture. Then the reaction mixture was allowed to stir for 4 h at -5 °C. After complete consumption of starting material (as judged by running TLC), the crude mixture was concentrated under reduced pressure and purified by column chromatography by using 20-30% EtOAc-hexane mixture as eluent to afford the desired compound.

tert-Butyl-2-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)-3-oxobutanoate: Compound (±)-17 was obtained as a colourless solid (0.08 mmol scale of reaction, 31 mg of product, 95% yield); dr = 1.1:1 (determined from un purified reaction mixture] of (\pm) -17; R_f = 0.51 (40% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃, spectrum contains ~1.1:1 diastereomers) δ 8.57 (d, J = 9.4, 1H for minor diastereomer), 8.44 (d, J = 8.7, 1H for major diastereomer), 8.20 - 8.17 (m, 2H for major + minor diastereomers), 8.06 - 8.02(m, 2H for major + minor diastereomers), 7.93 (d, J = 7.5, 1H for major diastereomer), 7.85 (d, J = 7.5, 1H for minor diastereomer), 7.25 - 7.16 (m, 4H), 7.16 - 6.99 (m, 6H for major + minor diastereomers), 6.81 - 6.76 (m, 2H for major + minor diastereomers), 6.52 (s, 1H for minor diastereomer), 6.41 (s, 1H for major diastereomer), 5.43 (s, 1H for major diastereomer), 5.07 (s, 1H for minor diastereomer), 2.08 - 2.04 (m, 7H for major + minor diastereomers), 1.04 - 1.02 (m, 9H for major diastereomer), 0.99 (s, 9H for minor diastereomer ¹³C NMR (100 MHz, CDCl₃, spectrum contains ~1.1:1 diastereomers) δ 202.5, 201.5, 179.4, 178.9, 168.1, 166.7, 141.8, 141.5, 137.2, 137.1, 130.4, 130.1, 128.5, 128.4, 128.0, 126.5, 125.4 (two carbons), 124.9, 124.4, 122.6 (two carbons), 122.4, 122.1 (two carbons), 122.1, 121.7 (two carbons), 119.7, 119.6, 111.8, 111.3, 110.1, 109.8, 83.1, 81.9, 65.0, 61.4, 54.2, 53.5, 32.4, 29.3, 27.2, 27.2, 27.1; **IR** (film) v_{max} 3455, 3364, 3220, 2884, 2019, 1722, 1711, 1665, 1461, 1223, 1207, 1185, 702, 606 cm⁻¹; **HRMS** (ESI) m/z $[M + Na]^+$ Calcd for $[C_{24}H_{24}N_2O_4 + Na]^+$ 427.1628; Found 427.1606; **MP** 120 - 122 °C; Enantiomeric peaks was determined *via* HPLC analysis using a Chiralpak OZ-3 column; solvent: hexane/2-propanol = 70/30; flow rate: 1.0 mL/min; detection: at 254 nm); in case of major diastereomer $t_{R1} = 4.93$ min, $t_{R2} = 17.01$ min. for 0% ee; in case of minor diastereomer $t_{R1} = 8.58$ min, $t_{R2} = 10.53$ min. for 0% ee.

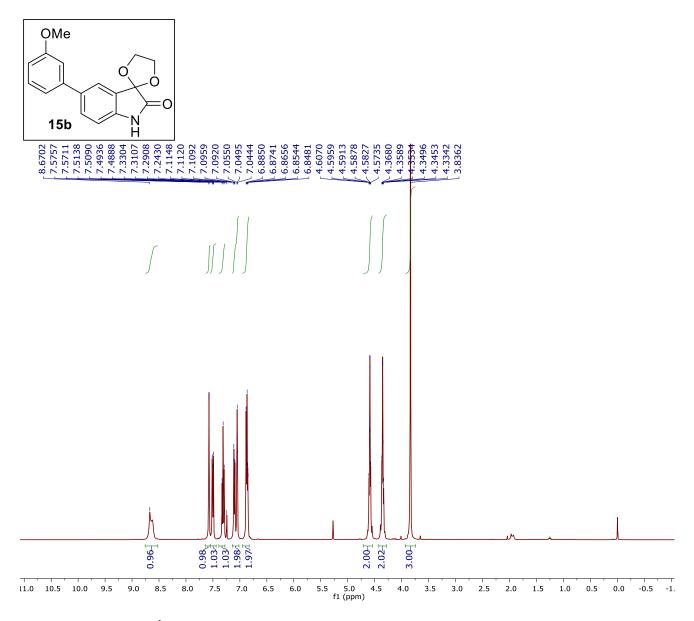
Synthesis of compound (\pm) -19 from enantioselective method: An oven dried sample vial was charged with Cu(OTf)₂ (0.1 equiv) and ^tBu-PHOX (0.2 equiv) in dichloromethane (4 mL) at 25 °C under nitrogen atmosphere. The reaction mixture was stirred for 30 minutes to make the complex. After that the reaction vessel was cooled to -5 °C and compound 18 (3.0 equiv) was added to the mixture and stirring was continued for 15 minutes maintaining temperature -5 °C. Then, a solution of 3-hydroxy 2-oxindole in dichloromethane (0.5 mL) was added slowly to the reaction mixture. Then the reaction mixture was allowed to stir for 6 h at -5 °C. After complete consumption of starting material (as judged by running TLC), the crude mixture was concentrated under reduced pressure and purified by column chromatography by using 30-40% EtOAc-hexane mixture as eluent to afford the desired compound.

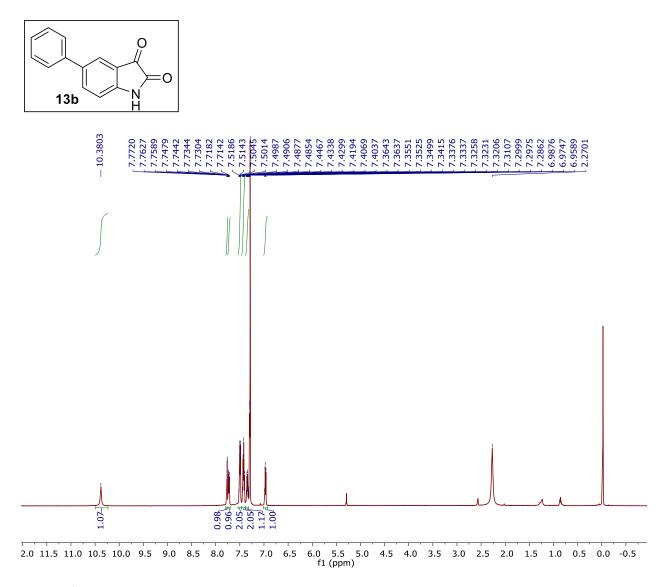

Ethyl-1-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)-2-oxocyclopentane-1-carboxylate:

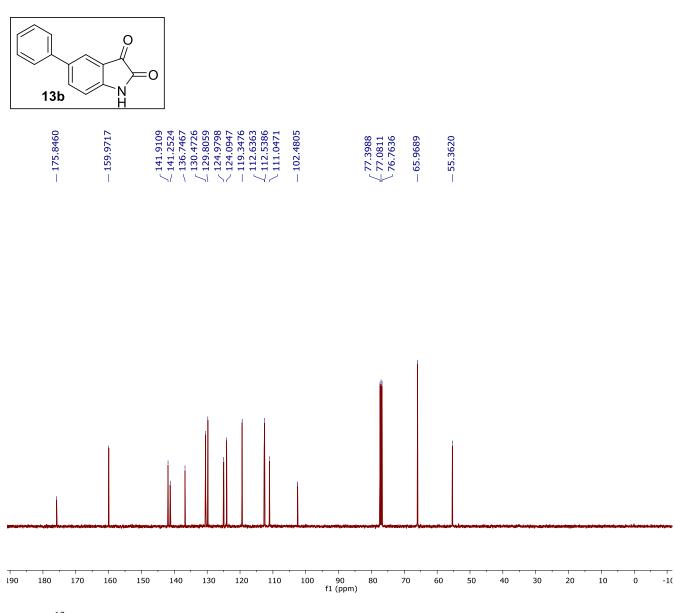
Compound (±)-19 was obtained as a colourless solid (0.08 mmol scale of reaction, 25 mg of product, 80% yield); dr = 4.7:1 (determined from un purified reaction mixture] of (±)-19; $R_f = 0.31$ (40% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃, spectrum contains ~4.7:1 diastereomers) δ 8.92 (s, 2H for major + minor diastereomers), 8.65 (s,

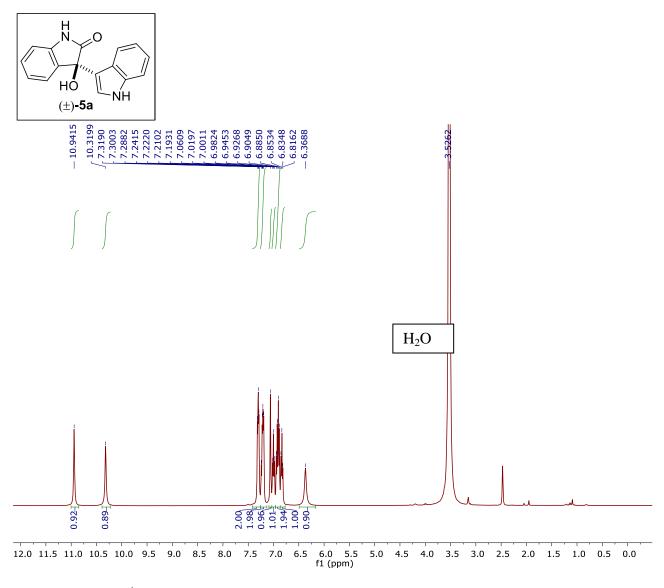

2H for major + minor diastereomers), 8.26 (s, 2H for major + minor diastereomers), 7.87(s, 1H for minor diastereomer), 7.67 (s, 1H for major diastereomer), 7.31 - 6.96 (m, 12H for major + minor diastereomers), 6.73 (s, 2H for major + minor diastereomers), 4.06 -3.74 (m, 4H for major + minor diastereomers), 3.15 - 2.94 (m, 4H for major + minor diastereomers), 2.63 - 2.28 (m, 4H for major + minor diastereomers), 2.00 - 1.76 (m, 4H for major + minor diastereomers), 1.06 - 0.64 (m, 6H for major + minor diastereomers); ¹³C NMR (100 MHz, CDCl₃, spectrum contains ~4.7:1 diastereomers) δ 213.5, 212.8, 179.8, 179.0, 170.9, 170.2, 141.1, 141.1, 136.6, 136.5, 131.9, 131.6, 128.7, 128.6, 128.4, 128.3, 127.4, 127.3, 125.9, 125.8, 122.2, 121.8, 121.8, 121.7, 121.6, 121.3, 119.7, 119.6, 111.6, 110.6, 110.1, 109.7, 109.6, 109.1, 66.5, 66.3, 61.8, 61.7, 55.7, 55.7, 39.1, 38.7, 33.4, 33.1, 19.6, 19.4, 13.7, 13.5; **IR** (film) v_{max} 3545, 3334, 3210, 2980, 2119, 1742, 1721, 1645, 1601, 1423, 1287, 1285, 1002, 806 cm⁻¹; **HRMS** (ESI) $m/z [M + Na]^+$ Calcd for $[C_{24}H_{22}N_2O_4 + Na]^+$ 425.1472; Found 425.1460; **MP** 100 - 102 °C; Enantiomeric peaks was determined via HPLC analysis using a Chiralpak AS-3 column; solvent: hexane/2-propanol = 60/40; flow rate: 1.0 mL/min; detection: at 254 nm); in case of minor diastereomer $t_{R1} = 5.24$ min, $t_{R2} = 12.72$ min. for 0% ee; in case of major diastereomer $t_{R1} = 7.11 \text{ min}, t_{R2} = 21.71 \text{ min}.$ for 0% ee.

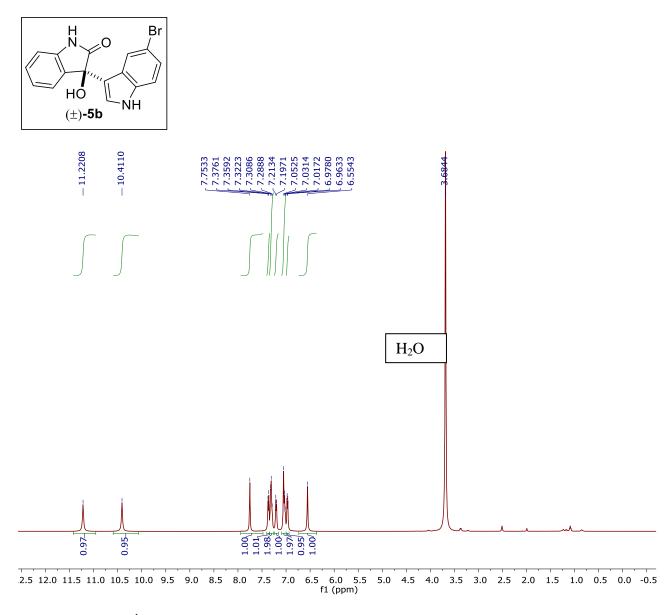
References and notes:

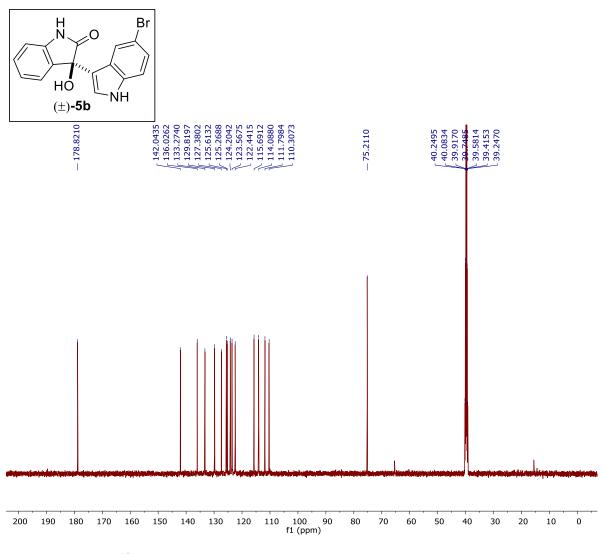

- 1. Wang, C. H.; White, A. R.; Schwartz, S. N.; Alluri, S.; Cattabiani, T. M.; Zhang, L. K. Chan, T. M.; Buevich, A. V.; Ganguly, A. K. *Tetrahedron* **2012**, *68*, 9750.
- 2. Srihari, G.; Murthy, M. M. Synth. Commun. 2011, 41, 2684.
- 3. Prathima, P. S.; Ranjesh, P.; Rao, J. V.; Kailash, U. S.; Sridhar, B. *Eur. J. Med. Chem.* **2014**, *84*, 155.
- 4. Kinthada, L. K.; Babu, K. N.; Padhi, D.; Bisai, A. Eur. J. Org. Chem. 2017, 3078.
- 5. Babu, K. N.; Kinthada, L. K.; Ghosh, S.; Bisai, A. Org. Biomol. Chem. 2015, 13, 10641.

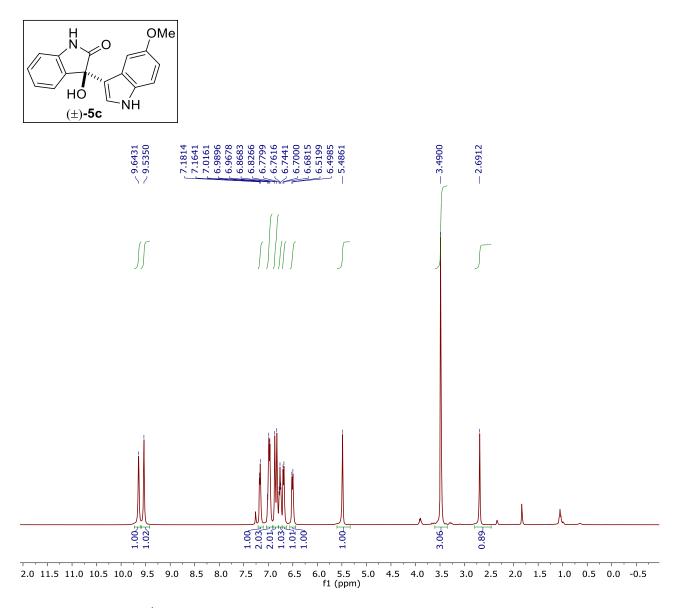

 1 H NMR (400 MHz, CDCl₃) of compound 14

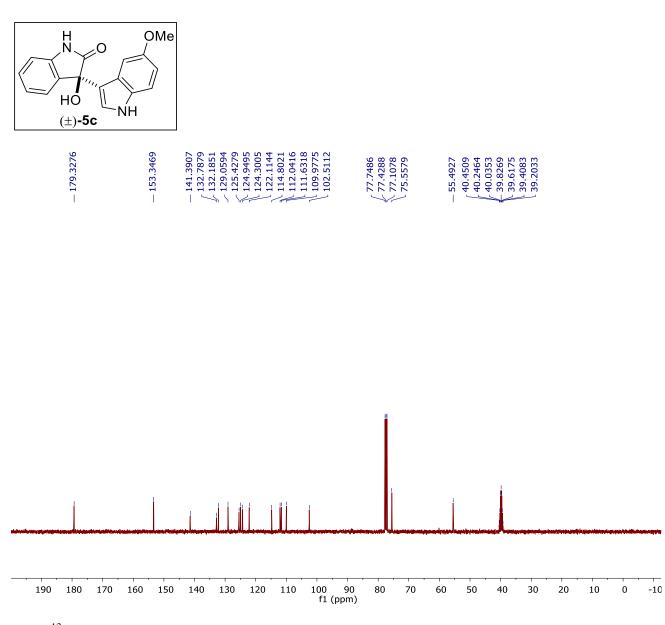

¹H NMR (500 MHz, CDCl₃) of compound **15a**

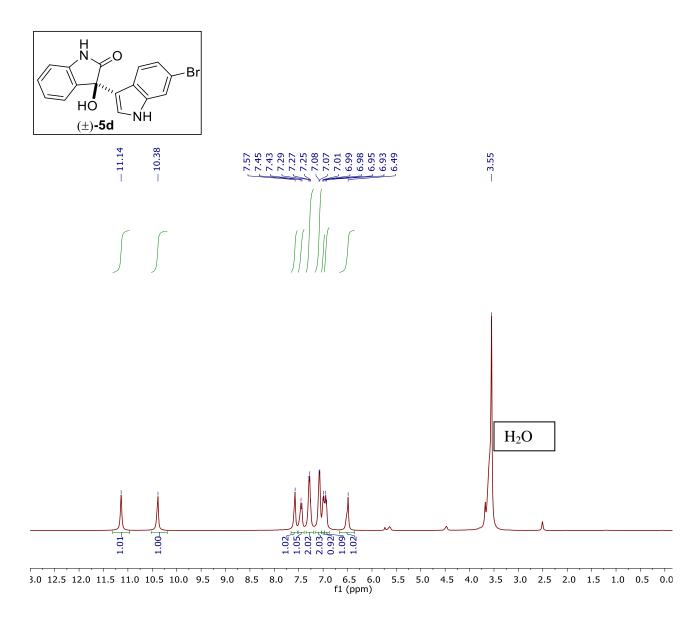

 ^1H NMR (400 MHz, CDCl₃) of compound 15b

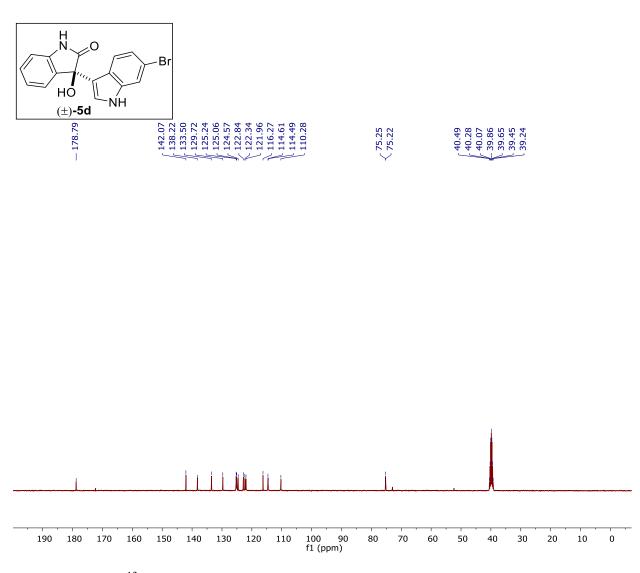

 ^1H NMR (100 MHz, 0.4 mL CDCl_3, 0.1 mL DMSO-D_6) of compound 13b

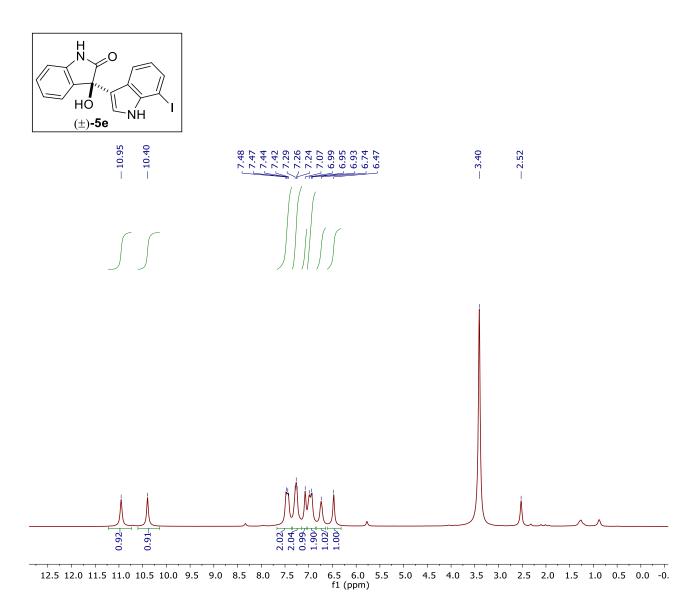

 ^{13}C NMR (100 MHz, 0.4 mL CDCl_3, 0.1 mL DMSO-D_6) of compound 13b

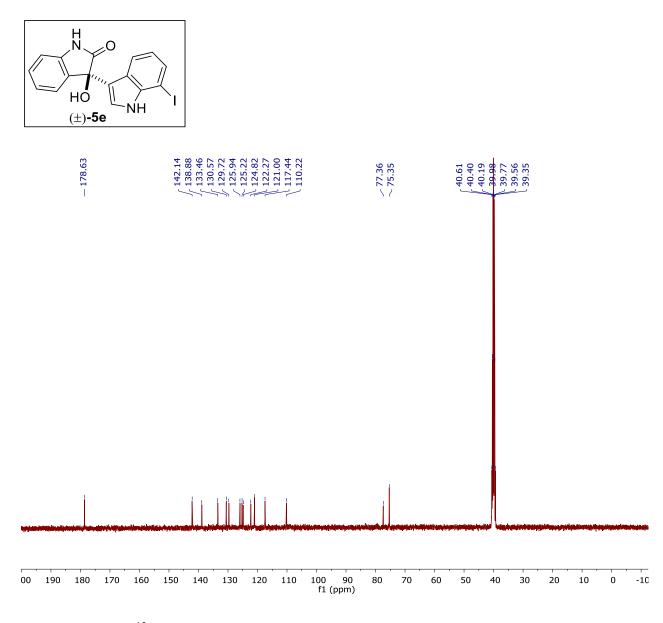

 ^1H NMR (400 MHz, DMSO-D_6) of compound (±)-5a

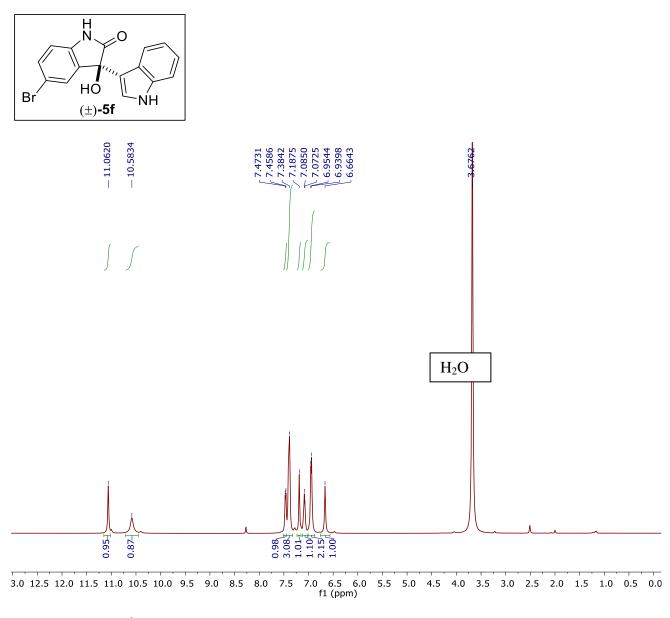

¹H NMR (500 MHz, DMSO-D₆) of compound (\pm)-**5**b

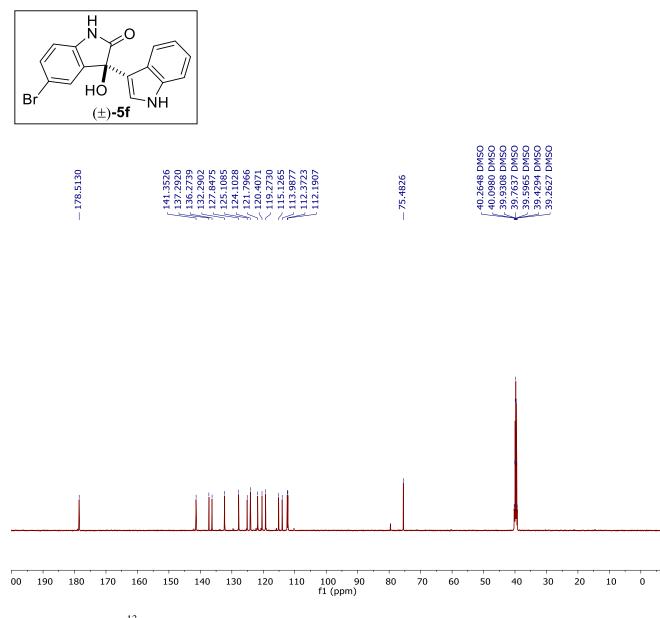

 ^{13}C NMR (125 MHz, DMSO-D₆) of compound (±)-5b

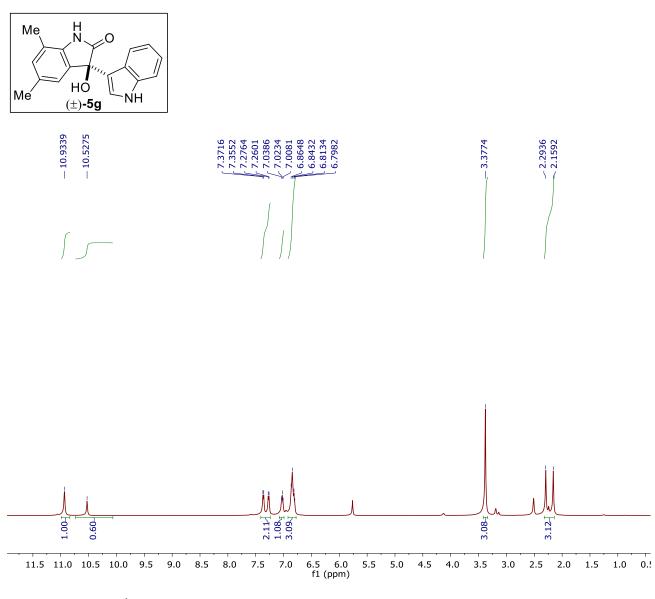

 ^1H NMR (400 MHz, CDCl₃) of compound (±)-5c

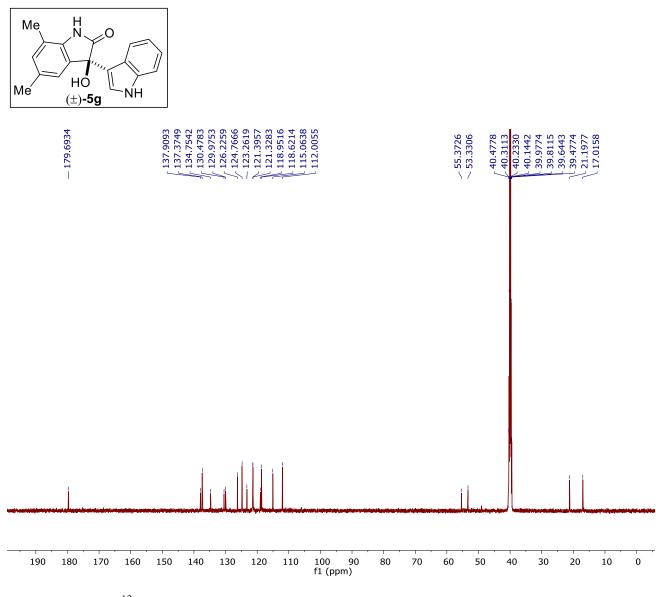

 ^{13}C NMR (100 MHz, 0.4 mL CDCl_3, 0.1 mL DMSO-D_6) of compound (±)-5c

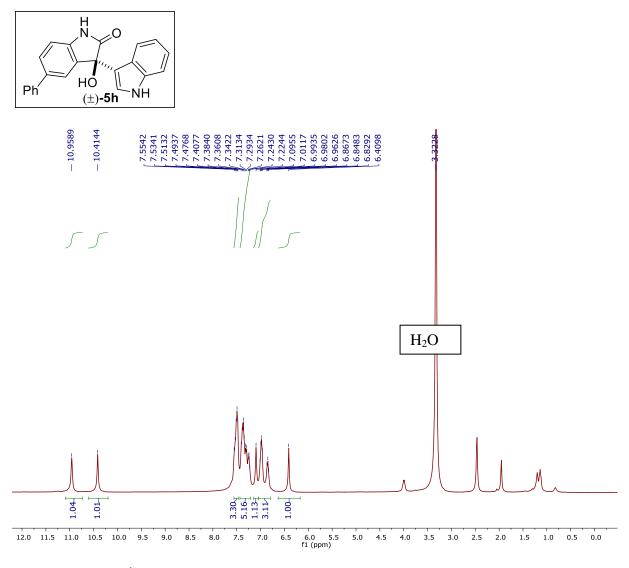

 ^1H NMR (400 MHz, DMSO-D₆) of compound (±)-5d

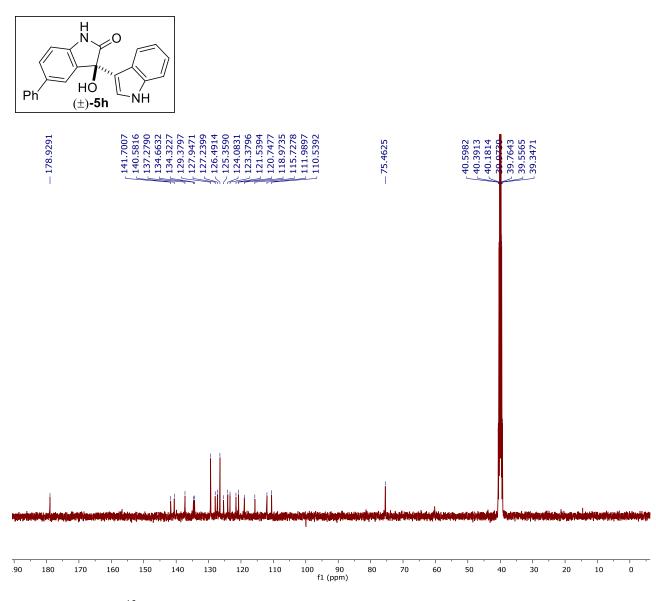

 ^{13}C NMR (100 MHz, DMSO-D₆) of compound (±)-5d

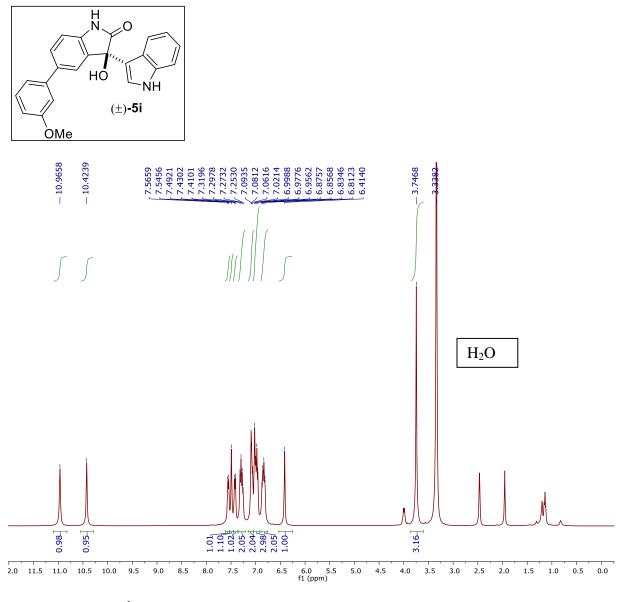

 ^1H NMR (400 MHz, DMSO-D₆) of compound (±)-5e

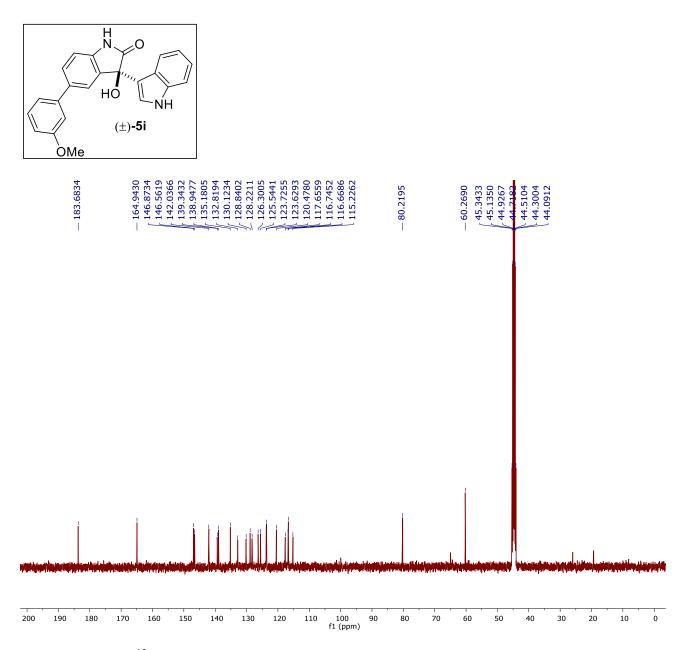

 ^{13}C NMR (100 MHz, DMSO-D₆) of compound (±)-5e

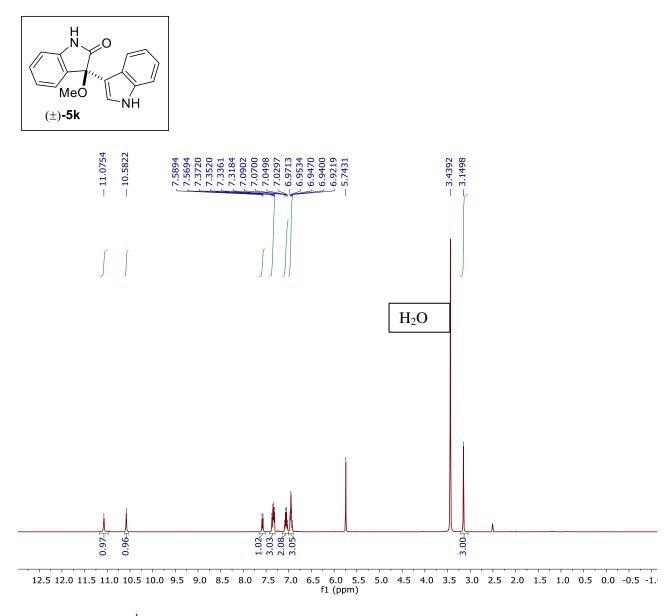

 ^1H NMR (500 MHz, DMSO-D_6) of compound (±)-5f

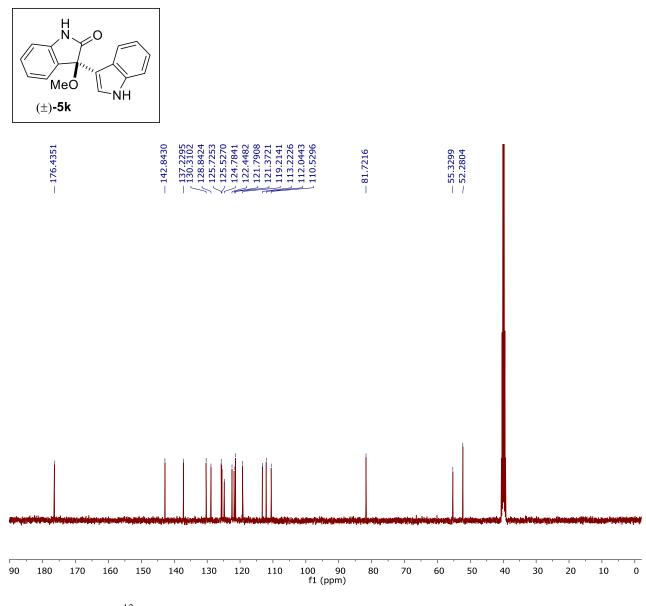

 ^{13}C NMR (125 MHz, DMSO-D₆) of compound (±)-5f

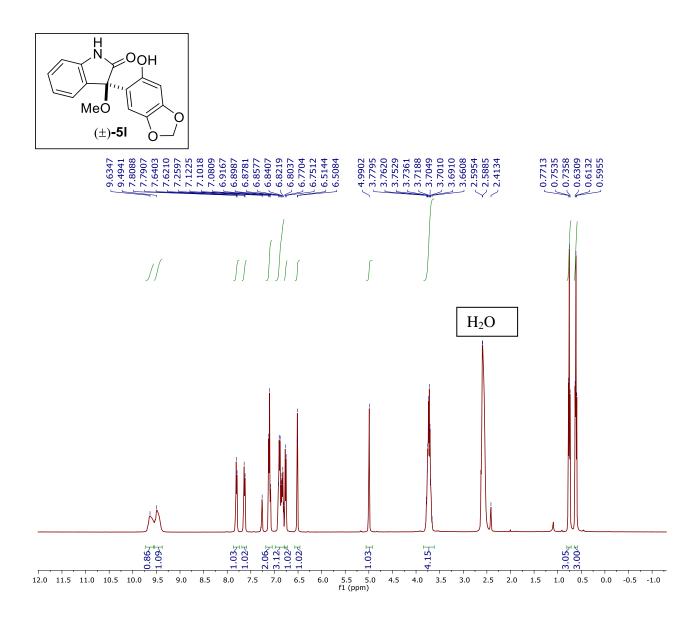

 ^1H NMR (500 MHz, DMSO-D_6) of compound (±)-5g

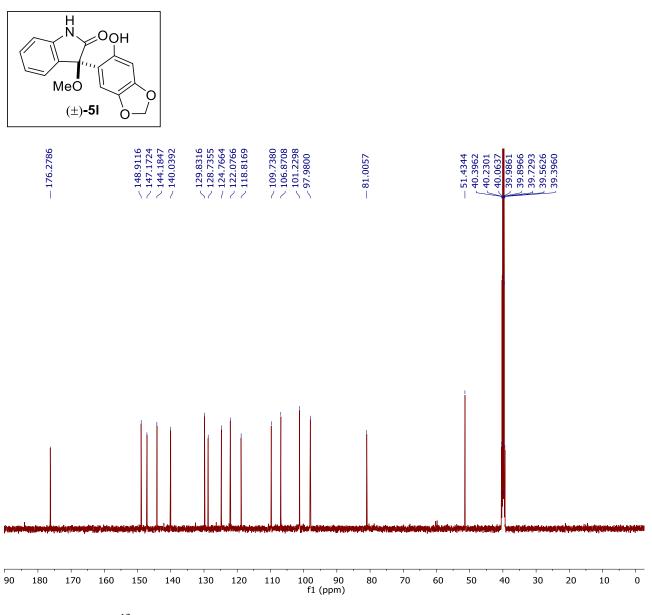

 ^{13}C NMR (125 MHz, DMSO-D₆) of compound (±)-5g

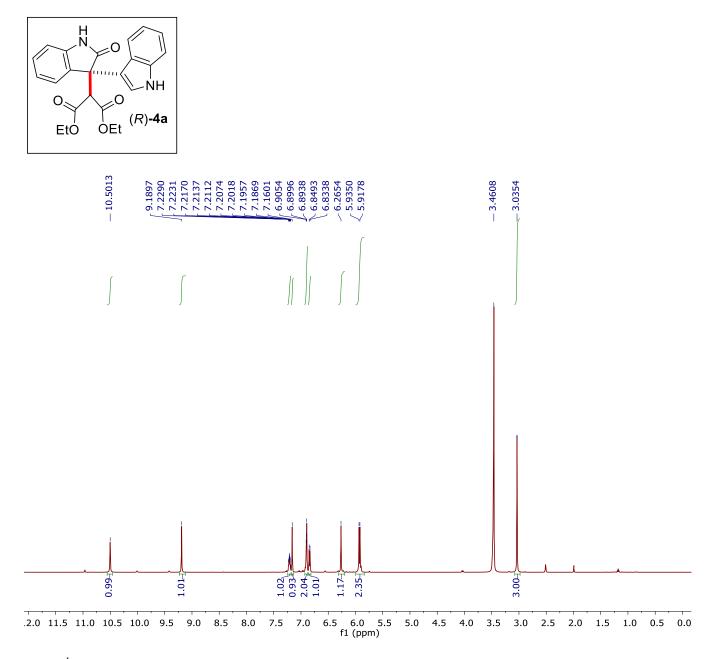

 ^1H NMR (500 MHz, DMSO-D_6) of compound (±)-5h

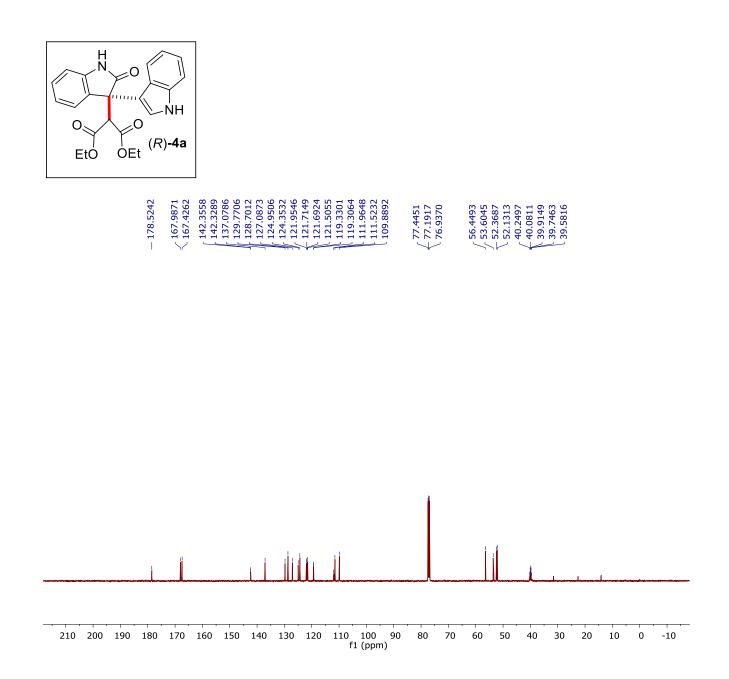

 ^{13}C NMR (125 MHz, DMSO-D_6) of compound (±)-5h


 ^1H NMR (500 MHz, DMSO-D_6) of compound (±)-5i

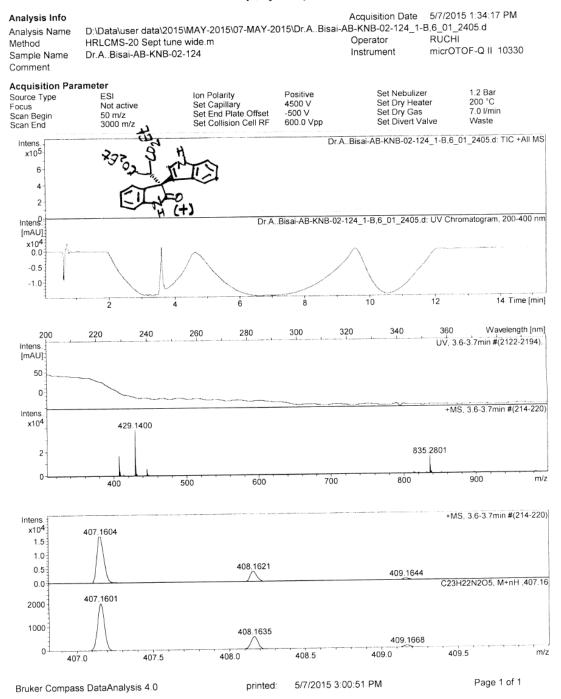

 ^{13}C NMR (125 MHz, DMSO-D₆) of compound (±)-5i


 ^1H NMR (500 MHz, DMSO-D₆) of compound (±)-5k

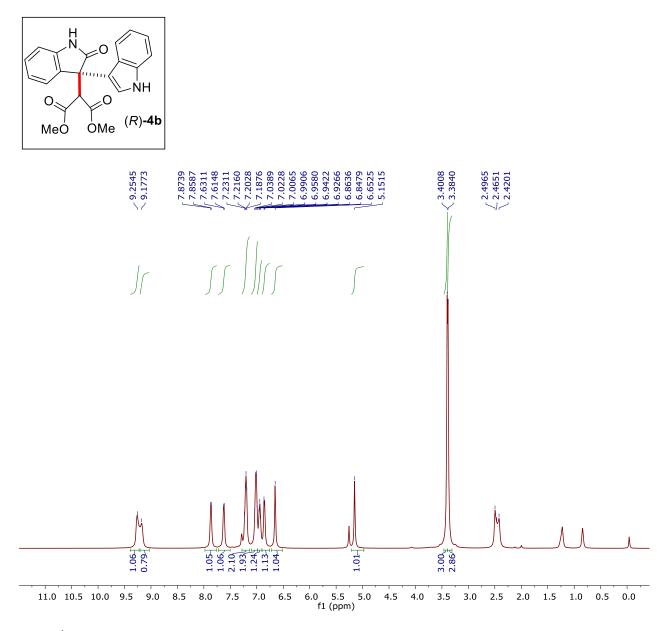

 ^{13}C NMR (125 MHz, DMSO-D₆) of compound (±)-5k

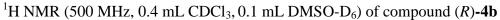

 ^1H NMR (500 MHz, DMSO-D_6) of compound (±)-5l

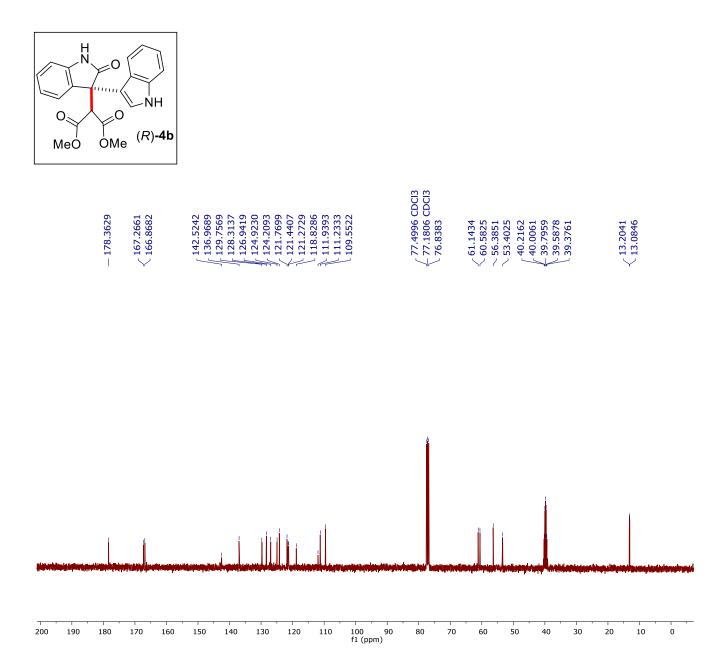
 ^{13}C NMR (125 MHz, DMSO-D_6) of compound (±)-5l



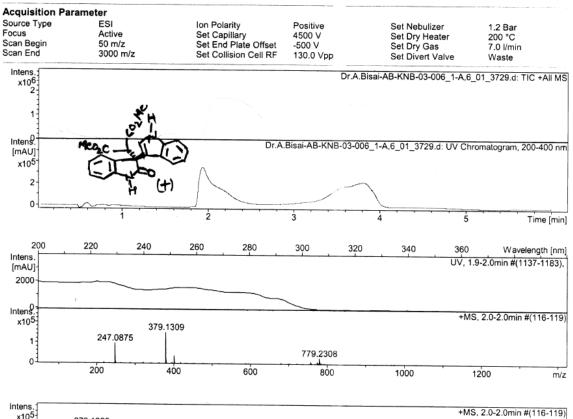
¹H NMR (400 MHz, 0.5 mL CDCl₃, 0.1 mL DMSO-D₆) of compound (R)-4a

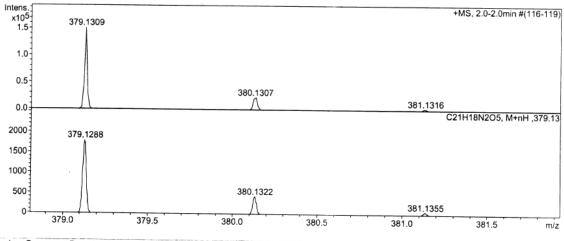



 13 C NMR (100 MHz, 0.4 mL CDCl₃, 0.1 mL DMSO-D₆) of compound (*R*)-4a


Display Report

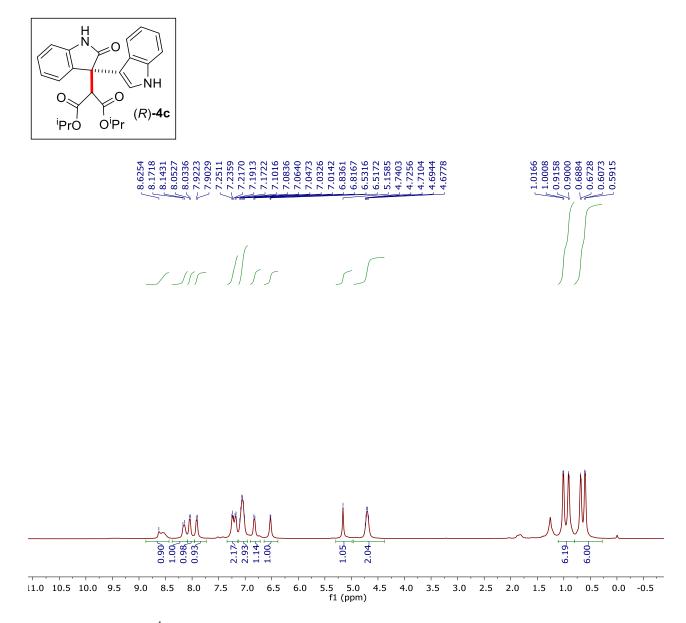
Scanned copy of mass spectrum of (*R*)-4a

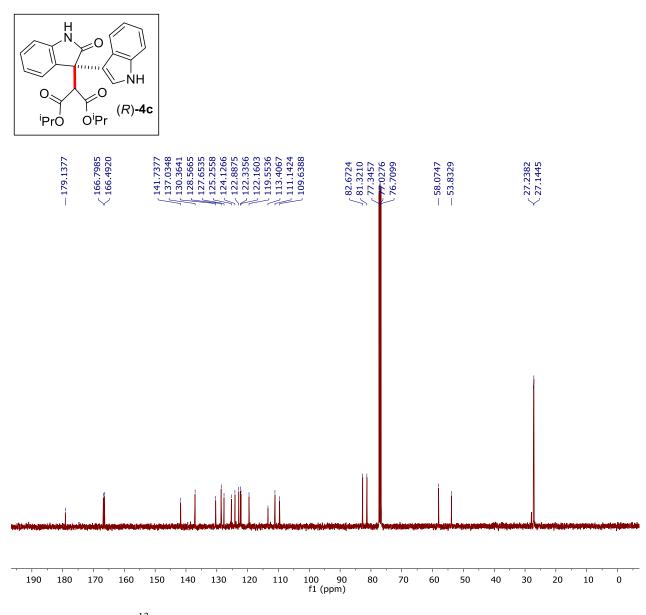



 13 C NMR (100 MHz, 0.4 mL CDCl₃, 0.1 mL DMSO-D₆) of compound (*R*)-4b

Display Report

Analysis Info


Acquisition Date 9/23/2015 12:15:51 PM Analysis Name D:\Data\user data\2015\SEPTMBER-2015\23-SEP-2015\Dr.A.Bisai-AB-KNB-03-006_1-A,6_01_3729.d Method HRLCMS-20 Sept.m Operator RUCHI Sample Name Dr.A.Bisai-AB-KNB-03-006 Instrument micrOTOF-Q II 10330 Comment

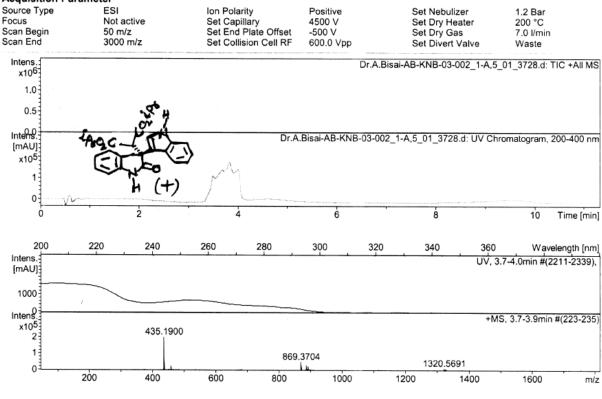


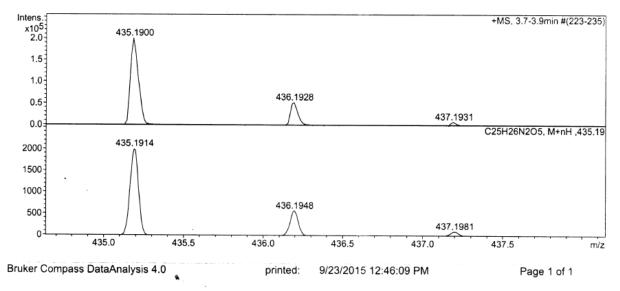
Bruker Compass DataAnalysis 4.0 printed: 9/23/2015 12:47:06 PM Page 1 of 1

Scanned copy of mass spectrum of (*R*)-4b

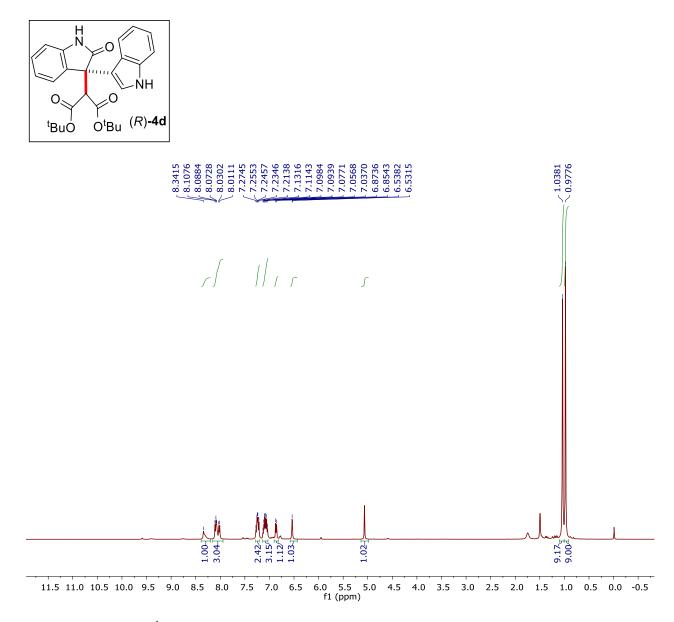
¹H NMR (400 MHz, CDCl₃) of compound (R)-4c

¹³C NMR (100 MHz, CDCl₃) of compound (R)-4c

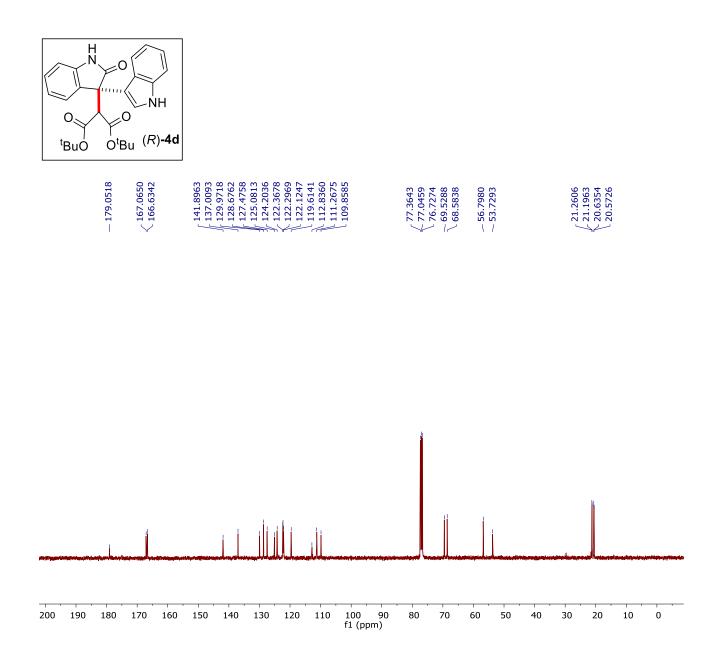

Display Report

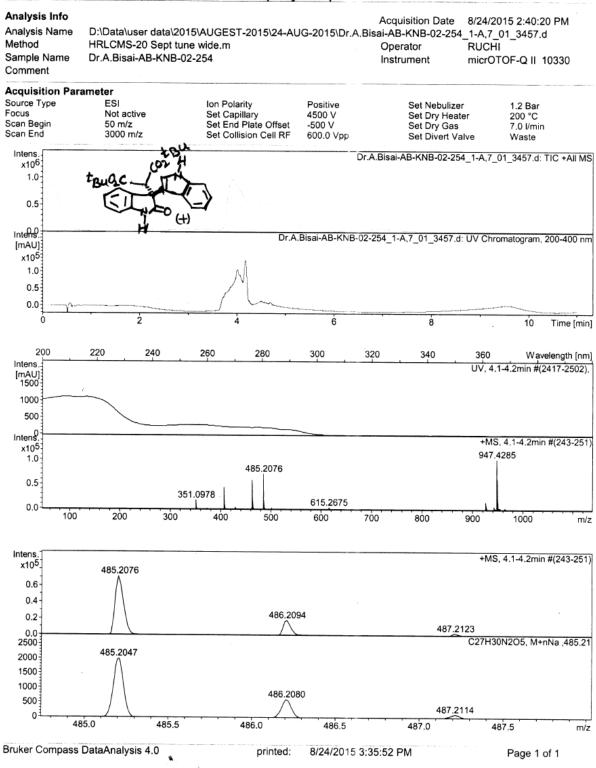

Analysis Info

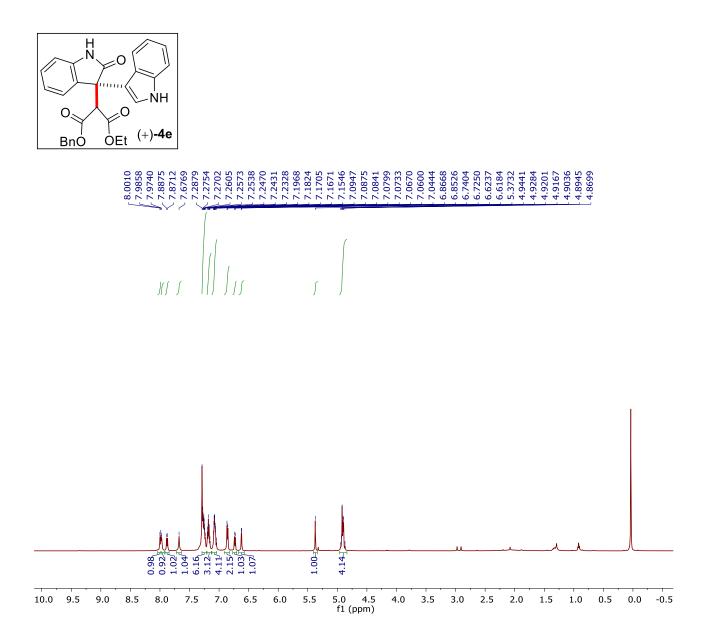
Method

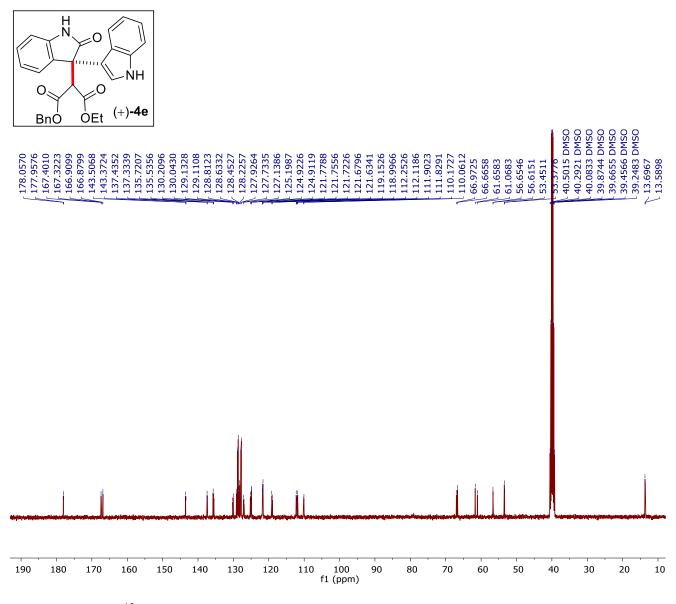

Acquisition Date 9/23/2015 12:03:37 PM Analysis Name D:\Data\user data\2015\SEPTMBER-2015\23-SEP-2015\Dr.A.Bisai-AB-KNB-03-002_1-A,5_01_3728.d HRLCMS-20 Sept tune wide.m Operator RÜCHI Sample Name Dr.A.Bisai-AB-KNB-03-002 Instrument micrOTOF-Q II 10330 Comment

Acquisition Parameter

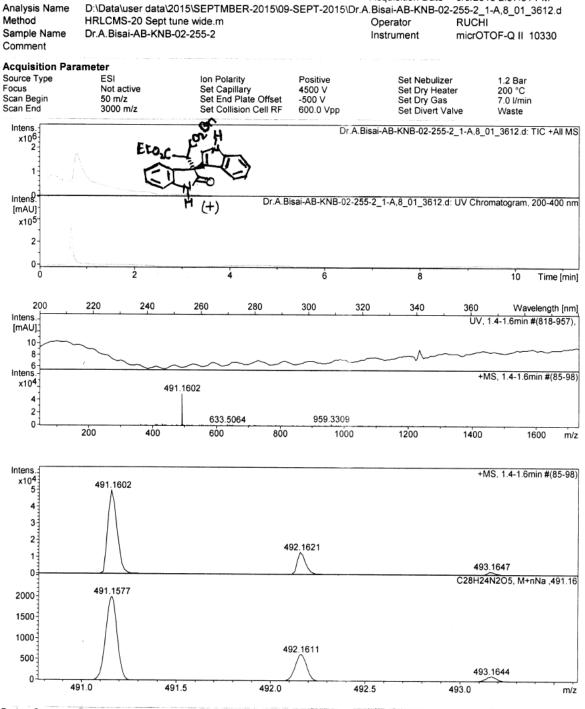


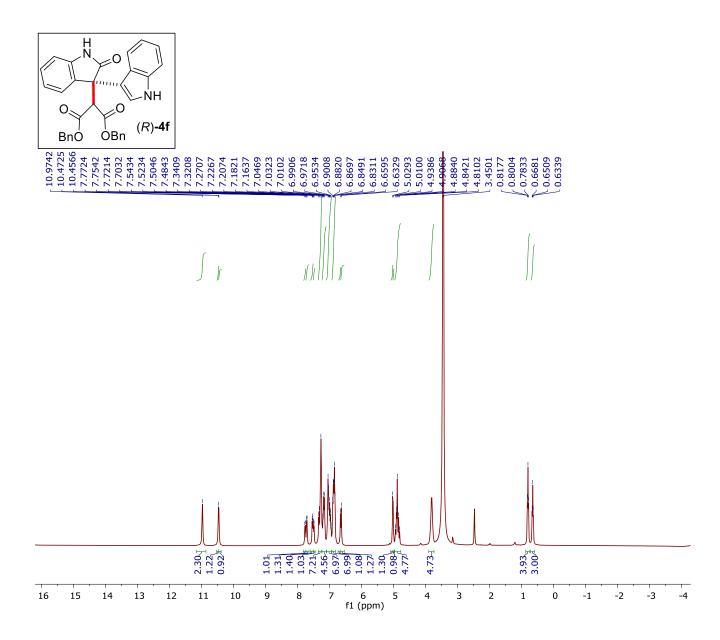

Scanned copy of mass spectrum of (*R*)-4c


¹H NMR (400 MHz, CDCl₃) of compound (R)-4d

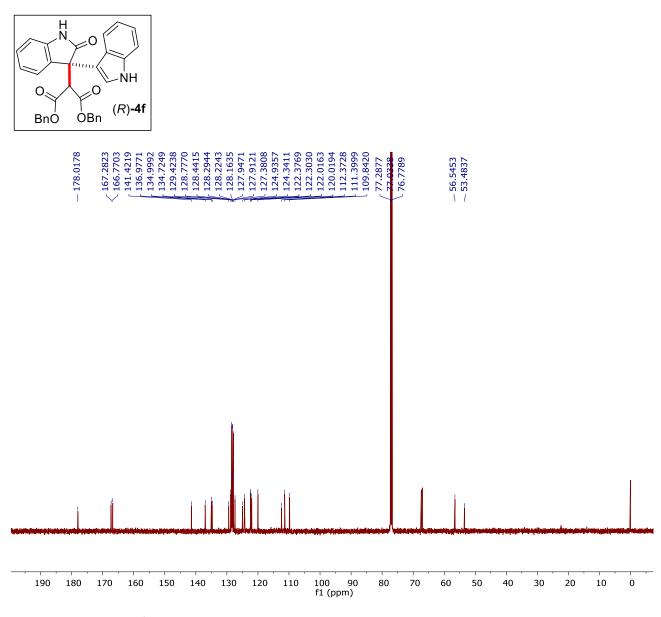

¹³C NMR (100 MHz, CDCl₃) of compound (R)-4d

Scanned copy of mass spectrum of (*R*)-4d

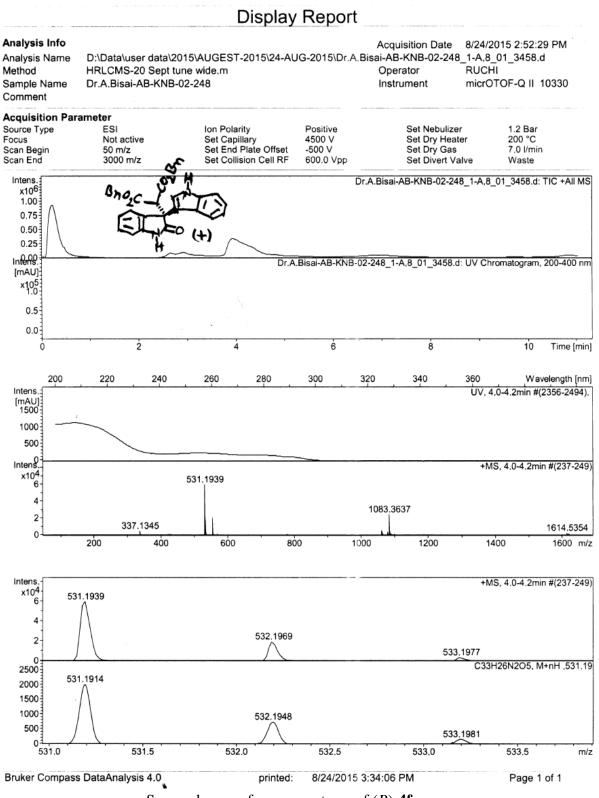

¹H NMR (400 MHz, DMSO-D₆) of compound (+)-4e


¹³C NMR (100 MHz, DMSO-D₆) of compound (+)-4e

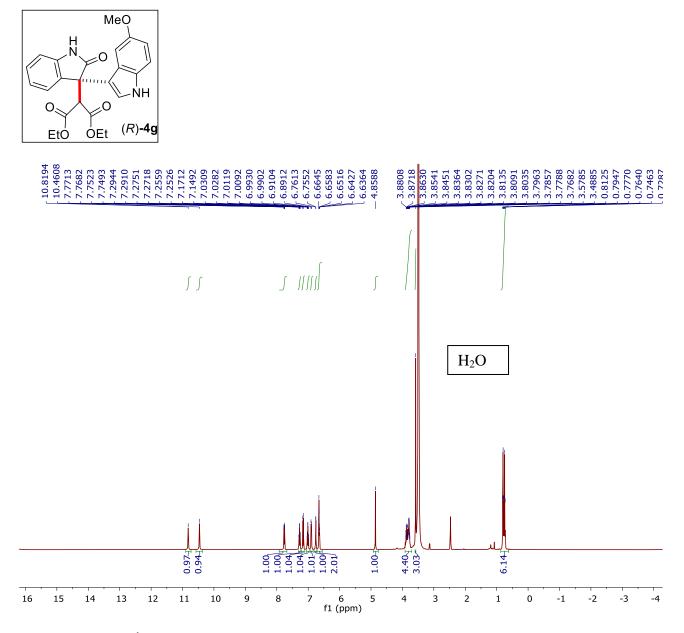
Analysis Info


Acquisition Date 9/9/2015 2:57:01 PM D:\Data\user data\2015\SEPTMBER-2015\09-SEPT-2015\Dr.A.Bisai-AB-KNB-02-255-2_1-A,8_01_3612.d

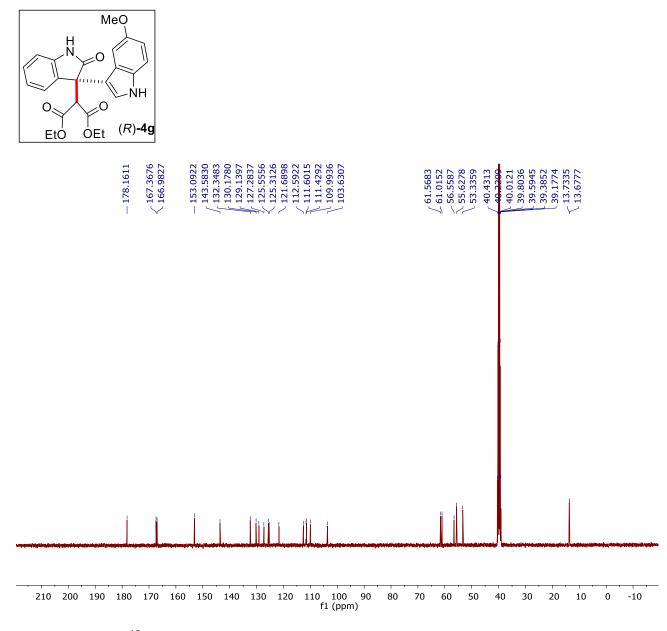
Bruker Compass DataAnalysis 4.0 printed: 9/9/2015 4:54:34 PM Page 1 of 1 Scanned copy of mass spectrum of (+)-4e



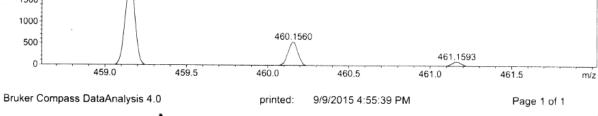
¹H NMR (500 MHz, CDCl₃) of compound (*R*)-4f

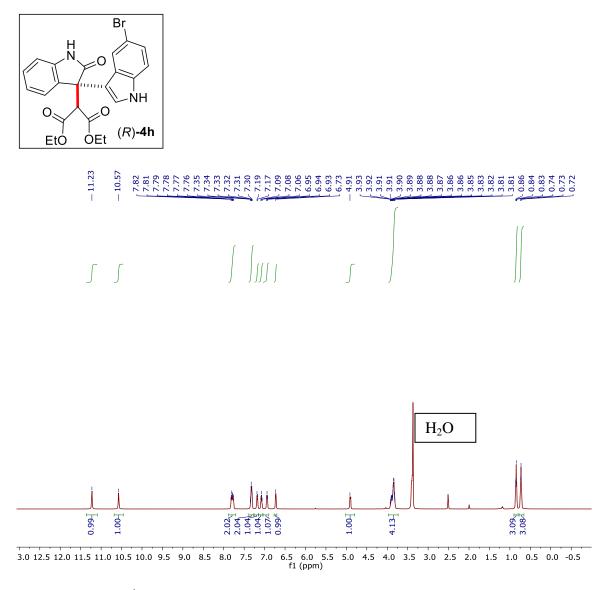


Supporting Information 80

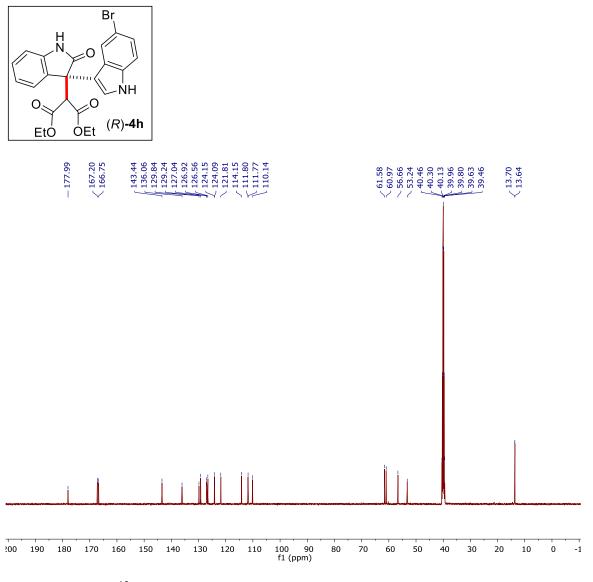

¹H NMR (500 MHz, CDCl₃) of compound (R)-4f

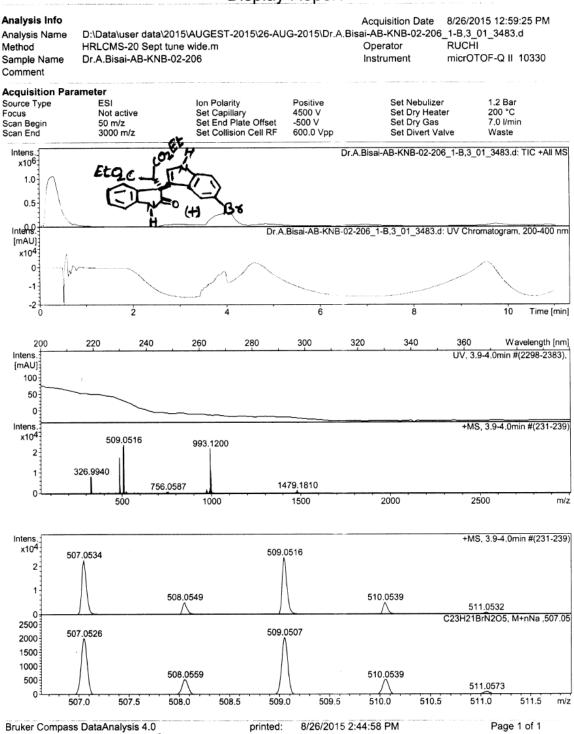
Scanned copy of mass spectrum of (*R*)-4f

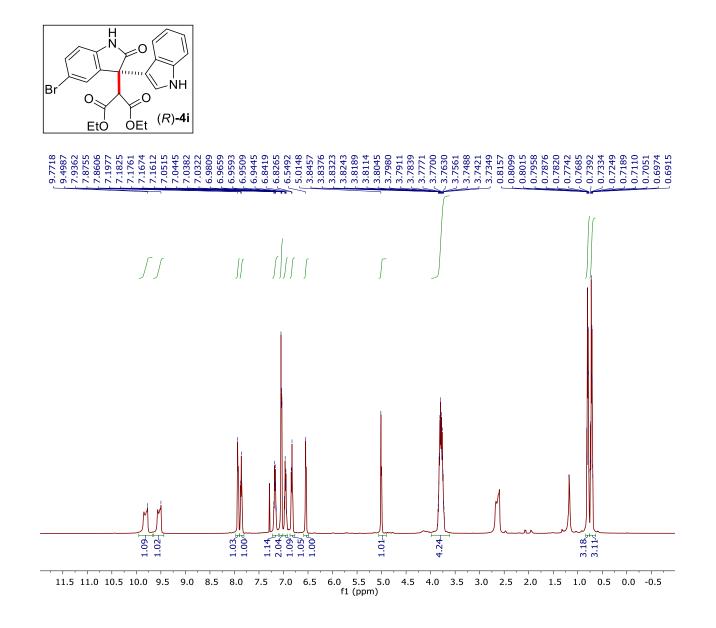


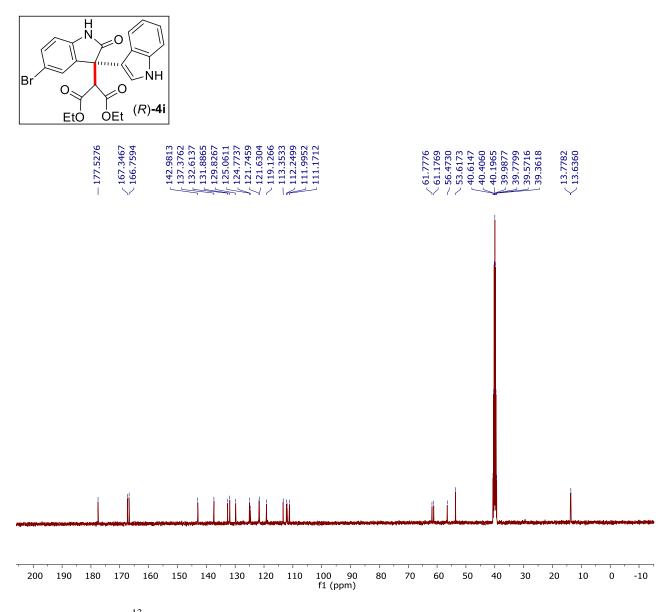

 13 C NMR (100 MHz, DMSO-D₆) of compound (*R*)-4g

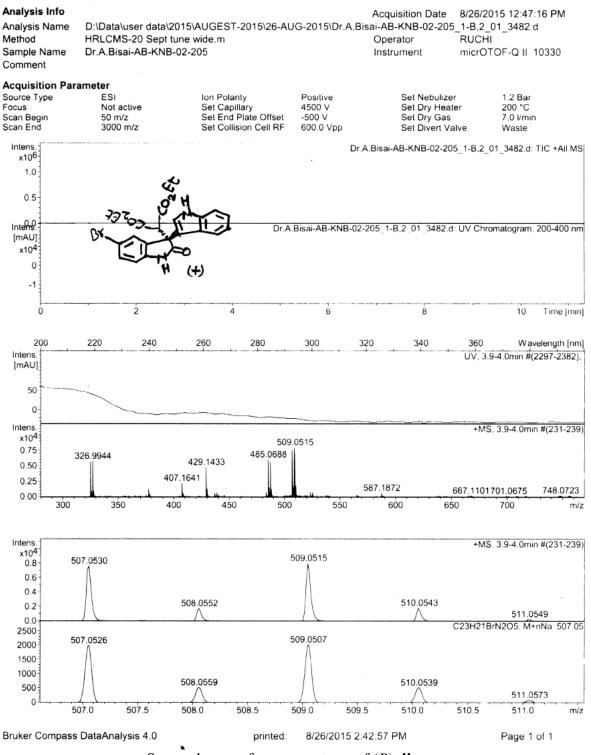
1

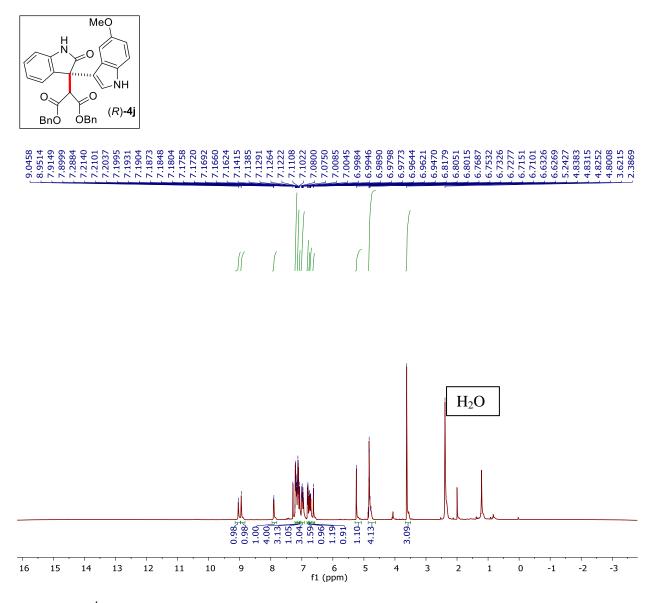

Analysis Analysis N Method Sample N Comment	Name D:\D HRL ame Dr.A	D:\Data\user data\2015\SEPTMBER-2015\09-SEPT-2015\Dr./ HRLCMS-20 Sept tune wide.m Dr.A.Bisai-AB-KNB-02-258-R3					Acquisition Date 9/9/2015 3:09:11 PM .Bisai-AB-KNB-02-258-R3_1-B,1_01_3613.d Operator RUCHI Instrument				
Acquisitic Source Typ Focus Scan Begin Scan End	1 5 (rameter ESI Not active 50 m/z 3000 m/z		lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF		Positive 4500 V -500 V 600.0 Vpp		er Iter alve	1.2 Bar 200 °C 7.0 I/min Waste		
Intens. x10 ⁶ 1 Intens.		13 LO LE		Dr.A.Bis			-B,1_01_3613.				
x102			(+)		6		8	11 - 	10	Time	[min]
· ·		-	-		0		0		10	nme	lunul
200 Intens. [mAU] 100	220	240	260	280	300	320	340	360 UV, 0	Wav 9-1.0min	/elength #(500-	
Intens. x10 ⁵									min #(5	3-57)	
0.5				01.4945	895.3212						
0.04	200	400	600	800		000	1200	1400	1	600	m/z
Intens. x10 ⁵ -		459.1551	4	and a second		5 - AB-1 -		+M	S. 0.9-1.0r	min #(5	3-57)
0.8-		٨									
0.6		1									
0.4											
0.2				460.15 /\	569		AD 4 4	507			
0.0				/`			461.1597 C24H24N2O6, M+nNa, 459.15				
2000	459.1527 A										
1500		Λ									

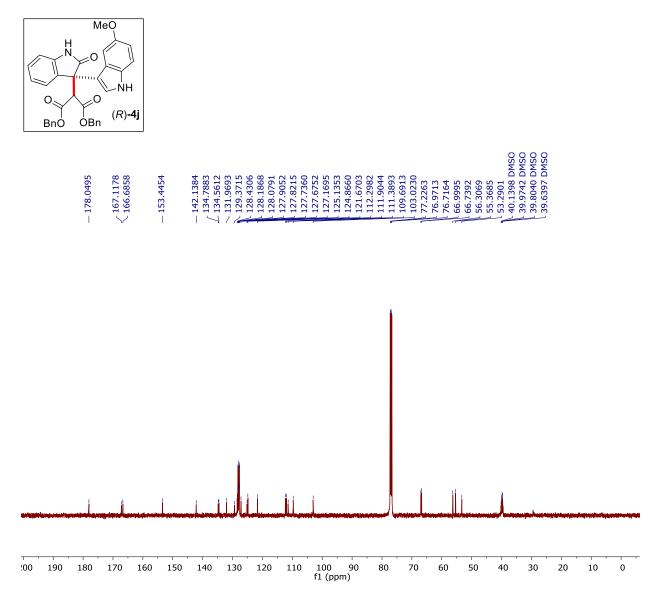

Scanned copy of mass spectrum of (R)-4g


¹H NMR (500 MHz, DMSO-D₆) of compound (R)-4h


¹³C NMR (125 MHz, DMSO-D₆) of compound (R)-4h

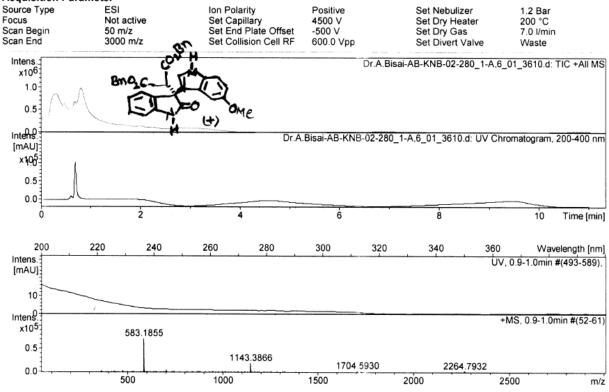

Scanned copy of mass spectrum of (*R*)-4h

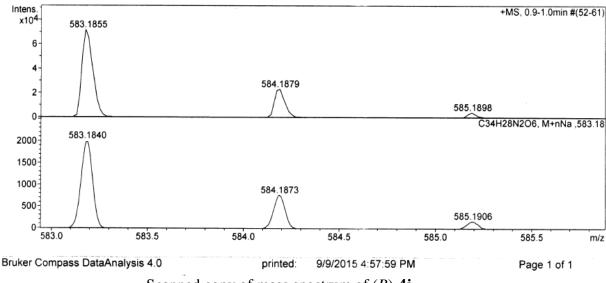

¹H NMR (400 MHz, DMSO-D₆) of compound (R)-4i


¹³C NMR (100 MHz, DMSO-D₆) of compound (*R*)-4i

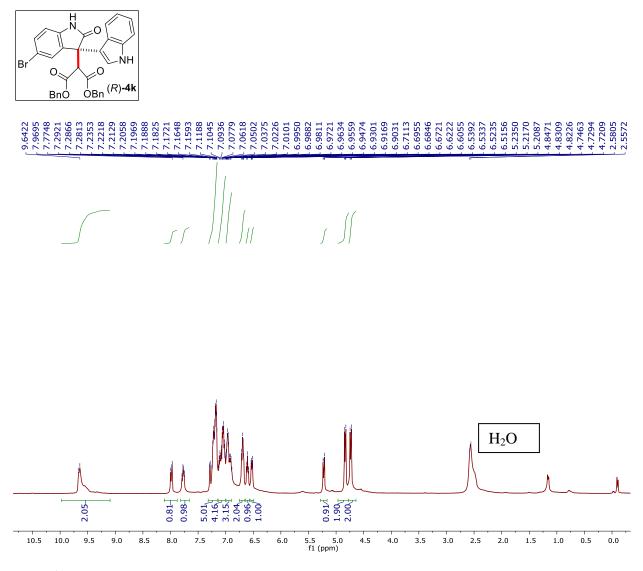
Scanned copy of mass spectrum of (*R*)-4i

¹H NMR (0.4 mL CDCl₃, 0.1 mL DMSO-D₆) of compound (R)-4j

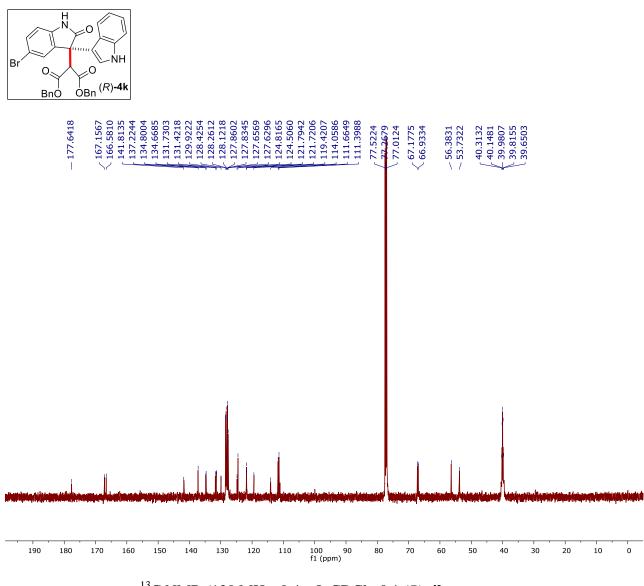



¹³C NMR (0.4 mL CDCl₃, 0.1 mL DMSO-D₆) of compound (*R*)-4j

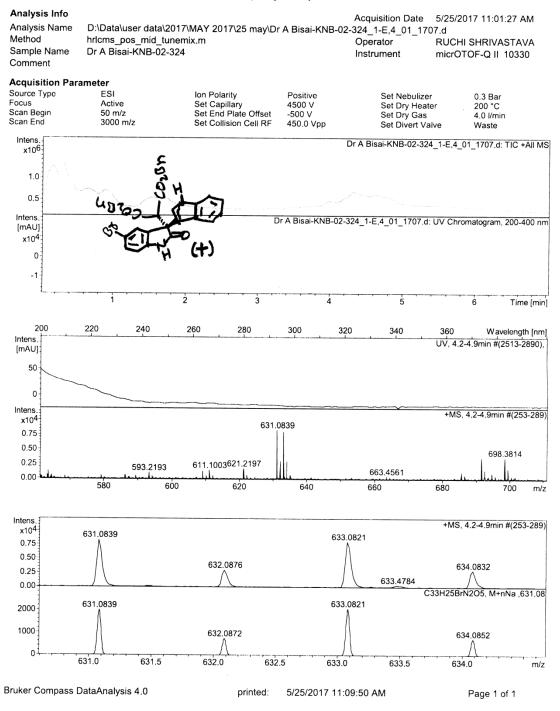
Analysis Info


Acquisition Date 9/9/2015 2:32:38 PM Analysis Name D:\Data\user data\2015\SEPTMBER-2015\09-SEPT-2015\Dr.A.Bisai-AB-KNB-02-280_1-A,6_01_3610.d RUCHI Method HRLCMS-20 Sept tune wide.m Operator Sample Name Dr.A.Bisai-AB-KNB-02-280 Instrument micrOTOF-Q II 10330 Comment

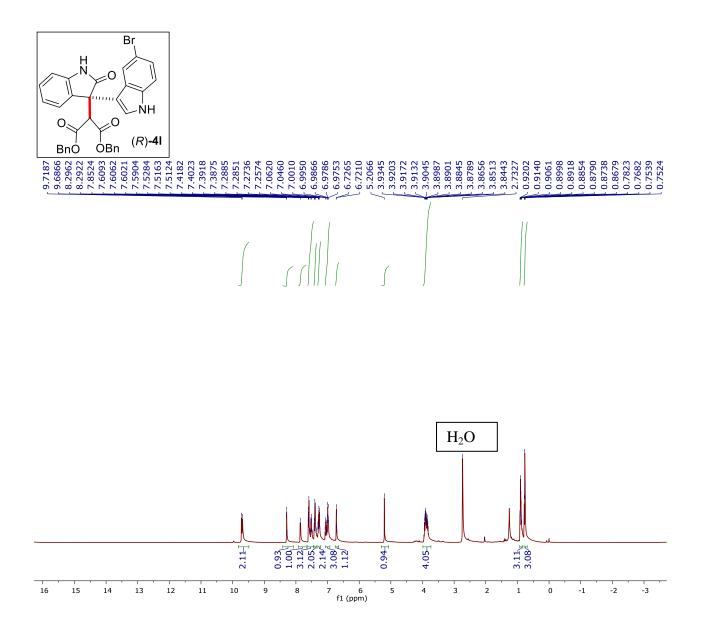
Acquisition Parameter



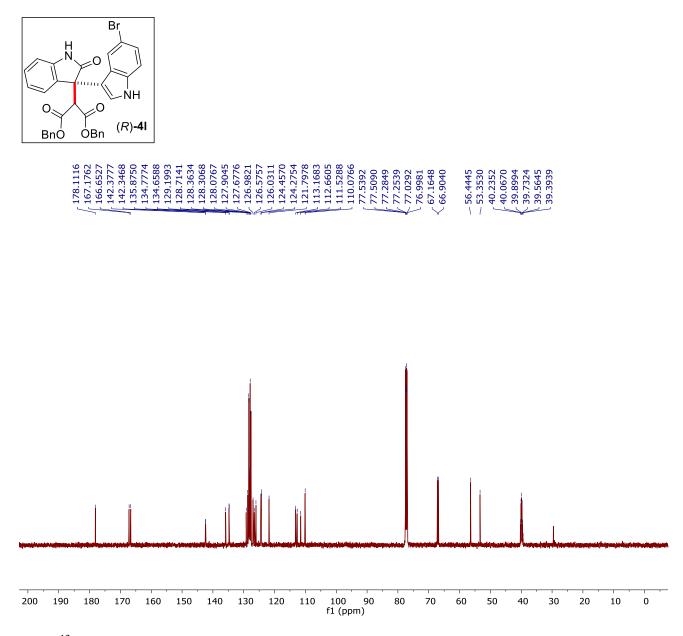
Scanned copy of mass spectrum of (*R*)-4j

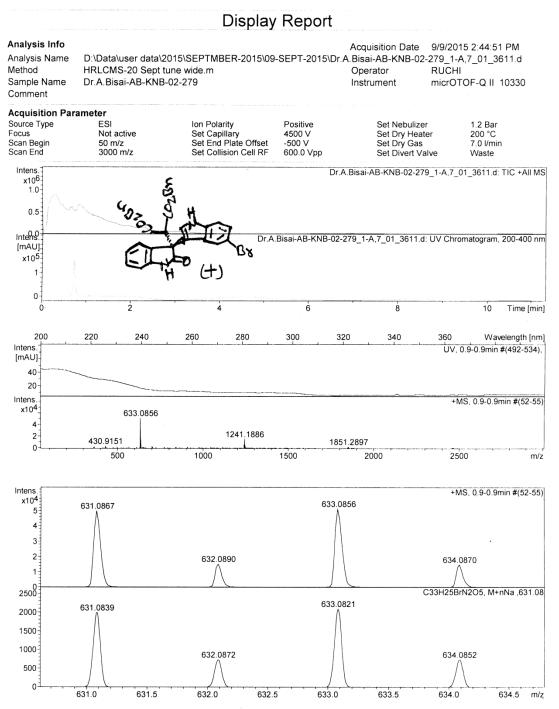


¹H NMR (500 MHz, 0.4 mL CDCl₃, 0.1 mL DMSO-D₆) of compound (R)-4k

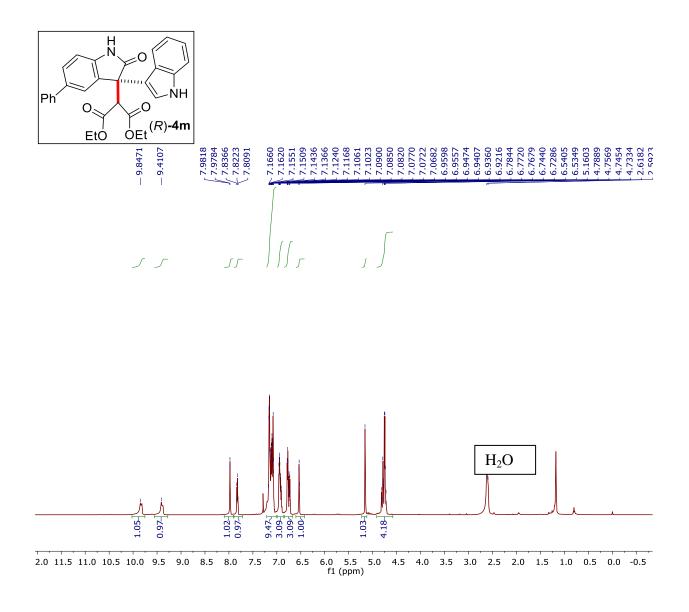


Supporting Information 95

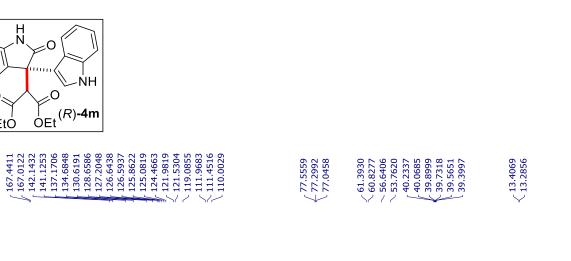

¹³C NMR (120 MHz, 0.4 mL CDCl₃, 0.1 (*R*)-4k


Scanned copy of mass spectrum of (*R*)-4k

¹H NMR (400 MHz, 0.4 mL CDCl₃, 0.1 mL DMSO-D₆) of compound (R)-4l



¹³C NMR (100 MHz, 0.4 mL CDCl₃, 0.1 mL DMSO-D₆) of compound (*R*)-41

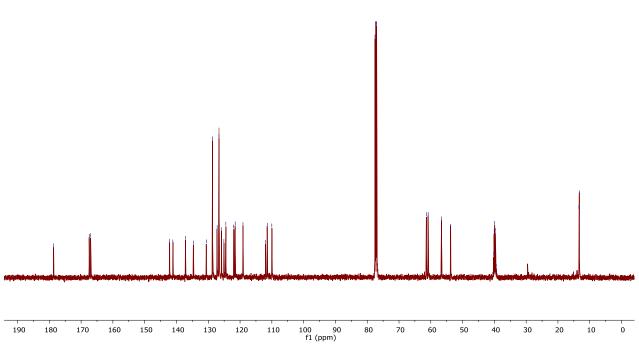


Bruker Compass DataAnalysis 4.0 printed: 9/9/2015 4:57:02 PM Page 1 of 1

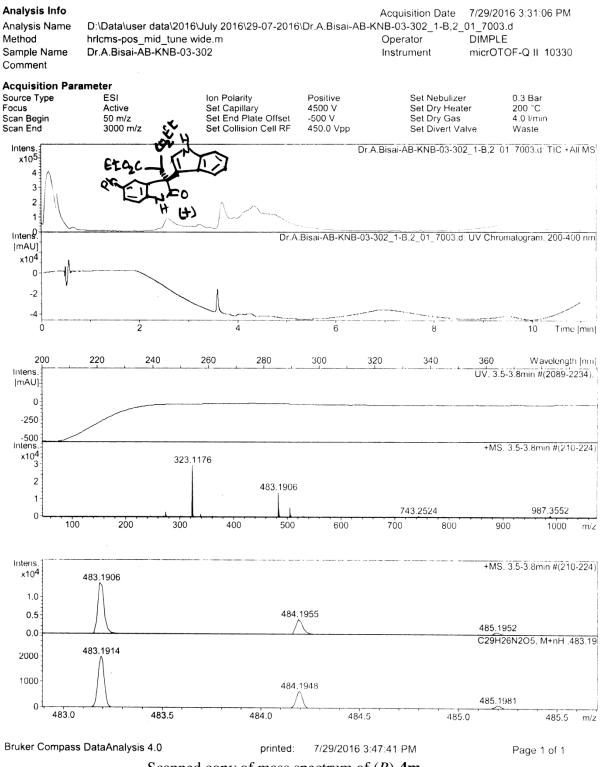
Scanned copy of mass spectrum of (R)-41

¹H NMR (500 MHz, 0.4 mL CDCl₃, 0.1 mL DMSO-D₆) of compound (*R*)-4m

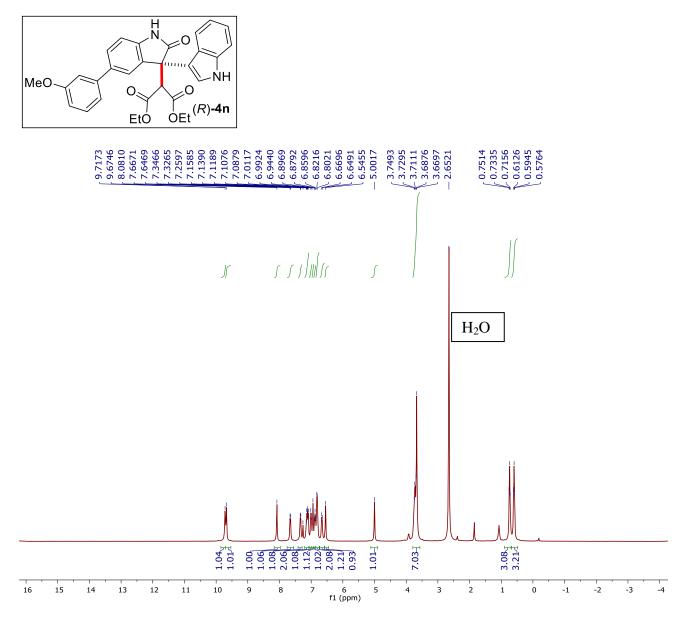
H

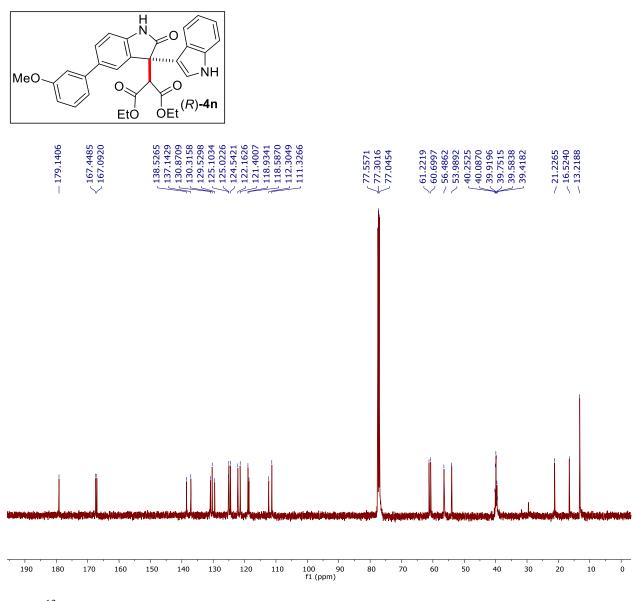

0

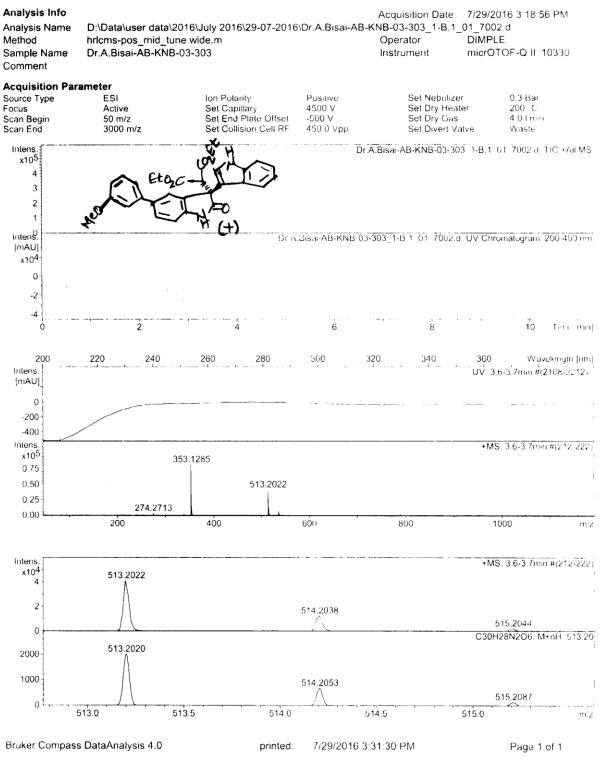
- 178.6455

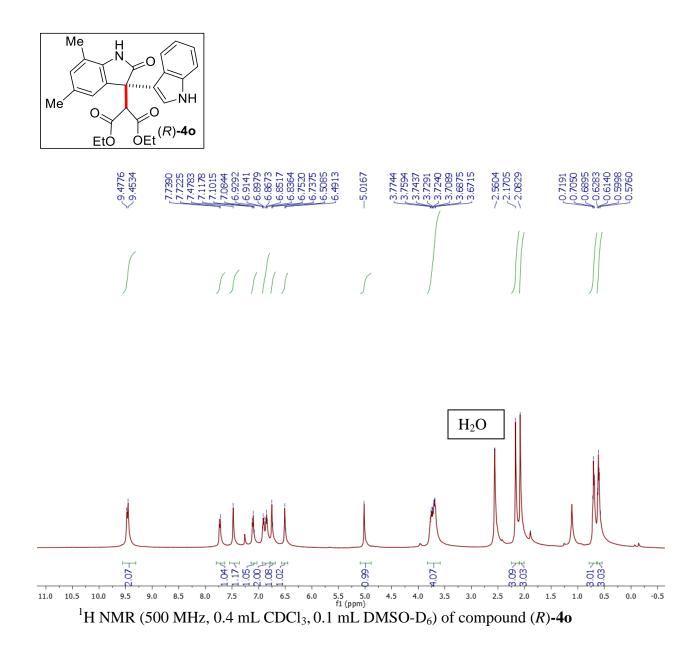

EtÓ

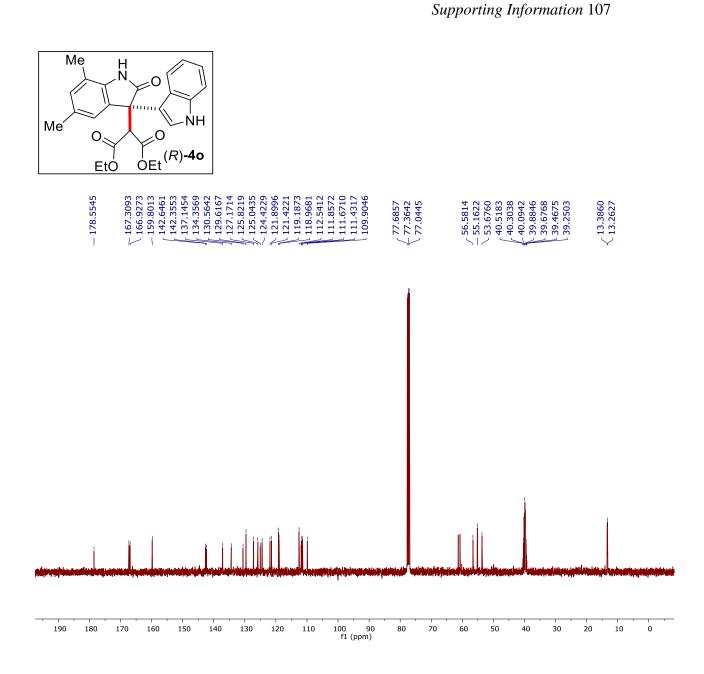
Ph


Supporting Information 101

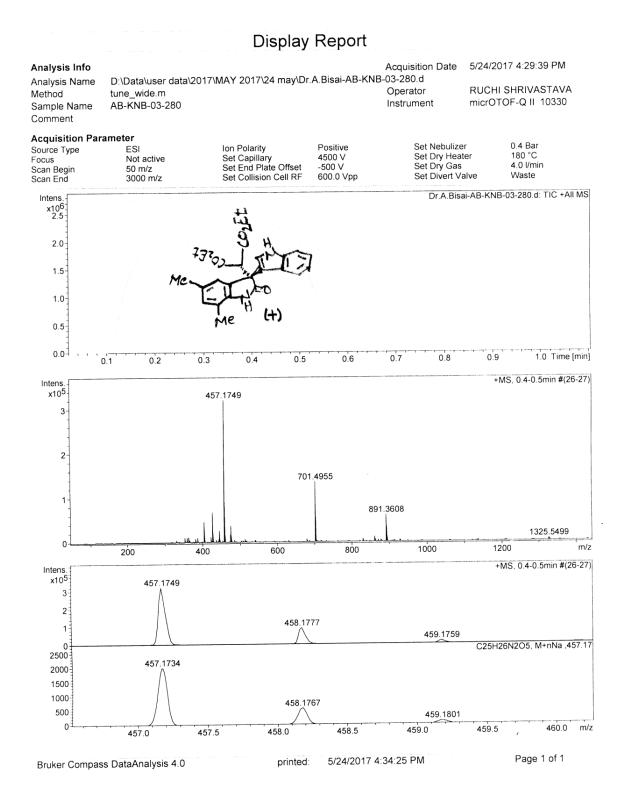

 ^{13}C NMR (125 MHz, 0.4 mL CDCl₃, 0.1 mL DMSO-D₆) of compound (*R*)-4m


Scanned copy of mass spectrum of (*R*)-4m

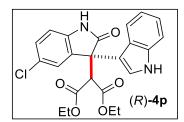

¹H NMR (500 MHz, 0.4 mLCDCl₃, 0.1 mL DMSO-D₆) of compound (R)-4n

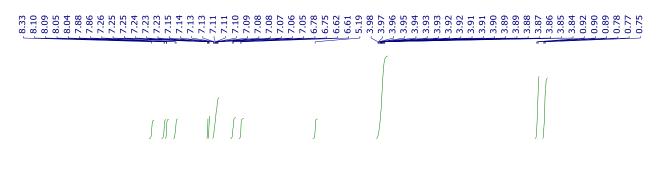


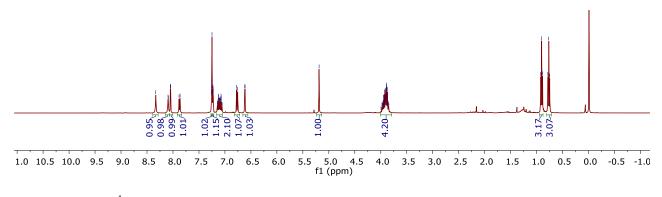
¹³C NMR (100 MHz, 0.4 mL CDCl₃, 0.1 mL DMSO-D₆) of compound (*R*)-4n

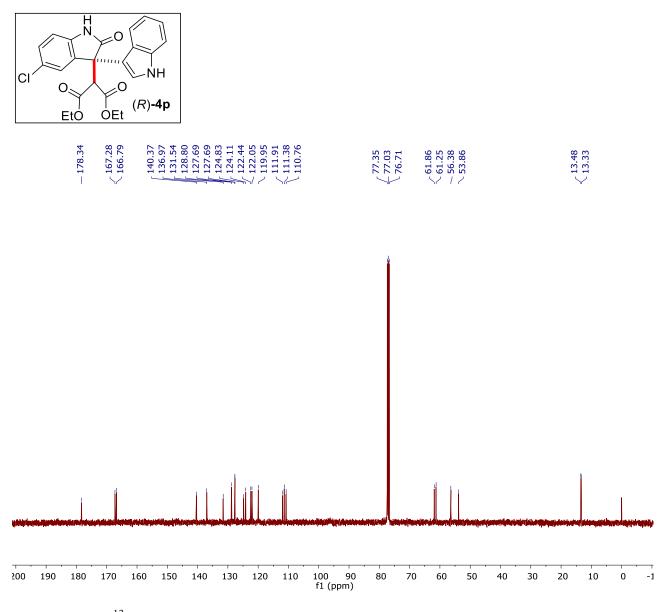


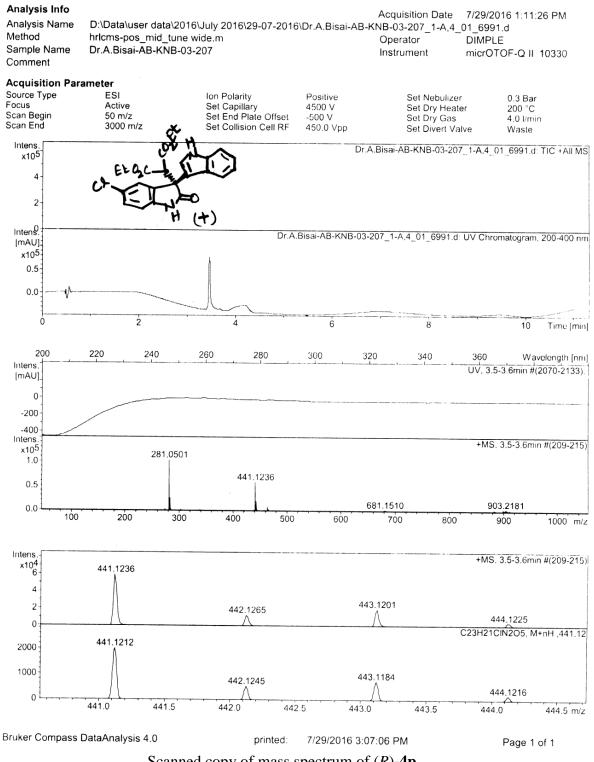
Scanned copy of mass spectrum of (R)-4n

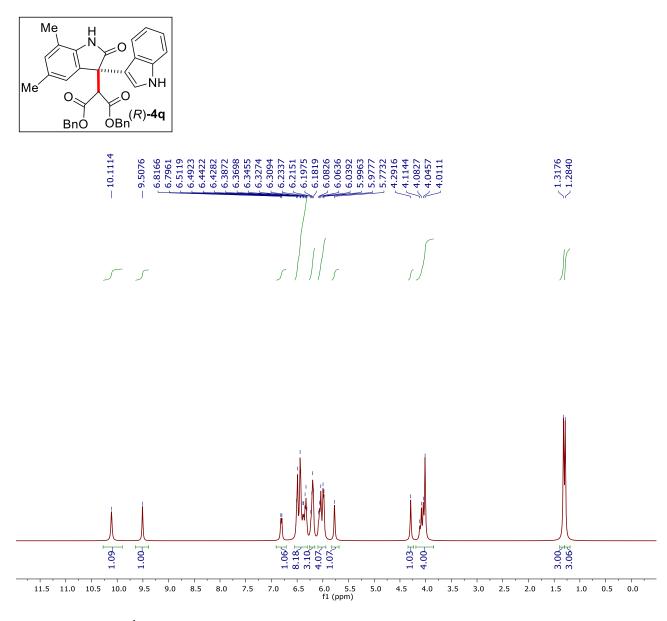


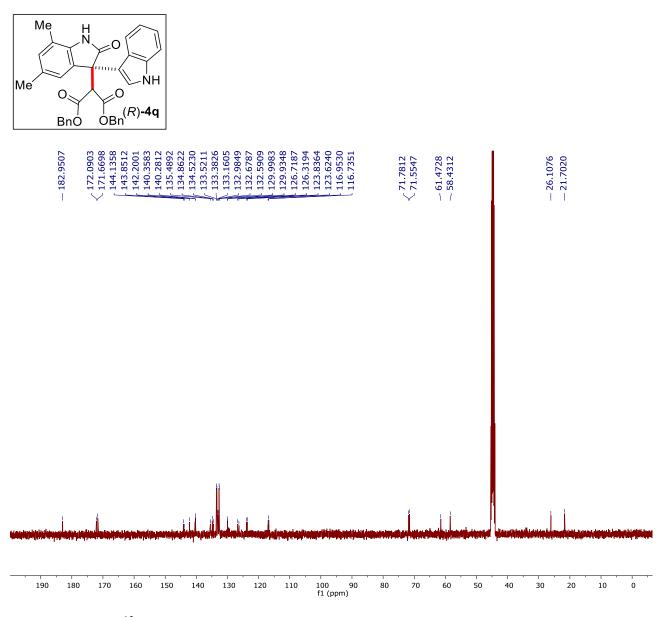



 13 C NMR (125 MHz, 0.4 mL CDCl₃, 0.1 mL DMSO-D₆) of compound (*R*)-40

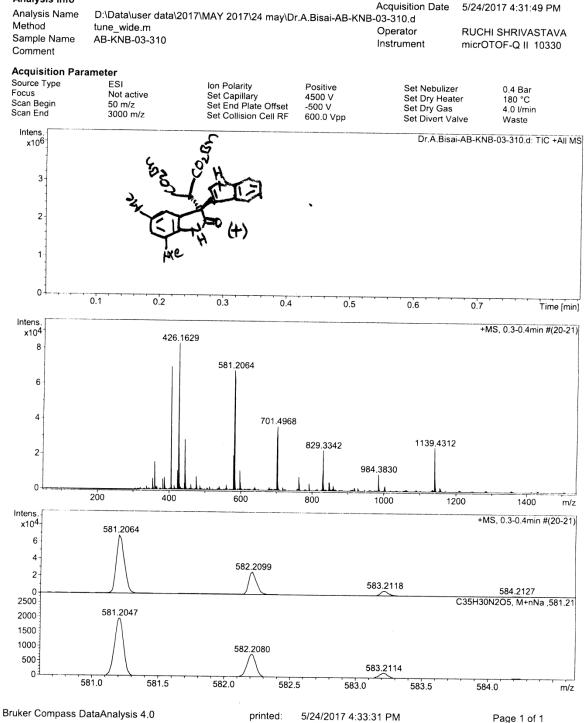

Scanned copy of mass spectrum of (*R*)-40

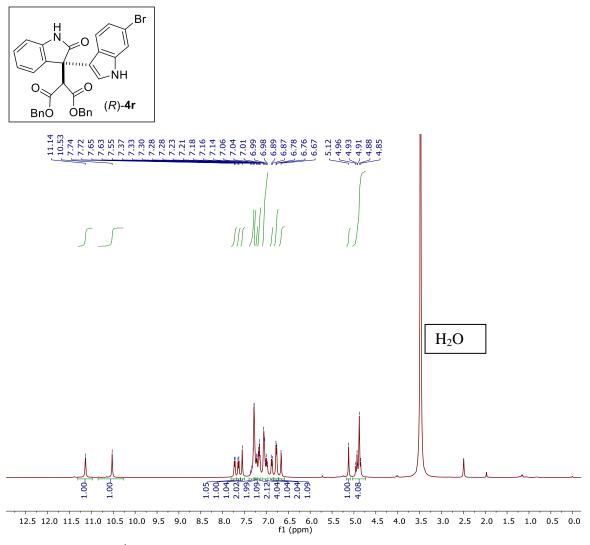



¹H NMR (500 MHz, 0.4 mL CDCl₃) of compound (R)-4p

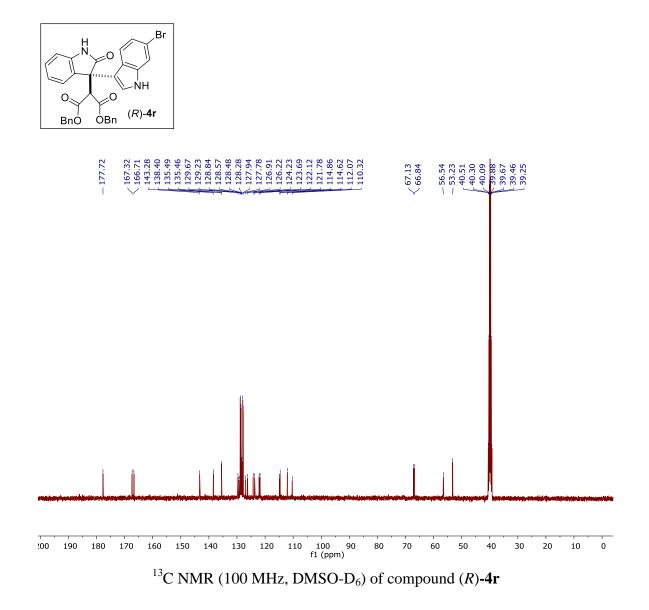

 13 C NMR (125 MHz, 0.4 mL CDCl₃) of compound (*R*)-4p

Scanned copy of mass spectrum of (*R*)-4p



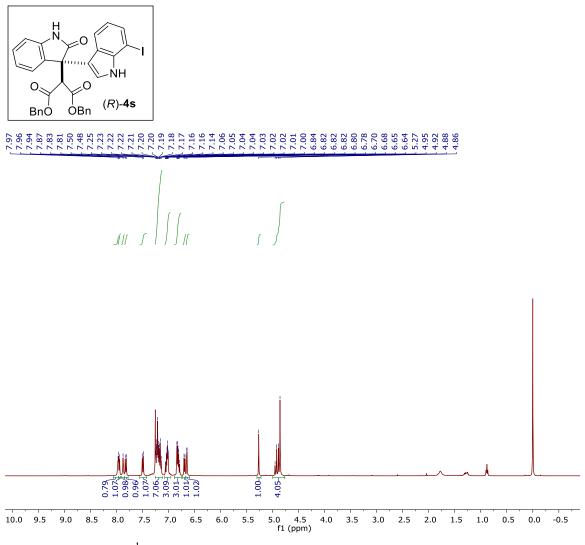


¹³C NMR (100 MHz, DMSO-D₆) of compound (R)-4q

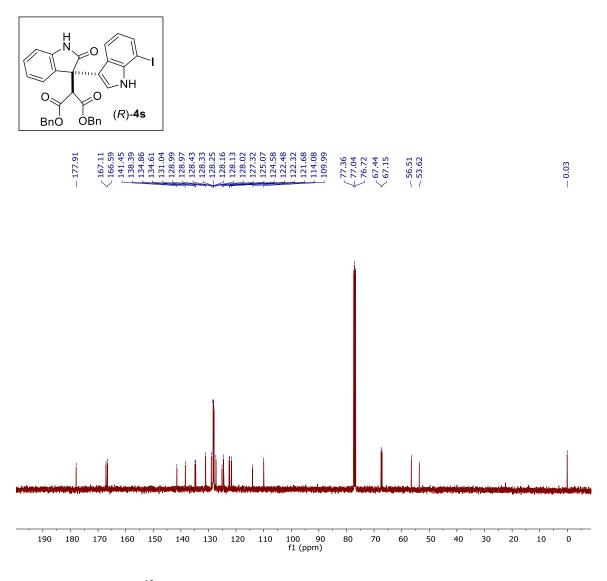

Analysis Info

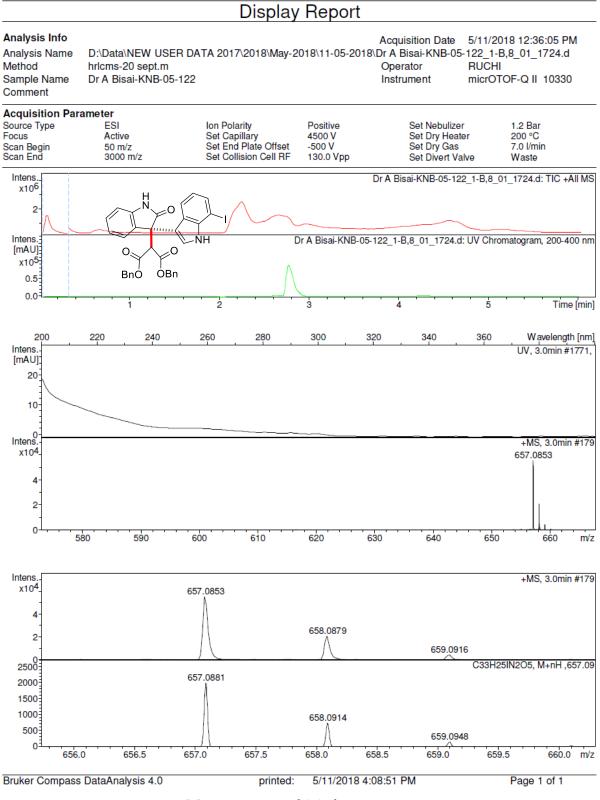


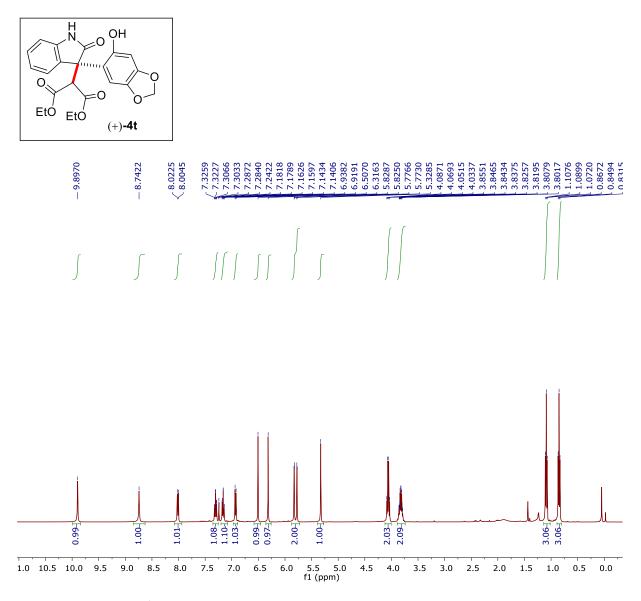
Scanned copy of mass spectrum of (*R*)-4q

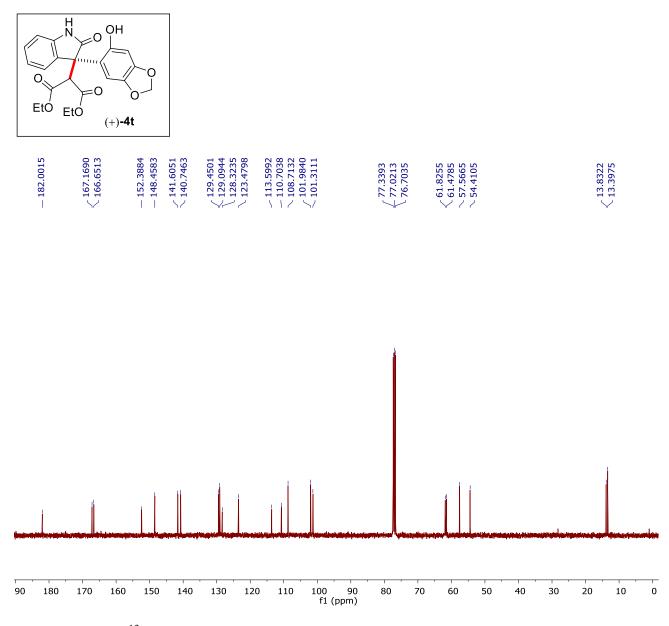


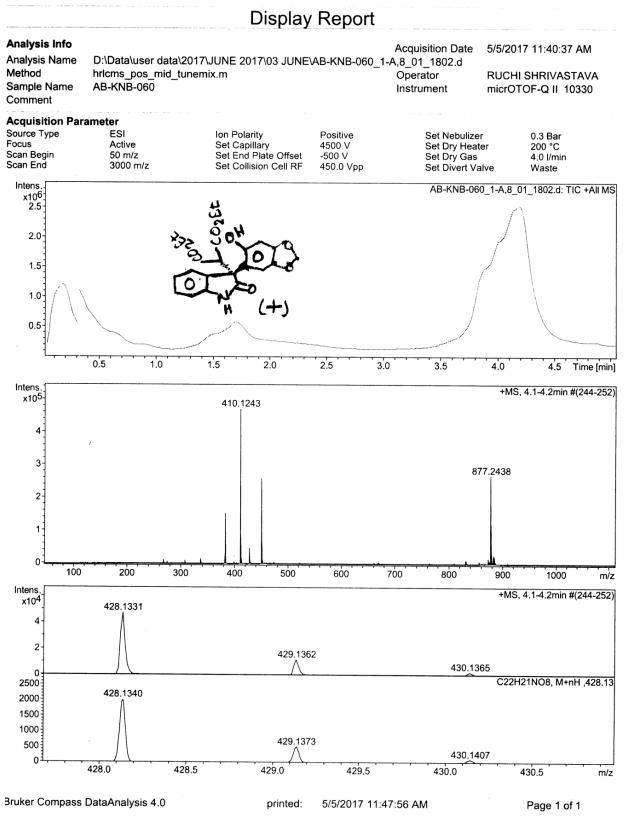
¹H NMR (400 MHz, DMSO-D₆) of compound (R)-4r

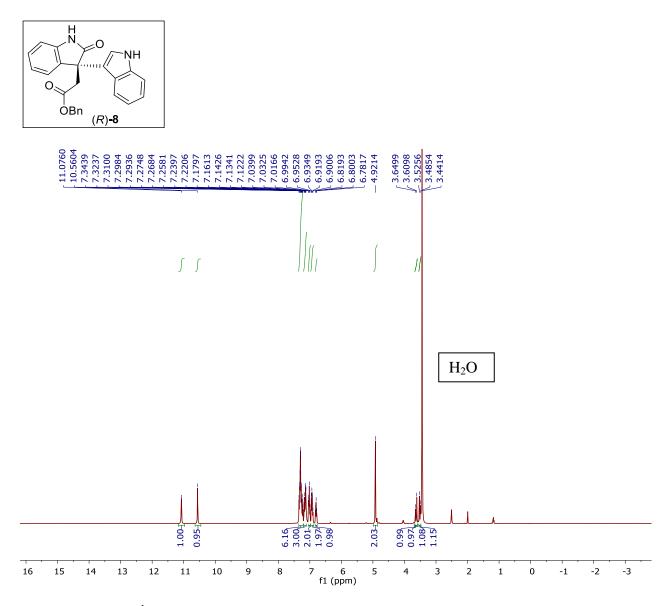


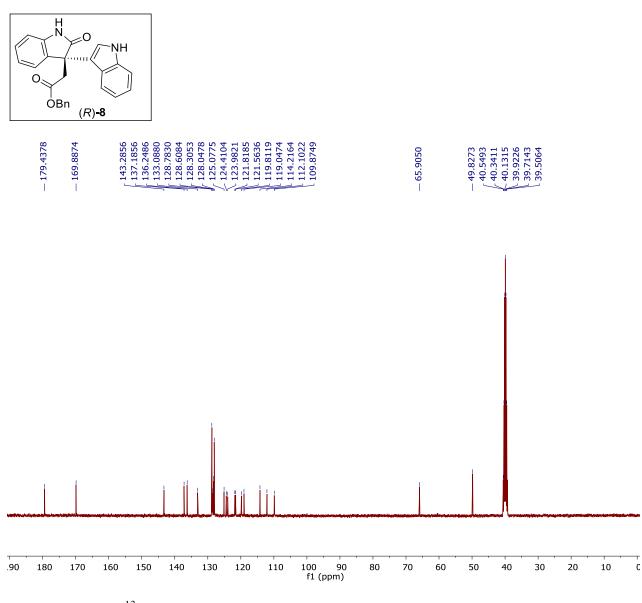

Mass spectrum of (*R*)-4r

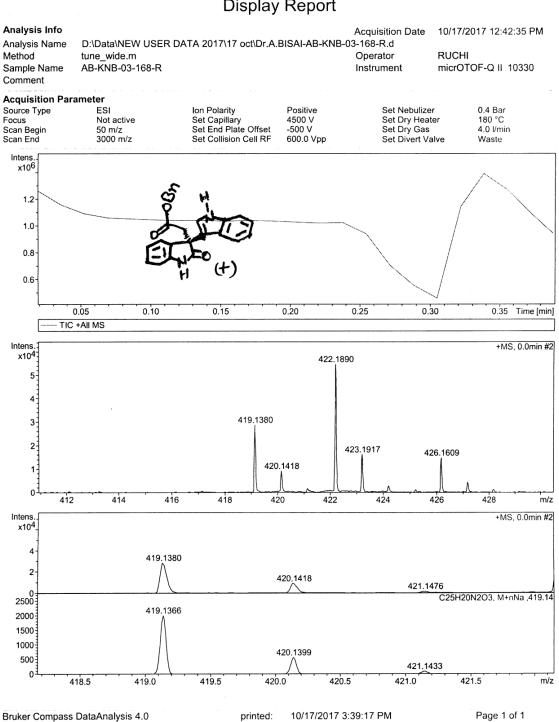

¹H NMR (400 MHz, CDCl₃) of compound (*R*)-4s

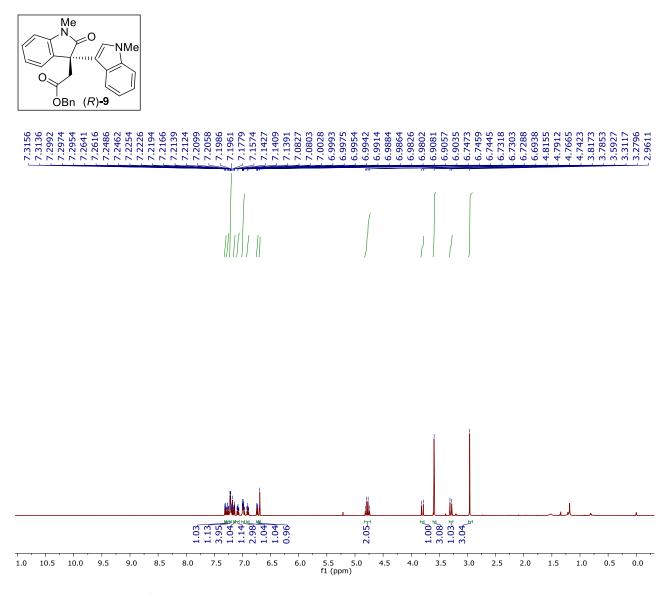

 13 C NMR (100 MHz, CDCl₃) of compound (*R*)-4s

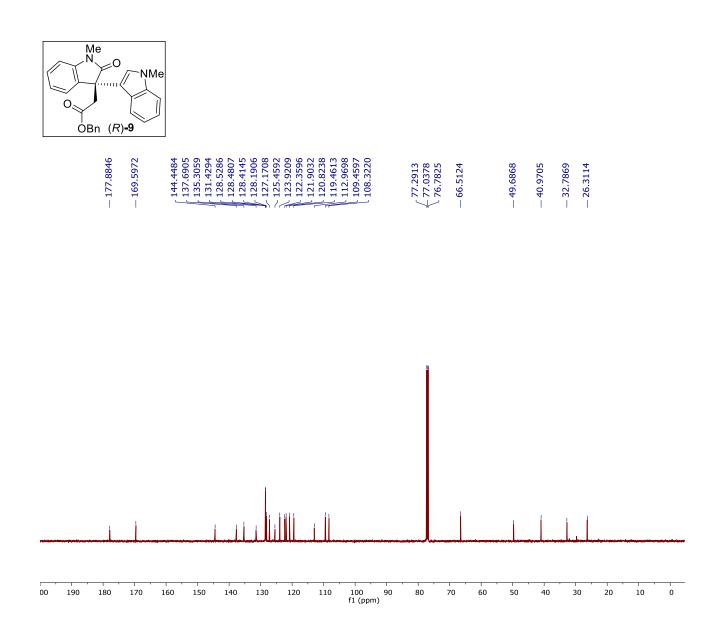

Mass spectrum of (*R*)-4s


¹H NMR (400 MHz, CDCl₃) of compound (+)-4t


 ^{13}C NMR (100 MHz, DMSO-D₆) of compound (+)-4t

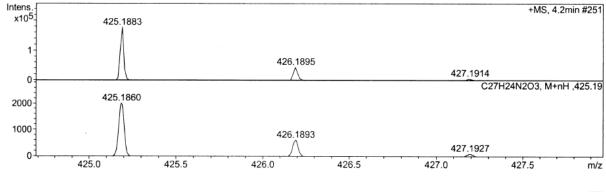

Scanned copy of mass spectrum of (+)-4t


¹H NMR (400 MHz, DMSO-D₆) of compound (R)-8



Scanned copy of mass spectrum of (R)-8

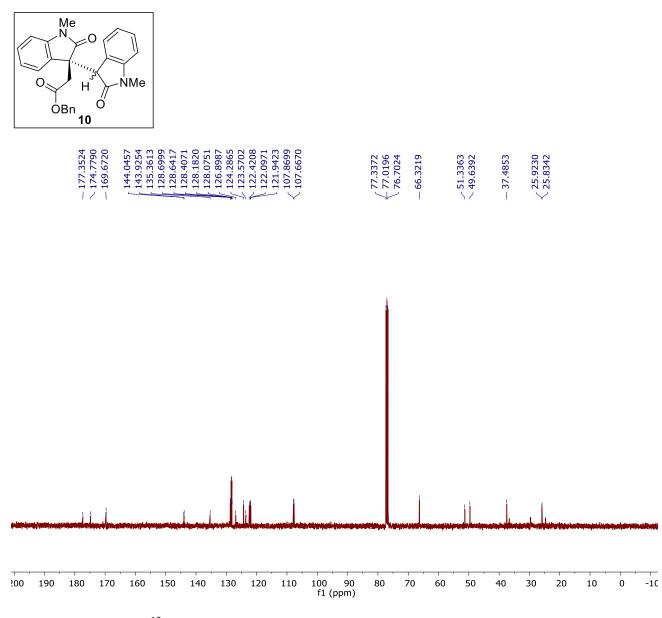
¹H NMR (400 MHz, CDCl₃) of compound (R)-9

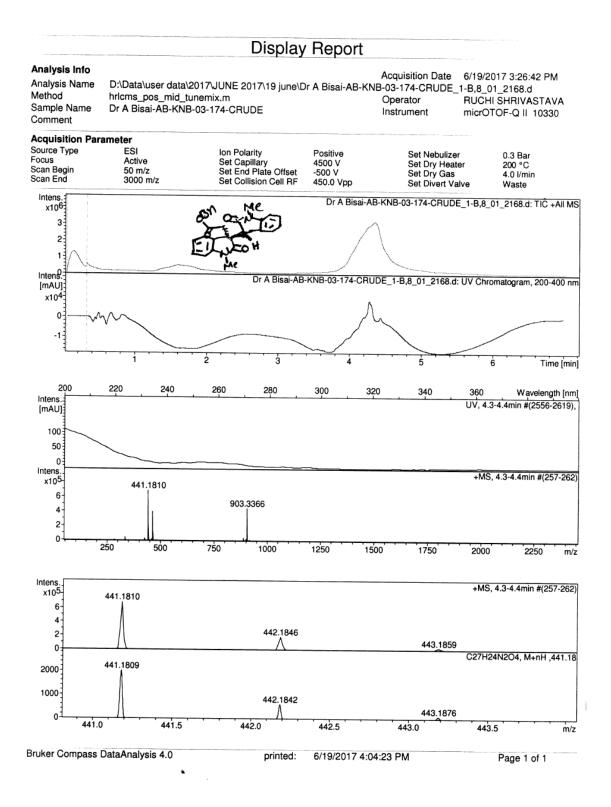

¹³C NMR (100 MHz, CDCl₃) of compound (*R*)-9

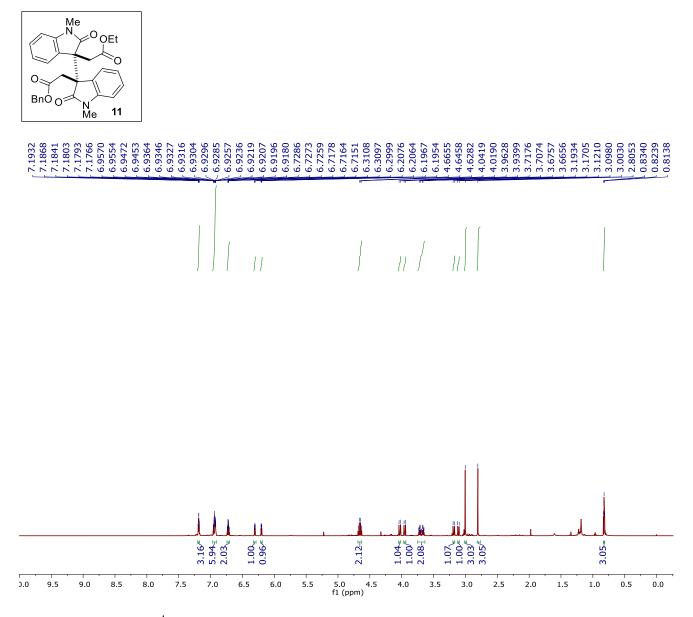
Analysis Info

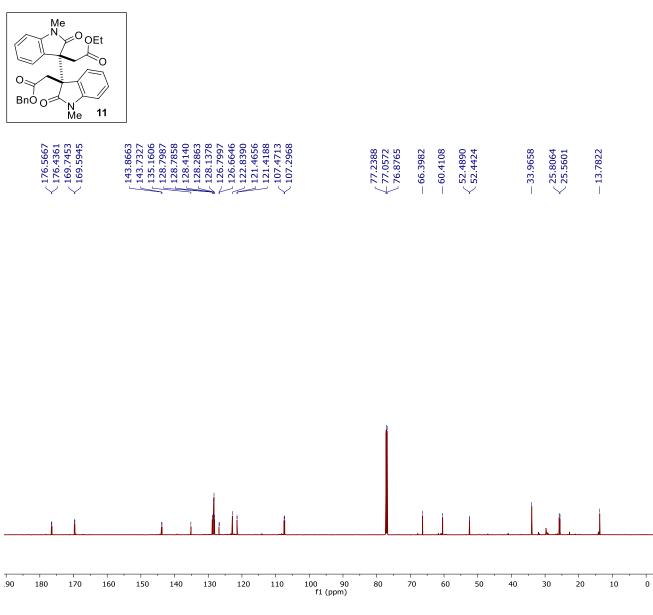

Analysis Info		Acquisition Date	7/29/2016 1:31:50 PM			
Analysis Name	D:\Data\user data\2016\July 2016\29-07-2016\Dr.A.Bisai-AB-KNB-03-170_1-A,5_01_6993.d					
Method	hrlcms-pos_mid_tune wide.m	Operator	DIMPLE			
Sample Name	Dr.A.Bisai-AB-KNB-03-170	Instrument	micrOTOF-Q II 10330			
Comment						

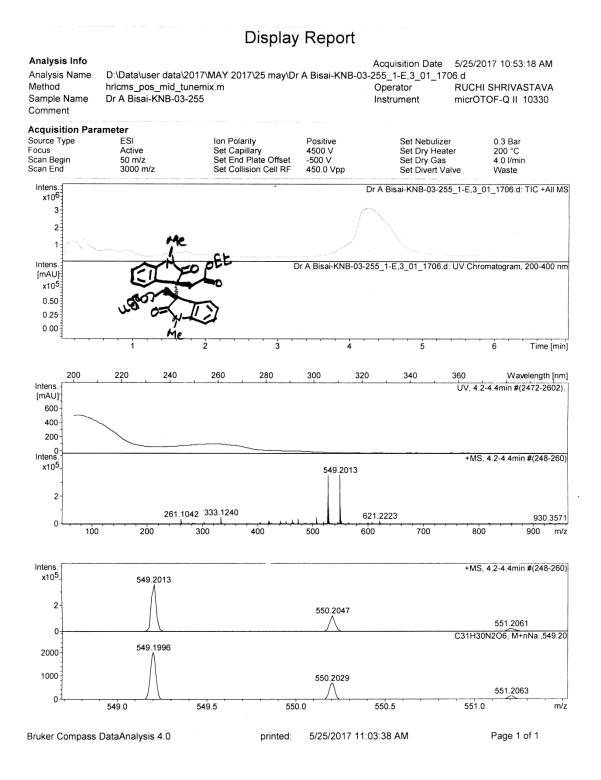
A So Fo So So

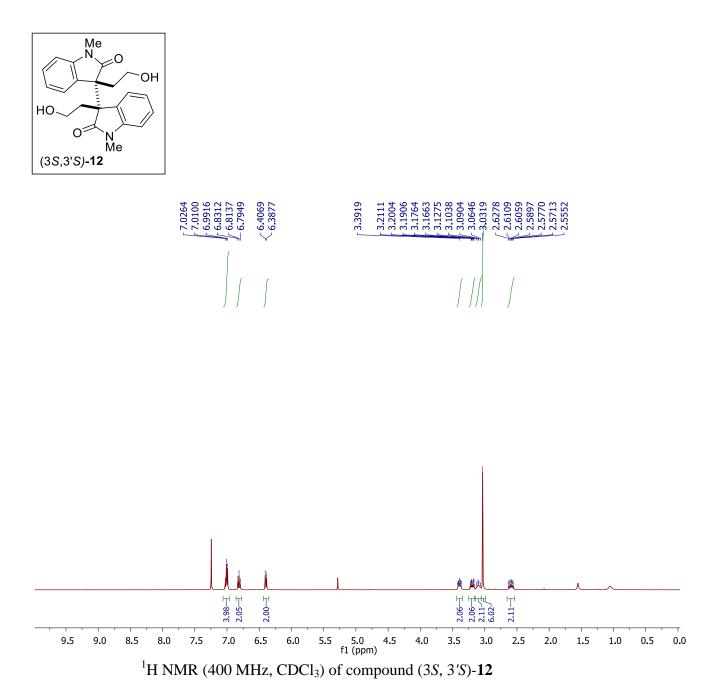

cquisition Par	ameter					
ource Type ocus can Begin can End	ESI Active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Off Set Collision Cell		Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Va	er 200 °C 4.0 l/min	
ntens. x10 ⁶		0_1-A,5_01_6993.d: TI	C +All MS			
0.75						
0.25	2	ine !	Surgery Barray Contraction and and and and and and and and and an			
ntens. [mAU]	Y	TT T	Dr.A.Bisai-AB-KNB-03-1	70_1-A,5_01_6993.d:	UV Chromatogram, 20	0-400 nm
x10 ⁴ - 0-	07					
-2-	EI	-N ED				
-2 -		mac+)				
0	2	4	6	8	10 -	Time (min
200	220 240	260 280	300 320	0 340	360 Wavel	ength (nm
ntens. [mAU]]			I I I I I	· · · · · · · · · · · · · · · · · · ·	UV, 4.2m	
0						
	,					
-500						
x10 ⁵		425.1883			+MS, 4.2	2min #25 ⁻
1-						
o <u>1</u>	160.0752	400	600	871.34	1000	
				800		n

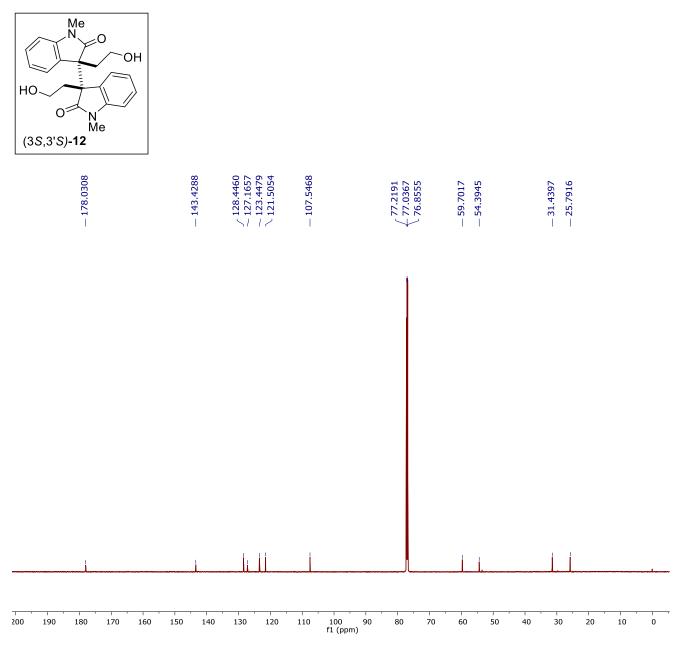

Bruker Compass DataAnalysis 4.0 printed: 7/29/2016 3:05:04 PM Page 1 of 1 Scanned copy of mass spectrum of (*R*)-9


 1 H NMR (400 MHz, CDCl₃) of compound **10**

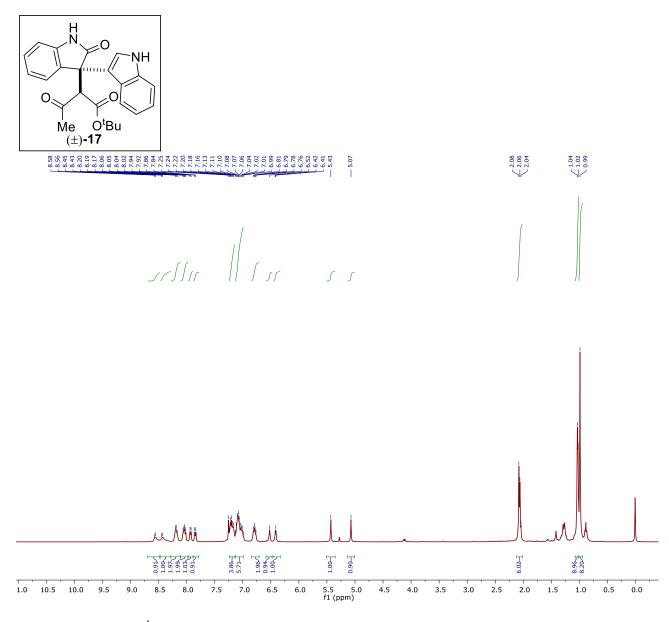

¹³C NMR (100 MHz, CDCl₃) of compound **10**


Scanned copy of mass spectrum of 10

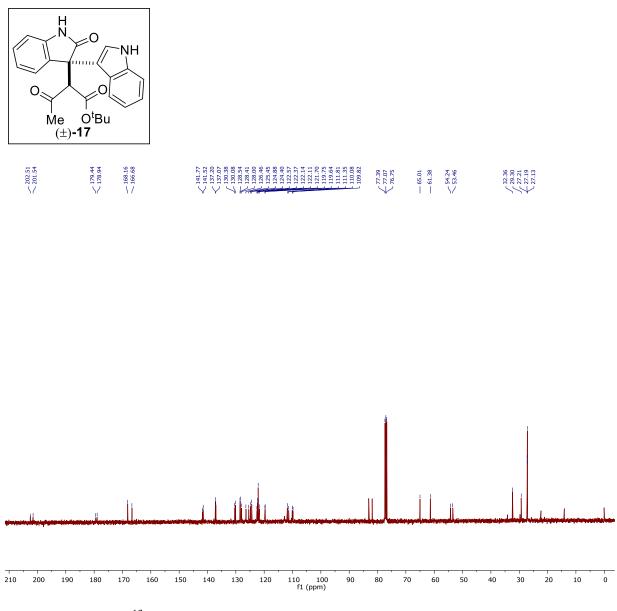

¹H NMR (400 MHz, CDCl₃) of compound **11**

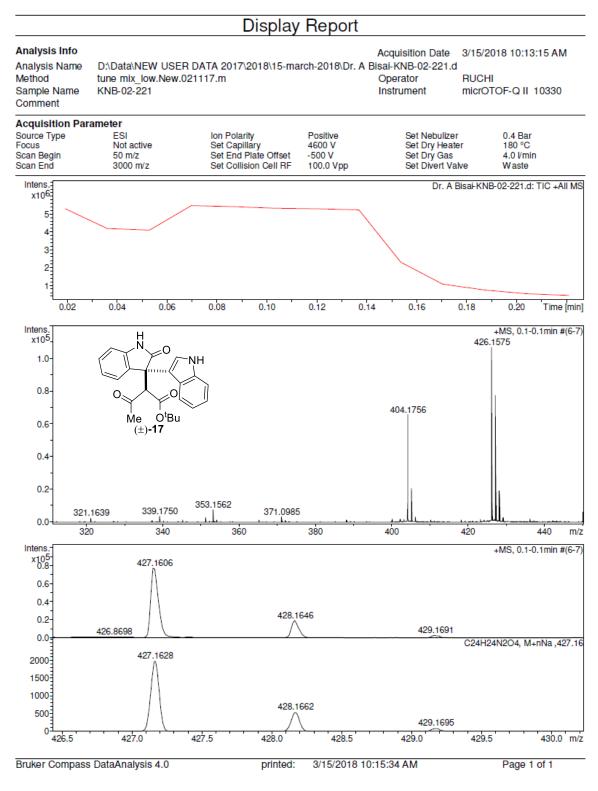


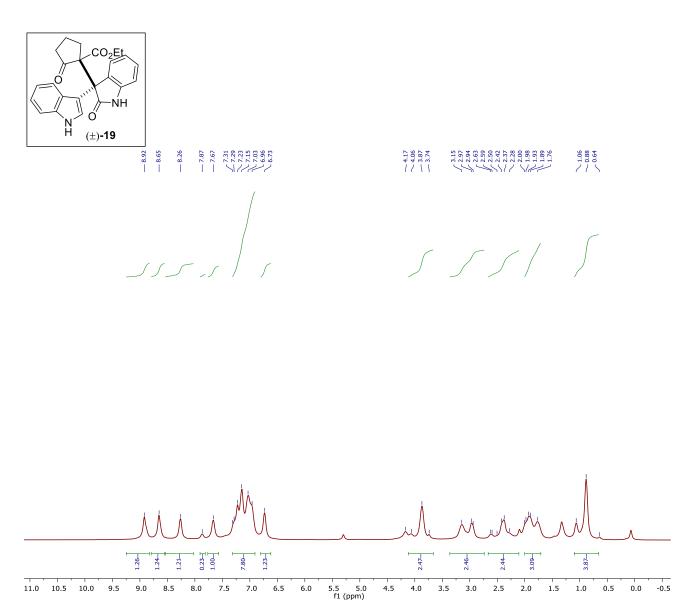
¹³C NMR (100 MHz, CDCl₃) of compound **11**

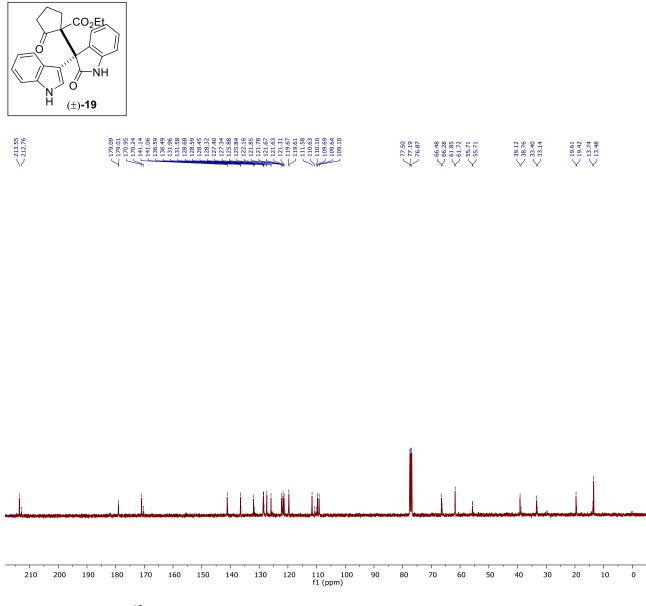


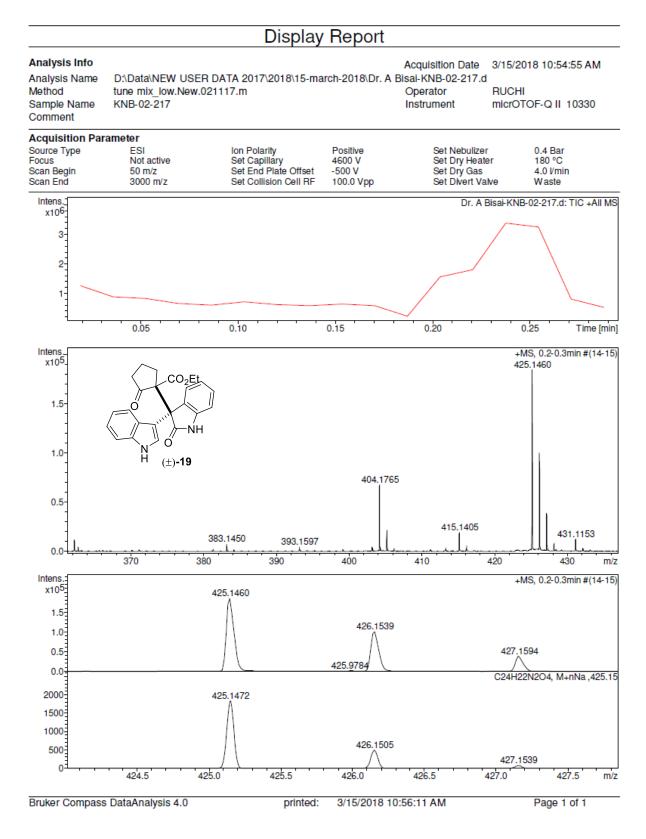
Scanned copy of mass spectrum of 11



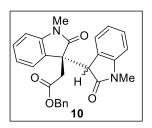

¹³C NMR (100 MHz, CDCl₃) of compound (3*S*, 3'*S*)-**12**

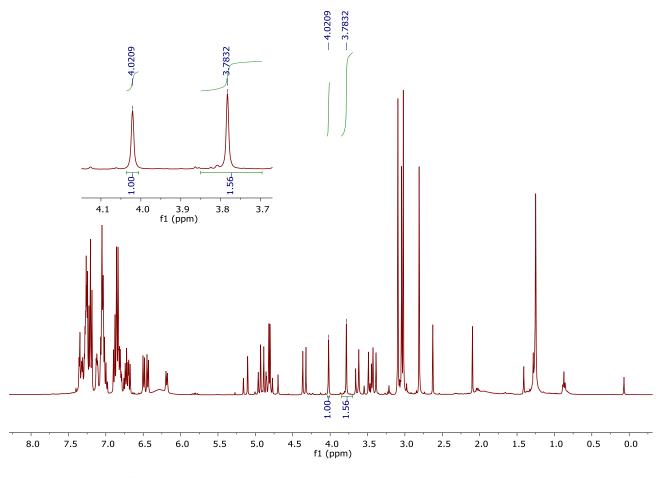

 ^1H NMR (400 MHz, CDCl₃) of compound (±)-17


 ^{13}C NMR (100 MHz, CDCl_3) of compound (±)-17

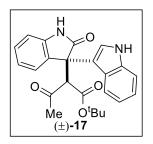

Mass spectrum of (\pm) -17

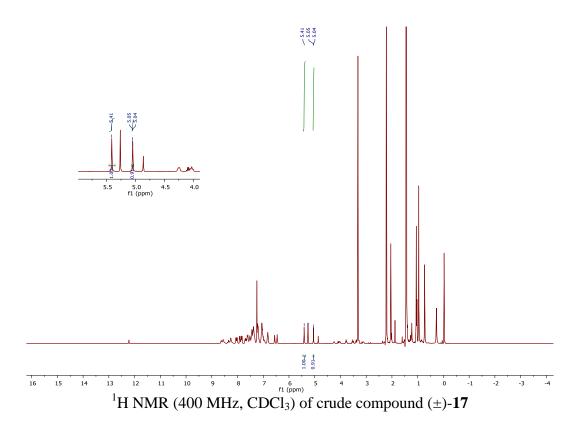
 ^1H NMR (400 MHz, CDCl_3) of compound (±)-19

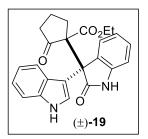


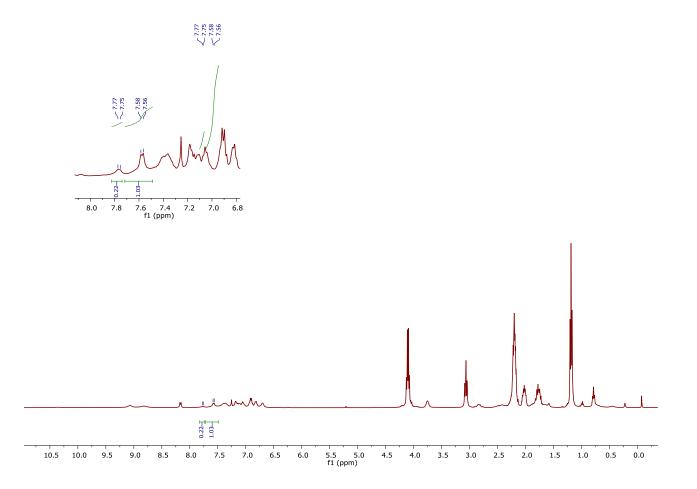

 ^{13}C NMR (100 MHz, CDCl₃) of compound (±)-19

Mass spectrum of (\pm) -19

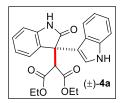

Determination of diastereomeric ratio of compound 10 from ¹H NMR of crude reaction

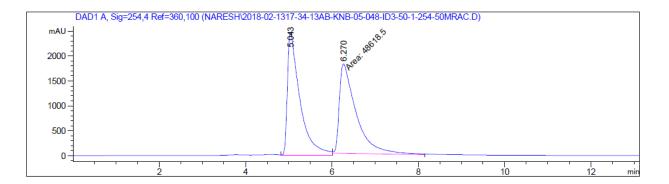





Determination of diastereomeric ratio of compound (±)-17 from $^1\!H$ NMR of crude reaction

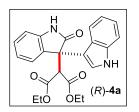
Determination of diastereomeric ratio of compound 19 from ¹H NMR of crude reaction

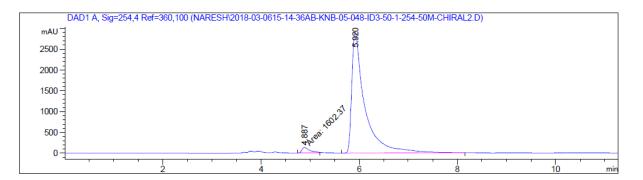



¹H NMR (400 MHz, CDCl₃) of crude compound (\pm)-19

HPLC Traces

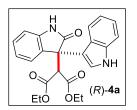
HPLC data of compound- (\pm) -4a

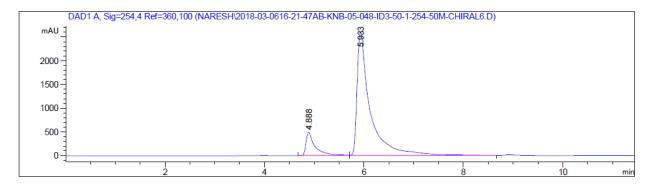

Data File C:\CHEM32\1\DATA\NARESH\2018-02-1317-34-13AB-KNB-05-048-ID3-50-1-254-50MRAC.D Sample Name: AB-KNB-05-048-ID3-50-1-254-50MRAC


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#			[min]	Area [mAU*s]	Height [mAU]	%	I
1 2	5.043	vv	0.2780	4.92836e4	2457.59082 1798.77979	50.3397	I
Total	ls :			9.79021e4	4256.37061		

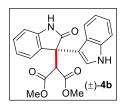
HPLC data of compound (R)-4a


Data File C:\CHEM32\...A\NARESH\2018-03-0615-14-36AB-KNB-05-048-ID3-50-1-254-50M-CHIRAL2.D Sample Name: AB-KNB-05-048-ID3-50-1-254-50M-CHIRAL2

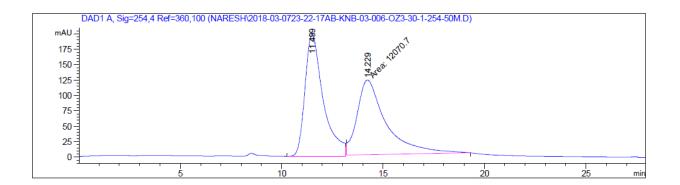

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type # [min] 	[min] [mAU*s]	[mAU]	%
1 4.887 MM	0.1947 1602.3721 0.2606 5.34571e4	9 137.17230	2.9103
Totals :	5.50595e4	3015.90790	

HPLC data of compound (*R*)-4a from 5k

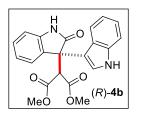


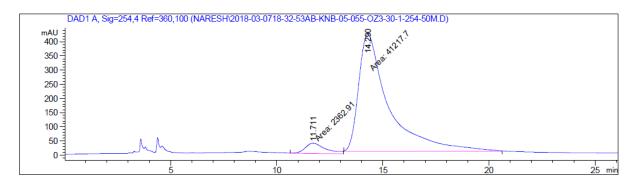
Data File C:\CHEM32\...A\NARESH\2018-03-0616-21-47AB-KNB-05-048-ID3-50-1-254-50M-CHIRAL6.D Sample Name: AB-KNB-05-048-ID3-50-1-254-50M-CHIRAL6



# [min]	[min]	[mAU*s]	Height [mAU]	%	
1 4.8	88 BV	0.1812	6495.49609	494.67331 2599.23633	11.7701	
Totals :			5.51864e4	3093.90964		
			*** End of	 Report ***		

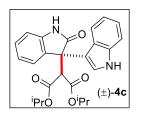
HPLC data of compound (\pm) -4b

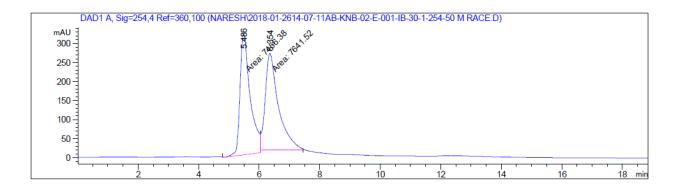

Data File C:\CHEM32\1\DATA\NARESH\2018-03-0723-22-17AB-KNB-03-006-0Z3-30-1-254-50M.D Sample Name: AB-KNB-03-006-0Z3-30-1-254-50M


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	RetTime [min]		[min]	Area [mAU*s]	Height [mAU]	Area %
1	11.499 14.229	BV	0.9274	1.24358e4	•	50.7449
Total	.s :			2.45066e4	319.72617	

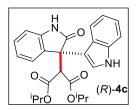
HPLC data of compound (R)-4b

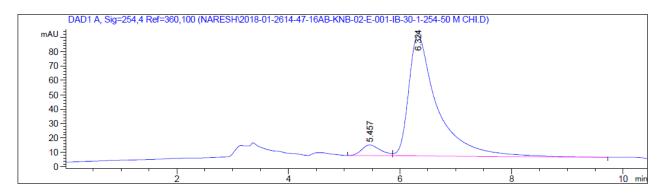

Data File C:\CHEM32\1\DATA\NARESH\2018-03-0718-32-53AB-KNB-05-055-0Z3-30-1-254-50M.D Sample Name: AB-KNB-05-055-0Z3-30-1-254-50M


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#			[min]	Area [mAU*s]	[mAU]	Area %	I
1	11.711 14.290	MM	1.0946	2362.91309 4.12177e4	35.97766	5.4219	I
Total	ls :			4.35806e4	450.31857		

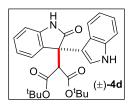
HPLC data of compound (\pm) -4c

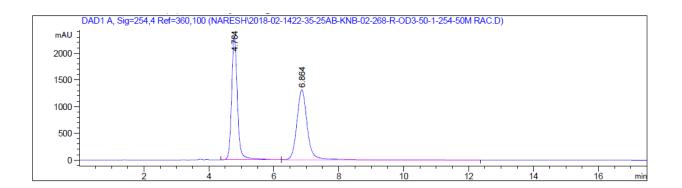

Data File C:\CHEM32\...TA\NARESH\2018-01-2614-07-11AB-KNB-02-E-001-IB-30-1-254-50 M RACE.D Sample Name: AB-KNB-02-E-001-IB-30-1-254-50 M RACE


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area				
# [min]		[mAU*s]	[mAU]	%				
1 5.486 MM	0.3911	7456.38379	317.74460	49.3869				
2 6.354 MM	0.5032	7641.51709	253.08270	50.6131				
Totals :		1.50979e4	570.82730					

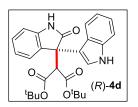
HPLC data of compound (R)-4c


Data File C:\CHEM32\1\DATA\NARESH\2018-01-2614-47-16AB-KNB-02-E-001-IB-30-1-254-50 M CHI.D Sample Name: AB-KNB-02-E-001-IB-30-1-254-50 M CHI

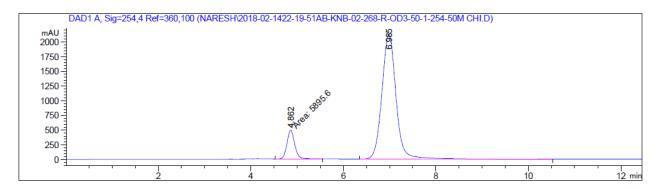

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#				[mAU*s]		%	
1	5.457	BV	0.3505	172.50580	7.43912	5.4415	
2	6.324	VB	0.5144	2997.67676	83.58624	94.5585	
Tota]	ls :			3170.18256	91.02535		

HPLC data of compound (\pm) -4d

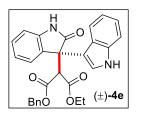


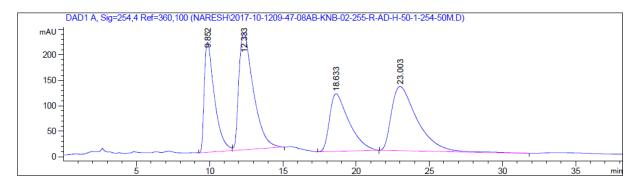
Data File C:\CHEM32\1\DATA\NARESH\2018-02-1422-35-25AB-KNB-02-268-R-OD3-50-1-254-50M RAC.D Sample Name: AB-KNB-02-268-R-OD3-50-1-254-50M RAC



<pre>Peak RetTime Type # [min]</pre>			Height [mAU]	Area %
		-		
1 4.784 BV	0.1911 2.	91449e4	2311.79590	49.4875
2 6.864 VB	0.3448 2.	97486e4	1310.78491	50.5125
Totals :	5.	88935e4	3622.58081	
	**	* End of	Report ***	

HPLC data of compound (R)-4d

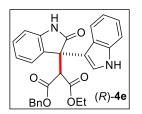

Data File C:\CHEM32\1\DATA\NARESH\2018-02-1422-19-51AB-KNB-02-268-R-OD3-50-1-254-50M CHI.D Sample Name: AB-KNB-02-268-R-OD3-50-1-254-50M CHI


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

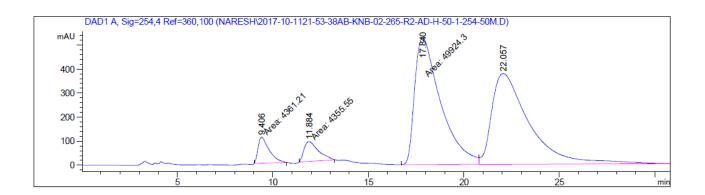
Peak RetTime Type # [min] 	[min]			%
1 4.862 MM	0.2001	5895.59717	491.08658	11.5294
2 6.985 BBA	0.3270	4.52396e4	2119.83569	88.4706
Totals :		5.11352e4	2610.92227	

HPLC data of compound (±)-4e

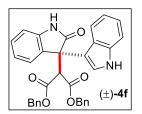
Data File C:\CHEM32\1\DATA\NARESH\2017-10-1209-47-08AB-KNB-02-255-R-AD-H-50-1-254-50M.D Sample Name: AB-KNB-02-255-R-AD-H-50-1-254-50M

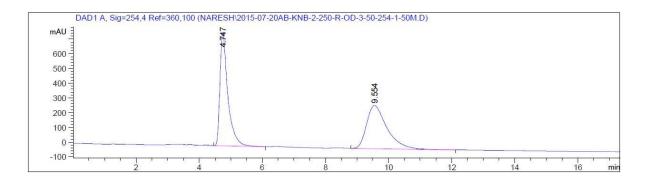


Signal 1: DAD1 A, Sig=254,4 Ref=360,100


Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
				[IIIA0*5]		
1	9.852	BV	0.7148	1.04855e4	215.83139	20.1239
2	12.333	VB	1.0442	1.58338e4	228.56190	30.3886
3	18.633	BB	1.3373	1.03880e4	112.91732	19.9368
4	23.003	BB	1.8207	1.53972e4	126.08580	29.5507
Total	s :			5.21044e4	683,39642	
local				512201101	000100012	

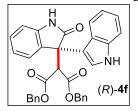
HPLC data of compound (R)-4e


Data File C:\CHEM32\1\DATA\NARESH\2017-10-1121-53-38AB-KNB-02-265-R2-AD-H-50-1-254-50M.D Sample Name: AB-KNB-02-265-R2-AD-H-50-1-254-50M

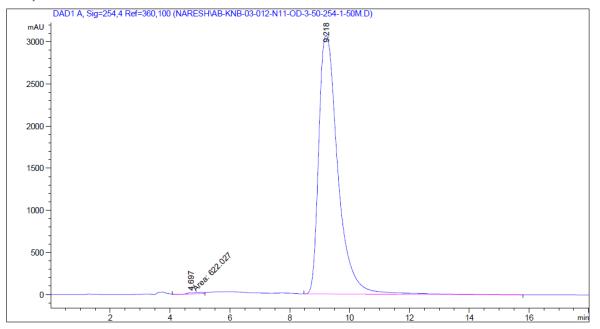

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	9.406	MM	0.6707	4361.21436	108.37340	3.9545	
2	11.884	MM	0.8780	4355.54980	82.67854	3.9494	
3	17.840	MM	1.5772	4.99243e4	527.54572	45.2686	
4	22.057	VBA	1.9889	5.16434e4	378.23743	46.8275	
Total	s :			1.10284e5	1096.83508		

HPLC data of compound (\pm) -4f

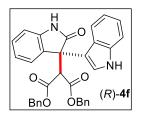


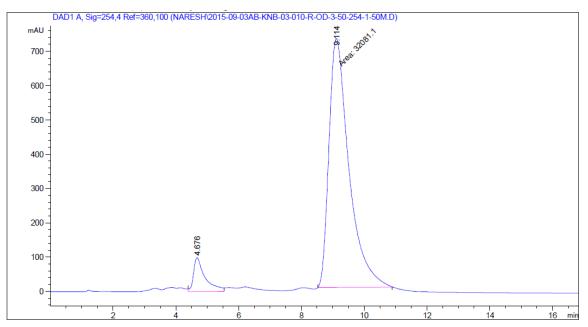
Data File C:\CHEM32\1\DATA\NARESH\2015-07-20AB-KNB-2-250-R-OD-3-50-254-1-50M.D Sample Name: AB-KNB-2-250-R-OD-3-50-254-1-50M



Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.747	BB	0.2544	1.33140e4	767.55292	50.3227
2	9.554	BBA	0.6749	1.31432e4	293.25589	49.6773
Total	ls :			2.64572e4	1060.80881	

HPLC data of compound (R)-4f

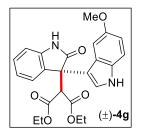

Data File C:\CHEM32\1\DATA\NARESH\AB-KNB-03-012-N11-OD-3-50-254-1-50M.D Sample Name: AB-KNB-03-012-N11-OD-3-50-254-1-50M


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

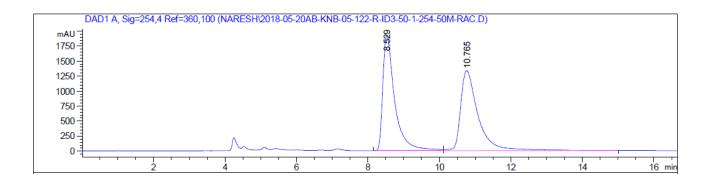
Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	4.697	MM	0.6926	622.02673	14.96861	0.4542	
2	9.218	BB	0.6744	1.36330e5	3068.00513	99.5458	
Total	ls :			1.36952e5	3082.97373		
=====		=====					

HPLC data of compound (R)-4f from (R)-4a

Data File C:\CHEM32\1\DATA\NARESH\2015-09-03AB-KNB-03-010-R-OD-3-50-254-1-50M.D Sample Name: AB-KNB-03-010-R-OD-3-50-254-1-50M

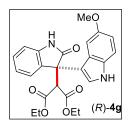



```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
```

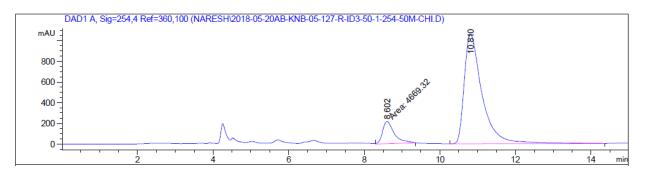

Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] # [min] % 4.676 VV 0.3572 2487.07837 1 98.29729 7.1947 2 9.114 MM 0.7370 3.20811e4 725.46271 92.8053 Totals : 3.45682e4 823.76000

```
*** End of Report ***
```

HPLC data of compound (±)-4g

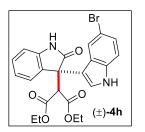


Data File C:\CHEM32\...\NARESH\2018-01-1512-38-31AB-KNB-04-346-2-IE-3-40-1-254-40 M RACE.D Sample Name: AB-KNB-04-346-2-IE-3-40-1-254-40 M RACE

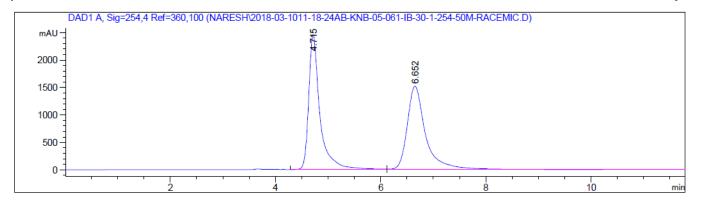


Peak	RetTime	Туре	Width	Area	Height	Area			
#	[min]		[min]	[mAU*s]	[mAU]	%			
1	8.529	BV .	0.3407	4.44467e4	1929.58862	49.5523			
2	10.765	VB	0.5020	4.52498e4	1332.96252	50.4477			
Total	s :			8.96965e4	3262.55115				
*** End of Report ***									

HPLC data of compound (R)-4g



Data File C:\CHEM32\...A\NARESH\2018-01-1512-58-24AB-KNB-04-347-2-IE-3-40-1-254-40 M CHI.D Sample Name: AB-KNB-04-347-2-IE-3-40-1-254-40 M CHI



Peak	RetTime	Туре	Width	Area	Height	Area			
#	[min]		[min]	[mAU*s]	[mAU]	%			
1	8.602	MM	0.3599	4669.31934	216.20741	11.8231			
2	10.810	BB	0.4874	3.48239e4	1059.78052	88.1769			
Total	s :			3.94932e4	1275.98793				
*** End of Report ***									

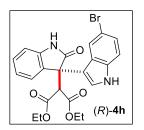
HPLC data of compound (\pm) -4h

Data File C:\CHEM32\...TA\NARESH\2018-03-1011-18-24AB-KNB-05-061-IB-30-1-254-50M-RACEMIC.D Sample Name: AB-KNB-05-061-IB-30-1-254-50M-RACEMIC

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

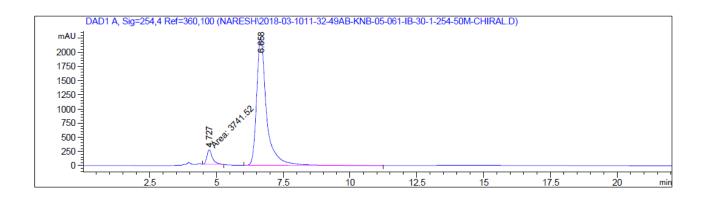
 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %


 ----|-----|

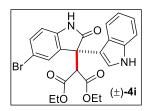
 -----|

 1
 4.715
 BV
 0.2161
 3.65746e4
 2451.00928
 49.5987

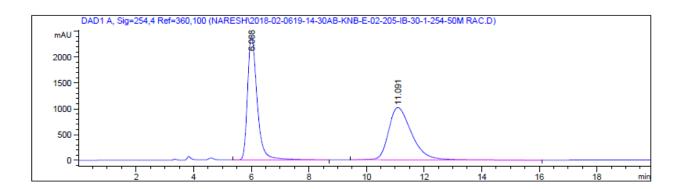

 2
 6.652
 VBA
 0.3596
 3.71663e4
 1518.29858
 50.4013

 Totals :
 7.37409e4
 3969.30786
 3969.30786

HPLC data of compound (R)-4h

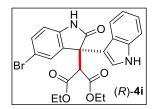


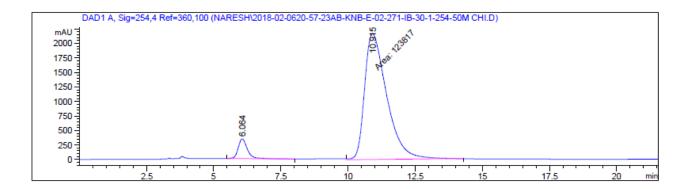
Data File C:\CHEM32\1\DATA\NARESH\2018-03-1011-32-49AB-KNB-05-061-IB-30-1-254-50M-CHIRAL.D Sample Name: AB-KNB-05-061-IB-30-1-254-50M-CHIRAL



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.727	MM	0.2430	3741.52417	256.66464	6.0244
2	6.658	BB	0.3800	5.83646e4	2254.83691	93.9756
Total	s :			6.21061e4	2511.50156	

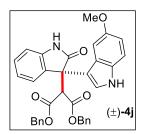
HPLC data of compound (±)-4i

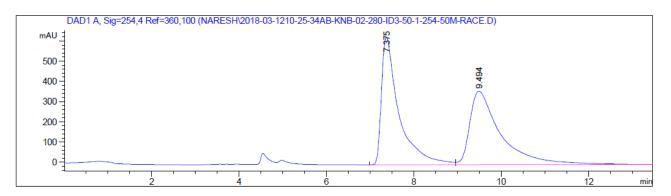

Data File C:\CHEM32\1\DATA\NARESH\2018-02-0619-14-30AB-KNB-E-02-205-IB-30-1-254-50M RAC.D Sample Name: AB-KNB-E-02-205-IB-30-1-254-50M RAC


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	RetTime [min]		[min]	Area [mAU*s]	0	Area %	
1	6.008	вв	0.3547	5.54719e4	2390.49780 1012.32666	49.7126	
Total	.s :			1.11585e5	3402.82446		
*** End of Depart ***							

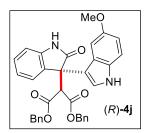
HPLC data of compound (R)-4i

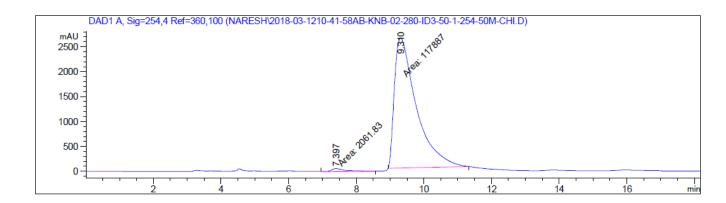

Data File C:\CHEM32\1\DATA\NARESH\2018-02-0620-57-23AB-KNB-E-02-271-IB-30-1-254-50M CHI.D Sample Name: AB-KNB-E-02-271-IB-30-1-254-50M CHI


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	RetTime [min]		[min]	Area [mAU*s]	Height [mAU]	Area %	
1 2	6.064	вв	0.3577	8029.52490		6.0901	
Total	s :			1.31846e5	2502.41562		

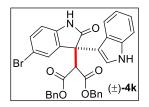
HPLC data of compound (±)-4j

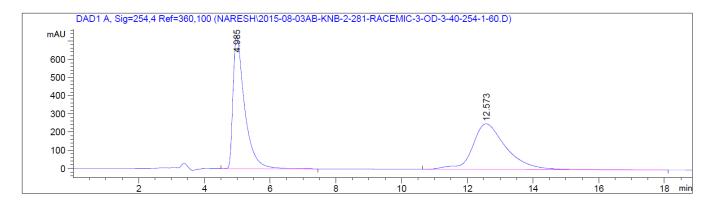

Data File C:\CHEM32\1\DATA\NARESH\2018-03-1210-25-34AB-KNB-02-280-ID3-50-1-254-50M-RACE.D Sample Name: AB-KNB-02-280-ID3-50-1-254-50M-RACE


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU] [min] [min] [mAU*s] % # 7.375 BV 0.3940 1.75442e4 631.78333 49.4226 1 2 9.494 VBA 0.7071 1.79542e4 362.98605 50.5774 Totals : 3.54984e4 994.76938 _____

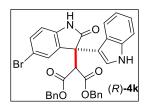
HPLC data of compound (R)-4j


Data File C:\CHEM32\1\DATA\NARESH\2018-03-1210-41-58AB-KNB-02-280-ID3-50-1-254-50M-CHI.D Sample Name: AB-KNB-02-280-ID3-50-1-254-50M-CHI

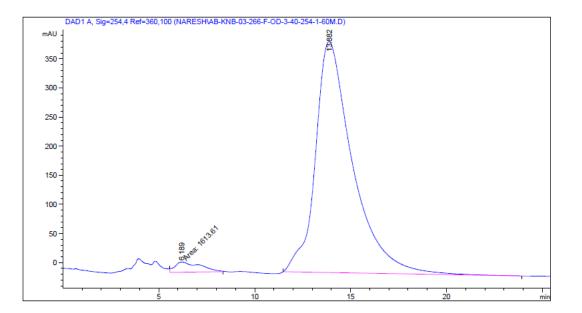

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.397	MM	0.5511	2061.82764	62.35340	1.7189
2	9.310	MM	0.7533	1.17887e5	2608.17261	98.2811
Tota]	ls :			1.19949e5	2670.52600	

```
*** End of Report ***
```

HPLC data of compound (±)-4k

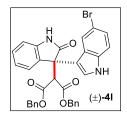


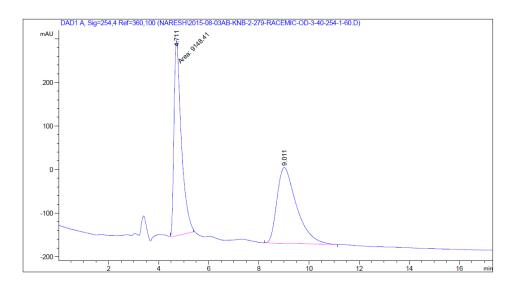
Data File C:\CHEM32\1\DATA\NARESH\2015-08-03AB-KNB-2-281-RACEMIC-3-OD-3-40-254-1-60.D Sample Name: AB-KNB-2-281-RACEMIC-3-0D-3-40-254-1-60



Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	4.985 BB	0.3610	1.78174e4	729.31091	50.1061
2	12.573 BBA	1.0449	1.77419e4	250.93648	49.8939
Total	s :		3.55593e4	980.24739	

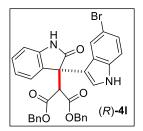
HPLC data of compound (R)-4k


Data File C:\CHEM32\1\DATA\NARESH\AB-KNB-03-266-F-OD-3-40-254-1-60M.D Sample Name: AB-KNB-03-266-F-OD-3-40-254-1-60M


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak F	RetTime	Туре	Width	Area	Height	Area		
#				[mAU*s]	[mAU]	%		
-								
1	6.189	MM	1.5425	1613.61279	17.43466	2.9237		
2	13.882	BBA	1.9180	5.35778e4	396.61786	97.0763		
Totals	5:			5.51914e4	414.05252			

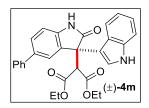
HPLC data of compound (±)-4l

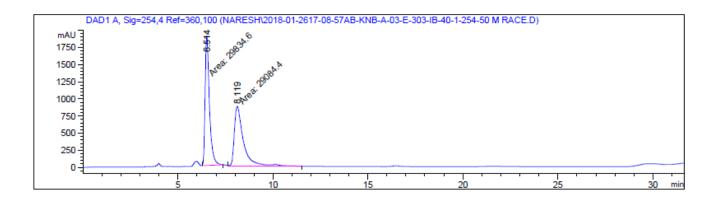

Data File C:\CHEM32\1\DATA\NARESH\2015-08-03AB-KNB-2-279-RACEMIC-OD-3-40-254-1-60.D Sample Name: AB-KNB-2-279-RACEMIC-OD-3-40-254-1-60

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area [mAU] [min] [min] [mAU*s] % # 4.711 MM 0.3406 9148.41016 447.67456 49.2353 1 2 9.011 BB 0.8137 9432.57910 173.66725 50.7647 Totals : 1.85810e4 621.34181

HPLC data of compound (R)-4l


Data File C:\CHEM32\1\DATA\NARESH\AB-KNB-03-265-F1-OD-3-40-254-1-60M.D Sample Name: AB-KNB-03-265-F1-OD-3-40-254-1-60M


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#			[min]	Area [mAU*s]	Height [mAU]	Area %	I
1 2	4.659 9.132	MM	0.4098	1764.18835		4.0898	
Total	ls :			4.31358e4	626.06078		

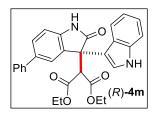
HPLC data of compound (±)-4m

Data File C:\CHEM32\...\NARESH\2018-01-2617-08-57AB-KNB-A-03-E-303-IB-40-1-254-50 M RACE.D Sample Name: AB-KNB-A-03-E-303-IB-40-1-254-50 M RACE

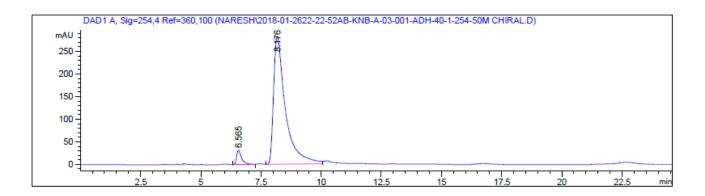
Signal 1: DAD1 A, Sig=254,4 Ref=360,100

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

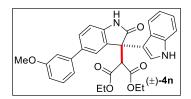

----	-----
 -----|
 -----|

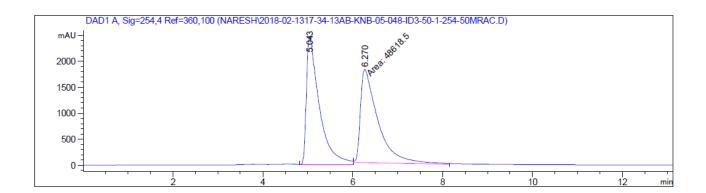
 1
 6.514
 MM
 0.2646
 2.98346e4
 1879.07813
 50.6366


 2
 8.119
 MM
 0.5584
 2.90844e4
 868.13904
 49.3634

 Totals :
 5.89189e4
 2747.21716

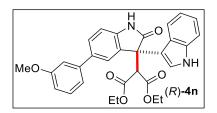
HPLC data of compound (R)-4m


Data File C:\CHEM32\...\NARESH\2018-01-2622-22-52AB-KNB-A-03-001-ADH-40-1-254-50M CHIRAL.D Sample Name: AB-KNB-A-03-001-ADH-40-1-254-50M CHIRAL

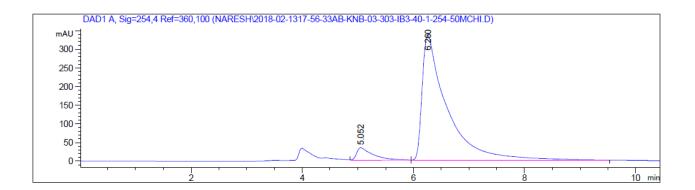

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type # [min]	[min]	Area [mAU*s]	Height [mAU]	Area %	
1 6.565 BB	0.2145	454.80374	31.11750	4.4828	
2 8.176 BV	0.4949	9690.63867	281.99026	95.5172	
Totals :		1.01454e4	313.10776		

HPLC data of compound (\pm) -4n

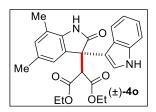


Data File C:\CHEM32\1\DATA\NARESH\2018-02-1317-34-13AB-KNB-05-048-ID3-50-1-254-50MRAC.D Sample Name: AB-KNB-05-048-ID3-50-1-254-50MRAC

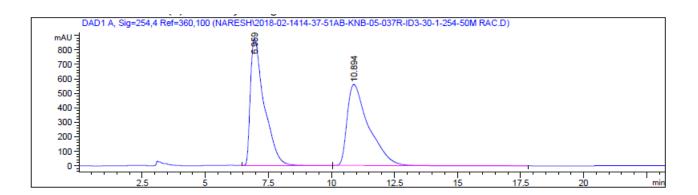


Peak RetTime Type # [min]		Height [mAU]	Area %
		-	
1 5.043 VV	0.2780 4.92836e4	2457.59082	50.3397
2 6.270 MM	0.4505 4.86185e4	1798.77979	49.6603
Totals :	9.79021e4	4256.37061	
	*** End o	f Report ***	

HPLC data of compound (R)-4n

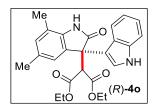


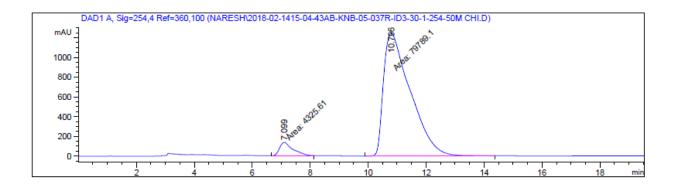
Data File C:\CHEM32\1\DATA\NARESH\2018-02-1317-56-33AB-KNB-03-303-IB3-40-1-254-50MCHI.D Sample Name: AB-KNB-03-303-IB3-40-1-254-50MCHI



Peak RetTime Type # [min]		0	Area %	
1 5.052 VB	0.2734 670.75250	33.53104	6.0841	
2 6.260 BB	0.4213 1.03540e4	334.37375	93.9159	
Totals :	1.10247e4	367.90479		
*** End of Report ***				

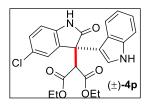
HPLC data of compound (±)-40

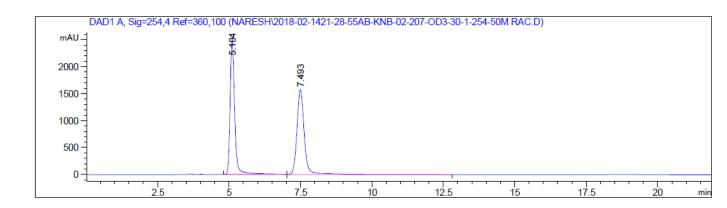

Data File C:\CHEM32\1\DATA\NARESH\2018-02-1414-37-51AB-KNB-05-037R-ID3-30-1-254-50M RAC.D Sample Name: AB-KNB-05-037R-ID3-30-1-254-50M RAC


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	RetTime [min]		[min]	Area [mAU*s]	Height [mAU]	Area %	
1	6.959	VB	0.5579	3.32450e4	873.78833	49.9643	
2	10.894	BB	0.8681	3.32924e4	559.60413	50.0357	
Total	s :			6.65374e4	1433.39246		

HPLC data of compound (R)-40


Data File C:\CHEM32\1\DATA\NARESH\2018-02-1415-04-43AB-KNB-05-037R-ID3-30-1-254-50M CHI.D Sample Name: AB-KNB-05-037R-ID3-30-1-254-50M CHI


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type		Area	Height	Area	
# [min]		[mAU*s] 		% 	
1 7.099 MM		4325.61035	•	5.1425	
2 10.796 MM	1.0725	7.97891e4	1239.91064	94.8575	
Totals :		8.41147e4	1375.11752		

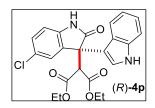
HPLC data of compound (\pm) -4p

Data File C:\CHEM32\1\DATA\NARESH\2018-02-1421-28-55AB-KNB-02-207-0D3-30-1-254-50M RAC.D Sample Name: AB-KNB-02-207-0D3-30-1-254-50M RAC

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

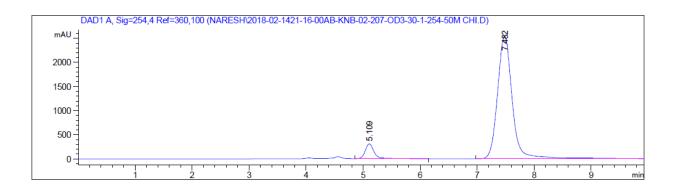
 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %


 ----|-----|

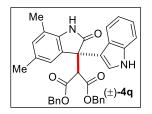
 -----|

 1
 5.104 BV
 0.1700
 2.83956e4
 2509.90649
 49.7502


 2
 7.493 VB
 0.2763
 2.86807e4
 1576.14160
 50.2498

 Totals :
 5.70763e4
 4086.04810

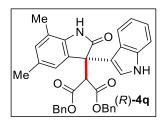
HPLC data of compound (R)-4p



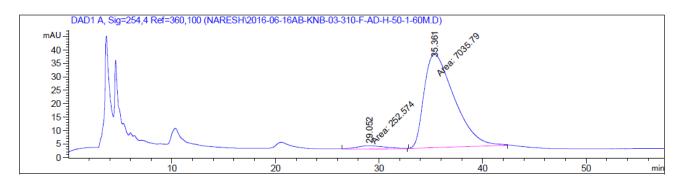
Data File C:\CHEM32\1\DATA\NARESH\2018-02-1421-16-00AB-KNB-02-207-0D3-30-1-254-50M CHI.D Sample Name: AB-KNB-02-207-0D3-30-1-254-50M CHI

Peak RetTime Type # [min] 	[min] [mAU*s]	[mAU]	%
1 5.109 VB	0.1667 3396.52783 0.2746 4.59240e4	307.95407	6.8866
Totals :	4.93205e4	2851.90109	
	*** End of	Report ***	

HPLC data of compound (±)-4q

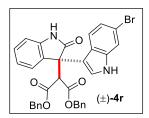


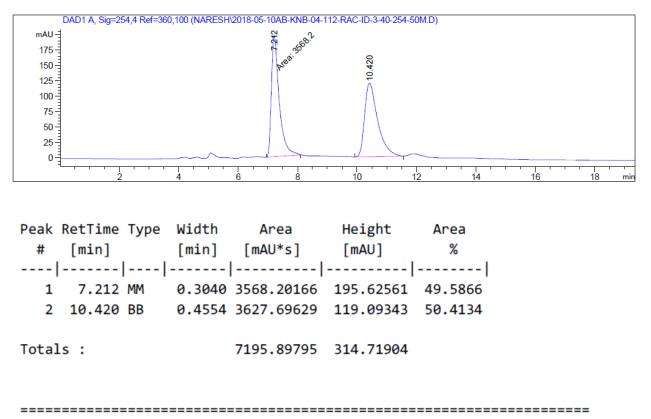
Data File C:\CHEM32\1\DATA\NARESH\2016-06-15AB-KNB-03-292-AD-H-50-1-60M.D Sample Name: AB-KNB-03-292-AD-H-50-1-60M



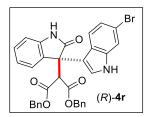
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.630	BB	2.1526	2533.41504	16.84519	50.0737
2	34.958	MM	2.9643	2525.95923	14.20229	49.9263
Total	s :			5059.37427	31.04748	

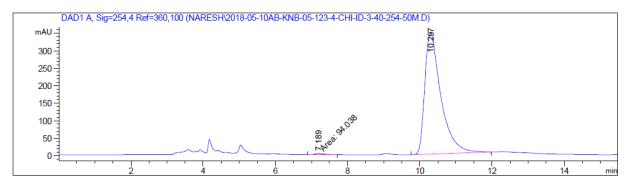
HPLC data of compound (R)-4q


Data File C:\CHEM32\1\DATA\NARESH\2016-06-16AB-KNB-03-310-F1-AD-H-50-1-60M.D Sample Name: AB-KNB-03-310-F1-AD-H-50-1-60M

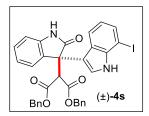

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

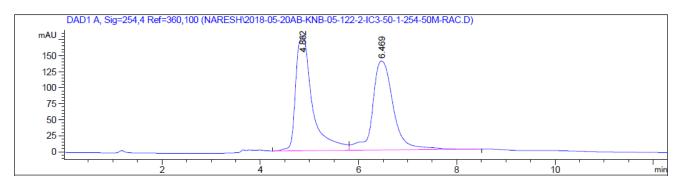
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	29.052	MM	3.3103	252.57382	1.27165	3.4654
2	35.361	MM	3.3765	7035.78955	34.72888	96.5346
Tota]	s:			7288.36337	36.00053	


HPLC data of compound (\pm) -4r


Data File C:\CHEM32\1\DATA\NARESH\2018-05-10AB-KNB-04-112-RAC-ID-3-40-254-50M.D Sample Name: AB-KNB-04-112-RAC-ID-3-40-254-50M

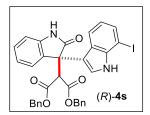
HPLC data of compound (R)-4r

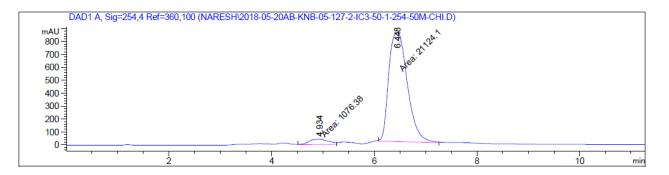

Data File C:\CHEM32\1\DATA\NARESH\2018-05-10AB-KNB-05-123-4-CHI-ID-3-40-254-50M.D Sample Name: AB-KNB-05-123-4-CHI-ID-3-40-254-50M


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	7.189	MM	0.3595	94.03797	4.35985	0.8658
2	10.297	BB	0.4638	1.07675e4	345.30496	99.1342
Total	s :			1.08615e4	349.66482	

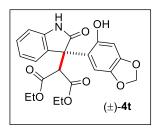
HPLC data of compound (\pm) -4s

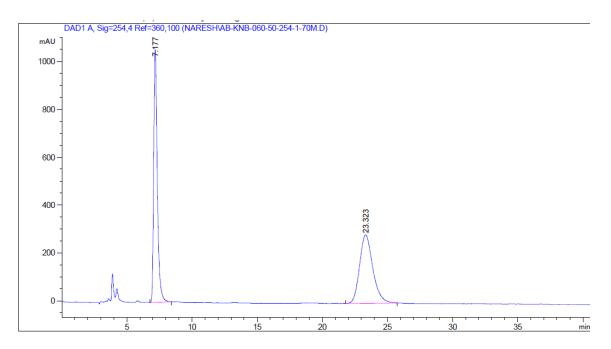

Data File C:\CHEM32\1\DATA\NARESH\2018-05-20AB-KNB-05-122-2-IC3-50-1-254-50M-RAC.D Sample Name: AB-KNB-05-122-2-IC3-50-1-254-50M-RAC


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.862	BV	0.3542	4233.64746	178.82172	50.7486
2	6.469	VB	0.4538	4108.74316	138.63490	49.2514
Total	s :			8342.39063	317.45662	
======						

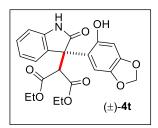
HPLC data of compound (R)-4s

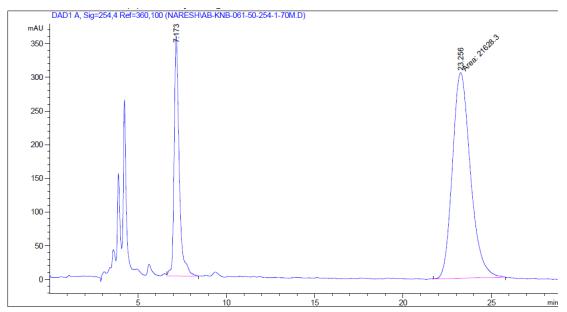

Data File C:\CHEM32\1\DATA\NARESH\2018-05-20AB-KNB-05-127-2-IC3-50-1-254-50M-CHI.D Sample Name: AB-KNB-05-127-2-IC3-50-1-254-50M-CHI


```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.934	MM	0.4297	1076.37744	41.74997	4.8484
2	6.448	MM	0.4175	2.11241e4	843.34790	95.1516
Total	s :			2.22005e4	885.09787	
					· · · · · ·	

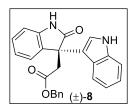
HPLC data of compound (\pm) -4t

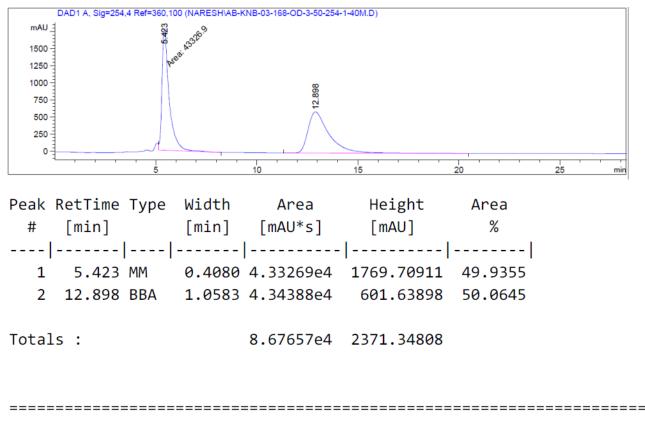

Data File C:\CHEM32\1\DATA\NARESH\AB-KNB-060-50-254-1-70M.D Sample Name: AB-KNB-060-50-254-1-70M


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

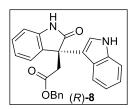
Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 0.2905 2.03153e4 1055.81726 50.2167 7.177 BB 1 2 23.323 BB 1.0790 2.01400e4 285.49423 49.7833 Totals : 4.04553e4 1341.31149

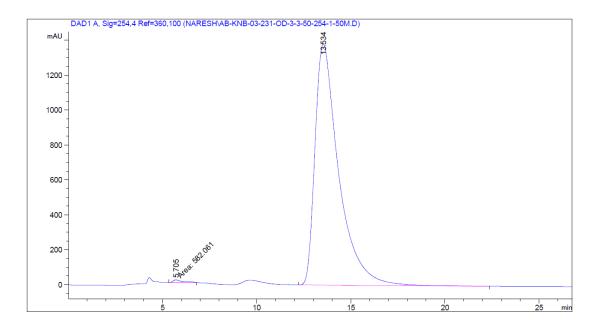
HPLC data of compound (R)-4t


Data File C:\CHEM32\1\DATA\NARESH\AB-KNB-061-50-254-1-70M.D Sample Name: AB-KNB-061-50-254-1-70M


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

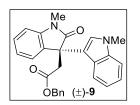
Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 7.173 VB 0.2970 7107.71436 355.94263 24.7345 1.1816 2.16283e4 2 23.256 MM 305.07852 75.2655 Totals : 661.02115 2.87360e4


HPLC data of compound (\pm) -8

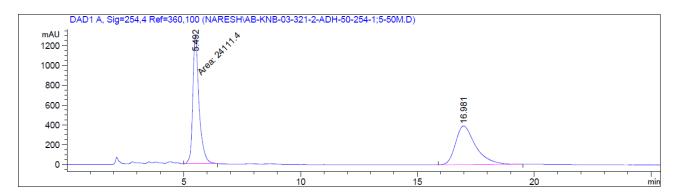

Data File C:\CHEM32\1\DATA\NARESH\AB-KNB-03-168-OD-3-50-254-1-40M.D Sample Name: AB-KNB-03-168-OD-3-50-254-1-40M

HPLC data of compound (R)-8

Data File C:\CHEM32\1\DATA\NARESH\AB-KNB-03-231-OD-3-3-50-254-1-50M.D Sample Name: AB-KNB-03-231-OD-3-3-50-254-1-50M

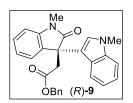


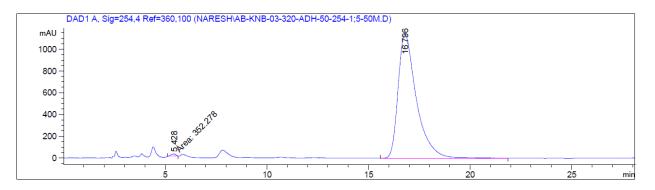
Signal 1: DAD1 A, Sig=254,4 Ref=360,100


Peak RetTime Type	Width	Area	Height	Area	
# [min]				%	
1 5.705 MM	0.6229	582.06079	15.57285	0.4784	
2 13.534 BB	1.2969	1.21085e5	1381.03748	99.5216	
Totals :		1.21667e5	1396.61033		
		*** End of	Report ***		

S190

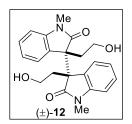
HPLC data of compound (\pm) -9

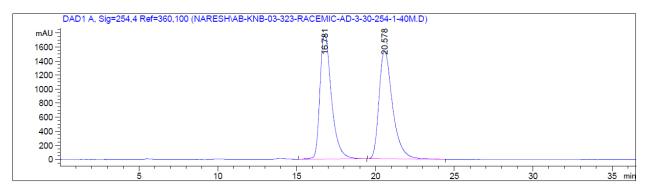

Data File C:\CHEM32\1\DATA\NARESH\AB-KNB-03-321-2-ADH-50-254-1;5-50M.D Sample Name: AB-KNB-03-321-2-ADH-50-254-1;5-50M


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type # [min]	[min] [mA	U*s] [mAU]] %	
 1 5.492 MM 2 16.981 BB	0.3110 2.41	.114e4 1292.0 392e4 389.9	7007 50.9211	I
Totals :	4.73	506e4 1681.98	8291	
	***	End of Report	***	

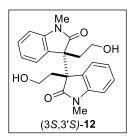
HPLC data of compound (R)-9

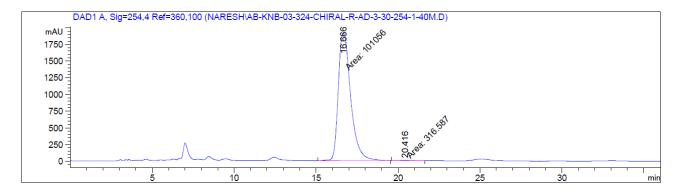

Data File C:\CHEM32\1\DATA\NARESH\AB-KNB-03-320-ADH-50-254-1;5-50M.D Sample Name: AB-KNB-03-320-ADH-50-254-1;5-50M


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

	RetTime [min]			Area [mAU*s]	0	Area %
1	5.428	MM	0.2912	352.27847	20.16364	0.4899
2	16.796	BB	0.9376	7.15597e4	1138.11145	99.5101
Total	s :			7.19119e4	1158.27509	

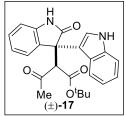
HPLC data of compound (\pm) -12

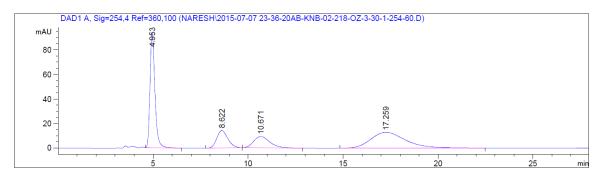

Data File C:\CHEM32\1\DATA\NARESH\AB-KNB-03-323-RACEMIC-AD-3-30-254-1-40M.D Sample Name: AB-KNB-03-323-Racemic-AD-3-30-254-1-40M


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type # [min]	[min]	[mAU*s]	Height [mAU]	Area %	
1 16.781 BB	0.7787	9.02859e4	1771.29431	49.5251	
2 20.578 BB	0.9058	9.20173e4	1538.41589	50.4749	
Totals :		1.82303e5	3309.71021		
	========				===

HPLC data of compound (3S,3'S)-12

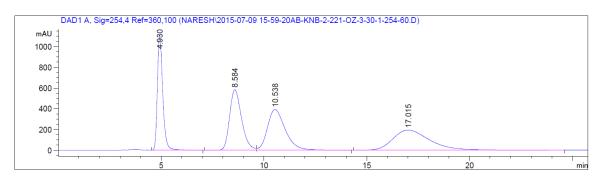

Data File C:\CHEM32\1\DATA\NARESH\AB-KNB-03-324-CHIRAL-R-AD-3-30-254-1-40M.D Sample Name: AB-KNB-03-324-Chiral-R-AD-3-30-254-1-40M


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	16.666	MM	0.8800	1.01056e5	1913.84778	99.6877	
2	20.416	MM	0.7632	316.58658	6.91401	0.3123	
Total	ls :			1.01372e5	1920.76179		
=====							

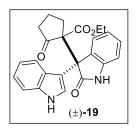
HPLC data of compound (±)-17

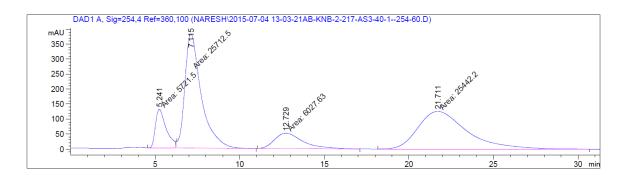
Data File C:\CHEM32\1\DATA\NARESH\2015-07-07 23-36-20AB-KNB-02-218-0Z-3-30-1-254-60.D Sample Name: AB-KNB-02-218-0Z-3-30-1-254-60


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
4.953	BB	0.2753	1677.64307	93.50455	37.6730
8.622	BB	0.6234	572.63696	14.23273	12.8591
10.671	BB	0.9090	548.16998	9.28238	12.3097
17.259	BB	1.8411	1654.72058	12.94718	37.1583
.s :			4453.17059	129.96683	
	[min] 4.953 8.622 10.671 17.259	[min] 4.953 BB 8.622 BB 10.671 BB 17.259 BB	[min] [min] 4.953 BB 0.2753 8.622 BB 0.6234 10.671 BB 0.9090 17.259 BB 1.8411	4.953 BB 0.2753 1677.64307 8.622 BB 0.6234 572.63696 10.671 BB 0.9090 548.16998 17.259 BB 1.8411 1654.72058	[min] [min] [mAU*s] [mAU]

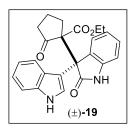
HPLC data of compound (\pm) -17 under optimized condition

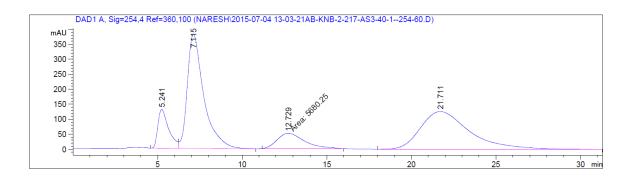

Data File C:\CHEM32\1\DATA\NARESH\2015-07-09 15-59-20AB-KNB-2-221-0Z-3-30-1-254-60.D Sample Name: AB-KNB-2-221-0Z-3-30-1-254-60


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

				Area	0	
#				[mAU*s]		%
1	4.930	BB	0.2766	2.00435e4	1110.28333	21.9852
2	8.584	BV	0.6213	2.35663e4	583.36774	25.8492
3	10.538	VB	0.9167	2.35569e4	393.33795	25.8389
4	17.015	BB	1.8925	2.40015e4	193.31190	26.3266
Total	s :			9.11682e4	2280.30092	

HPLC data of compound (\pm) -17


Data File C:\CHEM32\1\DATA\NARESH\2015-07-04 13-03-21AB-KNB-2-217-AS3-40-1--254-60.D Sample Name: AB-KNB-2-217-AS3-40-1--254-60


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.241	MM	0.7369	5721.49902	129.40578	9.0956
2	7.115	MM	1.1251	2.57125e4	380.90805	40.8758
3	12.729	MM	1.9425	6027.63037	51.71767	9.5823
4	21.711	MM	3.3720	2.54422e4	125.75417	40.4462
Tota	ls :			6.29038e4	687.78567	

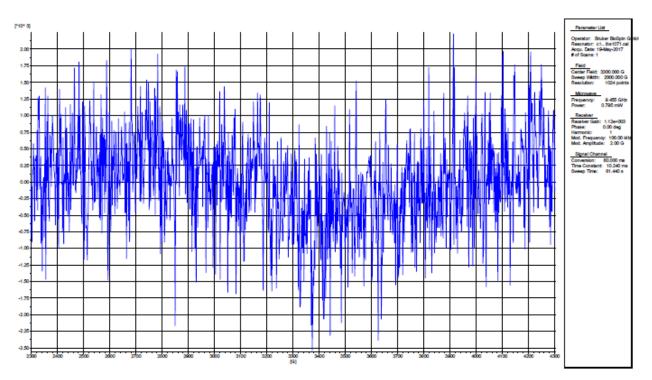
HPLC data of compound (\pm) -19 under optimized condition

Data File C:\CHEM32\1\DATA\NARESH\2015-07-04 13-03-21AB-KNB-2-217-AS3-40-1--254-60.D Sample Name: AB-KNB-2-217-AS3-40-1--254-60

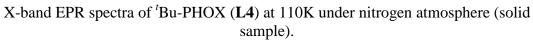
Signal 1: DAD1 A, Sig=254,4 Ref=360,100

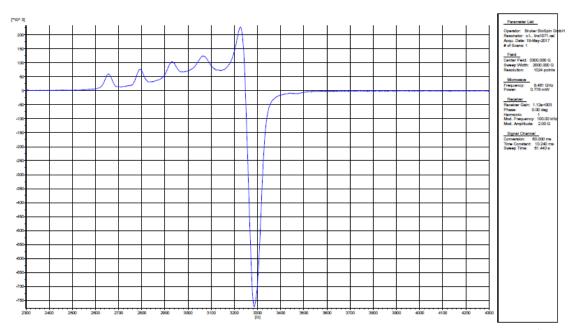
Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	5.241 BV	0.6631	5746.32031	129.13928	9.2159
2	7.115 VB	1.0013	2.57921e4	381.24588	41.3650
3	12.729 MM	1.8627	5680.24561	50.82446	9.1099
4	21.711 BBA	2.8471	2.51337e4	125.35922	40.3092
Total	s :		6.23524e4	686.56884	

Cu-^{*t*}Bu-PHOX preparation for EPR studies:

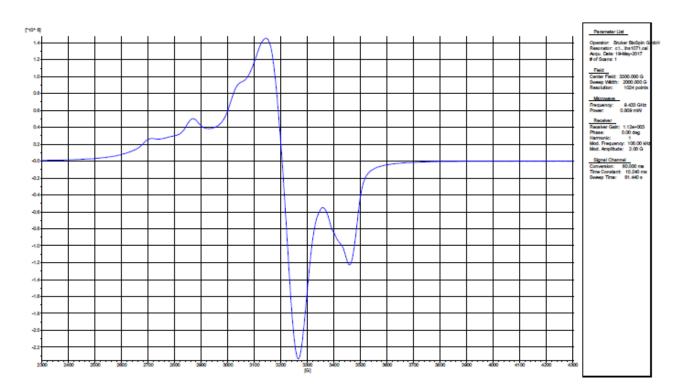

EPR experiment was performed with ^{*t*}Bu-PHOX under nitrogen atmosphere. The EPR tube was evacuated and backfilled with argon and then CH_2Cl_2 was added to the mixture. The reaction mixture was irradiated under light for 1-2 min, and then an EPR spectrum was recorded and did not show any EPR signal.

$$(CuOTf)_2.PhMe +$$
 PPh_2N CH_2Cl_2 $Cu-^tBu-PHOX complex$


The reaction was performed using 0.007 mmol of ^{*t*}Bu-PHOX (**L4**) and 0.007 mmol of Cu(I)OTf.PhMe in an EPR tube under nitrogen atmosphere. The EPR tube was evacuated and backfilled with argon and then CH_2Cl_2 was added to the mixture. The reaction mixture was irradiated under light for 1-2 min and then an EPR spectrum was recorded and observed the EPR signal with a coupling constant (g = 2.1120) which indicates Cu(I) is converting to Cu(II) in the reaction course.


$$Cu(OTf)_2 + PPh_2N$$
 CH_2Cl_2 $Cu-'Bu-PHOX complex$

The reaction was performed using 0.034 mmol of ^{*t*}Bu-PHOX (**L4**) and 0.034 mmol of $Cu(OTf)_2$ in an EPR tube under nitrogen atmosphere. The EPR tube was evacuated and backfilled with argon and then CH_2Cl_2 was added to the mixture. The reaction mixture was irradiated under light for 1-2 min and then an EPR spectrum was recorded and observed the EPR signal with a coupling constant (g = 2.1062) which indicates the Cu(II) complex is the intermediate in the reaction course.



EPR studies of Cu-complex with ^{*t*}Bu-PHOX (L4)

X-band EPR spectra of a complex of 1 equiv. of Cu(I)OTf.PhMe with 1 equiv. of ^{*t*}Bu-PHOX (L4) in dichloromethane at 110K under nitrogen atmosphere.

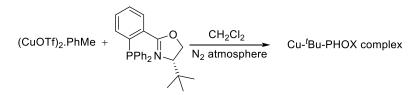
X-band EPR spectra of a complex of 1 equiv. of Cu(II)OTf with 1 equiv. of ^{*t*}Bu-PHOX (**L4**) in dichloromethane at 110K under nitrogen atmosphere.

Cu-^{*t*}Bu-PHOX preparation for ¹H-NMR and ³¹P-NMR studies:

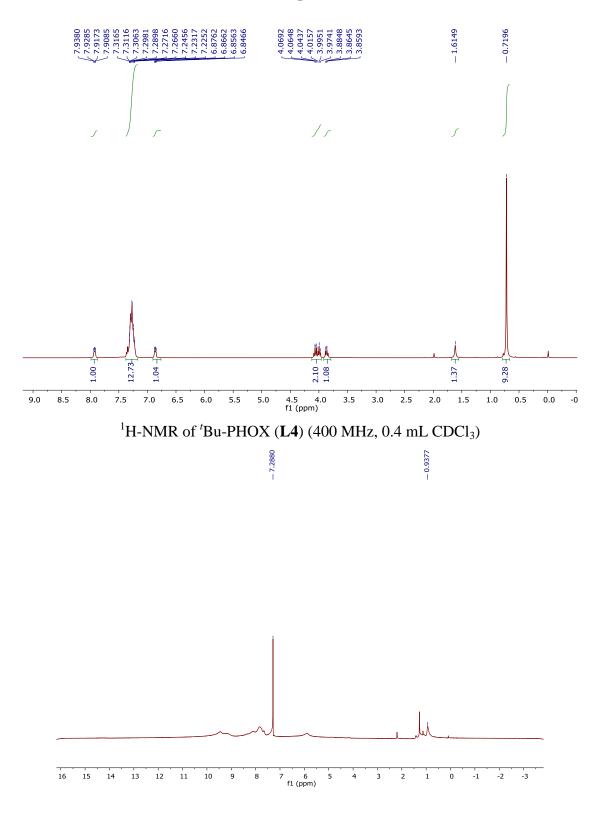
¹H-NMR of only ^{*t*}Bu-PHOX in CDCl₃ shows good spitting pattern of upfield protons.

$$Cu(OTf)_2$$
 + PPh_2N CH_2Cl_2 $Cu-^tBu-PHOX complex$

The reaction was performed using 0.034 mmol of ^{*t*}Bu-PHOX (**L4**) and 0.034 mmol of $Cu(OTf)_2$ in an NMR tube under nitrogen atmosphere in CDCl₃. The NMR spectrum was recorded and observed no NMR signal of the free ^{*t*}Bu-PHOX protons in the spectrum. This indicates that Cu(II) complex (paramagnetic species) is forming.

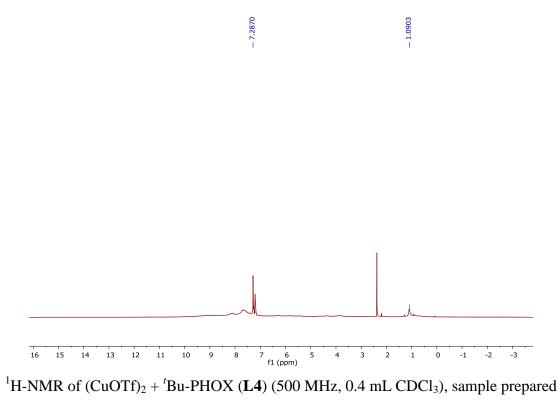

$$(CuOTf)_2.PhMe +$$
 $PPh_2N \rightarrow CH_2Cl_2$ $Cu-^tBu-PHOX complex$

The reaction was performed using 0.034 mmol of ^{*t*}Bu-PHOX (**L4**) and 0.034 mmol of Cu(I)OTf.PhMe in an NMR tube under nitrogen atmosphere in CDCl₃. The NMR spectrum was recorded and observed the no NMR signal of the free ^{*t*}Bu-PHOX protons in the spectrum. This indicates that Cu(I) is converting to Cu(II) (paramagnetic species) complex.

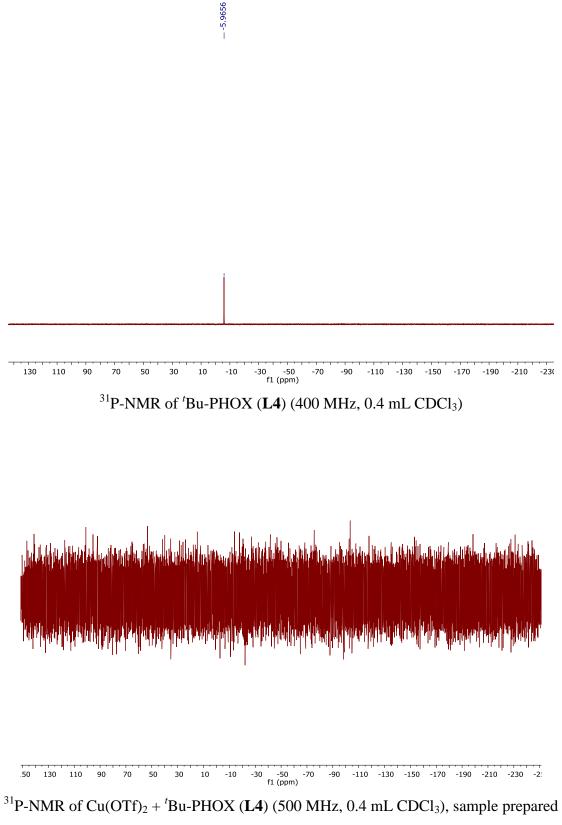

³¹P-NMR of only ^{*t*}Bu-PHOX in CDCl₃ shows ³¹P signal at -5.96 ppm.

$$Cu(OTf)_2$$
 + O CH_2Cl_2
PPh₂N N_2 atmosphere $Cu^{-t}Bu$ -PHOX complex

The reaction was performed using 0.034 mmol of ^{*t*}Bu-PHOX (**L4**) and 0.034 mmol of $Cu(OTf)_2$ in an NMR tube under nitrogen atmosphere in CDCl₃. The ³¹P NMR spectrum was recorded and observed no ³¹P signal of the ^{*t*}Bu-PHOX in the spectrum. This indicates that phosphorus atom is bound with Cu(II) complex.



The reaction was performed using 0.034 mmol of ^{*t*}Bu-PHOX (**L4**) and 0.034 mmol of Cu(I)OTf.PhMe in an NMR tube under nitrogen atmosphere in CDCl₃. The ³¹P NMR spectrum was recorded and observed no ³¹P-signal of the ^{*t*}Bu-PHOX in the spectrum. This indicates that phosphorus atom is bound with Cu(II) complex, which is converted from Cu(I)OTf.PhMe.

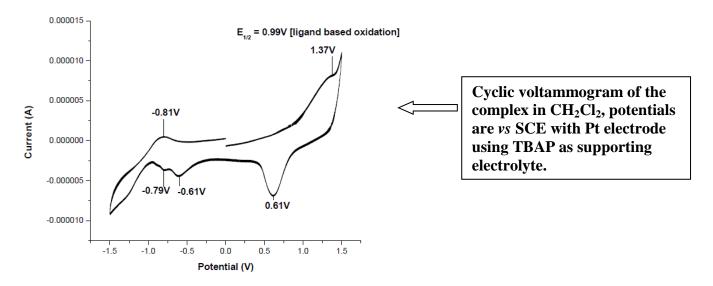


¹H-NMR and ³¹P-NMR studies of Cu-complex with ^tBu-PHOX (L4)

¹H-NMR of Cu(OTf)₂ + ^{*t*}Bu-PHOX (**L4**) (500 MHz, 0.4 mL CDCl₃), sample prepared under nitrogen atmosphere.

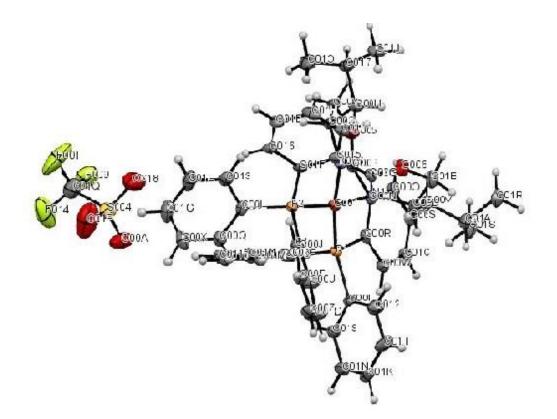
under nitrogen atmosphere.

under nitrogen atmosphere.


.50	130	110	90	70	50	30	10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210	-230	-2!
									1	f1 (ppm)									

³¹P-NMR of (CuOTf)₂ + ^{*t*}Bu-PHOX (**L4**) (500 MHz, 0.4 mL CDCl₃), sample prepared under nitrogen atmosphere.

Cu-^{*i*}Bu-PHOX (L2) preparation for Cyclic Voltagram studies:


Cyclic voltammetry (CV) were carried out by three electrode configuration with a glassy carbon (GC) working electrode, a platinum counter electrode, and standard calomel electrode (SCE) as reference electrode.

Reaction condition: $Cu^{-i}Bu$ -PHOX complex crystals (5 mg) in 5 mL CH_2Cl_2 containing 1.0 M tetrabutylammonium hexafluorophosphate (TBAPF₆).

Cyclic Voltagram of $Cu(OTf)_2 + {}^iBu-PHOX$ (L2)

X-ray structure of $Cu(OTf)_2 + {}^iBu$ -PHOX complex:

Figure: X-ray structure of $Cu(OTf)_2 + {}^iBu$ -PHOX with 50% thermal ellipsoids.

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

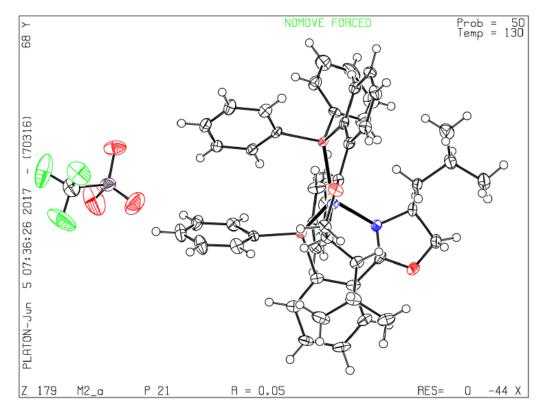
No syntax errors found. CIF dictionary Interpreting this report

Datablock: M2_a

Bond precision:	C-C = 0.0083	А	Wavelength=0.71073						
Cell: Temperature:	a=9.3999(9) alpha=90 130 K								
Volume Space group Hall group Moiety formula	Calculated 2365.5(4) P 21 P 2yb C50 H52 Cu N2 O3 S		Reported 2365.4(4 P 21 P 2yb ?						
Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	C51 H52 Cu F3 987.50 1.386 2 0.635 1028.0 1029.72 12,29,15 11441[5865]		C50 H51 994.47 1.396 2 0.639 1032.0 12,29,15 11406	Cu F5 N3 O3 P2 S					
Correction method= Not given									
Data completeness= 1.94/1.00 Theta(max)= 28.000									
R(reflections) = 0.0491(9001) wR2(reflections) = 0.1312(11406)									
S = 0.830	Npa	r= 590							

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.


Alert level B
PLAT987_ALERT_1_B The Flack x is >> 0 - Do a BASF/TWIN Refinement Please Check

Alert level C

PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ	Please Check
PLAT043_ALERT_1_C Calculated and Reported Mol. Weight Differ by	6.97 Check
PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)	Please Check
PLAT220_ALERT_2_C Non-Solvent Resd 1 C Ueq(max)/Ueq(min) Range	3.2 Ratio
PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of	S004 Check
PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds	0.00831 Ang.

Alert level G

FORMU01 ALERT 2 G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C50 H51 Cu1 F5 N3 O3 P2 S1 Atom count from the _atom_site data: C51 H52 Cu1 F3 N2 O5 P2 S1 CELLZ01 ALERT 1 G Difference between formula and atom_site contents detected. CELLZ01 ALERT 1 G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_sum C50 H51 Cu F5 N3 O3 P2 S TEST: Compare cell contents of formula and atom_site data Z*formula cif sites diff atom С 100.00 102.00 -2.00 102.00 104.00 -2.00 Н 2.00 0.00 4.00 Cu 2.00 10.00 F 6.00 4.00 2.00 N 6.00 6.00 10.00 -4.00 0 4.00 4.00 0.00 2.00 2.00 0.00 Ρ S 0.032 Note PLAT033 ALERT 4 G Flack x Value Deviates > 3.0 * sigma from Zero . PLAT244_ALERT_4_G Low 'Solvent' Ueq as Compared to Neighbors of C01Q Check PLAT398_ALERT_2_G Deviating C-O-C Angle from 120 Deg for 0005 107.2 Degree PLAT398_ALERT_2_G Deviating C-O-C Angle from 120 Deg for 0006 105.6 Degree PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels 110 Note PLAT791_ALERT_4_G The Model has Chirality at COOB (Chiral SPGR) S Verify (Chiral SPGR) PLAT791 ALERT 4 G The Model has Chirality at COOC S Verify 0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 10 ALERT level G = General information/check it is not something unexpected 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Download CIF editor (publCIF) from the IUCr Download CIF editor (enCIFer) from the CCDC Test a new CIF entry