Supplementary Information

High-capacitance $Ti_3C_2T_x$ MXene enabled by etching

submicron Ti₃AlC₂ grains grown in molten salt

Cong Cui,^{ab}MinminHu,^{ab}Chao Zhang,^aRenfeiCheng,^{ab} Jinxing Yang^{ab} and Xiaohui Wang^{*a}

^aShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

^bSchool of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

Experimental Section

1. Materials

1.1 Synthesis of Ti₃AlC₂by molten salt method

The submicron Ti₃AlC₂grains were prepared by molten salt method using elemental powders of Ti (99%, -325 mesh), Al (99%, -200 mesh) and carbon black (99%,primary particles size: 60nm) in a molar ratio of 3:1.1:1.8 along with the reaction medium of mixed salts composed of NaCl and KCl (NaCl:KCl = 50:50mol%). The mixture was mixed for 12hours with agate balls and absolute alcohol in an agate jar, followed by drying at 60 °C for 8 hours in air. The homogenized mixture was then heated in a tube furnacein a flowing Ar atmosphere. Finally, the sample was naturally cooled down to room temperature. Then Ti₃AlC₂ was obtained by washing the mixture of Ti₃AlC₂ and salts with water for several times.

1.2 Synthesis of porous Ti₃AlC₂monolith

The porous Ti_3AlC_2 monolith (porosity, ~40%) used in this work was prepared in the authors' laboratory by the solid–liquid reaction synthesis method¹ using elemental powders of Ti (99%, -300 mesh), Al (99%, D50 = 10 µm) and graphite (99%, D90 = 6.5 µm) in a molar ratio of 3:1.1:1.8. Briefly, the powders were mixed for 12 hours with agate balls and absolute alcohol in an agate jar, followed by drying at 60 °C for 8 hours in air. The homogenized mixture was then uniaxially cold pressed into a green compact in a graphite mould. Subsequently, the green compact together with the mould was heated in a furnace up to 1550 °C and hold at that temperature for 2 hours in a flowing Ar atmosphere. Finally, the sample was naturally cooled down to room temperature.

1.3 Synthesis of $Ti_3C_2T_x$ MXene

Two kinds of the as-prepared Ti_3AlC_2 (~1.0 g), powder of submicron Ti_3AlC_2 grains and porous Ti_3AlC_2 monolith, were immersed respectively in an aqueous HF

solution (10 mL, 6 mol L^{-1}) at room temperature until no bubbles generated. The resulting particulates were separated by vacuum filtration with a porous membrane filter (0.22 μ m pore size) and washed with deionized water until the pH value of the supernatant is higher than 5.

2. Materials Characterization

XRD data were collected on an X-ray diffractometer (D/max-2400, Rigaku) using Cu K_{α} radiation. Microstructural characterization ofs-Ti₃C₂*T_x* materials was conducted by transmission electron microscopy (TEM) on an analytic transmission electron microscope (Tecnai G2 F30, FEI) working at 300 kV. Scanning electron microscope (SEM) characterization was performed on a scanning electron microscope (LEO Supra35, Zeiss).

3. Fabrication of $Ti_3C_2T_x$ film electrodes

The fabrication of film electrodes follows the method reported in the literature². In a typical fabrication, a mixture of 100 mg $Ti_3C_2T_x$, 12.5 mg polytetrafluoroethylene (PVDF) binder and 12.5 mg carbon black were grinded finely with N-Methyl pyrrolidone (NMP) as the organic solvent. Then the slurry was coated on a copper foil and dried in a vacuum electric drying oven at 140 °C for 10hours.

4. Configuration of three-electrode system

The s-Ti₃C₂*T_x* or l-Ti₃C₂*T_x* coated copper foil were cut into circular shape as the working electrodes in this study. The mass loadingsof s-Ti₃C₂*T_x* and l-Ti₃C₂*T_x* are 0.368 mg and 0.304 mg, respectively, to ensure the results are comparable. The thickness of each electrode is about 9 μ m (Fig. S6). The counter electrode wasplatinum foil and the reference electrodewas Ag/AgCl electrode.

5. Electrochemical measurements

The electrochemical performance of the $Ti_3C_2T_x$ material was evaluated using a three-electrode test cell at room temperature. The electrolyte was aqueous H₂SO₄ solution (1 mol L⁻¹ H₂SO₄). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were all performed on an electrochemical workstation (PARSTAT 2273, Princeton Applied Research). The voltage ramp rates ranged from 2 to 100 mVs⁻¹.

The gravimetric capacitance was calculated from the CV curves according to $C_g = (\int i dV)/(2 vMV)$, where *i* is the current, *v* the voltage scan rate, *M* themass of Ti₃C₂*T_x* in electrode, and *V* the voltage window. EIS spectra were recorded from 100kHz to 10 mHz at open circuit with an amplitude of 10 mV.

6. Electrical conductivity measurements

Both of two kinds of MXene particulates, $s-Ti_3C_2T_x$ and $1-Ti_3C_2T_x$, were first pressed into pellets with a diameter of 8 mm under an identical pressure of 200 MPa, and then subjected to conductivity measurements by means of four-point colinear probe method (PTS-9, Guangzhou Four Probe Technology Co., Ltd.).

References

1. X. Wang and Y. Zhou, J. Mater. Chem., 2002, 12, 455-460.

2. M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum and Y. Gogotsi, *Science*, 2013,

Fig. S1 XRD patterns of submicron Ti_3AlC_2 grains synthesized at (a) 1150 °C for 1h,(b)1150°C for 3h, (c) 1250 °C for 1h, (d)1250 °C for 2h, and (e)1250 °C for 3h.

Fig. S2SEM images of reaction precursors. (a)Ti, (b) Al and (c) Carbon black.

Fig. S3Nitrogen adsorption/desorption isotherms of Ti_3AlC_2 synthesized in molten salt at 1250 °C for 3 h. The BET specific surface area of as-prepared Ti_3AlC_2 is 1.7 m^2g^{-1} .

Fig. S4(a) XRD pattern and (b) Raman spectrum of porous $Ti_3AlC_2monolith$ synthesized by high temperature reaction synthesis.

Fig. S5 Nitrogen adsorption/desorption isotherms of Ti_3AlC_2 powders. The powders were obtained by drilling Ti_3AlC_2 monolith that was synthesized by high temperature reaction synthesis. The BET specific surface area of the powders is 0.9 m² g⁻¹.

Fig. S6SEM images of as-fabricated electrodes. Top view of (a) $s-Ti_3C_2T_x$, and (b) $l-Ti_3C_2T_x$, and side view of (c) $s-Ti_3C_2T_x$, and (d) $l-Ti_3C_2T_x$.

Fig. S7 (a) Hydrogen evolution curve and (b) oxygen evolution curve of $s-Ti_3C_2T_x$ at a scan rate of 10 mV/s. Graphite rod was used as the counter electrode.

Fig. S8Capacitance retention of s-Ti₃C₂ T_x film electrode in 1 mol L⁻¹ H₂SO₄ solution. Inset shows galvanostatic cycling data collected at 10 A g⁻¹. The mass of active material is 0.264 mg. Graphite rod was used as the counter electrode.

Fig. S9XPS spectra of Ti 2p in (a) $s-Ti_3C_2T_x$ and (b) $1-Ti_3C_2T_x$. The Ti 2p spectra are deconvolved with three doublets (Ti 2p $2p_{3/2}$ -Ti $2p_{1/2}$) with a set area ratio equal to 2:1.

Fig. S10 Nyquist plots of s-Ti₃C₂ T_x and l-Ti₃C₂ T_x electrodes at high frequency region.

Fig. S11Equivalent circuit adopted in the simulation of EIS spectra of (a) s-Ti₃C₂ T_x (b) and l-Ti₃C₂ T_x . R_s : electrolyte resistance; C_d : electrical double layer capacitor; R_{ct} : charge transfer resistance; CPE: constant phase angle element, R: migration resistance of hydrated hydrogen ion within l-Ti₃C₂ T_x interlayer space, C: charge accumulation capacitor.

Element -	s-Ti ₃ C ₂ Z	T_x	$1-Ti_3C_2T_x$	
	Values	Error/%	Values	Error/%
$R_{\rm s}$ (ohm)	1.0	2.0	0.8	1.7
$C_{d}(F)$	1.4E-4	14.1	1.4E-4	12.7
$R_{\rm ct}$ (ohm)	0.4	5.6	0.3	5.1
CPE-T	0.1	0.9	3.7E-2	1.1
CPE-P	0.9	0.5	0.84	0.5
$C(\mathbf{F})$			0.4	14.0

Table S1 Simulation results of the EIS spectra in Figure 3d.

Test conditions						
Sample	Range	Current	Mean distar	ice of probe	Thickness	Thickness
	(mA)	(mA)	(mm)		(mm)	correction factor
$1-Ti_3C_2T_x$	100	45.32	1.0		1.91	0.6562
Results						
No.	V23+	V23-	V24+	V24–	Resistivity	Conductivity
	(mV)	(mV)	(mV)	(mV)	$(m\Omega \cdot cm)$	(S/cm)
1	21.57	21.57	17.26	17.29	266.2	3.757
2	24.76	24.77	19.61	19.65	310.4	3.222
3	22.10	22.11	17.16	17.22	284.7	3.512
4	22.50	22.51	18.20	18.21	273.4	3.658
5	23.01	23.00	18.20	18.23	288.9	3.461
					277.5±16.9	3.522±0.205

Table S2Conductivity measurements for $1-Ti_3C_2T_x$ MXene.

Table S3 Conductivity measurements for s-Ti₃C₂ T_x MXene.

Test conditions						
Sample	Range	Current	Mean distar	nce of probe	Thickness	Thickness
	(mA)	(mA)	(mm)		(mm)	correction factor
s-Ti ₃ C ₂ T_x	100	45.32	1.0		2.24	0.5789
Results						
No.	V23+	V23-	V24+	V24–	Resistivity	Conductivity
	(mV)	(mV)	(mV)	(mV)	m Ω ·cm	(S/cm)
1	13.72	13.73	11.33	11.35	166.5	6.006
2	13.41	13.41	10.89	10.90	167.4	5.974
3	14.13	14.13	11.80	11.81	168.1	5.949
4	13.14	13.22	10.75	10.76	163.3	6.124
5	13.45	13.45	10.90	10.91	168.4	5.938
					166.7±2.1	5.998±0.075