Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

2D amphiphilic organoplatinum(II) metallacycles: syntheses, self-assembly in water and their potential application in photodynamic therapy

Yong Yao,^{1,‡,*} Ruibo Zhao^{2,‡}, Yujun Shi,¹ Yan Cai,¹ Jiao Chen,¹ Siyu Sun,¹ Wei Zhang,^{3,*} and Ruikang Tang^{2,*}

¹College of Chemistry and Chemical Engineer, Nantong University, Nantong, Jiangsu, 226019, P.R. China.

² Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310000, P.R. China.

³ School of Pharmacy, Nantong University, Nantong, Jiangsu, 226019, P.R. China.

[‡]These authors contributed equally to this work.

Email address: yaoyong1986@ntu.edu.cn; rtang@zju.edu.cn; zhangw@ntu.edu.cn

1. Materials/General Methods/Instrumentation		S2
2. Synthetic Protocols		S2
2.1	Synthesis of metallacycle I	S2
2.2	Synthesis of metallacycle II	S 6
2.3	Synthesis of metallacycle III	S10
2.4	Synthesis of metallacycle IV	S15
3. Characterization of Metallosupramolecules		S17
3.1	Critical aggregate concentration (CAC) values of metallacycles I, II, III, and IV in water	S17
3.2	DLS studies of metallacycles I, II, III, and IV in water	S18
4. Flow cytometry study		S18
5. Dark cytotoxicity		S19
6. References		S19

Table of Contents (19 Pages)

1. Materials/General Methods/Instrumentation

All reagents were commercially available and used as supplied without further purification. Deuterated solvents were purchased from Cambridge Isotope Laboratory (Andover, MA). Ligand D (S1) was prepared according to the published procedures. NMR spectra were recorded on a Varian Unity 400 MHz spectrometer. ¹H and ¹³C NMR chemical shifts are reported relative to residual solvent signals, and ³¹P{¹H} NMR chemical shifts are referenced to an external unlocked sample of 85% H₃PO₄ (δ 0.0). Dynamic light scattering (DLS) was carried out on a Malvern Nanosizer S instrument at room temperature. TEM images were obtained using a Philips TECNAI-12 instrument with an accelerating voltage of 120 kV. SEM images were applied to investigate the morphologies, which was carried out with a Hitachi S-4800 field emission scanning electron microscope. Mass spectra were recorded on a MassLynx operating system. The melting points were collected on a SHPSIC WRS-2 automatic melting point apparatus.

2. Synthetic Protocols

- 2.1 Synthesis of metallacycle I
- 2.1.1 Synthesis of ligand D^{S1}

Ligand **D** was synthesized according to a modified procedure^{S1}. Pyrrole (7.0 mL, 100 mmol), benzaldehyde (5.0 mL, 50 mmol), and 4-pyridinecarboxaldehyde (5.0 mL, 50 mmol) were refluxed in 250 mL of 99% propionic acid for 1 h. The reaction mixture was then cooled and allowed to stand overnight. Filtration and methanol washing afforded 4.15 g (26% yield) of a purple crystalline product. The product was analyzed by silica gel thin layer chromatography and found to be a mixture of the six possible porphyrin isomers, ligand **D** was the fourth one and has a 8% yield. The ¹H NMR spectrum of **D** is shown in Figure S1. ¹H NMR (CDCl₃, room temperature, 400 MHz) δ (ppm): 9.04 (4 H, d, 2,6-pyridyl), 8.91 (8 H, m, pyrrole β), 8.21 (8 H, m. *o*-phenyl. and 3,5-pyridyl), 7.78 (6 H, m, *m*- and *p*-phenyl).

Fig. S1. ¹H NMR spectrum (CDCl₃, room temperature, 400 MHz) of ligand **D**.

In a 2:2:4 molar ratio, bipyridylporphyrin **D** (1.23 mg, 2.00 μ mol), water soluble carboxylate ligand **E** (1.80 mg, 2.00 μ mol), and 90°C Pt (II) acceptor **C** (2.938 mg, 4.00 μ mol) were placed in a 2 mL vial, followed by addition of H₂O (0.2 mL) and acetone (0.8 mL). After stirring overnight at 60°C, all solvent was removed by N₂ flow and the solid was dried under vacuum. Acetone (1.0 mL) was then added into the vial, and the solution was stirred for 5 h at room temperature. After storage in a refrigerator for 1 h, the mixture was filtered to remove insoluble materials. The resulting amphiphilic metallacycle **I** was precipitated with diethyl ether, isolated, and dried under reduced pressure (4.48 mg, yield:87%) and then re-dissolved in acetone-*d*₆ for characterization. The ¹H NMR spectrum of metallacycle **I** is shown in Figure S2. ¹H NMR (acetone-*d*₆, room temperature, 400 MHz) δ (ppm): 9.43 (s, 8H),

9.17 (s, 4H), 9.02 (s, 4H), 8.91 (s, 4H), 8.54 (s, 4H), 8.45 (d, J = 4 Hz, 8H), 8.26 (d, J = 4 Hz, 8H), 7.88 (m, 20H), 7.68 (s, 6H), 4.05 (m, 4H), 3.63–3.24 (m, 116H), 1.55–1.11 (m, 120H). The ³¹P {¹H} NMR spectrum of metallacycle **I** is shown in Figure S3. ³¹P {¹H} NMR (acetone, room temperature, 121.4 MHz) δ (ppm): 0.71 ppm (${}^{2}J_{p-p} = 21.8$ Hz, ¹⁹⁵Pt satellites, ${}^{1}J_{Pt-P} = 3374.9$ Hz), -5.20 (${}^{2}J_{p-p} = 21.8$ Hz, ¹⁹⁵Pt satellites, ${}^{1}J_{Pt-P} = 3251.1$ Hz). ESI-MS is shown in Figure S4: m/z 1604.33 [M – 3OTf]³⁺, 1618.62 [M + 2H₂O – 3OTf]³⁺, 1633.64 [M + H₂O + CH₃COCH₃ – 3OTf]³⁺, 1662.62 [M + Na – 2OTf]³⁺, 1676.23 [M + K + H₂O – 2OTf]³⁺, 1719.87 [M + 2Na – OTf]³⁺, 1777.89 [M + 3Na]³⁺, 1820.05 [M + H₂O + CH₃COCH₃ + 3K]³⁺.

Fig. S2. ¹H NMR spectrum (acetone- d_6 , room temperature, 400 MHz) of metallacycle I.

Fig. S3. ³¹P NMR spectrum (acetone, room temperature, 121.4 MHz) of metallacycle I.

Fig. S4. Experimental (black) and calculated (red) electrospray ionization mass spectrum of metallacycle I.

In a 2:2:4 molar ratio, bipyridylporphyrin **D** (1.23 mg, 2.00 µmol), water soluble carboxylate ligand **F** (1.87 mg, 2.00 µmol), and 90°C Pt (II) acceptor **C** (2.90 mg, 4.00 µmol) were placed in a 2 mL vial, followed by addition of H₂O (0.2 mL) and acetone (0.8 mL). After stirring overnight at 60°C, all solvent was removed by N₂ flow and the solid was dried under vacuum. Acetone (1.0 mL) was then added into the vial, and the solution was stirred for 5 h at room temperature. After storage in a refrigerator for 1 h, the mixture was filtered to remove insoluble materials. The resulting amphiphilic metallacycle **II** was precipitated with diethyl ether, isolated, and dried under reduced pressure (4.56 mg, yield: 87%) and then re-dissolved in acetone-*d*₆ for characterization. The ¹H NMR spectrum of metallacycle **II** is shown in Figure S5. ¹H NMR (acetone-*d*₆, room temperature, 400 MHz) δ (ppm): 9.31 (s, 8H), 9.21(s, 4H), 9.06 (s, 4H), 8.91 (s, 4H), 8.47 (s, 4H), 8.43 (s, 8H), 8.29 (s, 8H), 7.89 (m, 12H), 7.67 (s, 6H), 6.44 (s, 4H), 5.03 (s, 4H), 3.58–3.31 (m, 114H), 1.57–1.11 (m, 120H). The ³¹P {¹H} NMR spectrum of metallacycle **II** is shown in Figure S6. ³¹P {¹H} NMR (acetone, room temperature, 121.4 MHz) δ (ppm): 0.77 ppm (²*J*_{p-p} = 20.6 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3425.9 Hz), -5.77 (²*J*_{p-p} = 20.6 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3425.9 Hz). ESI-MS is shown in Figure S7: *m*/z 1628.66 [M – 30Tf]³⁺, 1685.93 [M + Na – 20Tf]³⁺, 1742.50 [M + 2Na – OTf]³⁺, 1800.08 [M + 3Na]³⁺, 2514.59 [M – 20Tf]²⁺.

Fig. S5. ¹H NMR spectrum (acetone- d_6 , room temperature, 400 MHz) of metallacycle II.

Fig. S6. ³¹P NMR spectrum (acetone, room temperature, 121.4 MHz) of metallacycle II.

Fig. S7. Experimental (black) and calculated (red) electrospray ionization mass spectrum of metallacycle II.

2.3. Synthesis of metallacycle III

2.3.1 Synthesis of ligand A

In a 100 mL round-bottom Schlenk flask, compound **A'** (1.48 g, 2.00 mmol), Pyridine-4-boronic acid (0.600 g, 5.00 mmol), tetrakis(triphenylphosphine)palladium (116 mg, 0.100 mmol), and CTAB (25.0 mg) were added. Toluene (40 mL) and K₂CO₃ aqueous solution (20 mL, 3.00mmol) were added to the flask *via* a syringe under N₂. The mixture was stirred at room temperature for 24h. After removal of the solvent by reduced pressure distillation, the residue was purified by flash column chromatography (CH₂Cl₂/MeOH, 100:1 *v/v*) to afford **A** as an orange solid (1.37 g, 93%). The ¹H NMR spectrum of **A** is shown in Figure S8. ¹H NMR (CDCl₃, room temperature, 400 MHz) δ (ppm): 8.71 (d, *J* = 4 Hz, 4H), 8.13 (s, 2H), 7.94 (s, 2H), 7.84–7.74 (m, 8H), 7.55 (d, *J* = 4 Hz, 4H). 4.16 (t, *J* = 6 Hz), 1.88 (m, 4H), 1.52–1.28 (m, 24 H), 0.86 (t, *J* = 8 Hz, 6H). The ¹³C NMR spectrum of **A** is shown in Figure S9. ¹³C NMR (CDCl₃, room temperature, 100 MHz) δ (ppm): 155.13, 149.04, 148.64, 141.16, 139.95, 131.77, 127.88, 125.42, 121.40, 120.79, 119.82, 119.52, 117.73, 70.37, 31.73, 29.15, 28.80, 26.58, 23.16, and 14.00. LRESIMS is shown in Figure S10: *m/z* 765.8 [M + Na]⁺, 781.4 [M + K]⁺.

Fig. S8. ¹H NMR spectrum (CDCl₃, room temperature, 400 MHz) of ligand A.

Fig. S9. ¹³C NMR spectrum (CDCl₃, room temperature, 75 MHz) of ligand A.

Figure S10. Electrospray ionization mass spectrum of ligand A.

2.3.2 Synthesis of metallacycle III

In a 2:2:4 molar ratio, ligand **A** (1.49 mg, 2.00 µmol), water soluble carboxylate ligand **E** (1.80 mg, 2.00 µmol), and 90°C Pt (II) acceptor **C** (2.90 mg, 4.00 µmol) were placed in a 2 mL vial, followed by addition of H₂O (0.2 mL) and acetone (0.8 mL). After stirring overnight at 60°C, all solvent was removed by N₂ flow and the solid was dried under vacuum. Acetone (1.0 mL) was then added into the vial, and the solution was stirred for 5 h at room temperature. After storage in a refrigerator for 1 h, the mixture was filtered to remove insoluble materials. The resulting amphiphilic metallacycle **II** was precipitated with diethyl ether, isolated, and dried under reduced pressure (5.02 mg, yield: 93%) and then re-dissolved in acetone-*d*₆ for characterization. The ¹H NMR spectrum of metallacycle **III** is shown in Figure S11. ¹H NMR (acetone-*d*₆, room temperature, 400 MHz) δ (ppm): 9.05 (s, 8H), 8.06(s, 8H), 7.97 (s, 8H), 7.85 (s, 8H), 7.44 (s, 8H), 4.14–3.39 (m, 130H), 1.41–1.01 (m, 150H). The ³¹P {¹H} NMR spectrum of metallacycle **III** is shown in Figure S12. ³¹P {¹H} NMR (acetone, room temperature, 121.4 MHz) δ (ppm): 1.16 ppm (²*J*_{P-P} = 21.8 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3365.2 Hz), -6.30 (²*J*_{P-P} = 21.8 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3165.2 Hz), -6.30 (²*J*_{P-P} = 21.8 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3365.2 Hz), -6.30 (²*J*_{P-P} = 21.8 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3365.2 Hz), -6.30 (²*J*_{P-P} = 21.8 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3365.2 Hz), -6.30 (²*J*_{P-P} = 21.8 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3365.2 Hz), -6.30 (²*J*_{P-P} = 21.8 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3365.2 Hz), -6.30 (²*J*_{P-P} = 21.8 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3365.2 Hz), -6.30 (²*J*_{P-P} = 21.8 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3165.2 Hz), -6.30 (²*J*_{P-P} = 21.8 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3165.2 Hz), -6.30 (²*J*_{P-P} = 21.8 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3165.2 Hz), -6.30 (²*J*_{P-P} = 21.8 Hz, ¹⁹⁵

Fig. S11. ¹H NMR spectrum (acetone-d₆, room temperature, 400 MHz) of metallacycle III.

Figure S12. ³¹P NMR spectrum (acetone, room temperature, 121.4 MHz) of metallacycle III.

Figure S13. Experimental (black) and calculated (red) electrospray ionization mass spectrum of metallacycle III.

2.4 Synthesis of metallacycle IV

In a 2:2:4 molar ratio, bipyridylporphyrin **D** (1.23 mg, 2.00 µmol), water soluble carboxylate ligand **B** (0.42 mg, 2.00 µmol), and 90°C Pt (II) acceptor **C** (2.90 mg, 4.00 µmol) were placed in a 2 mL vial, followed by addition of H₂O (0.2 mL) and acetone (0.8 mL). After stirring overnight at 60°C, all solvent was removed by N₂ flow and the solid was dried under vacuum. Acetone (1.0 mL) was then added into the vial, and the solution was stirred for 5 h at room temperature. After storage in a refrigerator for 1 h, the mixture was filtered to remove insoluble materials. The resulting amphiphilic metallacycle **IV** was precipitated with diethyl ether, isolated, and dried under reduced pressure (3.12 mg, yield: 83%) and then re-dissolved in acetone-*d*₆ for characterization. The ³¹P {¹H} NMR spectrum of metallacycle **IV** is shown in Figure S14. ³¹P {¹H} NMR (acetone, room temperature, 121.4 MHz) δ (ppm): 0.07 ppm (²*J*_{p-p} = 20.6 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3408.9 Hz), -5.01 (²*J*_{p-p} = 20.6 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3408.9 Hz), -5.01 (²*J*_{p-p} = 20.6 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3408.9 Hz), -5.01 (²*J*_{p-p} = 20.6 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3408.9 Hz), -5.01 (²*J*_{p-p} = 20.6 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3408.9 Hz), -5.01 (²*J*_{p-p} = 20.6 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3408.9 Hz), -5.01 (²*J*_{p-p} = 20.6 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3408.9 Hz), -5.01 (²*J*_{p-p} = 20.6 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3408.9 Hz), -5.01 (²*J*_{p-p} = 20.6 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3408.9 Hz), -5.01 (²*J*_{p-p} = 20.6 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3299.6 Hz). ESI-MS is shown in Figure S15: *m*/z 1792.46 [M – 20Tf]²⁺, 1878.46 [M + Na – OTf]²⁺.

Fig. S14. ³¹P NMR spectrum (acetone, room temperature, 121.4 MHz) of metallacycle IV.

Fig. S15. Experimental (black) and calculated (red) electrospray ionization mass spectrum of metallacycle IV.

3. Characterization of Metallosupramolecules

3.1 Critical aggregate concentration (CAC) values of metallacycles I, II, III, and IV in water

When the metallacycles were dissolved in water, the water surface tension (γ) as a function of the concentration of the metallacycles (C) were measured to determine its critical aggregate concentration (CMC) in water.^{S2, S3, S4} There were two linear segments in the γ versus C curve and a sudden reduction in the slope, implying that the CAC values.

Fig. S16. Surface tension (γ) of water as a function of the concentration of metallacycles I (a), II (b), and III (c). We could not get the CAC value of metallacycle IV due to its totally hydrophobic property.

3.2 DLS studies of metallacycles I, II, III, and IV in water

Fig. S17. DLS studies of metallacycles I (a), II (b), III (c), and IV (d) self-assembly in water at 1.00×10^{-5} M. Metallacycle IV was ultrasound for 10 min.

4. Flow cytometry study

Fig. S18 Flow cytometry of metallacycles I (1.00×10^{-5} M), II (1.00×10^{-5} M), III (1.00×10^{-5} M), and IV (1.00×10^{-5} M, ultrasound first, not homogeneous solution) were incubated with A549 cells (purchased from American Type Culture Collection -USA) for 4 h and 24 h, respectively.

5. Dark cytotoxicity

Fig. S19 Viability of A549 cells (purchased from American Type Culture Collection -USA) measured by the MTT assay after treating with metallacycles I, II, III, and IV (ultrasound first), without light irradiation.

Fig. S20 TEM images of metallacycles I (a), II (b), III (c), and IV (d) self-assembly in water at 1.00 10⁻⁵ M. Metallacycle IV was ultrasound for 10 min before preparing sample.

Fig. S21 DLS studies of metallacycles I (a), II (b), III (c), and IV (d) self-assembly in PBS aqueous solution at 1.00×10^{-5} M. Metallacycle IV was ultrasound for 10 min.

6. References

- S1. J. Fan, J. A. Whiteford, B. Olenyuk, M. D. Levin, P. J. Stang and E. B. Fleischer, Self-assembly of porphyrin arrays via coordination to transition metal bisphosphine complexes and the unique spectral properties of the product metallacyclic ensembles. J. Am. Chem. Soc. 1999, 121, 2741–2752.
- Y. Yao, et al. An amphiphilic pillar[5]arene: synthesis, controllable self-assembly in water, and application in calcein release and TNT adsorption. J. Am. Chem. Soc. 2012, 134, 15712–15715.
- C. Wang, Z. Wang and X. Zhang, Amphiphilic building blocks for self-assembly: from amphiphilies to supra-amphiphilies. Acc. Chem. Res. 2012, 45, 608–618.
- S4. Y. Sun, et al. Self-assembly and metallization of resorcinarene microtubes in water. *Adv. Funct. Mater.* 2008, *18*, 3981–3990.