Supporting Information

Copper-Catalyzed N-H Olefination of Sulfonamides for *N***-sulfonyl**

Enaminone Synthesis

Xiao Liang,^a Xin Huang,^b Mingteng Xiong,^a Kexin Shen,^c Yuanjiang Pan^{*a}

^{*a*} Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, P. R. China 310027 E-mail: <u>panyuanjiang@zju.edu.cn</u>

^b School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, Shandong, P. R. China.

^c College of Pharmaceutical Science, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.

Table of Contents

1.	General Information	S2
2.	Optimization of catalysts, oxidants and additives	S3
3.	General experimental procedure	S4
4.	TLC detection	S5
5.	Characterization data for the products	S 6
6.	NMR Spectra for the products and key intermediates	S16
7.	Single-crystal X-ray analysis	S54
8.	Reference	S54

General Information

Unless otherwise noted, all solvents and reagents were commercially available and used without further purification. All reagents were weighed and handled in air at room temperature. NMR Spectra were performed at 298K, and all NMR spectra were recorded on Bruker AVANCE 400 for ¹H NMR and ¹³C NMR in CDCl₃. The NMR chemical shift was reported in ppm relative to 7.26 and 77.20 ppm of CDCl₃ solvent as the standards of ¹H NMR and ¹³C NMR. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. High-resolution mass spectra (HRMS) were tested on SHIMADZU LCMS-IT-TOF, which was equipped with an electrospray ion source (ESI) operating in positive ion mode. Single-crystal X-ray analysis was conducted on Gemini A Ultra X-ray single crystal diffractometer.

Optimization of solvent, time, temperature and additive

Entry	Catalyst	Oxidant (equiv)	Additives (equiv)	Yield ^b
1	CuI	-	byp (0.5)	trace ^c
2	CuI	-	byp (0.5)	trace
3	CuI	TBHP(2)	byp (0.5)	trace
4	CuI	DTBP (2)	byp (0.5)	trace
5	CuI	NFSI (2)	byp (0.5)	trace
6	CuI	Selectfluor (2)	byp (0.5)	trace
7	CuI	Oxone (2)	byp (0.5)	trace
8	CuI	TEMPO (2)	byp (0.5)	42
9	CuI	TEMPO (2)	DMAP (0.5)	55
10	CuI	TEMPO (2)	DMAP(1)	61
11	CuI	TEMPO (2)	DMAP(2)	56
12	CuI	4-CH ₃ O-TEMPO (2)	DMAP(1)	69
13	CuI	4-CH ₃ O-TEMPO (3)	DMAP(1)	78
14	CuTC	4-CH ₃ O-TEMPO (3)	DMAP(1)	88
15	CuTC	4-HO-TEMPO (3)	DMAP(1)	56
16	CuTC	4-Acetyl-TEMPO (3)	DMAP(1)	81
17	CuTC	4-CH ₃ O-TEMPO (3)	Et ₃ N (1)	60
18	CuTC	4-CH ₃ O-TEMPO (3)	$Cs_2CO_3(1)$	trace
19	CuTC	4-CH ₃ O-TEMPO (3)	K ₃ PO ₄ (1)	55
20	CuTC	4-CH ₃ O-TEMPO (3)	Pyridine (1)	79
21	CuTC	4-CH ₃ O-TEMPO (3)	Phenanthroline (1)	65
22	CuTC	4-CH ₃ O-TEMPO (3)	$PPh_3(1)$	trace
23	CuTC	4-CH ₃ O-TEMPO (3)	Proline (1)	trace
24	CuOAc	4-CH ₃ O-TEMPO (3)	DMAP(1)	79
25	Cu(OAc) ₂	4-CH ₃ O-TEMPO (3)	DMAP(1)	65
26	Cu(OTf) ₂	4-CH ₃ O-TEMPO (3)	DMAP(1)	57
27	FeCl ₂	4-CH ₃ O-TEMPO (3)	DMAP(1)	trace
28	AgOAc	4-CH ₃ O-TEMPO (3)	DMAP(1)	15
29	NiCl ₂	4-CH ₃ O-TEMPO (3)	DMAP(1)	trace
30	Pd(OAc) ₂	4-CH ₃ O-TEMPO (3)	DMAP(1)	trace

^{*a*} Reaction conditions: **1a** (0.9 mmol), **2a** (0.3mmol), metal catalyst (20 mol%), additives and oxidant were stirred in DMSO (2 mL) at 110 °C under O₂ condition (operating in Schlenk tube) for 24h. ^{*b*} Isolated yield. ^{*c*} Under air condition.

General experimental procedure

General Procedure for the Synthesis of N-sulfonyl Enaminone (3a)

Under oxygen atmosphere, propiophenone (0.9 mmol, **1a**), *N*-methyl-*p*-toluene sulfonamide (0.3 mmol, **2a**), Copper(I) thiophene-2-carboxylate (20 mol%), *p*-dimethylaminopyridine (100 mol%), 4-CH₃O-TEMPO (3 equiv) in DMSO (2 mL) were stirred at 110 °C for 24 h in a 25 mL Schlenk tube. After cooling to room temperature, the mixture was washed with brine and extracted with ethyl acetate. Then the organic layer was separated and dried over sodium sulfate, which was then evaporated under reduced pressure. The residue was separated by column chromatography on silica gel with Petroleum/Ethyl acetate mixtures (v/v = 10/1) to get the desired product (**3a**). Such product could be further purified by means of recrystallization.

General Procedure for the Synthesis of Various N-methyl-p-toluene sulfonamide

Under air atmosphere, benzenesulfonyl chloride (2 mmol) was stirred in THF (4 mL) in a flask. Methylamine (40%, w/w, aq, 0.4mL) was slowly added to the mixture. After half an hour, the reaction ended. The mixture was washed with brine and extracted with ethyl acetate. Then the organic layer was separated and dried over sodium sulfate, which was then evaporated under reduced pressure. The residue was separated by column chromatography on silica gel with Petroleum/Ethyl acetate mixtures (v/v = 2/1) to get the desired *N*-methyl-*p*-toluene sulfonamide derivatives.

General Procedure for the Synthesis of α,β -unsaturated ketone

Under air atmosphere, 3-Chloropropiophenone (2 mmol) wasstirred in CHCl₃ (4 mL) in a flask. Triethylamine (2 mmol) was slowly added to the mixture. After an hour, the reaction ended. The mixture was washed with brine and extracted with ethyl acetate. Then the organic layer was separated and dried over sodium sulfate, which was then evaporated under reduced pressure. The residue was separated by column chromatography on silica gel with Petroleum/Ethyl acetate mixtures (v/v = 10/1) to get the desired α , β -unsaturated ketone.

TLC detection

Collecting different samples from the same system at different reaction time (1-0.5h, 2-1h, 3-2h, 4-3h, 5-5h, 6-7h, 7-12h, 8-18h)

Characterization data for the products

$(E) \text{-} N, 4 \text{-} dimethyl \text{-} N \text{-} (3 \text{-} oxo \text{-} 3 \text{-} phenyl prop-1 \text{-} en \text{-} 1 \text{-} yl) benzene sulfonamide} (3a, 88\%)^1$

White solid, m.p. 154-156 °C

¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 13.4 Hz, 1H), 7.89 (d, *J* = 7.1 Hz, 2H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.58 – 7.50 (m, 1H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.15 (d, *J* = 13.4 Hz, 1H), 3.10 (s, 3H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.39 (s), 145.02 (s), 143.76 (s), 138.49 (s), 134.42 (s), 132.46 (s), 130.25 (s), 128.53 (s), 128.08 (s), 127.23 (s), 103.14 (s), 32.50 (s), 21.65 (s).

HRMS (ESI, m/z) calcd. for C₁₇H₁₈NO₃S (M+H)⁺ 316.1002, found 316.1003.

(*E*)-*N*,4-dimethyl-*N*-(3-oxo-3-(p-tolyl)prop-1-en-1-yl)benzenesulfonamide (3b, 76%) White solid, m.p. 166-167 $^{\rm o}{\rm C}$

¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 13.4 Hz, 1H), 7.80 (d, *J* = 8.2 Hz, 2H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 6.14 (d, *J* = 13.4 Hz, 1H), 3.10 (s, 3H), 2.43 (s, 3H), 2.40 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 188.97 (s), 144.94 (s), 143.44 (s), 143.21 (s), 135.85 (s), 134.48 (s), 130.22 (s), 129.22 (s), 128.22 (s), 127.23 (s), 103.21 (s), 32.49 (s), 21.64 (s).

HRMS (ESI, *m/z*) calcd. for C₁₈H₂₀NO₃S (M+H)⁺ 330.1158, found 330.1163.

(*E*)-*N*,4-dimethyl-*N*-(3-oxo-3-(m-tolyl)prop-1-en-1-yl)benzenesulfonamide (3c, 65%) White solid, m.p. 116-117 $^{\circ}$ C

¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 13.5 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.70 (s, 1H), 7.67 (dm, *J* = 6.1, 1.8 Hz, 1H), 7.37 – 7.32 (m, 4H), 6.12 (d, *J* = 13.5 Hz, 1H), 3.10 (s, 3H), 2.43 (s, 3H), 2.41 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.61 (s), 144.95 (s), 143.63 (s), 138.55 (s), 138.33 (s), 134.50 (s), 133.20 (s), 130.23 (s), 128.65 (s), 128.37 (s), 127.23 (s), 125.26 (s), 103.41 (s), 32.50 (s), 21.64 (s), 21.40 (s).

HRMS (ESI, *m/z*) calcd. for C₁₈H₂₀NO₃S (M+H)⁺ 330.1158, found 330.1154.

(*E*)-*N*-(3-(4-ethylphenyl)-3-oxoprop-1-en-1-yl)-*N*,4-dimethylbenzenesulfonamide (3d, 79%) White solid, m.p. 147-148 °C

¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 13.4 Hz, 1H), 7.82 (d, *J* = 8.2 Hz, 2H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.2 Hz, 2H), 6.14 (d, *J* = 13.4 Hz, 1H), 3.10 (s, 3H), 2.70 (q, *J* = 7.6 Hz, 2H), 2.43 (s, 3H), 1.25 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.01 (s), 149.40 (s), 144.94 (s), 143.42 (s), 136.08 (s), 134.48 (s), 130.22 (s), 128.32 (s), 128.04 (s), 127.23 (s), 103.26 (s), 32.49 (s), 28.92 (s), 21.65 (s), 15.28 (s). HRMS (ESI, m/z) calcd. for C₁₉H₂₁NNaO₃S (M+Na)⁺ 366.1134, found 366.1130.

(*E*)-*N*-(3-(4-chlorophenyl)-3-oxoprop-1-en-1-yl)-*N*,4-dimethylbenzenesulfonamide (3e, 91%) White solid, m.p. 164-165 °C

¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 13.4 Hz, 1H), 7.83 (d, *J* = 8.6 Hz, 2H), 7.71 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 6.10 (d, *J* = 13.4 Hz, 1H), 3.10 (s, 3H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 187.95 (s), 145.12 (s), 144.14 (s), 138.75 (s), 136.80 (s), 134.33 (s), 130.28 (s), 129.49 (s), 128.80 (s), 127.24 (s), 102.42 (s), 32.51 (s), 21.66 (s).

HRMS (ESI, *m/z*) calcd. for C₁₇H₁₆ClNNaO₃S (M+Na)⁺ 372.0432, found 372.0424.

(*E*)-*N*-(3-(3-chlorophenyl)-3-oxoprop-1-en-1-yl)-*N*,4-dimethylbenzenesulfonamide (3f, 67%) White solid, m.p. 124-125 °C

¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 13.4 Hz, 1H), 7.84 (s, 1H), 7.76 (d, J = 7.7 Hz, 1H), 7.73 (d, J = 8.3 Hz, 2H), 7.51 (d, J = 8.8 Hz, 1H), 7.40 (t, J = 7.9 Hz, 1H), 7.36 (d, J = 8.3 Hz, 2H), 6.06 (d, J = 13.4 Hz, 1H), 3.11 (s, 3H), 2.44 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 187.98 (s), 145.14 (s), 144.46 (s), 140.16 (s), 134.73 (s), 134.34 (s), 132.32 (s), 130.30 (s), 129.89 (s), 128.19 (s), 127.27 (s), 126.16 (s), 102.49 (s), 32.53 (s), 21.67 (s). HRMS (ESI, m/z) calcd. for C₁₇H₁₆ClNNaO₃S (M+Na)⁺ 372.0432, found 372.0422.

(*E*)-*N*-(**3**-(**4**-bromophenyl)-**3**-oxoprop-1-en-1-yl)-*N*,**4**-dimethylbenzenesulfonamide (**3**g, **8**4%) Light yellow solid, m.p. 163-164 °C

¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 13.4 Hz, 1H), 7.76 (d, *J* = 8.6 Hz, 2H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.6 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 6.08 (d, *J* = 13.4 Hz, 1H), 3.10 (s, 3H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 188.14 (s), 145.12 (s), 144.20 (s), 137.23 (s), 134.34 (s), 131.79 (s), 130.28 (s), 129.63 (s), 127.41 (s), 127.25 (s), 102.38 (s), 32.52 (s), 21.66 (s). HRMS (ESI, m/z) calcd. for C₁₇H₁₇BrNO₃S (M+H)⁺ 394.0107, found 394.1114.

(*E*)-*N*-(3-(4-fluorophenyl)-3-oxoprop-1-en-1-yl)-*N*,4-dimethylbenzenesulfonamide (3h, 80%) White solid, m.p. 172-173 °C

¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 13.4 Hz, 1H), 7.92 (dd, J = 8.9, 5.4 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 7.12 (t, J = 8.6 Hz, 2H), 6.11 (d, J = 13.4 Hz, 1H), 3.10 (s, 3H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 187.68 (s), 165.35 (d, J = 253.7 Hz), 145.08 (s), 143.91 (s), 134.78 (d, J = 3.0 Hz), 134.37 (s), 130.60 (d, J = 9.2 Hz), 130.27 (s), 127.23 (s), 115.58 (d, J = 21.8 Hz), 102.52 (s), 32.50 (s), 21.65 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -106.31 (s).

HRMS (ESI, *m/z*) calcd. for C₁₇H₁₇FNO₃S (M+H)⁺ 334.0908, found 334.0915.

(*E*)-*N*-(3-(4-methoxyphenyl)-3-oxoprop-1-en-1-yl)-*N*,4-dimethylbenzenesulfonamide (3i, 63%)

White solid, m.p. 119-121 °C

¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 13.4 Hz, 1H), 7.90 (d, *J* = 8.9 Hz, 2H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.93 (d, *J* = 8.9 Hz, 2H), 6.14 (d, *J* = 13.4 Hz, 1H), 3.87 (s, 3H), 3.10 (s, 3H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 187.76 (s), 163.11 (s), 144.88 (s), 143.12 (s), 134.53 (s), 131.25 (s), 130.32 (s), 130.21 (s), 127.23 (s), 113.70 (s), 102.98 (s), 55.48 (s), 32.50 (s), 21.64 (s). HRMS (ESI, m/z) calcd. for C₁₈H₂₀NO₄S (M+H)⁺ 346.1108, found 346.1114.

(*E*)-*N*-(3-(3,4-difluorophenyl)-3-oxoprop-1-en-1-yl)-*N*,4-dimethylbenzenesulfonamide (3j, 44%)

White solid, m.p. 144-145 °C

¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 13.3 Hz, 1H), 7.77 – 7.70 (m, 3H), 7.67 (ddd, *J* = 8.6, 4.2, 1.4 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 2H), 7.26 – 7.19 (m, 1H), 6.05 (d, *J* = 13.3 Hz, 1H), 3.11 (s, 3H), 2.44

(s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 186.51 (s), 154.40 (d, J = 13.0 Hz), 152.10 – 151.16 (m), 149.03 (s), 145.18 (s), 144.52 (s), 135.56 (s), 134.31 (s), 130.30 (s), 127.27 (s), 124.80 (dd, J = 7.3, 3.5 Hz), 117.40 (dd, J = 17.1, 6.2 Hz), 101.78 (s), 32.51 (s), 21.65 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -130.94 (d, J = 20.9 Hz), -136.27 (d, J = 20.9 Hz). HRMS (ESI, m/z) calcd. for C₁₇H₁₅F₂NNaO₃S (M+Na)⁺ 374.0633, found 374.0619.

(*E*)-*N*-(3-(3,5-difluorophenyl)-3-oxoprop-1-en-1-yl)-*N*,4-dimethylbenzenesulfonamide (3k, 32%)

White solid, m.p. 133-135 °C

¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 13.4 Hz, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.44 – 7.31 (m, 4H), 6.98 (m, J = 8.5, 2.3 Hz, 1H), 6.00 (d, J = 13.3 Hz, 1H), 3.11 (s, 3H), 2.44 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 186.55 (s), 162.97 (dd, J = 250.6, 11.8 Hz), 145.25 (s), 145.00 (s),

141.65 (s), 134.26 (s), 130.32 (s), 127.29 (s), 111.79 – 110.32 (m), 107.59 (t, *J* = 25.4 Hz), 101.77 (s), 32.52 (s), 21.66 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -108.34 (s).

HRMS (ESI, *m/z*) calcd. for C₁₇H₁₅F₂NNaO₃S (M+Na)⁺ 374.0633, found 374.0619.

(*E*)-*N*-(3-(3,4-dichlorophenyl)-3-oxoprop-1-en-1-yl)-*N*,4-dimethylbenzenesulfonamide (3l, 55%)

Light yellow solid, m.p. 153-155 °C

¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 13.3 Hz, 1H), 7.95 (s, 1H), 7.72 (d, *J* = 8.3 Hz, 3H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.36 (d, *J* = 8.2 Hz, 2H), 6.03 (d, *J* = 13.3 Hz, 1H), 3.11 (s, 3H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.78 (s), 145.22 (s), 144.74 (s), 138.14 (s), 136.83 (s), 134.27 (s), 133.07 (s), 130.65 (s), 130.32 (s), 130.05 (s), 127.28 (s), 127.15 (s), 101.83 (s), 32.55 (s), 21.67 (s). HRMS (ESI, *m*/*z*) calcd. for C₁₇H₁₆Cl₂NO₃S (M+H)⁺ 384.0222, found 384.0217.

(*E*)-*N*-(3-(furan-2-yl)-3-oxoprop-1-en-1-yl)-*N*,4-dimethylbenzenesulfonamide (3m, 63%) White solid, m.p. 129-130 $^{\circ}$ C

¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 13.6 Hz, 1H), 7.72 (d, J = 8.3 Hz, 2H), 7.61 – 7.51 (m, 1H), 7.35 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 3.5 Hz, 1H), 6.54 (dd, J = 3.5, 1.6 Hz, 1H), 6.10 (d, J = 13.6 Hz, 1H), 3.10 (s, 3H), 2.44 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 177.51 (s), 153.61 (s), 145.75 (s), 145.00 (s), 142.96 (s), 134.39 (s), 130.23 (s), 127.22 (s), 116.26 (s), 112.45 (s), 102.58 (s), 32.48 (s), 21.63 (s). HRMS (ESI, m/z) calcd. for C₁₅H₁₆NO₄S (M+H)⁺ 306.0795, found 306.0789.

(*E*)-*N*,4-dimethyl-*N*-(3-oxo-3-(thiophen-2-yl)prop-1-en-1-yl)benzenesulfonamide (3n, 67%) White solid, m.p. 146-148 °C

¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 13.4 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.69 (dd, *J* = 3.8, 1.0 Hz, 1H), 7.62 (dd, *J* = 4.9, 1.0 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.13 (dd, *J* = 4.9, 3.8 Hz, 1H), 6.05 (d, *J* = 13.4 Hz, 1H), 3.11 (s, 3H), 2.44 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 181.21 (s), 145.58 (s), 145.03 (s), 143.08 (s), 134.38 (s), 133.04 (s), 130.83 (s), 130.25 (s), 128.08 (s), 127.23 (s), 102.84 (s), 32.52 (s), 21.65 (s).

HRMS (ESI, *m/z*) calcd. for C₁₅H₁₆NO₃S₂ (M+H)⁺ 322.0566, found 322.0564.

(E)-N-methyl-N-(3-oxo-3-phenylprop-1-en-1-yl)benzenesulfonamide (4a, 69%)

White solid, m.p. 125-126 °C

¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 13.5 Hz, 1H), 7.89 (d, J = 7.2 Hz, 2H), 7.85 (d, J = 7.3 Hz, 2H), 7.68 – 7.61 (m, 1H), 7.60 – 7.52 (m, 3H), 7.46 (t, J = 7.5 Hz, 2H), 6.16 (d, J = 13.5 Hz, 1H), 3.12 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.36 (s), 143.62 (s), 138.44 (s), 137.46 (s), 133.85 (s), 132.50 (s), 129.65 (s), 128.55 (s), 128.10 (s), 127.20 (s), 103.41 (s), 32.57 (s).

HRMS (ESI, *m/z*) calcd. for C₁₆H₁₆NO₃S (M+H)⁺ 302.0845, found 302.0842.

(*E*)-4-chloro-*N*-methyl-*N*-(3-oxo-3-phenylprop-1-en-1-yl)benzenesulfonamide (4b, 89%) White solid, m.p. 152-153 °C

¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 13.5 Hz, 1H), 7.89 (d, *J* = 7.2 Hz, 2H), 7.78 (d, *J* = 8.7 Hz, 2H), 7.58 – 7.50 (m, 3H), 7.46 (t, *J* = 7.5 Hz, 2H), 6.19 (d, *J* = 13.5 Hz, 1H), 3.12 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.15 (s), 143.15 (s), 140.61 (s), 138.30 (s), 135.84 (s), 132.63 (s),

130.01 (s), 128.63 (s), 128.58 (s), 128.10 (s), 103.77 (s), 32.61 (s).

HRMS (ESI, *m/z*) calcd. for C₁₆H₁₅ClNO₃S (M+H)⁺ 336.0456, found 336.0461.

(*E*)-4-bromo-*N*-methyl-*N*-(3-oxo-3-phenyl prop-1-en-1-yl)benzenesulfonamide (4c, 81%) White solid, m.p. 155-156 °C

¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 13.5 Hz, 1H), 7.89 (d, *J* = 7.1 Hz, 2H), 7.70 (s, 4H), 7.55 (m, *J* = 6.6, 3.8, 1.2 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 3.12 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.15 (s), 143.14 (s), 138.30 (s), 136.38 (s), 133.00 (s), 132.63 (s), 129.18 (s), 128.66 (s), 128.59 (s), 128.10 (s), 103.81 (s), 32.61 (s).

HRMS (ESI, *m/z*) calcd. for C₁₆H₁₄BrNNaO₃S (M+Na)⁺ 401.9770, found 401.9773.

(*E*)-4-iodo-*N*-methyl-*N*-(3-oxo-3-phenylprop-1-en-1-yl)benzenesulfonamide (4d, 45%) White solid, m.p. 156-157 °C

¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 13.5 Hz, 1H), 7.90 (t, *J* = 8.5 Hz, 4H), 7.54 (d, *J* = 8.7 Hz, 3H), 7.46 (t, *J* = 7.5 Hz, 2H), 6.19 (d, *J* = 13.5 Hz, 1H), 3.12 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.16 (s), 143.16 (s), 138.95 (s), 138.31 (s), 137.04 (s), 132.62 (s), 128.58 (s), 128.44 (s), 128.10 (s), 103.81 (s), 101.75 (s), 32.61 (s).

HRMS (ESI, *m/z*) calcd. for C₁₆H₁₅INO₃S (M+H)⁺ 427.9812, found 427.9812.

(*E*)-4-fluoro-*N*-methyl-*N*-(3-oxo-3-phenylprop-1-en-1-yl)benzenesulfonamide (4e, 51%) White solid, m.p. 127-128 °C

¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 13.5 Hz, 1H), 7.99 – 7.80 (m, 4H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.25 (t, *J* = 13.7, 5.1 Hz, 2H), 6.18 (d, *J* = 13.5 Hz, 1H), 3.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.18 (s), 165.73 (d, *J* = 257.2 Hz), 143.28 (s), 138.35 (s), 133.51 (d, *J* = 3.3 Hz), 132.58 (s), 130.07 (d, *J* = 9.6 Hz), 128.57 (s), 128.09 (s), 117.03 (d, *J* = 22.8 Hz), 103.64 (s), 32.56 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -102.64 (s).

HRMS (ESI, *m/z*) calcd. for C₁₆H₁₅FNO₃S (M+H)⁺ 320.0751, found 320.0755.

(*E*)-*N*-methyl-*N*-(3-oxo-3-phenylprop-1-en-1-yl)-2-(trifluoromethoxy)benzenesulfonamide (4f, 29%)

Light yellow solid, m.p. 138-140 °C

¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 13.5 Hz, 1H), 8.12 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.89 (d, *J* = 7.1 Hz, 2H), 7.75 – 7.64 (m, 1H), 7.59 – 7.51 (m, 1H), 7.50 – 7.38 (m, 4H), 6.21 (d, *J* = 13.5 Hz, 1H), 3.20 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.33 (s), 146.24 (s), 143.68 (s), 138.43 (s), 135.82 (s), 132.42 (s), 131.82 (s), 129.61 (s), 128.53 (s), 128.08 (s), 126.78 (s), 121.58 – 118.57 (m), 103.36 (s), 32.84 (s). HRMS (ESI, m/z) calcd. for C₁₇H₁₅F₃NO₃S (M+H)⁺ 386.0668, found 386.0669.

(*E*)-4-methoxy-*N*-methyl-*N*-(3-oxo-3-phenylprop-1-en-1-yl)benzenesulfonamide (4g, 49%) White solid, m.p. 120-121 °C

1H NMR (400 MHz, CDCl3) δ 8.36 (d, J = 13.4 Hz, 1H), 7.89 (d, J = 7.1 Hz, 2H), 7.76 (d, J = 9.0 Hz, 2H), 7.56 – 7.50 (m, 1H), 7.44 (t, J = 7.5 Hz, 2H), 7.00 (d, J = 9.0 Hz, 2H), 6.15 (d, J = 13.4 Hz, 1H), 3.86 (s, 3H), 3.09 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 189.38 (s), 163.82 (s), 143.81 (s), 138.51 (s), 132.44 (s), 129.46 (s), 128.75 (s), 128.53 (s), 128.07 (s), 114.82 (s), 102.90 (s), 55.80 (s), 32.44 (s). HRMS (ESI, *m*/*z*) calcd. for C₁₇H₁₈NO₄S (M+H)⁺ 332.0951, found 332.0955.

(*E*)-*N*-methyl-4-nitro-*N*-(3-oxo-3-phenylprop-1-en-1-yl)benzenesulfonamide (4h, 40%) Yellow solid, m.p. 139-141°C

¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 8.8 Hz, 2H), 8.30 (d, *J* = 13.5 Hz, 1H), 8.05 (d, *J* = 8.8 Hz, 2H), 7.89 (d, *J* = 7.4 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 6.25 (d, *J* = 13.5 Hz, 1H), 3.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 188.86 (s), 150.69 (s), 142.98 (s), 142.45 (s), 138.08 (s), 132.82 (s), 128.64 (s), 128.54 (s), 128.12 (s), 124.91 (s), 104.73 (s), 32.80 (s).

HRMS (ESI, *m/z*) calcd. for C₁₆H₁₄N₂NaO₅S (M+Na)⁺ 369.1516, found 369.0492.

 $(E) \mbox{-}4\mbox{-}cyano-N\mbox{-}methyl-N\mbox{-}(3\mbox{-}oxo\mbox{-}3\mbox{-}phenylprop\mbox{-}1\mbox{-}n\mbox{-}1\mbox{-}yl) benzenesulfonamide}\) \ (4i,\ 82\%)$

White solid, m.p. 164-165 °C

¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 13.5 Hz, 1H), 7.97 (d, J = 8.6 Hz, 2H), 7.92 – 7.84 (m, 4H), 7.59 – 7.53 (m, 1H), 7.47 (t, J = 7.6 Hz, 2H), 6.24 (d, J = 13.5 Hz, 1H), 3.16 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 188.89 (s), 142.54 (s), 141.49 (s), 138.10 (s), 133.44 (s), 132.81 (s),

128.64 (s), 128.11 (s), 127.83 (s), 117.61 (s), 116.89 (s), 104.55 (s), 32.77 (s).

HRMS (ESI, *m/z*) calcd. for C₁₇H₁₄N₂NaO₃S (M+Na)⁺ 349.0617, found 349.0619.

(*E*)-4-(tert-butyl)-*N*-methyl-*N*-(3-oxo-3-phenyl prop-1-en-1-yl)benzenesulfonamide (4j, 50%) White solid, m.p. 185-187 $^{\circ}$ C

¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 13.5 Hz, 1H), 7.89 (d, J = 7.2 Hz, 2H), 7.76 (d, J = 8.6 Hz, 2H), 7.58 – 7.51 (m, 3H), 7.45 (t, J = 7.5 Hz, 2H), 6.15 (d, J = 13.5 Hz, 1H), 3.13 (s, 3H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 189.47 (s), 157.86 (s), 143.86 (s), 138.52 (s), 134.42 (s), 132.44 (s), 128.53 (s), 128.08 (s), 127.09 (s), 126.65 (s), 103.12 (s), 35.32 (s), 32.54 (s), 30.99 (s). HRMS (ESI, m/z) calcd. for C₂₀H₂₄NO₃S (M+H)⁺ 358.1471, found 358.1476.

(*E*)-*N*-methyl-*N*-(3-oxo-3-phenylprop-1-en-1-yl)naphthalene-1-sulfonamide (4k, 73%) White solid, m.p. 135-137 °C

¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 13.4 Hz, 1H), 8.53 (d, *J* = 8.6 Hz, 1H), 8.30 (dd, *J* = 7.4, 1.1 Hz, 1H), 8.14 (d, *J* = 8.2 Hz, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.88 (d, *J* = 7.2 Hz, 2H), 7.70 (ddd, *J* = 8.5, 7.0, 1.3 Hz, 1H), 7.64 – 7.56 (m, 2H), 7.55 – 7.49 (m, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 6.15 (d, *J* = 13.4 Hz, 1H), 3.09 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.42 (s), 143.55 (s), 138.50 (s), 135.77 (s), 134.41 (s), 132.43 (s), 132.13 (s), 130.97 (s), 129.33 (s), 129.15 (s), 128.53 (s), 128.08 (s), 128.05 (s), 127.41 (s), 124.25 (s), 123.90 (s), 102.45 (s), 32.65 (s).

HRMS (ESI, *m/z*) calcd. for C₂₀H₁₈NO₃S (M+H)⁺ 352.1002, found 352.0998.

(*E*)-*N*-methyl-*N*-(3-oxo-3-phenyl prop-1-en-1-yl)naphthalene-2-sulfonamide (4l, 84%) White solid, m.p. 122-124 $^{\circ}$ C

¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 13.4 Hz, 2H), 8.07 – 7.96 (m, 2H), 7.94 – 7.83 (m, 3H), 7.75 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.71 – 7.61 (m, 2H), 7.57 – 7.50 (m, 1H), 7.45 (t, *J* = 7.5 Hz, 2H), 6.16 (d, *J* = 13.5 Hz, 1H), 3.15 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.43 (s), 143.72 (s), 138.46 (s), 135.22 (s), 134.15 (s), 132.49 (s), 132.10 (s), 130.17 (s), 129.58 (s), 129.46 (s), 129.14 (s), 128.54 (s), 128.10 (s), 128.04 (s), 121.71 (s), 103.29 (s), 32.62 (s).

HRMS (ESI, *m/z*) calcd. for C₂₀H₁₈NO₃S (M+H)⁺ 352.1002, found 352.1005.

(*E*)-*N*,2,4,6-tetramethyl-*N*-(3-oxo-3-phenylprop-1-en-1-yl)benzenesulfonamide (4m, 45%) White solid, m.p. 142-143 °C

¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 13.4 Hz, 1H), 7.90 (d, *J* = 7.1 Hz, 2H), 7.56 – 7.50 (m, 1H), 7.45 (dd, *J* = 8.0, 6.9 Hz, 2H), 7.00 (s, 2H), 6.14 (d, *J* = 13.4 Hz, 1H), 3.02 (s, 3H), 2.59 (s, 6H), 2.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.59 (s), 144.14 (s), 143.93 (s), 140.43 (s), 138.69 (s), 132.54 (s), 132.28 (s), 130.73 (s), 128.49 (s), 128.05 (s), 100.63 (s), 31.81 (s), 22.94 (s), 21.06 (s). HRMS (ESI, m/z) calcd. for C₁₉H₂₂NO₃S (M+H)⁺ 344.1315, found 344.1317.

(*E*)-*N*-ethyl-4-methyl-*N*-(3-oxo-3-phenylprop-1-en-1-yl)benzenesulfonamide (4n, 55%) White solid, m.p. 106-107 °C

¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 13.7 Hz, 1H), 7.88 (d, *J* = 7.1 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.54 (m, *J* = 6.5, 3.8, 1.2 Hz, 1H), 7.45 (m, *J* = 10.3, 4.6 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.19 (d, *J* = 13.7 Hz, 1H), 3.62 (q, *J* = 7.1 Hz, 2H), 2.43 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.61 (s), 144.92 (s), 142.58 (s), 138.68 (s), 135.50 (s), 132.34 (s), 130.21 (s), 128.52 (s), 128.04 (s), 127.28 (s), 102.33 (s), 41.44 (s), 21.64 (s), 12.41 (s). HRMS (ESI, *m*/*z*) calcd. for C₁₈H₂₀NO₃S (M+H)⁺ 330.1158, found 330.1155.

(*E*)-*N*-butyl-*N*-(3-oxo-3-phenylprop-1-en-1-yl)benzenesulfonamide (40, 67%) White solid, m.p. 106-108 °C

¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 13.7 Hz, 1H), 7.93 – 7.80 (m, 4H), 7.64 (dd, J = 8.5, 6.3 Hz, 1H), 7.59 – 7.51 (m, 3H), 7.46 (t, J = 7.4 Hz, 2H), 6.19 (d, J = 13.7 Hz, 1H), 3.60 – 3.34 (m, 2H), 1.82 – 1.54 (m, 2H), 1.52 – 1.28 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.58 (s), 142.94 (s), 138.61 (s), 138.42 (s), 133.76 (s), 132.40 (s), 129.60 (s), 128.55 (s), 128.04 (s), 127.20 (s), 102.98 (s), 46.47 (s), 28.98 (s), 20.06 (s), 13.66 (s). HRMS (ESI, m/z) calcd. for C₁₉H₂₂NO₃S (M+H)⁺ 344.1315, found 344.1313.

(*E*)-*N*-methyl-*N*-(3-oxo-3-phenylprop-1-en-1-yl)methanesulfonamide (4p, 76%) White solid, m.p. 112-114 °C

¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 13.5 Hz, 1H), 7.92 (d, *J* = 7.1 Hz, 2H), 7.63 – 7.52 (m, 1H), 7.48 (t, *J* = 7.5 Hz, 2H), 6.25 (d, *J* = 13.5 Hz, 1H), 3.28 (s, 3H), 3.04 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 189.33 (s), 143.35 (s), 138.39 (s), 132.58 (s), 128.60 (s), 128.11 (s), 103.20 (s), 39.74 (s), 32.70 (s).

HRMS (ESI, m/z) calcd. for C₁₁H₁₄NO₃S (M+H)⁺ 240.0689, found 240.0687.

(E)-3-(1,1-dioxido-1,2-thiazinan-2-yl)-1-phenylprop-2-en-1-one (4q, 32%)

Yellow solid, m.p. 120-121 °C

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 13.7 Hz, 1H), 7.89 (d, J = 7.1 Hz, 2H), 7.60 – 7.50 (m, 1H), 7.46 (t, J = 7.5 Hz, 2H), 6.30 (d, J = 13.7 Hz, 1H), 4.05 – 3.91 (t, 2H), 3.26 – 3.10 (t, 2H), 2.35 – 2.23 (m, 2H), 1.83 – 1.72 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 189.82 (s), 142.58 (s), 138.61 (s), 132.39 (s), 128.54 (s), 128.05 (s), 102.08 (s), 51.10 (s), 47.09 (s), 23.87 (s), 21.96 (s).

HRMS (ESI, m/z) calcd. for C₁₃H₁₆NO₃S (M+H)⁺ 266.0845, found 266.0835.

$\label{eq:constraint} 2-((4-methoxy-2,2,6,6-tetramethylpiperidin-1-yl)oxy)-1-phenylpropan-1-one$

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.5 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 5.05 (q, *J* = 7.1 Hz, 1H), 3.50 – 3.35 (m, 1H), 3.31 (s, 3H), 1.91 (d, *J* = 12.5 Hz, 1H), 1.79 (d, *J* = 12.5 Hz, 1H), 1.51 (d, *J* = 7.1 Hz, 3H), 1.46 – 1.27 (m, 5H), 1.24 (s, 3H), 1.11 (s, 3H), 0.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.56 (s), 135.10 (s), 133.13 (s), 129.13 (s), 128.54 (s), 86.04 (s), 71.54 (s), 59.97 (s), 59.95 (s), 55.74 (s), 45.02 (s), 44.97 (s), 34.19 (s), 33.76 (s), 21.34 (s), 21.23 (s), 19.27 (s).

3-morpholino-1-phenyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propan-1-one

¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.1 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.4 Hz, 2H), 5.07 (dd, *J* = 9.5, 5.7 Hz, 1H), 3.46 – 3.30 (m, 4H), 3.02 – 2.79 (m, 2H), 2.50 – 2.34 (m, 2H), 2.32 – 2.18 (m, 2H), 1.50 (s, 3H), 1.46 – 1.23 (m, 6H), 1.17 (s, 3H), 1.06 (s, 3H), 0.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.77 (s), 137.43 (s), 132.41 (s), 128.70 (s), 128.30 (s), 86.34 (s), 66.79 (s), 60.43 (s), 60.32 (s), 59.62 (s), 53.72 (s), 40.37 (s), 33.88 (s), 33.70 (s), 20.25 (s), 17.08 (s).

NMR Spectra for the products and key intermediates (*E*)-*N*,4-dimethyl-*N*-(3-oxo-3-phenylprop-1-en-1-yl)benzenesulfonamide (3a)

(E)-N,4-dimethyl-N-(3-oxo-3-(p-tolyl)prop-1-en-1-yl)benzenesulfonamide (3b)

(E)-N,4-dimethyl-N-(3-oxo-3-(m-tolyl)prop-1-en-1-yl)benzenesulfonamide (3c)

(E) - N - (3 - (4 - ethylphenyl) - 3 - oxoprop - 1 - en - 1 - yl) - N, 4 - dimethylbenzen esulfonamide (3d)

-----106.3138

-127 -128 -129 -130 -131 -132 -133 -134 -135 -136 -137 -138 -139 -140 -141 -142 -143 -144 f1 (ppm)

(E) - N - (3 - (3, 4 - dichlorophenyl) - 3 - oxoprop - 1 - en - 1 - yl) - N, 4 - dimethyl benzenesulfonamide (3l)

-----102.6439

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) (E) - N - methyl- N - (3 - oxo- 3 - phenylprop- 1 - en- 1 - yl) - 2 - (trifluoromethoxy) benzenesulfonamide (4f)

(E) - 4 - methoxy - N - methyl - N - (3 - oxo - 3 - phenyl prop - 1 - en - 1 - yl) benzenesul fonamide (4g)

S43

(E)-N, 2, 4, 6-tetramethyl-N-(3-oxo-3-phenylprop-1-en-1-yl) benzenesul fonamide (4m)

(E)-N-butyl-N-(3-oxo-3-phenylprop-1-en-1-yl)benzenesulfonamide (4n)

(E)-3-(1,1-dioxido-1,2-thiazinan-2-yl)-1-phenylprop-2-en-1-one (4q)

2-((4-methoxy-2,2,6,6-tetramethylpiperidin-1-yl)oxy)-1-phenylpropan-1-one

N-(2-((4-methoxy-2,2,6,6-tetramethylpiperidin-1-yl)oxy)-3-oxo-3-phenylpropyl)-N,4-dimethylbenzenesulfonamide

Single-crystal X-ray analysis

Reference

1. X. Jie, Y. Shang, X. Zhang and W. Su, J. Am. Chem. Soc., 2016, 138, 5623-5633