Rapid access to RNA resonances by proton-detected solidstate NMR at >100 kHz MAS

Alexander Marchanka, Jan Stanek, Guido Pintacuda, Teresa Carlomagno

Electronic Supplementary information

Contents

- 1. Sample preparation
- 2. NMR spectroscopy
- 3. Aggregated ¹H, ¹³C and ¹⁵N chemical shifts
- 4. Base carbon refocused transverse relaxation
- 5. Proton and carbon rotating-frame relaxation measurements
- 6. 4D (H)NCCH experiment
- 7. References

1. Sample preparation

Deuterated L7Ae protein was expressed in *Escherichia coli* (deuterated M9 medium) and purified over a Ni-Nta column followed by an anion exchange column, as reported elsewhere.¹⁻³

Uniformly ¹H,¹³C,¹⁵N labeled 26mer Box C/D RNA and 26mer Box C/D RNA with ²H,¹²C,¹⁴N-C,U,A and ¹H,¹³C,¹⁵N-G were prepared by *in vitro* transcription with T7 polymerase produced in house. All NTPs were purchased from Silantes.

The L7Ae–Box C/D RNA complex was assembled from protein and RNA in a 1:1 ratio and purified by size exclusion chromatography. Afterwards, the protein-RNA complex was concentrated to 20 mg/ml in buffer with 25 mM HEPES and 120 mM sodium chloride at pH 7.5 in 100% H₂O or 90% D₂O and subsequently mixed with equal amount of precipitation solution (100 mM sodium acetate, 30% PEG 400 in 100 mM HEPES, pH 7.5 in 100% H₂O or 90% D₂O), as reported previously.^{3,4}

The sample was micro-crystallized by slow precipitation using a SpeedVac concentrator at room temperature for approximately 2 hours. The complex precipitated at half volume as expected.

The precipitate was packed by ultracentrifugation at 120000 × g for 1 h at 4 °C directly into the 0.7 mm NMR rotor using a sample packing tool from Giotto Biotech.^{5,6} In total, 0.5 mg of protein-RNA complex were packed into the 0.7 mm rotor, which corresponds to about 200 μ g of uniformly ¹³C,¹⁵N labeled RNA.

2. NMR spectroscopy

Samples and equipment. All presented spectra were acquired for samples originally dissolved in a 9:1 D₂O:H₂O solution, except those shown in Fig. S2 and S1c,d,e,f. The experiments were performed on a spectrometer at $\omega_{0H}/2\pi = 1$ GHz (static field of $B_0 = 23.5$ T) equipped with a commercial Bruker 0.7-mm HCN probe, with the exception of ¹³C-¹H CP-HSQC spectra shown in Fig. 1b, and ¹H and ¹³C T₂' and T₁ ρ measurements summarized in Fig. 1c and Fig. S2, which were recorded at $\omega_{0H}/2\pi = 800$ MHz (a static field of $B_0 = 18.8$ T) equipped with a commercial Bruker 0.7-mm HCND probe. 4D HCCH-TOCSY was recorded at both B_0 fields, but with different acquisition parameters as detailed in Table S1.

Magic-angle spinning. Rotors were spun at the magic-angle at the following frequency: 111 kHz for CP-HSQC spectra shown in Fig. S1c,d and both ribose- and base-tuned (H)NCH spectra shown in Fig. 3; 108 and 107 kHz for the HCCH-TOCSY spectra acquired on the 1 GHz and 800 MHz spectrometers, respectively; 100 kHz for the (H)NCCH-TOCSY (in Fig. S3) and CP-HSQC spectra shown in Fig. S1a,b,e,f; 109, 60, 40 and 20 kHz for the CP-HSQC spectra shown in Fig. 1b; from 40 to 109 every 10 kHz for the T₁ ρ measurements summarized in Fig. S2. Magic-angle was carefully adjusted before every measurement by maximizing the signal in the ¹³C-¹H CP-HSQC experiment followed by a constant-time ¹H echo period.

Temperature control. The sample temperature was maintained at approximately 280 K using a Bruker cooling unit (BCUII) with a sufficient flow of dry N_2 gas. The sensor indicated the temperature after the bearing, drive and cooling gases are mixed. The following values were requested, depending on a MAS frequency and an amount of associated frictional heating: 255, 260, 265, 270, 275 and 280 for MAS rate of 111 to 107, 100, 90, 80, 70, and 60 to 20 kHz, respectively.

Shimming. The field homogeneity was controlled with a sample of adamantane using a one-pulse ¹³C spectrum with low-power swept-TPPM ¹H decoupling. Full-width at half-height below 5 Hz was always observed after shim adjustment for the downfield ¹³C line.

Field stability. The experiments were acquired without the field lock except those performed on the 800 MHz spectrometer with a HCND 4-channel 0.7-mm probe (on a sample precipitated from a 9:1 $D_2O:H_2O$ solution). Field stability was monitored using 1D ¹H spectra before and after the experiments, and, whenever necessary, the uniformly sampled 3D spectra were corrected for magnet drift using in-house written nmrPipe⁷ scripts. 4D NUS data were only corrected in the directly detected dimension.

Spin decoupling. WALTZ-16⁸ decoupling with $\gamma B_1/2\pi = 10$ kHz was used for ¹Hdecoupling during indirect heteronuclear evolution periods. WALTZ-16 was also used for ¹⁵N decoupling during evolution of ¹³C spins, and the B_1 strength was 10 kHz except for (H)CH and (H)NCH experiment for bases, where $\gamma B_1/2\pi = 20$ kHz was necessary to cover the chemical shift range of N1, N3, N7 and N9 spins coupled to C2, C6 and C8 spins. DIPSI-3⁹ decoupling with $\gamma B_1/2\pi = 20$ kHz was used for ¹³C decoupling during either ¹H or ¹⁵N evolution periods, including acquisition of ¹H signal. In the particular case of spectra acquired at MAS frequency of 20 kHz, SPINAL-64¹⁰ with RF amplitude of 100 kHz and pulse length of 4.8µs was applied for ¹H decoupling during ¹³C transverse magnetization periods.

Solvent suppression. The MISSISSIPPI¹¹ scheme was employed to suppress H₂O or HDO residual signal during z-storage of ¹³C magnetization. 50 ms (or 200 ms for the sample in 100% H₂O) of RF irradiation with $\gamma B_1/2\pi$ of approximately 45-50 kHz was used.

TOCSY mixing. WALTZ-16⁸ scheme was employed to isotropically mix ¹³C zmagnetization in the ribose spin system. The duration of mixing was set to 25 ms to maximize the signal transferred from ¹³C5' to ¹³C1' as monitored on a series of 2D (H)C(C)H-TOCSY experiments. RF strength was set to $\gamma B_1/2\pi = 25$ kHz. A z-filter (a delay) of 5 ms before and after WALTZ-16 mixing was applied. Inter-scan delay. A delay of 0.9-1.0 s was applied for optimal recovery of ¹H z-magnetization.

High-power RF pulses. The typical durations (and RF field strengths) of "hard" pulses were 2.5 μ s (100 kHz), 5.5 μ s (45.5 kHz) and 3.0 μ s (83.3 kHz) for ¹H, ¹⁵N and ¹³C nuclei, respectively.

Cross-polarization (CP) conditions. The shapes, offsets, durations and powers employed for cross-polarization transfers are summarized in Table S2.

Parameters and issues specific to experiments are discussed in the following:

¹³C-¹*H* CP-*H*SQC (Fig. 2). The experiment follows, with little modifications, the scheme proposed by Rienstra and co-workers^{12,13}. In particular, protonated base ¹³C spins (C2, C6 and C8) were recorded separately from ribose ¹³C spins (C1'-C5') to avoid off-resonance effects and line shape distortions. For this reason, selective ¹³C refocusing pulses from BURP family¹⁴ were applied to eliminate signals outside of the region of interest. A pulse of 350/250 µs and max. *B*₁ amplitude of 17.9/25.0 kHz was used for the selection of base/ribose resonances, respectively. The ¹H, ¹⁵N and ¹³C carrier frequency was set to 4.8, 160 and either 80 (for ribose ¹³C) or 145 ppm (for base ¹³C), respectively. Quadrature-detection in $ω_1$ (¹³C) was accomplished using the States-TPPI procedure¹⁵ by simultaneous incrementation of *t*₁ and the phase of ¹³C RF irradiation during the ¹H→¹³C CP (in steps of $\pi/2$). The following phase cycle was used: $φ_1 = y, -y$; $φ_2 = 2(x), 2(y), 2(-x), 2(-y); φ_3 = 8(x), 8(-x); φ_{REC} = 2(y, -y, -y, y), 2(-y, y, y, -y);$ where $φ_1$ is the phase of ¹H RF during the ¹H→¹³C CP, and $φ_{REC}$ denotes the receiver phase.

^{*i*}*H* bulk T_2 ' measurement. The results shown in Fig. 1c were obtained with a slightly modified ribose- or base-selective ¹³C-¹H CP-HSQC experiment, where a timeincremented ¹H echo is performed directly before the acquisition of ¹H signal. The signal was indirectly sampled to at least $2T_2$ '(¹H) to ensure fidelity of the exponential fit (minor deviations are observed as the experiment yields intensity-averaged bulk T_2 ').

¹³C bulk T_2 ' measurement (Fig. S2). The experiment also derives from base-selective ¹³C-¹H CP-HSQC, in which ¹³C chemical evolution in t_1 is replaced by a timeincremented ¹³C echo with a selective ¹³C refocusing pulse. The measurements were performed for ¹³C6/8 only, since, in contrast to ribose carbon spins, C8 nuclei do not show significant homonuclear *J*-couplings, and C6 can be easily decoupled from C5 spins with a selective ReBURP pulse (of 769 µs duration and max. RF field of 8.15 kHz).

¹*H* bulk $T_{1\rho}$ measurement (Fig. S3). The experiment is derived from ¹³C-¹H CP-HSQC by the insertion of a ¹H spin-lock rectangular pulse of adjustable duration and RF field strength directly after the first ¹H pulse. (Note that for more precise site-specific studies, this spin-lock pulse should rather be placed directly before acquisition.)

¹³*C* bulk $T_{1\rho}$ measurement (Fig. S3). Similarly, a ¹³C-¹H CP-HSQC pulse scheme is used, with an additional ¹³C spin-lock rectangular pulse of adjustable duration and RF field strength. This pulse is performed just after the ¹H \rightarrow ¹³C CP.

(*H*)*NCH-ribose tuned* (Fig. 3). First, ¹⁵N spins are polarized from distant protons with a long-range CP, and their chemical shift is evolved (t_1). Subsequently, magnetization is transferred to ¹³C1' with a selective CP to avoid the concurrent pathway ¹⁵N1 \rightarrow ¹³C_{base}.

After the evolution of ${}^{13}C1'$ (t₂), magnetization is flipped-back for a z-storage, followed by a solvent suppression period. Finally, the ¹³C $\pi/2$ pulse re-excites ¹³C spins, which are then transferred with a short CP to directly bonded ¹H for detection. Despite the relatively small chemical shift difference between C1' and C6/8 spins (40-60 ppm corresponding to 10-15 kHz on a 1 GHz spectrometer) compared to the ¹³C RF field strength required to trigger ${}^{15}N \rightarrow {}^{13}C$ CP at ultrafast MAS, the selectivity towards C1' can be obtained with either on-resonance CP (i.e. at the offset of C1', or below) and a decreasing ¹⁵N RF strength, or with an off-resonance CP (i.e. at the offset of C6/8 or above) and a increasing ¹⁵N RF strength during CP. In both cases, the effective nutation frequency for ¹³C1, $\omega_{eff} = \sqrt{\omega_1^2 + (\Delta\Omega/(2\pi))^2}$ matches the DQ CP condition ($\omega_{eff}^{C} + \omega^{N} = \omega_{R}$) before ¹³C6/8 spins. ¹H, ¹⁵N and ¹³C carrier signal was set to 4.8, 160 and 89 ppm, respectively. Quadrature-detection in ω_1 (¹⁵N) and ω_2 (¹³C) was accomplished using the States-TPPI protocol by simultaneous incrementation of t_1 and the phase of ¹⁵N RF irradiation during the ¹H \rightarrow ¹⁵N CP (in steps of $\pi/2$), and concurrent incrementation of t_2 and the decrementation (in steps of $-\pi/2$) of the phase of the ¹³C $\pi/2$ pulse after t_2 . The following phase cycle was used: $\phi_1 = y_1 - y_2$; $\phi_2 = 2(x)_1 + 2(-x)_2$; $\phi_3 = 2(x)_1 + 2(-x)_2$; $\phi_4 = 2(x)_1 + 2(-x)_2$; $\phi_5 = 2(-x)_2$; ϕ 4(y), 4(-y); $\varphi_{\text{REC}} = y$, -y, -y, y, -y, y, y, -y; where φ_1 is the phase of ¹⁵N RF during the ¹H \rightarrow ¹⁵N CP, φ_2 is the phase of ¹³C RF during ¹⁵N \rightarrow ¹³C CP, φ_3 is the phase of the first ¹H $\pi/2$ pulse, and φ_{RFC} is the receiver phase.

(*H*)*NCH-base tuned* (Fig. 3). The pulse sequence is identical to the (H)NCH experiment for ribose spins, and the selectivity is obtained with the ¹³C carrier shifted to approximately 144 ppm. Either CP on-resonance with ¹³C6/8 and decreasing ¹⁵N RF field strength, or an off-resonance CP (e.g. at the ¹³C effective offset of ¹³C1' or below) and an increasing ¹⁵N RF strength can be used for the ¹⁵N \rightarrow ¹³C CP. Note that the leak of magnetization to C2/C4 carbons (for pyrimidine/purine residues) cannot be prevented. Additionally, the initial polarization is smaller for purine base ¹⁵N9 spins, since H8 protons polarize both nearby N7 and N9 spins. One observes additional pathways from N1 and N3 to C2-H2 in Adenine bases. To avoid confusion between N7 and N9 one has to ensure sufficient spectral window in ω_1 . In our setup, we decided for a reasonable window of 100 ppm ¹⁵N which folds N1, N3 and N7 to an upfield edge of ω_1 , so that they appear at lower frequencies than N1 and N9.

HCCH-TOCSY (Fig. 3). The pulse scheme has been derived from 3D (H)CCH- and H(C)CH-TOCSY experiments described previously for proteins.¹⁶ To minimize the spectral windows in the indirect dimensions, the ¹H, ¹⁵N and ¹³C carrier signal was set to 5.6, 160 and 80 ppm, respectively, with only minor adverse effects on the solvent suppression. No additional means were applied to obtain selectivity for ribose ¹³C spins, therefore a low intensity signal of base ¹H6/8 spins can be observed in the respective region of the directly observed dimension. The following phase cycle was used: $\varphi_1 = x$, *x*; $\varphi_2 = 2(x)$, 2(-x); $\varphi_3 = 4(x)$, 4(-x); $\varphi_{REC} = x$, *-x*, *x*, *x*, *x*, *x*, *x*, *x*, *where* φ_1 is the phase of ¹³C RF during the ¹H \rightarrow ¹³C CP, φ_2 is the phase of ¹H RF during ¹H \rightarrow ¹³C CP. φ_3 is the phase of the ¹³C $\pi/2$ pulse before t_3 , and φ_{REC} is the receiver phase. Quadraturedetection in ω_1 (¹H), ω_2 (¹³C) and ω_3 (¹³C) was accomplished using the States-TPPI protocol by a simultaneous incrementation of either t_1 , t_2 or t_3 and either decrementation of the phase φ_2 , or incrementation of the phase φ_1 , or the phase φ_3 (in steps of $-\pi/2$ or $+\pi/2$), respectively. 3000 $t_1/t_2/t_3$ NUS points (1.7%) were randomly chosen out of the full 3D grid, using exponentially weighted distribution functions (with assumed T_2^* of 1.8 and 2.7 ms for ¹H and ¹³C, respectively) and otherwise default settings of the build-in TopSpin utility, originally provided by Orekhov and co-workers.¹⁷ The experiment was

performed also at the 800 MHz spectrometer, with truncated indirect evolution times to favor sensitivity over resolution. In this case, 4320 NUS points (26.3%) were randomly chosen using exponentially weighted distribution of points with the approximate T_2^* of 2.7 and 3.0 ms for ¹H and ¹³C dimensions, respectively.

(H)NCCH-TOCSY (Fig. S4). Magnetization is transferred from ¹H to ¹⁵N through a long CP step. After evolution of N1/N9 frequencies in t_1 , a specific CP brings the magnetization back to C1' spins, whose chemical shift is recorded in t_2 . The WALTZ-16 mixing spreads the magnetization to all ribose carbons, whose frequency is encoded in t_3 . Finally, a short CP transfer brings the magnetization back to ¹H for detection. A short evolution time on ^{15}N (t_{1max} = 3.0 ms) was sufficient to separate purine from pyrimidine resonances and at the same time optimize sensitivity. A selective ¹³C refocussing pulse (ReBURP) is applied after t_2 to select only ¹³C1' spins and suppress the residual signal of ¹³C8/6 at this stage. The duration (369.7 μ s) and maximum RF field strength (14.52 kHz) of this pulse are adjusted to yield approximately 50 ppm ¹³C bandwidth. ¹H, ¹⁵N and ¹³C carrier signals were set to 4.8, 160 and 80 ppm, respectively. The selective $^{15}N \rightarrow ^{13}C$ CP is performed as described for the ribose-tuned (H)NCH experiment. The y, y, -y, y, y, -y; where φ_1 is the phase of ¹⁵N RF during the ¹H \rightarrow ¹⁵N CP, φ_2 is the phase of the ¹³C ReBURP pulse after t_2 , ϕ_3 is the phase of the first ¹H $\pi/2$ pulse, and ϕ_{REC} is the receiver phase. Quadrature-detection in ω_1 (¹⁵N), ω_2 (¹³C1') and ω_3 (¹³C1'-5') was accomplished using the States-TPPI protocol by a simultaneous incrementation of either t_1 , t_2 or t_3 and either incrementation of the phase φ_1 , or the phase of the "hard" ¹³C $\pi/2$ pulse before the TOCSY mixing, or by decrementation of the phase of the "hard" ¹³C $\pi/2$ pulse after t_3 (in steps of $+\pi/2$ or $-\pi/2$), respectively. 1400 $t_1/t_2/t_3$ NUS points (4.9%) were randomly chosen out of the full 3D grid, using exponentially weighted distribution functions (assuming T₂* of 3.2, 2.7 and 2.4 ms for ¹⁵N, ¹³C1' and ¹³C1'-5', respectively).

Data processing and analysis. ¹³C chemical shifts were referenced as described by Morcombe and Zilm,¹⁸ ¹⁵N and ¹H chemical shifts were referenced indirectly using chemical shift referencing ratios from.¹⁹ The spectra were processed with NMRPipe⁷ and visualized with CcpNmr Analysis.²⁰ NMRFAM-Sparky²¹ was used to elucidate the resonance limiting line widths, defined as full widths at half-height of a sufficiently sampled signal, with no window function applied in the processing. NUS data were converted using nmrPipe and processed with the cleaner4d program from the SSA package.²²

Spectrum ↓	Indirect evolution times, ms				Acq, ms		Spectral	widths,	m)	Scans per	NUS points	Exp. Time		
Dimension→		¹³ C	¹³ C	¹ H	¹⁵ N	¹ H	¹³ C	¹³ C	¹ H	¹⁵ N	¹ H acq	point		h
2D HSQC ribose-selective Fig. 2		8.4	-	-	_	10.0	15.1 (60)	_	_	-	100 (100)	48	_	3.8
2D HSQC	MAS rate:													
(800)	109 kHz	7.8				8.0	9.3				32.1	64		2.7
Fig. 1	60 kHz	7.8	-	-	-	8.0	9.3	-	-	-	32.1	64	-	2.7
	40 kHz	7.8				8.0	9.3				32.1	224		9.5
	20 kHz	6.0				8.0	20.1				64.1	256		50.0
2D HSQC base-selective		8.0	-	_	_	10.0	10.1	_	_	_	100	96	_	4.8
							(40)			4.1	(100)			
Fig. 3	se-lunea	5.0	- 4.9	-	6.7	(12)	-	-	(40)	(100)	32	-	12	
3D (H)NCH bas	e-tuned						5.5			10.1	100			
Fig. 3		4.9	-	4.9	-	6.7	(22)	_	_	(100)	(100)	16	-	26.5
4D HCCH-TOCSY (1000)		80			3.6		12.6	12.6	5.0		100	0	2000	60
Fig. 3		0.0	0.0		5.0	8.0	(50)	(50)	(5.0)		(100)		3000	
4D HCCH-TOCSY (800)		4.0	10		20		9.3	9.3	4.0		32.1	0	4220	00
Fig. 3		4.0	4.0	-	3.0	8.0	(46)	(46)	(4.0)	_	(40)	0	4320	90
4D (H)NCCH-TO	DCSY	5.0	5.0	30	_		7.5	12.6	_	4.1	100	32	1400	110
Fig. S4		0.0				2.0	(30)	(50)		(40)	(100)		1400	

Table S1. Acquisition parameters of the recorded spectra

Table S2. Summary of cross-polarization conditions

	Transfer Contact 1		Туре	Max (average)		RF pulse shape			
		time, ms		RF stren	igth, kHz				
2D HSQC ribose-selective	¹ H→ ¹³ C	0.45	ZQ(n=1)	127.9	25.0	Linear ramp up ±5%	Rectangle		
	¹³ C→ ¹ H	0.17	ZQ(n=1)	116.7	25.0	Linear ramp up ±5%	Rectangle		
2D HSQC base-selective	¹ H→ ¹³ C	0.45	ZQ(n=1)	127.9	25.0	Linear ramp up ±5%	Rectangle		
	¹³ C→ ¹ H	0.17	ZQ(n=1)	116.7	25.0	Linear ramp up ±5%	Rectangle		
3D (H)NCH ribose-tuned	¹ H→ ¹⁵ N	12.0	ZQ(n=1)	139.9	30.3	Linear ramp up ±5%	Rectangle		
	¹⁵ N→ ¹³ C	20.0	DQ(n=1)	40.4	70.0 Tangential down ±10% ^a		Rectangle Off-resonance -49 ppm (at 50 ppm ¹³ C)		
	¹³ C→ ¹ H	0.24	DQ(n=1)	DQ(n=1) 75.0 53.0 (38.4) Rect		Rectangle	Linear ramp down ±38%		
3D (H)NCH base-tuned	¹ H→ ¹⁵ N	13.0	ZQ(n=1)	139.9	30.3	Linear ramp up ±5%	Rectangle		
	¹⁵ N→ ¹³ C	14.0	DQ(n=1)	42.0	70.0	Tangential down ±10% ª	Rectangle On-resonance (at 144 ppm ¹³ C)		
	¹³ C→ ¹ H	0.24	DQ(n=1)	75.0	53.0 (38.4)	Rectangle	Linear ramp down ±38%		
4D HCCH-TOCSY (1000)	¹ H→ ¹³ C	0.20	DQ(n=1)	37.3 (24.2)	86.7	Linear ramp down ±54%	Rectangle		
	¹³ C→ ¹ H	0.17	DQ(n=1)	86.7	36.7 (23.9)	Rectangle	Linear ramp up ±54%		
4D HCCH-TOCSY (800)	¹ H→ ¹³ C	0.30	DQ(n=1)	44.9 (28.1)	84.1	Linear ramp down ±60%	Rectangle		

	¹³ C→ ¹ H	0.19	DQ(n=1)	84.1	40.2 (25.1)	Rectangle	Linear ramp up ±60%	
4D (H)NCCH-TOCSY	$^{1}\text{H}\rightarrow^{15}\text{N}$	13.0	ZQ(n=1)	122.7	28.1	Linear ramp up ±5%	Rectangle	
							Rectangle	
		12.0	DQ(n=1)			Tangential up	Off-resonance +60	
	¹⁵ N→ ¹³ C			43.0	65.0	±10% ª	ppm (at 130 ppm	
							¹³ C)	
					44.8		Linear ramp down	
	¹³ C→ ¹ H	0.24	DQ(n=1)	75.5	(32.5)	Rectangle	±38%	

^a Tangential amplitude modulation $S(x)=1 \pm 0.1 \tan[\pi \alpha (x - 0.5)] / \tan(0.5\pi \alpha)$, where $\alpha = 7/9$ (effectively, the tangent is truncated at 70 deg at the edges) and x varies from 0 to 1 throughout the CP. The ramp with increasing amplitude (with + in the formula) leads to off-resonance ¹⁵N→¹³C CP, while with the ramp "down" (with – in the formula) the on-resonance ¹⁵N→¹³C CP occurs first.

Table S3. Fourier	processing	parameters of	of the	recorded spectra
-------------------	------------	---------------	--------	------------------

Spectrum ↓	Digital resolution					Window function ^b						
	¹³ C	¹³ C	¹ H	¹⁵ N	¹ H acq	¹³ C	¹³ C	¹ H	¹⁵ N	¹ H acq		
Dimension→												
2D HSQC ribose-selective	1024	-	-	-	8192	QSINE3	-	-	_	QSINE3		
2D HSQC ribose-selective (800) at different MAS rates (Fig. 1)	512	-	-	-	4096	QSINE3	_	_	-	QSINE3		
2D HSQC base-selective	512	-	-	-	8192	QSINE3	-	-	-	QSINE3		
3D (H)NCH ribose-tuned	128	-	-	128	4096	QSINE2	_	_	GM -60Hz/0.2	QSINE3		
3D (H)NCH base-tuned	128	_	-	256	4096	QSINE2	_	_	GM -60Hz/0.2	QSINE3		
4D HCCH-TOCSY (1000) ^a	256	256	64	-	2048	QSINE3	QSINE3	QSINE3	-	QSINE3		
4D HCCH-TOCSY (800) ^a	256	256	64	-	2048	QSINE3	QSINE3	QSINE3	-	QSINE3		
4D (H)NCCH-TOCSY ^a	256	384	-	192	2048	NO °	_	NO °	NO °	QSINE3		

^a For the NUS experiments, the parameters refer to the Fourier processing after the reconstruction of missing signal points

^b The terms denote: QSINE*q* – squared shifted sine bell function: $w(t) = \sin [\pi (1 - 1 / q)(t / t_{max}) + \pi / q]^2$ (where q = 2 and 3 for QSINE2 and QSINE3, respectively). GM *a/b* – mixed Lorentian-Gaussian function $w(t) = \exp [(-\pi a) t + (\pi a / (2 b t_{max}) t^2)]$; here a = -60 Hz and b = 0.2.

^c Apodization function is not mandatory for the data sampled with exponentially weighted distribution of points

Table S4. Isotropic chemical shifts of the 26mer Box C/D RNA in the L7Ae-Box C/D RNA complex, as obtained in this study. Nucleotide spin systems are assigned in this study. The sequence specific assignment, shown here for clarity, is taken from ref $1c.^{a,b}$

	Isotropic chemical shifts, ppm												
	H1'	H2'	H3'	H4'	H5'/H5''	H6/H8	C1'	C2'	C3'	C4'	C5'	C6/C8	N1/N9
C2	-	-	-	-	-	7.9	-	-	-	-	-	140.7	151.8
U3	5.6	4.2	4.3	4.4	4.4/4.	7.4	94.9	75.6	71.7	83.1	63.9	140.2	145.2
G4	5.7	5.0	4.9	4.9	4.4/4.0	8.1	90.1	75.9	79.5	88.2	67.8	139.2	166.9
A5	5.7	4.5	4.9	4.9	4.4/4.2	7.7	88.2	78.4	79.8	83.5	70.3	139.9	167.2
G6	6.8	4.9	4.7	5.0	4.8/4.5	8.4	92.7	76.0	77.2	83.5	70.9	139.1	170.9
C7	6.0	4.5	4.6	4.5	4.7/4.2	8.4	93.8	75.3	72.1	81.9	64.3	142.6	152.4
U8	5.6	-	4.7	-	-	8.3	93.7	-	71.8	-	-	142.9	147.9
C9	5.7	-	-	-	-	7.4	93.7	-	-	-	-	140.2	152.0
G10	5.7	-	-	-	-	7.5	93.9	-	-	-	-	136.3	171.1
A*/G*c	5.4	4.2	4.5	4.3	4.3	-	93.3	75.6	72.2	81.9	64.1	-	170.6
G14	-	-	-	-	-	8.0	-	-	-	-	-	137.5	-
A15	6.0	4.5	4.7	4.6	4.6/3.9	7.9	92.7	75.6	72.2	81.6	64.2	139.5	171.7
G16	5.8	4.5	-	4.5	4.6/4.1	7.7	92.5	75.4	72.1	81.6	64.3	-	171.3
C17	5.6	4.6	4.5	4.5	4.5	7.4	93.5	75.6	71.7	81.5	64.4	139.4	150.9
A18	6.3	4.1	4.8	4.8	4.6/4.4	8.1	94.1	76.6	72.6	81.6	64.5	138.8	173.1
A19	4.7	4.8	4.6	3.4	4.4/3.9	7.9	89.8	72.2	78.5	85.1	67.3	146.0	164.9
U20	6.2	4.8	4.5	5.3	4.1/4.0	8.5	89.5	75.3	80.5	84.2	69.5	147.2	147.7
G21	6.1	5.3	5.0	5.2	4.5	8.4	87.5	77.5	80.0	87.4	68.2	139.2	168.6
A22	5.8	5.0	4.6	4.8	4.6/4.2	7.9	92.4	75.9	72.3	82.9	65.8	140.2	170.3
U23	4.9	4.4	4.5	4.4	4.7/4.1	7.6	93.0	74.6	72.2	82.4	63.0	140.5	144.9
G24	-	-	-	-	-	-	-	-	-	-	-	-	-

^a Assignments derived from only one spectrum are shown in italics.

^b Resonances assigned previously in ¹³C-detected experiments but not assigned in this work are not shown.^[2]

^c "A*/G*" denotes unresolved resonances belonging to nucleotides 11-13 in the loop and/or G14/G24

Fig. S1. 2D CP-HSQC ribose (a, c) and base (b, d) spectra of the L7Ae – Box C/D 26mer RNA complex consisting of uniformly 1 H, 13 C, 15 N labeled 26mer Box C/D RNA and 2 H, 12 C, 14 N L7Ae in 100% H₂O (a, b) or 90% D₂O (c, d). 2D CP-HSQC ribose (e) and base (f) spectrum of the L7Ae – Box C/D 26mer RNA complex consisting of 2 H, 12 C, 14 N-C,U,A and 1 H, 13 C, 15 N-G labeled 26mer Box C/D RNA and 2 H, 12 C, 14 N L7Ae in 20% D₂O.

4. Base carbon refocused transverse relaxation

Fig. S2. The bulk refocused transverse relaxation time of ¹³C6 and ¹³C8 spins, measured at different MAS frequencies (i.e. at 20 and from 50 to 110 every 10 kHz) on a 800 MHz spectrometer. The effects of homonuclear couplings (for ¹³C6) were eliminated by a selective refocusing pulse, as described in section 2 of this Supplement. Low-power WALTZ-16 ¹H decoupling with $h\gamma B_1/2\pi = 10$ kHz was applied at all MAS frequencies except for 20 kHz. Exponential decay was assumed in all cases.

5. Proton and carbon rotating-frame relaxation

Rotating-frame relaxation times are particularly important in solids since they determine (among other factors) the efficiency of cross-polarization. In the present study, we frequently use CP transfers of extended durations, e.g. for a long-range ${}^{1}H\rightarrow{}^{15}N$ (up to 13 ms) and one-bond ${}^{15}N\rightarrow{}^{13}C$ transfer (up to 20 ms). Also, ${}^{13}C$ T₁ ρ translates into efficiency of TOCSY mixing (here 25 ms was used), employed in HCCH and (H)NCCH experiments. For this reason, we investigated here the dependence of ${}^{1}H$ and ${}^{13}C$ T₁ ρ of ribose spins on the MAS frequency (between 40 and 110 kHz).

Rotating-frame relaxation is dependent on the B_1 field strength, and prominently enhanced close to the rotary-resonance conditions ($\gamma B_1/2\pi = \frac{1}{2} \omega_R$, ω_R , $2\omega_R$, etc.). To simplify this complex phenomenon, we measured first the signal intensity of the ribose resonances when applying a constant-time spin-lock pulse (of 15 ms and 10 ms for ¹³C and ¹H spin-lock, respectively) at varied RF field strength in the range permitted by the RF properties of the 0.7 mm MAS probe. The resulting spectra were integrated over the entire region of H1' resonances, and integrals normalized to the intensity of a reference (H)CH 1D signal at the given MAS frequency.

Fig. S3a demonstrates that ¹³C T₁ ρ relaxation is attenuated as the MAS rate increases, with improved separation between dips corresponding to the consecutive resonancerotary conditions. ¹H rotating-frame relaxation shows a similar dependence (Fig. S3c); however, for *B*₁ field strengths above 130-150 kHz similar rates are obtained regardless of MAS rate (unless a resonance-rotary condition is approached). In practice, such strong *B*₁ fields cannot easily be used when spinning rotors at moderate MAS rates in probes with RF coils of larger diameters, due to the large current amplitude required. Therefore, ssNMR spectroscopy at MAS frequency > 100 kHz has the additional advantage to easily reach this optimal regime of ¹H B_1 and thus extend the spin-locked relaxation time.

Additionally, we recorded time-series at selected RF field strengths to allow a crude estimation of relaxation times at the given conditions (Fig. S3b,d). We focused our attention on the case of $\gamma B_1/2\pi = \frac{1}{4} \omega_R$ as it is always far from the rotary-resonance condition, and additionally at one constant B_1 field strength: 40 kHz for ¹³C and 150 kHz for ¹H. We abstained from fitting these time-series due to frequent deviations from the exponential decay.

Fig. S3. (a) Integrated and normalized intensity of ¹H ribose signals in the ¹³C-¹H CP-HSQC experiment with a 15 ms ¹³C spin-lock pulse of B_1 field strength varied from 2 to 80 kHz (every 2 kHz). The data was recorded on a 800 MHz spectrometer and at MAS frequency ranging from 40 to 109 kHz (every 10 kHz). (b) Normalized time-series (decays) recorded at the ¹³C RF field strength of one fourth of MAS frequency and at the constant RF amplitude of 40 kHz. (c) Integrated and normalized intensity of ¹H ribose signals in ¹³C-¹H CP-HSQC experiment with a 10 ms ¹H spin-lock pulse of B_1 field strength varied from 5 to 200 kHz (every 5 kHz). The curves for MAS frequencies are separated to improve readability. (d) Normalized

integrals of signal intensities for a time-series (decays) with the ¹H RF field strength of either one fourth of MAS frequency, or at the constant B_1 field strength of 150 kHz.

6. 4D (H)NCCH experiment

Fig. S4. Magnetization transfer (a) and radiofrequency irradiation scheme b) for the (H)NCCH-TOCSY experiment. Arabic numbers in a) correspond to spectral dimensions (t_1 - t_4) in the pulse scheme (b), and roman numbers indicate the CP transfers. Representative 2D planes from the 4D experiment showing the spin systems of (c) U8, (d) G10, and (e) C17.¹³C and ¹⁵N frequencies are indicated in each panel. For reference, in panels (c-f) the *red* contours of the 4D (H)NCCH-TOCSY spectrum are overlaid onto the 2D CP-HSQC spectrum (in *grey*). The spectrum was recorded on a 1 GHz spectrometer and at 100 kHz MAS.

7. References

1. S. Jehle, M. Falb, J. P. Kirkpatrick, H. Oschkinat, B. J. van Rossum, G. Althoff and T. Carlomagno, *J. Am. Chem. Soc.*, 2010, **132**, 3842-3846.

2. S. Asami, M. Rakwalska-Bange, T. Carlomagno and B. Reif, *Angew. Chem. Int. Ed.*, 2013, **52**, 2345-2349.

3. A. Marchanka, B. Simon, G. Althoff-Ospelt and T. Carlomagno, *Nat. Commun.*, 2015, **6**, Article number: 7024

4. A. Marchanka, B. Simon and T. Carlomagno, *Angew. Chem. Int. Ed.*, 2013, **52**, 9996-10001.

5. I. Bertini, C. Luchinat, G. Parigi, E. Ravera, B. Reif and P. Turano, *Proc. Natl. Acad. Sci. USA*, 2011, **108**, 10396-10399.

6. A. Boeckmann, C. Gardiennet, A. Hunkeler, A. Loquet, G. Pintacuda, L. Emsley, B. H. Meier and A. Lesage, *J. Biomol. NMR*, 2009, **45**, 319.

7. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer and A. Bax, *J. Biomol. NMR*, 1995, **6**, 277-293.

8. A. J. Shaka, J. Keeler, T. Frenkiel and R. Freeman, *J. Magn. Reson.*, 1983, **52**, 335-338.

9. A. J. Shaka, C. J. Lee and A. Pines, *J. Magn. Reson.*, 1988, **77**, 274-293.

10. B. M. Fung, A. K. Khitrin and K. Ermolaev, J. Magn. Reson., 2000, 142, 97-101.

11. D. H. Zhou and C. M. Rienstra, J. Magn. Reson., 2008, 192, 167-172.

12. D. H. Zhou, G. Shah, M. Cormos, C. Mullen, D. Sandoz and C. M. Rienstra, *J. Am. Chem. Soc.*, 2007, **129**, 11791-11801.

13. D. H. Zhou, J. J. Shea, A. J. Nieuwkoop, W. T. Franks, B. J. Wylie, C. Mullen, D.

Sandoz and C. M. Rienstra, Angew. Chem. Int. Ed., 2007, 46, 8380-8383.

14. H. Geen and R. Freeman, *J. Magn. Reson.*, 1991, **93**, 93-141.

D. J. States, R. A. Haberkorn and D. J. Ruben, *J. Magn. Reson.*, 1982, 48, 286-292.
 J. Stanek, L. B. Andreas, K. Jaudzems, D. Cala, D. Lalli, A. Bertarello, T. Schubeis, I. Akopjana, S. Kotelovica, K. Tars, A. Pica, S. Leone, D. Picone, Z. Q. Xu, N. E. Dixon, D. Martinez, M. Berbon, N. El Mammeri, A. Noubhani, S. Saupe, B. Habenstein, A. Loguet and G. Pintacuda, *Angew. Chem. Int. Ed.*, 2016, 55, 15503-15509.

17. V. Y. Orekhov, I. Ibraghimov and M. Billeter, *J. Biomol. NMR*, 2003, **27**, 165-173.

18. C. R. Morcombe and K. W. Zilm, J. Magn. Reson., 2003, 162, 479-486.

19. J. L. Markley, A. Bax, Y. Arata, C. W. Hilbers, R. Kaptein, B. D. Sykes, P. E. Wright and K. Wüthrich, *Eur. J. Biochem*, 1998, **256**, 1-15.

20. W. F. Vranken, W. Boucher, T. J. Stevens, R. H. Fogh, A. Pajon, M. Llinas, E. L. Ulrich, J. L. Markley, J. Ionides and E. D. Laue, *Proteins: Struct., Funct., Bioinf.*, 2005, **59**, 687-696.

21. W. Lee, M. Tonelli and J. L. Markley, *Bioinformatics*, 2015, **31**, 1325-1327.

22.J. Stanek, R. Augustyniak and W. Kozminski, J. Magn. Reson., 2012, 214, 91-102.