Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Copper-catalyzed decarboxylative propargylation/hydroamination reactions: access to C3 βketoester-functionalized indoles

Sasa Wang, a Miao Liu, Xinzheng Chen, Huifei Wang, and Hongbin Zhai Sabe

^aState Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China

^bThe State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China ^cCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China

E-mail: zhaihb@pkusz.edu.cn

Table of Contents

General Information	S2
Copper-Catalyzed Decarboxylative Propargylation/Hydroamination	S2
Crossover Reaction	S10
Synthetic Transformations	S10
¹ H and ¹³ C NMR Spectra of Products	
Determination of the configuration of 3cn	S38

I. General Information

All ethynyl benzoxazinanones were prepared according to the known literatures, and the corresponding spectrum data matches that reported in the literatures.¹ All chemicals including β -ketoesters were commercially available from J&K, Energy, Damao *etc*, and used without further purification. All reactions were performed under Ar atmosphere. TFE (2,2,2-Trifluoroethanol), anhydrous DMF and anhydrous DMSO were purchased directly. Tetrahydrofuran and Toluene were distilled from sodium. DCM, DCE and ACN were distilled from CaH. Silica gels 60 (0.040-0.063 mm) from Tsingdao silica gel were used. For analytical TLC, Huanghai silica gel plates (0.25 mm, HSGF-254) were visualized with UV light and/or KMnO₄ (aq.). ¹H and ¹³C NMR spectra of related chemicals were recorded on Brucker 300, 400 or 500 UltraShieldTM spectrometers by assigning in ppm, relative to TMS [¹H δ = 0.00, ¹³C δ = 0.00] or CHCl₃ [¹H δ = 7.26, ¹³C δ = 77.36] resonance. ¹H NMR spectral data were assigned: chemical shift (δ /ppm), multiplicity (br = broad, m = multiplet, q = quartet, t = triplet, d = doublet, s = singlet), coupling constant (*J*/Hz) and integration. And ¹³C NMR spectral data were assigned according to the chemical shift. IR spectral data were recorded in terms of frequency of absorption (cm⁻¹) on a Shimadzu IRPrestige-21. High-resolution mass spectrometer at a temperature of 100 ±1 K, employing graphite monochromated Cu-K α radiation. Crystallographic data were provided by Oxford diffraction single-crystal X-ray diffractometer (Gemini S Ultra).

II. Copper-Catalyzed Sequential Decarboxylative Propargylation/Cycloisomerization

General procedure: To a 10 mL oven-dried flask, was added β -ketoester 2 (0.12 mmol, 1.2 equiv), PivONa (37.2 mg, 0.3 mmol, 3.0 equiv), Cu(OTf)₂ (3.6 mg, 0.01 mmol, 0.1 equiv) and ethynyl benzoxazinanones 1 (0.1 mmol, 1 equiv). DMF was then added under Ar atmosphere. After being stirred for 22 h at 60 °C, the solution was cooled to room temperature and quenched with water. The aqueous phase was extracted with EtOAc (3 mL × 3). And the combined organic layer was then washed with water (3 mL × 3) and dried over anhydrous Na₂SO₄. Afterward, silica gel was added before solvent was removed. The evaporated residue was further purified by flash chromatography (silica gel, hexanes/EtOAc = 40:1~10:1) to furnish compound 3.

Ethyl (*Z*)-3-hydroxy-2-(2-methyl-1-tosyl-1H-indol-3-yl)but-2-enoate (3aa): Following above procedure, compound 3aa was obtained in 77% yield (31.8 mg, pale yellow oil). ¹H NMR (500 MHz, CDCl₃) δ 13.31 (d, *J* = 0.5 Hz, 1H), 8.19 (d, *J* = 8.3 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.30–7.24 (m, 1H), 7.21 (td, *J* = 7.4, 0.9 Hz, 1H), 7.18 (m, 3H), 4.16–3.98 (m, 2H), 2.42 (s, 3H), 2.33 (s, 3H), 1.68 (d, 3H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.3, 172.4, 144.6, 136.5, 136.4, 135.6, 130.7, 129.7, 126.2, 124.0, 123.5, 119.0, 115.9, 114.7, 93.4, 60.5, 21.5, 19.5, 14.0, 13.6. HRMS (ESI) calculated for C₂₂H₂₄NO₅S (M + H)⁺: 414.1375, found: 414.1367.

Ethyl (*Z*)-2-(2,4-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxybut-2-enoate (3ba): Following above procedure, compound 3ba was obtained in 82% yield (35.2 mg, colorless oil). ¹H NMR (400 MHz, CDCl₃) δ 13.13 (d, *J* = 0.5 Hz, 1H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.3 Hz, 2H), 7.13 (d, *J* = 8.3 Hz, 1H), 6.95 (d, *J* = 7.3 Hz, 1H), 4.16-4.04 (m, 2H), 2.40 (s, 3H), 2.33 (s, 3H), 2.31 (s, 3H), 1.66 (d, *J* = 0.6 Hz, 3H), 1.04 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.0, 172.4, 144.4, 136.6, 136.3, 135.3, 130.1, 129.6, 128.7, 126.1, 125.4, 123.7, 116.0, 112.5, 95.9, 60.5, 21.4, 19.4, 18.8, 14.0, 13.1. HRMS (ESI) calculated for C₂₃H₂₆NO₅S (M + H)⁺: 428.1532, found: 428.1528.

Ethyl (*Z*)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxybut-2-enoate (3ca): Following above procedure, compound 3ca was obtained in 85% yield (36.3 mg, pale yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.31 (d, *J* = 0.5 Hz, 1H), 8.05 (d, *J* = 8.5 Hz, 1H), 7.59 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.08 (dd, *J* = 8.5, 1.4 Hz, 1H), 6.96 (s, 1H), 4.17–3.97 (m, 2H), 2.39 (s, 3H), 2.39 (s, 3H), 2.33 (s, 3H), 1.68 (s, 3H), 1.03 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 172.4, 144.4, 136.3, 135.6, 134.5, 133.1, 130.8, 129.6, 126.1, 125.3, 118.9, 115.7, 114.3, 93.4, 60.4, 21.4, 21.2, 19.5, 14.0, 13.5. HRMS (ESI) calculated for C₂₃H₂₆NO₅S (M + H)⁺: 428.1532, found: 428.1528.

Ethyl (*Z*)-2-(2,6-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxybut-2-enoate (3da): Following above procedure, compound 3da was obtained in 67% yield (28.5 mg, pale yellow solid, mp. 66.1–69.9 °C). ¹H NMR (500 MHz, CDCl₃) δ 13.29 (s, 1H), 8.01 (s, 1H), 7.59 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.10 – 7.01 (m, 2H), 4.15–3.99 (m, 2H), 2.48 (s, 3H), 2.38 (s, 3H), 2.34 (s, 3H), 1.68 (s, 3H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 172.5, 144.5, 136.9, 136.7, 134.8, 134.0, 129.7, 128.4, 126.2, 124.9, 118.6, 115.8, 115.0, 93.5, 60.5, 21.9, 21.5, 19.5, 14.0, 13.5. HRMS (ESI) calculated for C₂₃H₂₆NO₅S (M + H)⁺: 428.1532, found: 428.1526.

Ethyl (*Z*)-3-hydroxy-2-(5-methoxy-2-methyl-1-tosyl-1H-indol-3-yl)but-2-enoate (3ea): Following above procedure, compound 3ea was obtained in 60% yield (26.7 mg, pale yellow solid, mp. 138.5–144.2 °C). ¹H NMR (400 MHz, CDCl₃) δ 13.31 (d, *J* = 0.6 Hz, 1H), 8.07 (d, *J* = 9.0 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.87 (dd, *J* = 9.0, 2.6 Hz, 1H), 6.60 (d, *J* = 2.6 Hz, 1H), 4.20-3.90 (m, 2H), 3.79 (s, 3H), 2.39 (s, 3H), 2.33 (s, 3H), 1.68 (d, *J* = 0.5 Hz, 3H), 1.03 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 172.3, 156.6, 144.4, 136.3, 136.2, 131.8, 130.8, 129.6, 126.1, 116.0, 115.6, 112.4, 101.6, 93.3, 60.5, 55.5, 21.4, 19.4, 14.0, 13.6. HRMS (ESI) calculated for C₂₃H₂₆NO₆S (M + H)⁺: 444.1481, found:

Ethyl (*Z*)-2-(5-fluoro-2-methyl-1-tosyl-1H-indol-3-yl)-3-hydroxybut-2-enoate (3fa): Following above procedure, compound 3fa was obtained in 68% yield (29.3 mg, colorless oil). ¹H NMR (400 MHz, CDCl₃) δ 13.30 (d, *J* = 0.5 Hz, 1H), 8.13 (dd, *J* = 9.1, 4.4 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.1 Hz, 2H), 6.99 (td, *J* = 9.0, 2.6 Hz, 1H), 6.83 (dd, *J* = 8.6, 2.6 Hz, 1H), 4.17–3.99 (m, 2H), 2.41 (s, 3H), 2.35 (s, 3H), 1.69–1.65 (m, 3H), 1.03 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 172.1, 160.0 (d, *J* = 239 Hz), 144.7, 137.4, 136.0, 132.5, 131.9 (d, *J* = 10 Hz), 129.7, 126.1, 115.8 (d, *J* = 4 Hz), 115.7 (d, *J* = 9 Hz), 111.6 (d, *J* = 25 Hz), 104.6 (d, *J* = 24 Hz), 92.9, 60.5, 21.4, 19.4, 13.9, 13.6. HRMS (ESI) calculated for C₂₂H₂₃FNO₅S (M + H)⁺: 432.1281, found: 432.1276.

Ethyl (*Z*)-2-(4-chloro-2-methyl-1-tosyl-1H-indol-3-yl)-3-hydroxybut-2-enoate (3ga): Following above procedure, compound **3ga** was obtained in 64% yield (28.6 mg, pale yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 13.18 (s, 1H), 8.17–8.11 (m, 1H), 7.59 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.1 Hz, 2H), 7.18–7.14 (m, 2H), 4.09 (qd, *J* = 7.1, 2.8 Hz, 2H), 2.42 (s, 3H), 2.35 (s, 3H), 1.67 (s, 3H), 1.03 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 172.3, 144.9, 137.6, 136.7, 135.9, 129.8, 127.2, 126.1, 125.7, 124.7, 124.3, 115.2, 113.2, 94.8, 60.4, 21.5, 19.4, 14.0, 13.2. HRMS (ESI) calculated for C₂₂H₂₃ClNO₅S (M + H)⁺: 448.0985, found: 448.0979.

Ethyl (*Z*)-2-(6-chloro-2-methyl-1-tosyl-1H-indol-3-yl)-3-hydroxybut-2-enoate (3ha): Following above procedure, compound **3ha** was obtained in 68% yield (30.3 mg, pale yellow solid, mp. 111.0–113.8 °C). ¹H NMR (400 MHz, CDCl₃) δ 13.29 (s, 1H), 8.23 (d, *J* = 1.7 Hz, 1H), 7.61 (d, *J* = 8.4 Hz, 2H), 7.24–7.20 (m, 2H), 7.19 (d, *J* = 1.8 Hz, 1H), 7.09 (d, *J* = 8.3 Hz, 1H), 4.15–3.99 (m, 2H), 2.39 (s, 3H), 2.36 (s, 3H), 1.67 (s, 3H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 172.2, 144.9, 136.6, 136.1, 136.1, 129.9, 129.8, 129.0, 126.2, 124.0, 119.7, 115.4, 114.8, 92.9, 60.5, 21.5, 19.4, 13.9, 13.5. HRMS (ESI) calculated for C₂₂H₂₃ClNO₅S (M + H)⁺: 448.0985, found: 448.0980.

Ethyl (*Z*)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxyhex-2-enoate (3cb): Following above procedure, compound 3cb was obtained in 87% yield (39.7 mg, pale yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 13.37 (s, 1H), 8.06 (d, *J* = 8.5 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 7.09 (dd, *J* = 8.5, 1.4 Hz, 1H), 6.96 (s, 1H), 4.22–3.94 (m, 2H), 2.39 (s, 6H), 2.32 (s, 3H), 1.88 (dd, *J* = 8.2, 6.5 Hz, 2H), 1.45–1.35 (m, 2H), 1.02 (t, *J* = 7.1 Hz, 3H), 0.66 (t, *J* = 7.4 Hz, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 179.3, 172.5, 144.4, 136.3, 135.7, 134.6, 133.1, 131.1, 129.6, 126.1, 125.3, 118.8, 115.7, 114.4, 93.0, 60.4, 34.7, 21.4, 21.2, 19.6, 14.0, 13.6, 13.5. HRMS (ESI) calculated for C₂₅H₃₀NO₅S (M + H)⁺: 456.1845, found: 456.1843.

Ethyl (*Z*)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxy-4-methylpent-2-enoate (3cc): Following above procedure, compound 3cc was obtained in 85% yield (38.6 mg, pale yellow crystal, mp. 144.1–148.2 °C). ¹H NMR (400 MHz, CDCl₃) δ 13.39 (d, *J* = 1.4 Hz, 1H), 8.05 (d, *J* = 8.5 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 7.08 (dd, *J* = 8.5, 1.4 Hz, 1H), 6.97 (s, 1H). 4.17–3.94 (m, 2H), 2.39 (s, 3H), 2.39 (s, 3H), 2.33 (s, 3H), 2.17–2.09 (m, 1H), 1.01 (t, *J* = 7.1 Hz, 3H), 0.95 (d, *J* = 6.8 Hz, 3H), 0.92 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.5, 172.7, 144.3, 136.3, 135.7, 134.7, 133.2, 131.4, 129.5, 126.0, 125.3, 118.6, 115.7, 114.4, 91.1, 60.4, 31.3, 21.4, 21.2, 19.5, 19.2, 14.0, 13.5. HRMS (ESI) calculated for C₂₅H₃₀NO₅S (M + H)⁺: 456.1845, found: 456.1840.

Ethyl (*Z*)-3-cyclopropyl-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxyacrylate (3cd): Following above procedure, compound 3cd was obtained in 89% yield (40.4 mg, white solid, mp. 135.3–136.5 °C). Major: ¹H NMR (500 MHz, CDCl₃) δ 13.52 (d, *J* = 1.5 Hz, 1H), 8.06 (d, *J* = 8.5 Hz, 1H), 7.59 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.1 Hz, 2H), 7.10–7.07 (m, 1H), 7.06 (d, *J* = 0.5 Hz, 1H), 4.15–3.99 (m, 2H), 2.44 (s, 3H), 2.40 (s, 3H), 2.32 (s, 3H), 1.16–1.05 (m, 3H), 1.03 (t, *J* = 7.1 Hz, 3H), 0.68–0.54 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 179.3, 172.4, 144.3, 136.5, 136.1, 134.7, 133.0, 131.4, 129.5, 126.2, 125.2, 119.4, 115.7, 114.4, 91.8, 60.3, 21.4, 21.2, 14.0, 13.7, 13.2, 8.4, 8.1. Minor: ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, *J* = 8.8 Hz, 1H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.23 (s, 1H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.12–7.07 (m, 1H), 4.95 (s, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 2.58 (s, 3H), 2.41 (s, 3H), 2.33 (s, 3H), 1.72–1.66 (m, 1H), 1.22 (t, *J* = 7.1 Hz, 3H), 1.00–0.95 (m, 1H), 0.92–0.76 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 203.6, 168.1, 144.7, 136.3, 134.6, 133.2, 129.8, 129.4, 126.3, 125.7, 118.9, 114.3, 112.4, 61.5, 56.7, 21.4, 21.3, 19.6, 14.0, 13.4, 11.9, 11.9, HRMS (ESI) calculated for C₂₅H₂₈NO₅S (M + H)⁺: 454.1688, found 454.1695.

Ethyl (*Z*)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxy-4-phenylbut-2-enoate (3ce): Following above procedure, compound 3ce was obtained in 73% yield (36.7 mg, pale yellow solid, mp. 110.3–113.9 °C). ¹H NMR (400 MHz, CDCl₃) δ 13.35 (s, 1H), 8.10 (d, *J* = 8.5 Hz, 1H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.13–7.09 (m, 6H), 6.95 (s, 1H), 6.81 (d, *J* = 6.3 Hz, 2H), 4.20–3.15 (m, 2H), 3.20 (s, 2H), 2.39 (s, 3H), 2.27 (s, 3H), 2.27 (s, 3H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 172.5, 144.5, 136.3, 136.2, 135.8, 134.6, 133.2, 130.9, 129.6, 128.8, 128.1, 126.6, 126.1, 125.4, 118.9, 115.3, 114.4, 93.9, 60.6, 39.1, 21.4, 21.2, 13.9, 13.5. HRMS (ESI) calculated for C₂₉H₂₉NO₅SNa (M + Na)⁺: 526.1664, found: 526.1660.

Ethyl (*Z*)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxy-3-phenylacrylate (3cf): Following above procedure, compound 3cf was obtained in 70% yield (34.5 mg, pale yellow oil). Major: ¹H NMR (400 MHz, CDCl₃) δ 13.79 (s, 1H), 8.02 (d, *J* = 8.5 Hz, 1H), 7.49 (d, *J* = 8.3 Hz, 2H), 7.16 –7.00 (m, 6H), 7.02 (s, 1H), 6.91 (t, *J* = 7.8 Hz, 2H), 4.27–4.06 (m, 2H), 2.38 (s, 3H), 2.37 (s, 3H), 2.15 (s, 3H), 1.09 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.4, 173.3, 144.3, 136.7, 135.2, 134.7, 134.3, 132.9, 131.3, 129.8, 129.8, 127.8, 127.7, 126.3, 125.3, 119.4, 115.63, 114.1, 93.7, 61.0, 21.6, 21.3, 14.1, 13.3. Ketone isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.5 Hz, 1H), 7.77–7.72 (m, 2H), 7.53–7.42 (m, 3H), 7.33 (s, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.16–7.00 (m, 3H), 5.60 (s, 1H), 4.27–4.06 (m, 2H), 2.56 (s, 3H), 2.42 (s, 3H), 2.31 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 193.9, 168.4, 144.6, 136.2, 136.0, 135.4, 134.7, 133.5, 133.4, 129.8, 129.2, 128.6, 128.4, 126.1, 125.9, 118.8, 114.4, 112.9, 61.8, 52.5, 42.0, 21.5, 14.1, 13.4. HRMS (ESI) calculated for C₂₈H₂₇NO₅SNa (M + Na)⁺: 512.1508, found: 512.1504.

Ethyl (*Z*)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxy-3-(m-tolyl)acrylate (3cg): Following above procedure, compound 3cg was obtained in 82% yield (41.1 mg, pale yellow oil). Major: ¹H NMR (400 MHz, CDCl₃) δ 13.78 (s, 1H), δ 7.99 (d, *J* = 8.4 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.18 (s, 1H), 7.14 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 8.5 Hz, 1H), 7.07 – 7.02 (m, 1H), 7.01 (d, *J* = 0.6 Hz, 1H), 6.95 (d, *J* = 7.5 Hz, 1H), 6.76 (d, *J* = 7.8 Hz, 1H), 4.27 – 4.08 (m, 2H), 2.36 (s, 3H), 2.36 (s, 3H), 2.18 (s, 3H), 2.11 (s, 3H), 1.08 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 173.3, 144.1, 137.3, 136.6, 135.1, 134.6, 134.2, 132.8, 131.3, 130.5, 129.6, 128.2, 127.3, 126.2, 125.1, 124.9, 119.3, 115.6, 113.9, 93.5, 60.8, 21.4, 21.2, 21.1, 14.0, 13.2. Minor: ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J*=6.0, 1H), 7.63 (s, 1H), 7.54 – 7.45 (m, 3H), 7.34 (s, 1H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.10–7.25 (m, 1H), 6.69 (d, *J* = 7.6 Hz, 2H), 6.67 (d, *J* = 7.7 Hz, 1H), 5.60 (s, 1H), 4.27 – 4.08 (m, 2H), 2.57 (s, 3H), 2.42 (s, 3H), 2.31 (s, 3H), 2.27 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 168.3, 144.4, 138.3, 136.1, 135.9, 135.3, 134.6, 134.1, 133.2, 129.7, 129.1, 128.9, 128.3, 126.0, 125.7, 125.4, 118.9, 114.3, 112.8, 61.6, 52.3, 21.4, 21.3, 21.2, 14.0, 13.2. HRMS (ESI) calculated for C₂₉H₃₀NO₅S (M + H)⁺: 504.1845, found: 504.1838.

Ethyl (*Z*)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxy-3-(p-tolyl)acrylate (3ch): Following above procedure, compound 3ch was obtained in 90% yield (45.1 mg, white oil). Major: ¹H NMR (400 MHz, CDCl₃) δ 13.83 (s, 1H), 8.03 (d, *J* = 8.5 Hz, 1H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 7.11–7.03 (m, 3H), 7.02 (s, 1H), 6.72 (d, *J* = 8.0 Hz, 2H), 4.19 – 4.07 (m, 2H), 2.38 (s, 3H), 2.37 (s, 3H), 2.22 (s, 3H), 2.16 (s, 3H), 1.07 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 173.2, 144.1, 139.9, 136.7, 135.0, 134.3, 132.8, 131.7, 129.6, 129.2, 128.3, 127.8, 126.2, 125.2, 119.4,

115.74, 113.95, 93.0, 60.8, 21.5, 21.3, 21.2, 14.0, 13.2. Minor: ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.5 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.33 (s, 1H), 7.11-7.04 (m, 5H), 5.58 (s, 1H), 4.25–4.19 (m, 2H), 2.56 (s, 3H), 2.42 (s, 3H), 2.35 (s, 3H), 2.32 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 168.4, 144.4, 144.2, 136.2, 135.8, 134.6, 133.3, 132.8, 131.3, 129.7, 129.1, 128.4, 126.0, 125.7, 118.8, 114.3, 113.0, 61.6, 52.3, 21.6, 21.5, 14.0, 13.2. HRMS (ESI) calculated for C₂₉H₃₀NO₅S (M + H)⁺: 504.1845, found: 504.1843.

Ethyl (*Z*)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxy-3-(3-methoxyphenyl)acrylate (3ci): Following above procedure, compound 3ci was obtained in 71% yield (36.8 mg, pare yellow oil). Major: ¹H NMR (400 MHz, CDCl₃) δ 13.76 (s, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.12 (d, *J* = 8.1 Hz, 2H), 7.07 (s, 1H), 7.06 – 7.03 (m, 1H), 6.87 (t, *J* = 7.8 Hz, 1H), 6.79 (dt, *J* = 7.7, 1.2 Hz, 1H), 6.72 – 6.65 (m, 2H), 4.20 – 4.09 (m, 2H), 3.16 (s, 3H), 2.37 (s, 3H), 2.36 (s, 3H), 2.19 (s, 3H), 1.08 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 173.2, 158.5, 144.2, 136.4, 135.8, 135.3, 134.1, 133.0, 131.6, 129.6, 128.6, 126.0, 125.1, 120.1, 119.1, 117.1, 115.7, 114.0, 111.8, 93.6, 60.9, 54.4, 21.4, 21.2, 14.0, 13.1. Minor: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.5 Hz, 1H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.35 (s, 1H), 7.32 (d, *J* = 7.9 Hz, 1H), 7.27-7.25 (m, 1H), 7.20 – 7.14 (m, 1H), 7.14 – 7.03 (m, 3H), 7.03 – 6.99 (m, 1H), 5.59 (s, 1H), 4.26 – 4.20 (m, 2H), 3.60 (s, 3H), 2.56 (s, 3H), 2.42 (s, 3H), 2.30 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 168.2, 159.5, 144.5, 136.5, 136.2, 136.0, 134.6, 133.3, 129.7, 129.4, 129.1, 126.0, 125.7, 120.8, 120.4, 118.6, 114.4, 112.9, 112.2, 61.7, 55.1, 52.4, 21.4, 21.3, 14.0, 13.3. HRMS (ESI) calculated for C₂₉H₃₀NO₆S (M + H)⁺: 520.1794, found: 520.1781.

Ethyl (*Z*)-3-(4-bromophenyl)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxyacrylate (3cj): Following above procedure, compound 3cj was obtained in 46% yield (32.6 mg, pale yellow solid, mp. 149.2–155.8 °C). Major: ¹H NMR (400 MHz, CDCl₃) δ 13.78 (s, 1H), 8.07 (d, *J* = 8.5 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 7.09 (d, *J* = 8.4 Hz, 1H), 7.03 (s, 1H), 7.02–6.94 (m, 4H), 4.28–4.07 (m, 2H), 2.43 (s, 3H), 2.39 (s, 3H), 2.14 (s, 3H), 1.10 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 171.6, 144.6, 136.5, 134.9, 134.2, 133.5, 133.0, 131.1, 130.8, 129.7, 129.4, 126.2, 125.4, 124.2, 119.2, 115.2, 114.1, 94.0, 61.1, 21.7, 21.2, 14.0, 13.1. Minor: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.6 Hz, 1H), 7.56 (d, *J* = 8.7 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 8.7 Hz, 2H), 7.28 (s, 1H), 7.13–7.06 (m, 3H), 5.50 (s, 1H), 4.27–4.07 (m, 2H), 2.53 (s, 3H), 2.35 (s, 3H), 1.27–1.21 (t, *J* = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.9, 167.9, 144.7, 135.9, 134.6, 133.9, 133.5, 131.8, 129.7, 129.7, 128.9, 128.8, 128.5, 125.9, 125.8, 118.4, 114.5, 112.7, 61.8, 52.5, 29.6, 21.5, 21.3, 13.2. HRMS (ESI) calculated for C₂₈H₂₇BrNO₅S (M + H)⁺: 568.0793, found: 568.0791.

Methyl (Z)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxybut-2-enoate (3ck): Following above procedure, compound

3ck was obtained in 77% yield (31.9 mg, white solid, mp. 177.4–178.5 °C). ¹H NMR (400 MHz, CDCl₃) δ 13.22 (s, 1H), 8.05 (d, *J* = 8.5 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.09 (dd, *J* = 8.5, 1.2 Hz, 1H), 6.96 (s, 1H), 3.60 (s, 3H), 2.40 (s, 3H), 2.39 (s, 3H), 2.34 (s, 3H), 1.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 172.8, 144.5, 136.3, 135.7, 134.5, 133.2, 130.8, 129.6, 126.1, 125.4, 118.8, 115.6, 114.4, 93.2, 51.7, 21.4, 21.2, 19.4, 13.5. HRMS (ESI) calculated for C₂₂H₂₄NO₅S (M + H)⁺: 414.1375, found: 414.1376.

Propyl (Z)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxybut-2-enoate (3cl): Following above procedure, compound **3cl** was obtained in 79% yield (35.1 mg, pale yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 13.29 (s, 1H), 8.05 (d, *J* = 8.5 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 7.08 (dd, *J* = 8.5, 1.4 Hz, 1H), 6.96 (s, 1H), 4.06 – 3.88 (m, 2H), 2.40 (s, 3H), 2.38 (s, 3H), 2.33 (s, 3H), 1.68 (s, 3H), 1.43 – 1.32 (m, 2H), 0.63 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 172.5, 144.4, 136.3, 135.4, 134.5, 133.0, 130.8, 129.6, 126.1, 125.3, 119.0, 115.7, 114.3, 93.4, 66.0, 21.7, 21.4, 21.2, 19.4, 13.5, 10.0. HRMS (ESI) calculated for C₂₄H₂₇NO₅SNa (M + Na)⁺: 464.1508, found: 464.1502.

Isopropyl (*Z*)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxybut-2-enoate (3cm): Following above procedure, compound 3cm was obtained in 77% yield (34.1 mg, pale yellow solid, mp. 117.2–119.9 °C). ¹H NMR (400 MHz, CDCl₃) δ 13.39 (s, 1H), 8.05 (d, *J* = 8.5 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 7.08 (dd, *J* = 8.5, 1.4 Hz, 1H), 6.95 (s, 1H), 5.05–4.95 (m, 1H), 2.39 (s, 6H), 2.33 (s, 3H), 1.68 (s, 3H), 1.02 (d, *J* = 6.3 Hz, 3H), 0.99 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 172.0, 144.35, 136.4, 135.4, 134.5, 133.0, 130.8, 129.6, 126.1, 125.2, 119.0, 115.8, 114.3, 93.7, 67.9, 21.6, 21.4, 21.4, 21.2, 19.5, 13.5. HRMS (ESI) calculated for C₂₄H₂₈NO₅S (M + H)⁺: 442.1688, found: 442.1687.

tert-Butyl (*Z*)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxybut-2-enoate (3cn): Following above procedure, compound 3cn was obtained in 69% yield (31.4 mg, pale yellow crystal, mp. 146.0–149.0 °C). ¹H NMR (500 MHz, CDCl₃) δ 13.47 (s, 1H), 8.05 (d, *J* = 8.5 Hz, 1H), 7.59 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.1 Hz, 2H), 7.09–7.05 (m, 1H), 6.97 (s, 1H), 2.39 (s, 3H), 2.32 (s, 3H), 1.67 (s, 3H), 1.24 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 175.5, 172.3, 144.4, 136.6, 135.1, 134.6, 132.9, 130.9, 129.7, 126.2, 125.2, 119.1, 116.3, 114.3, 94.6, 81.3, 27.9, 21.4, 21.3, 19.6, 13.6. HRMS (ESI) calculated for C₂₅H₂₉NO₅SNa (M + Na)⁺: Exact Mass: 478.1664, found: 478.1650.

*iso*butyl (*Z*)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxybut-2-enoate (3co): Following above procedure, compound 3co was obtained in 80% yield (36.4 mg, pale yellow solid, mp. 76.0–80.9 °C). ¹H NMR (400 MHz, CDCl₃) δ 13.26 (d, *J* = 0.6 Hz, 1H), 8.06 (d, *J* = 8.5 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 7.08 (dd, *J* = 8.5, 1.4 Hz, 1H), 6.96 (s, 1H), 3.79 (ddd, *J* = 26.8, 10.6, 6.5 Hz, 2H), 2.41 (s, 3H), 2.38 (s, 3H), 2.33 (s, 3H), 1.69 (d, *J* = 0.5 Hz, 3H), 1.66–1.54 (m, 1H), 0.60 (d, *J* = 6.7 Hz, 3H), 0.57 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 172.5, 144.4, 136.3, 135.3, 134.5, 133.0, 130.8, 129.6, 126.1, 125.3, 119.0, 115.7, 114.2, 93.3, 70.5, 27.4, 21.4, 21.1, 19.4, 18.7, 18.6, 13.4. HRMS (ESI) calculated for C₂₅H₃₀NO₅S (M + H)⁺: 456.1845, found: 456.1842.

Pentan-3-yl (*Z*)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxybut-2-enoate (3cp): Following above procedure, compound 3cp was obtained in 76% yield (35.7 mg, pale yellow solid, mp. 103.2–104.8 °C). ¹H NMR (400 MHz, CDCl₃) δ 13.36 (d, *J* = 0.5 Hz, 1H), 8.06 (d, *J* = 8.5 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 7.08 (dd, *J* = 8.5, 1.4 Hz, 1H), 6.97 (s, 1H), 4.80–4.65 (m, 1H), 2.40 (s, 3H), 2.38 (s, 3H), 2.33 (s, 3H), 1.67 (s, 3H), 1.40–1.17 (m, 4H), 0.65 (t, *J* = 7.4 Hz, 3H), 0.57 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 172.3, 144.3, 136.4, 135.3, 134.5, 133.0, 131.0, 129.6, 126.0, 125.3, 118.9, 116.1, 114.2, 93.5, 76.8, 26.1, 26.0, 21.4, 21.1, 19.3, 13.4, 9.2, 9.0. HRMS (ESI) calculated for C₂₆H₃₁NO₅SNa (M + Na)⁺: 492.1821, found: 492.1816.

Benzyl (Z)-2-(2,5-dimethyl-1-tosyl-1H-indol-3-yl)-3-hydroxybut-2-enoate (3cq): Following above procedure, compound **3cq** was obtained in 72% yield (35.3 mg, pare yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 13.19 (s, 1H), 8.03 (d, J = 8.5 Hz, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.27 – 7.19 (m, 3H), 7.11 – 7.02 (m, 5H), 6.94 (s, 1H), 5.08 (q, J = 12.6 Hz, 2H), 2.38 (s, 3H), 2.37 (s, 3H), 2.28 (s, 3H), 1.70 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 172.2, 144.3, 136.3, 135.8, 135.6, 134.6, 133.1, 130.8, 129.6, 128.3, 127.9, 127.5, 126.0, 125.3, 119.1, 115.5, 114.3, 93.3, 65.9, 21.4, 21.2, 19.4, 13.5. HRMS (ESI) calculated for C₂₈H₂₈NO₅S (M + H)⁺: 490.1688, found: 490.1686.

III. Crossover Reaction

General procedures for crossover reaction: To a 10 mL oven-dried flask, was added β -ketoester 2a (0.05 mmol, 1 equiv), PivONa (37.2 mg, 0.3 mmol, 6 equiv), Cu(OTf)₂ (3.6 mg, 0.01 mmol, 0.2 equiv) and ethynyl benzoxazinanones 1f (17.3 mg, 0.05 mmol, 1 equiv) and 1e (17.9 mg, 0.05 mmol, 1 equiv). DMF was then added under Ar atmosphere. After being stirred for 22 h at 60 °C, the solution was cooled to room temperature and quenched with water. The aqueous phase was extracted with EtOAc (3 mL × 3). And the combined organic layer was then washed with water (3 mL × 3) and dried over anhydrous Na₂SO₄. Afterward, solvent was removed and the evaporated residue was used directly to afford the corresponding ¹H NMR yield (1,3,5-trimethoxybenzene as an internal standard).

IV. Synthetic Transformations

A gram-scale reaction: To a 100 mL oven-dried flask, was added ethynyl benzoxazinanones 1a (1.5 g, 4.58 mmol, 1 equiv), PivONa (1.7 g, 13.74 mmol, 3.0 equiv) and Cu(OTf)₂ (165.5 mg, 0.46 mmol, 0.1 equiv). Then DMF followed by β -ketoester 2a (716.4 mg, 5.50 mmol, 1.2 equiv) were added under Ar atmosphere. After being stirred for 22 h at 60 °C, the solution was cooled to room temperature and quenched with water. The aqueous phase was extracted with EtOAc (30 mL × 3). And the combined organic layer was then washed with water (30 mL × 3) and dried over anhydrous Na₂SO₄. Afterward, silica gel was added before solvent was removed. The evaporated residue was further purified by flash chromatography (silica gel, hexanes/EtOAc = 40:1~10:1) to furnish compound **3aa** in 68% yield (1.29 g).

3aa'

3aa

Deprotection of the tosyl (Ts) group of 3aa: According to the known procedure^{1a}, to a flame-dried 25 mL flask was charged **3aa** (62mg, 0.15mmol, 1 equiv) and Mg (360 mg, 15 mmol, 100 equiv). Then anhydrous MeOH (5 mL) was added

under Ar atmosphere. After being stirred for 1 h at 60 °C, the solution was cooled to room temperature and quenched with saturated solution of NH₄Cl. The aqueous phase was extracted with EtOAc (15 mL × 5). And the combined organic layer was then dried over anhydrous Na₂SO₄. Afterward, silica gel was added before solvent was removed. The evaporated residue was further purified by flash chromatography (silica gel, hexanes/EtOAc = $20:1\sim5:1$) to furnish compound **3aa'** in a total yield of 85% (33.1 mg, major:minor = 1.4:1, pale yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 13.41 (s, 1H), 8.06 (s, 1H), 7.96 (s, 1H), 7.54–7.50 (m, 1H), 7.27 (dd, *J* = 13.6, 5.0 Hz, 3H), 7.19–7.03 (m, 4H), 4.88 (s, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 4.19–4.10 (m, 2H), 2.39 (s, 3H), 2.26 (s, 3H), 2.14 (s, 3H), 1.84 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.14 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.62, 175.76, 173.49, 169.34, 135.24, 135.19, 134.03, 133.48, 129.10, 127.66, 121.60, 121.00, 120.05, 119.48, 118.77, 118.57, 110.49, 110.28, 106.90, 103.49, 94.75, 61.38, 60.38, 57.11, 28.33, 19.75, 14.28, 14.14, 12.23, 12.14. HRMS (ESI) calculated for C₁₅H₁₈NO₃ (M + H)⁺: 260.1287, found: 260.1280.

V. ¹H and ¹³C NMR Spectra

Fig. S1. ¹H NMR Spectrum of 3aa (500 MHz, CDCl₃).

Fig. S2. ¹³C NMR Spectrum of 3aa (125 MHz, CDCl₃).

Fig. S3. ¹H NMR Spectrum of 3ba (400 MHz, CDCl₃).

Fig. S4. ¹³C NMR Spectrum of 3ba (100 MHz, CDCl₃).

Fig. S5. ¹H NMR Spectrum of 3ca (400 MHz, CDCl₃).

Fig. S6. ¹³C NMR Spectrum of 3ca (100 MHz, CDCl₃).

Fig. S7. ¹H NMR Spectrum of 3da (500 MHz, CDCl₃).

Fig. S8. ¹³C NMR Spectrum of 3da (125 MHz, CDCl₃).

Fig. S9. ¹H NMR Spectrum of 3ea (400 MHz, CDCl₃).

Fig. S10. ¹³C Spectrum of 3ea (100 MHz, CDCl₃).

Fig. S11. ¹H NMR Spectrum of 3fa (400 MHz, CDCl₃).

Fig. S12. ¹³C NMR Spectrum of 3fa (100 MHz, CDCl₃).

Fig. S13. ¹⁹F NMR Spectrum of 3fa (376 MHz, CDCl₃).

Fig. S14. ¹H NMR Spectrum of 3ga (400 MHz, CDCl₃).

Fig. S15. ¹³C NMR Spectrum of 3ga (100 MHz, CDCl₃).

Fig. S16. ¹H NMR Spectrum of 3ha (400 MHz, CDCl₃).

Fig. S17. ¹³C NMR Spectrum of 3ha (100 MHz, CDCl₃).

Fig. S18. ¹H NMR Spectrum of 3cb (400 MHz, CDCl₃).

Fig. S19. ¹³C NMR Spectrum of 3cb (100 MHz, CDCl₃).

Fig. S20. ¹H NMR Spectrum of 3cc (400 MHz, CDCl₃).

Fig. S21. ¹³C NMR Spectrum of 3cc (100 MHz, CDCl₃).

Fig. S22. ¹H NMR Spectrum of 3cd (500 MHz, CDCl₃).

Fig. S23. ¹³C NMR Spectrum of 3cd (125 MHz, CDCl₃).

Fig. S24. ¹H NMR Spectrum of 3ce (400 MHz, CDCl₃).

Fig. S25. ¹³C NMR Spectrum of 3ce (100 MHz, CDCl₃).

Fig. S26. ¹H NMR Spectrum of 3cf (400 MHz, CDCl₃).

Fig. S27. ¹³C NMR Spectrum of 3cf (75 MHz, CDCl₃).

Fig. S28. ¹H NMR Spectrum of 3cg (400 MHz, CDCl₃).

Fig. S29. ¹³C NMR Spectrum of 3cg (100 MHz, CDCl₃).

Fig. S30. ¹H NMR Spectrum of 3ch (400 MHz, CDCl₃).

Fig. S31. ¹³C NMR Spectrum of 3ch (100 MHz, CDCl₃).

Fig. S32. ¹H NMR Spectrum of 3ci (400 MHz, CDCl₃).

Fig. S33. ¹³C NMR Spectrum of 3ci (100 MHz, CDCl₃).

Fig. S35. ¹³C NMR Spectrum of 3cj (100 MHz, CDCl₃).

Fig. S36. ¹H NMR Spectrum of 3ck (400 MHz, CDCl₃).

Fig. S37. ¹³C NMR Spectrum of 3ck (100 MHz, CDCl₃).

Fig. S38. ¹H NMR Spectrum of 3cl (400 MHz, CDCl₃).

Fig. S39. ¹³C NMR Spectrum of 3cl (100 MHz, CDCl₃).

Fig. S40. ¹H NMR Spectrum of 3cm (400 MHz, CDCl₃).

Fig. S41. ¹³C NMR Spectrum of 3cm (100 MHz, CDCl₃).

Fig. S42. ¹H NMR Spectrum of 3cn (500 MHz, CDCl₃).

Fig. S43. ¹³C NMR Spectrum of 3cn (125 MHz, CDCl₃).

Fig. S44. ¹H NMR Spectrum of 3co (400 MHz, CDCl₃).

Fig. S45. ¹³C NMR Spectrum of 3co (100 MHz, CDCl₃).

Fig. S46. ¹H NMR Spectrum of 3cp (400 MHz, CDCl₃).

Fig. S47. ¹³C NMR Spectrum of 3cp (100 MHz, CDCl₃).

Fig. S48. ¹H NMR Spectrum of 3cq (400 MHz, CDCl₃).

Fig. S49. ¹³C NMR Spectrum of 3cq (100 MHz, CDCl₃).

90 80

50 40 30 20 10 0 -10

70 60

-4000

-3800 -3600 -3400

-3200

-3000

-2800 -2600 -2400

-2200

-2000 -1800 -1600 -1200 -1200 -00 -200 -00 -200 -400

Fig. S50. ¹H NMR Spectrum of 3aa' (400 MHz, CDCl₃).

Fig. S51. ¹³C NMR Spectrum of 3aa' (100 MHz, CDCl₃).

210 200

190 180 170 160 150 140 130 120 110 100 fl (ppm)

VI. Crystal Structure of 3cn

3cn CCDC (1837721)

Table 1. Crystal data and structure refinement for 3cn.

Identification code	3cn
Empirical formula	$\mathrm{C}_{25}\mathrm{H}_{29}\mathrm{NO}_5\mathrm{S}$
Formula weight	455.55
Temperature/K	100.00(10)

Crystal system	triclinic
Space group	P-1
a/Å	9.0009(6)
b/Å	9.4814(5)
c/Å	14.6222(10)
α/°	92.269(5)
β/°	102.450(6)
γ/°	100.774(5)
Volume/Å ³	1192.88(13)
Z	2
$\rho_{calc}g/cm^3$	1.268
μ/mm^{-1}	1.497
F(000)	484.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/	° 6.212 to 147.566
Index ranges	$-10 \le h \le 7, -11 \le k \le 11, -16 \le l \le 18$
Reflections collected	7966
Independent reflections	$4642 \ [R_{int} = 0.0421, R_{sigma} = 0.0573]$
Data/restraints/parameters	4642/0/297
Goodness-of-fit on F ²	1.096
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0655, wR_2 = 0.1737$
Final R indexes [all data]	$R_1 = 0.0758, wR_2 = 0.1830$
Largest diff. peak/hole / e Å-3	3 0.80/-0.56

Table 2.Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters(Ų×103) for 3cn. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom x	У	Z	U(eq)
S(1) 3884.7(7)	4888.9(7)	7123.9(5)	24.4(2)
O(4) 3682(2)	5570(2)	7960.7(15)	30.4(5)
O(1) 5899(2)	-1509(2)	9504.5(14)	28.1(4)
O(5) 2789(2)	4875(2)	6264.5(15)	31.4(5)
O(2) 8367(2)	103(2)	9313.8(15)	29.8(5)
O(3) 8149(2)	1988(2)	8433.9(15)	29.2(4)
N(1) 3900(3)	3167(2)	7310.9(16)	23.7(5)
C(1) 3529(3)	2026(3)	6584.8(19)	23.4(5)
C(5) 4021(3)	-387(3)	6405.2(19)	25.4(6)
C(6) 4204(3)	900(3)	6963.3(19)	22.1(5)
C(7) 4995(3)	1356(3)	7920.8(19)	22.8(5)
		\$39	

C(8) 4838(3)	2728(3)	8117.2(19)	23.7(5)
C(12) 7719(3)	5649(3)	6093(2)	27.5(6)
C(11) 6245(3)	5071(3)	6220(2)	27.2(6)
C(10) 5761(3)	5615(3)	6973.2(19)	24.6(5)
C(2) 2661(3)	1896(3)	5673(2)	29.8(6)
C(19) 5127(3)	-689(3)	8933.7(19)	23.8(5)
C(21) 7559(3)	809(3)	8806.2(19)	24.2(5)
C(13) 8694(3)	6778(3)	6706(2)	27.1(6)
C(4) 3200(4)	-527(3)	5487(2)	29.2(6)
C(15) 6706(3)	6717(3)	7603(2)	27.2(6)
C(18) 5872(3)	479(3)	8568.7(18)	23.1(5)
C(3) 2519(4)	613(3)	5136(2)	32.1(6)
C(20) 3418(3)	-1170(3)	8755(2)	26.9(6)
C(14) 8170(3)	7298(3)	7453(2)	28.9(6)
C(9) 5489(4)	3666(3)	9006(2)	29.6(6)
C(16) 10274(4)	7399(4)	6551(2)	35.5(7)
C(17) 3024(4)	-1875(3)	4859(2)	37.6(7)
C(22) 9844(3)	2576(3)	8637(2)	33.2(7)
C(23) 10437(4)	2985(4)	9684(3)	43.9(8)
C(24) 10665(4)	1495(4)	8269(3)	45.7(9)
C(25) 9910(4)	3903(4)	8087(3)	44.7(9)

Table 3. Anisotropic Displacement Parameters (Å2×103) for 3cn. The Anisotropic displacement factorexponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S(1) 25.6(3)	16.1(3)	33.2(4)	5.1(2)	7.2(3)	7.4(2)
O(4) 30.8(11)	21.8(10)	41.6(12)	2.6(8)	12.0(9)	8.1(8)
O(1) 29.8(10)	24.4(10)	31.7(10)	9.3(8)	5.6(8)	9.2(8)
O(5) 34.1(11)	19.2(9)	40.7(12)	8.9(8)	4.1(9)	8.8(8)
O(2) 25.8(10)	27.8(10)	37.4(11)	11.6(8)	4.0(8)	10.9(8)
O(3) 21.5(10)	27.5(10)	39.9(11)	12.0(8)	7.0(8)	6.6(8)
N(1) 24.6(11)	17.6(11)	28.8(12)	5.5(9)	5.2(9)	4.0(8)
C(1) 23.5(13)	18.9(12)	29.4(14)	5.8(10)	8.1(10)	5(1)
C(5) 29.4(14)	17.7(12)	33.1(14)	7.8(10)	12.3(11)	7.6(10)
C(6) 20.3(12)	19.6(12)	29.0(13)	6.6(10)	8.7(10)	5.5(9)
C(7) 21.6(12)	22.8(13)	27.3(13)	6.5(10)	9.4(10)	7.2(10)
C(8) 21.4(12)	22.1(13)	27.3(13)	5.4(10)	5.8(10)	2.1(10)
C(12) 33.6(15)	22.7(13)	29.6(14)	6.4(11)	9.6(11)	10.1(11)

C(11) 33.4(15)	17.5(12)	30.0(14)	4.7(10)	5.6(11)	4.8(11)
C(10) 29.1(14)	16.6(12)	29.2(13)	6.7(10)	6.4(11)	6.6(10)
C(2) 33.1(15)	20.6(13)	32.6(15)	6.4(11)	0.8(12)	4.8(11)
C(19) 27.8(14)	20.3(12)	25.8(13)	2.5(10)	6.9(10)	9.5(10)
C(21) 22.7(13)	24.3(13)	27.2(13)	5.6(10)	6.3(10)	7.8(10)
C(13) 28.4(14)	21.0(13)	32.9(14)	10.3(11)	4.9(11)	8.1(11)
C(4) 37.6(15)	18.3(13)	31.9(14)	3.0(11)	11.7(12)	1.7(11)
C(15) 31.5(14)	21.6(13)	29.9(14)	3.4(10)	6.9(11)	8.5(11)
C(18) 23.3(13)	21.9(13)	26.4(13)	4.9(10)	7(1)	7.8(10)
C(3) 40.1(16)	24.1(14)	28.1(14)	3.9(11)	1.3(12)	3.6(12)
C(20) 29.0(14)	21.5(13)	31.2(14)	5.4(10)	7.4(11)	6(1)
C(14) 28.6(14)	21.4(13)	33.7(15)	2.8(11)	2.9(11)	2.1(11)
C(9) 35.6(15)	23.0(13)	30.0(14)	4.2(11)	6.1(12)	6.4(11)
C(16) 28.6(15)	36.0(17)	42.9(17)	7.8(13)	8.7(13)	7.1(12)
C(17) 52.6(19)	23.7(14)	36.9(16)	1.6(12)	12.2(14)	6.0(13)
C(22) 17.6(13)	28.6(15)	54.3(19)	12.1(13)	8.1(12)	4.8(11)
C(23) 34.1(17)	30.2(17)	61(2)	6.2(15)	-2.2(15)	5.2(13)
C(24) 29.1(16)	40.3(19)	75(3)	12.4(17)	24.5(16)	8.9(14)
C(25) 25.9(15)	38.5(18)	72(2)	24.9(17)	12.7(15)	5.1(13)

Table 4.Bond Lengths for 3cn.

Atom	Atom Length/Å	Atom Atom Length/Å
S (1)	O(4) 1.423(2)	C(8) C(9) 1.486(4)
S(1)	O(5) 1.418(2)	C(12) C(11) 1.392(4)
S (1)	N(1) 1.668(2)	C(12) C(13) 1.398(4)
S(1)	C(10) 1.764(3)	C(11) C(10) 1.384(4)
O(1)	C(19) 1.337(3)	C(10) C(15) 1.384(4)
O(2)	C(21) 1.232(3)	C(2) C(3) 1.391(4)
O(3)	C(21) 1.333(3)	C(19) C(18) 1.373(4)
O(3)	C(22) 1.484(3)	C(19) C(20) 1.482(4)
N(1)	C(1) 1.425(3)	C(21) C(18) 1.453(4)
N(1)	C(8) 1.420(3)	C(13) C(14) 1.388(4)
C(1)	C(6) 1.400(4)	C(13) C(16) 1.502(4)
C(1)	C(2) 1.381(4)	C(4) C(3) 1.401(4)
C(5)	C(6) 1.404(4)	C(4) C(17) 1.507(4)
C(5)	C(4) 1.375(4)	C(15) C(14) 1.397(4)
C(6)	C(7) 1.436(4)	C(22) C(23) 1.518(5)

C(7)	C(8) 1.360(4	b) C(22)	C(24) 1.516(5)
C(7)	C(18) 1.483(4	e) C(22)	C(25) 1.519(4)

Table 5.Bond Angles for 3cn.

Atom Atom Angle/°	Atom Atom Angle/°
O(4) S(1) N(1) 107.17(12)	C(15) C(10) S(1) 119.5(2)
O(4) S(1) C(10) 108.47(13)	C(1) C(2) C(3) 117.2(3)
O(5) S(1) O(4) 119.82(13)	O(1) C(19) C(18) 122.3(2)
O(5) S(1) N(1) 106.11(12)	O(1) C(19) C(20) 113.0(2)
O(5) S(1) C(10) 109.17(13)	C(18) C(19) C(20) 124.7(2)
N(1) S(1) C(10) 105.11(12)	O(2) C(21) O(3) 123.2(2)
C(21) O(3) C(22) 121.7(2)	O(2) C(21) C(18) 124.1(3)
C(1) N(1) S(1) 124.26(18)	O(3) C(21) C(18) 112.7(2)
C(8) N(1) S(1) 123.29(18)	C(12) C(13) C(16) 120.0(3)
C(8) N(1) C(1) 108.1(2)	C(14) C(13) C(12) 118.6(3)
C(6) C(1) N(1) 106.9(2)	C(14) C(13) C(16) 121.4(3)
C(2) C(1) N(1) 131.6(2)	C(5) C(4) C(3) 118.8(3)
C(2) C(1) C(6) 121.5(3)	C(5) C(4) C(17) 121.2(3)
C(4) C(5) C(6) 119.8(2)	C(3) C(4) C(17) 120.0(3)
C(1) C(6) C(5) 119.8(3)	C(10) C(15) C(14) 118.3(3)
C(1) C(6) C(7) 108.0(2)	C(19) C(18) C(7) 121.4(2)
C(5) C(6) C(7) 132.2(2)	C(19) C(18) C(21) 118.2(2)
C(6) C(7) C(18) 125.0(2)	C(21) C(18) C(7) 120.3(2)
C(8) C(7) C(6) 108.6(2)	C(2) C(3) C(4) 122.8(3)
C(8) C(7) C(18) 126.3(2)	C(13) C(14) C(15) 121.6(3)
N(1) C(8) C(9) 123.2(2)	O(3) C(22) C(23) 109.3(3)
C(7) C(8) N(1) 108.4(2)	O(3) C(22) C(24) 109.9(2)
C(7) C(8) C(9) 128.4(3)	O(3) C(22) C(25) 101.6(2)
C(11) C(12) C(13) 120.8(3)	C(23) C(22) C(25) 111.2(3)
C(10) C(11) C(12) 119.1(3)	C(24) C(22) C(23) 112.8(3)
C(11) C(10) S(1) 118.9(2)	C(24) C(22) C(25) 111.5(3)
C(11) C(10) C(15) 121.7(3)	

Table 6. Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for 3cn.

Atom	x	у	Z.	U(eq)
H(1)	6833.37	-1171.74	9609.94	42

H(5)	4454.96	-1143.3	6656.3	30
H(12)	8057.97	5280.79	5593.05	33
H(11)	5595.33	4329.03	5804.8	33
H(2)	2189.42	2635.28	5427.71	36
H(15)	6373.96	7061.09	8112.95	33
H(3)	1948.92	507.99	4517.44	38
H(20A)	3127.81	-2142.49	8472.69	40
H(20B)	2924.33	-552.14	8337.37	40
H(20C)	3094.96	-1127.13	9337.64	40
H(14)	8808.53	8051.9	7863.58	35
H(9A)	6232.06	4474.35	8899.84	44
H(9B)	5989.09	3125.88	9477.88	44
H(9C)	4665.66	4003.17	9213.62	44
H(16A)) 11003.93	6839.49	6841.15	53
H(16B)	10596.06	8376.33	6822.8	53
H(16C)	10231.27	7378.7	5888.35	53
H(17A)	3724.91	-1704.37	4446.37	56
H(17B)	1976.33	-2136.23	4493.54	56
H(17C)	3260.09	-2643.92	5237.47	56
H(23A)	9777.63	3546.32	9900.22	66
H(23B)	11477.05	3539.44	9802.9	66
H(23C)	10432	2126.7	10011.86	66
H(24A)) 10582.3	661.93	8620.93	69
H(24B)	11740.61	1924.87	8334.45	69
H(24C)	10192.75	1214.06	7617.45	69
H(25A)	9501.65	3616.97	7429.87	67
H(25B)	10968.4	4407.47	8184.02	67
H(25C)	9302.98	4525.02	8299.11	67

Crystal structure determination of 3cn

Crystal Data for C₂₅H₂₉NO₅S (*M*=455.55 g/mol): triclinic, space group P-1 (no. 2), *a* = 9.0009(6) Å, *b* = 9.4814(5) Å, *c* = 14.6222(10) Å, *a* = 92.269(5)°, *β* = 102.450(6)°, γ = 100.774(5)°, *V* = 1192.88(13) Å³, *Z* = 2, *T* = 100.00(10) K, µ(CuKa) = 1.497 mm⁻¹, *Dcalc* = 1.268 g/cm³, 7966 reflections measured (6.212° ≤ 2 Θ ≤ 147.566°), 4642 unique (R_{int} = 0.0421, R_{sigma} = 0.0573) which were used in all calculations. The final R_1 was 0.0655 (I > 2 σ (I)) and wR_2 was 0.1830 (all data).

References:

 (a) Q. Wang, T.-R. Li, L.-Q. Lu, M.-M. Li, K. Zhang, W.-J. Xiao, J. Am. Chem. Soc., 2016, 138, 8360. (b) T.-R. Li, B.-Y. Cheng, Y.-N. Wang, M.-M. Zhang, L.-Q. Lu, W.-J. Xiao, Angew. Chem., Int. Ed., 2016, 55, 12422. (c) Q. Wang, T.-R. Li, L.-Q. Lu, M.-M. Li, K. Zhang and W.-J. Xiao, *J. Am. Chem. Soc.*, 2016, **138**, 8360. (d) J. Song, Z.-J. Zhang and L.-Z. Gong, *Angew. Chem., Int. Ed.*, 2017, **56**, 5212. (e) X. Lu, L. Ge, C. Cheng, J. Chen, W. Cao and X. Wu, *Chem. Eur. J.*, 2017, **23**, 7689. (f) T.-R. Li, L.-Q. Lu, Y.-N. Wang, B.-C. Wang and W.-J. Xiao, *Org. Lett.*, 2017, **19**, 4098. (g) W. Shao and S.-L. You, *Chem. Eur. J.*, 2017, **23**, 12489. (h) H. Chen, X. Lu, X. Xia, Q. Zhu, Y. Song, J. Chen, W. Cao and X. Wu, *Org. Lett.*, 2018, **20**, 1760.