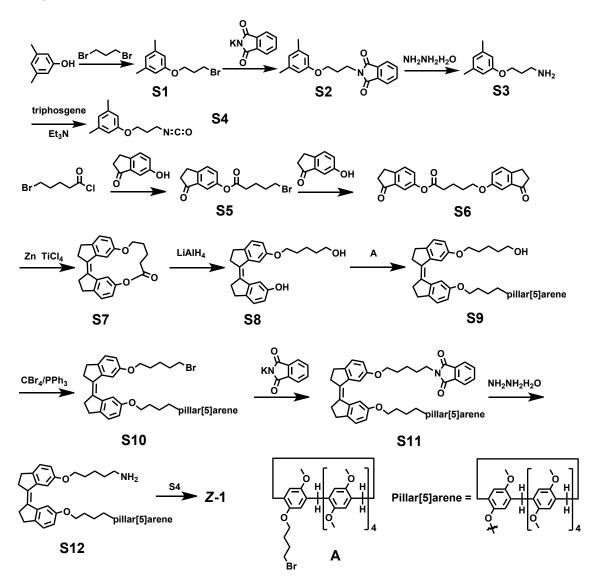
Electronic Supplementary Information

A light-driven molecular machine based on stiff stilbene

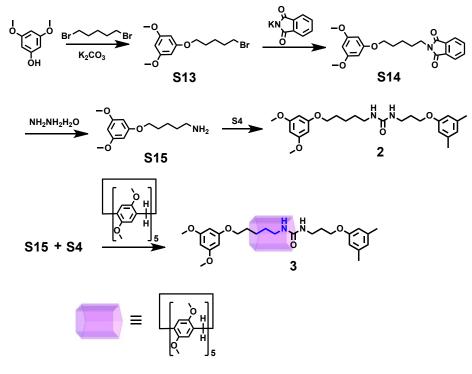
Yuan Wang,^{a,c} Yancong Tian,^b Yu-Zhe Chen,^c Li-Ya Niu,^a Li-Zhu Wu,^c Chen-Ho Tung,^c Qing-Zheng Yang^{*a} and Roman Boulatov^b

^a Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. Chinas

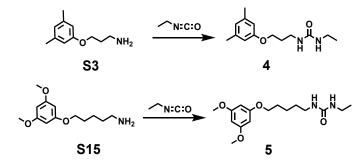
^b Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
 ^c Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China


Contents

1. Materials and methods.	3
2. Synthesis of compound Z-1, E-1, 2, 3, 4, 5	3
Scheme S1-S3	3
3. Characterization of compound Z-1, E-1, 2, 3, 4, 5	10
Fig. S1-S6	10
Fig. S7-S10	13
Fig. S11	15
Fig. S12-S17	
Fig. S18-S28	18
4. Cycling between Z-1 and E-1 upon irradiation	24
Fig. S29	24
5. Changes in the chemical shifts of protons H1-H10 of Z-1, E-1 ar	nd 3 compared to 2
in CDCl ₃	25
Fig. S30	26
6. Determination of the association constants.	26
Fig. S31-S34	27
7. Quantum-chemical calculations	29
Fig. S35	29
8. References	


1. Materials and methods

Unless otherwise noted, chemicals and reagents were obtained from commercial suppliers and were used without further purification. NMR spectra were recorded with a Bruker Avance 400 spectrometer or a Bruker Avance 600 spectrometer. High-resolution mass spectra were measured on a Bruker Daltonics Apex IV spectrometer. The photoisomerization reactions were carried out by using a xenon lamp (500 W) or a high-pressure Hg lamp (500 W) with a filter. Absorption spectra were recorded on a Hitachi U-3900 spectrophotometer. High performance liquid chromatography was performed on a Hitachi L-2000 with UV-vis detector L-2420, pump L-2130 and Rheodyne 7725i manual injector using YMC silica gel column (column: 25 cm by 4.6 mm (ID), stationary phase size: 5 µm diameter).


2. Synthesis of compound Z-1, E-1, 2, 3, 4, 5.

Scheme S1. Synthesis of compound Z-1.

Scheme S2. Synthesis of compound 2, 3.

Scheme S3. Synthesis of compound 4, 5.

1-(3-bromopropoxy)-3,5-dimethylbenzene, S1. To a stirred solution of 1,3-dibromopropane (19.8 g, 98.1 mmol) in acetone (250 mL) was added K_2CO_3 (15.0 g, 108.0 mmol) and 3,5-dimethylphenol (2.0 g, 16.4 mmol) and the mixture was stirred at 70°C overnight. After the reaction was completed, the solid was removed by filtration and the solvent was removed under reduced pressure to afford 3.8 g of product. Yield: 94%. ¹H NMR (CDCl₃, 400 MHz): δ 6.66 (s, 1H), 6.59 (s, 2H), 4.11 (t, 2H, *J* = 5.6Hz), 3.64 (t, 2H, *J* = 6.2 Hz), 2.34 (m, 8H).

2-(3-(3,5-dimethylphenoxy)propyl)isoindoline-1,3-dione, S2. A solution of **S1** (3.1 g, 12.6 mmol) and potassium phthalimide (7.0 g, 37.8 mmol) in 30 mL DMF was heated at 40°C overnight. After the reaction was completed, 120 mL of brine was added and then extracted with EtOAc (50 mL, 3 times), the combined organic phase was washed with brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure and the further purification was carried out by column chromatography using CH_2CI_2/Et_2O (40/1, v/v) as eluent to afford 3.7 g of **S2**. Yield: 95%. ¹H NMR (CDCI₃, 400 MHz): δ 7.85 (m, 2H), 7.73 (m, 2H), 6.56 (s, 1H), 6.42 (s, 2H), 4.00 (t, 2H, J = 6.0 Hz), 3.90 (t, 2H, J = 6.8 Hz), 2.24 (s, 6H), 2.16 (m, 2H).

3-(3,5-dimethylphenoxy)propan-1-amine, S3. To a solution of **S2** (1.0 g, 3.2 mmol) in CH₂Cl₂ (10 mL) and CH₃OH (10 mL) under N₂ atmosphere, hydrazine monohydrate (2.0 mL, 2.0 g, 40.0 mmol) was added and the mixture was heated at 50°C overnight. After evaporation, the mixture was dissolved in 100 mL 15% aqueous NaOH and then extracted with CH₂Cl₂ (50 mL, 3 times), the combined organic phase was washed with water, brine and dried over Na₂SO₄. The solvent was removed under reduced pressure to afford 0.4 g of product. Yield: 72%. ¹H NMR (CDCl₃, 400 MHz): δ 6.60 (s, 1H), 6.55 (s, 2H), 4.03 (t, 2H, *J* = 6.2 Hz), 2.91 (t, 2H, *J* = 6.8 Hz), 2.30 (s, 6H), 1.91 (m, 2H).

1-(3-isocyanatopropoxy)-3,5-dimethylbenzene, S4. To a solution of **S3** (0.1 g, 0.8 mmol) in dry CH_2CI_2 (3 ml) was added triethylamine (0.5 ml, 0.3 g, 3.4 mmol) and triphosgene (0.08 g, 0.3 mmol), then the mixture was stirred at room temperature for 1 h and **S4** was obtained. We used **S4** for subsequent addition reactions without further purification.

3-oxo-2,3-dihydro-1H-inden-5-yl 5-bromopentanoate, S5. To a solution of 6-hydroxy-1indanone (1.0 g, 6.8 mmol) in dry THF (200 mL) was added triethylamine (1.4 mL, 1.0 g, 10.2 mmol) and 5-bromovaleryl chloride (2.0 g, 10.0 mmol), then the mixture was stirred at room temperature for 3 h. After the reaction was completed, the resulting mixture was washed with aqueous K₂CO₃ and dried over Na₂SO₄. The solution was removed under reduced pressure to afford 1.9 g of product. Yield: 89%. ¹H NMR (CDCl₃, 400 MHz): δ 7.49 (d, 1H, *J* = 8.0 Hz), 7.44 (d, 1H, *J* = 1.6 Hz), 7.31 (dd, 1H, *J* = 8.4 Hz, 2.4 Hz), 3.46 (t, 2H, *J* = 6.4 Hz), 3.14 (t, 2H, *J* = 5.6 Hz), 2.74 (t, 2H, *J* = 5.6 Hz), 2.62 (t, 2H, *J* = 6.4 Hz), 2.00 (m, 2H), 1.92 (m, 2H).

3-oxo-2,3-dihydro-1H-inden-5-yl 5-((3-oxo-2,3-dihydro-1H-inden-5-yl)oxy)pentanoate, S6. To a solution of **S5** (1.9 g, 6.0 mmol) of DMF (9 mL) was added 6-hydroxyindanone (1.0 g, 6.4 mmol) and K₂CO₃ (2.4 g, 17.3 mmol), then the mixture was stirred at 60°C overnight. After the reaction was completed, ethyl acetate (200 mL) was added and the organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the further purification was carried out by column chromatography using CH₂Cl₂/Et₂O (20:1, v/v) as eluent to afford 0.8 g product. Yield: 37%. ¹H NMR (CDCl₃, 400 MHz): δ 7.48 (d, 1H, *J* = 8.0 Hz), 7.42 (d, 1H, *J* = 1.6 Hz), 7.37 (d, 1H, *J* = 8.0 Hz), 7.31 (dd, 1H, *J* = 8.4 Hz, 2.4 Hz), 7.20 (d, 1H, *J* = 2Hz), 7.17 (dd, 1H, *J* = 8.4 Hz, 2.4 Hz), 4.05 (t, 2H, *J* = 5.6 Hz), 3.12 (t, 2H, *J* = 6.4 Hz), 3.05 (t, 2H, *J* = 5.6 Hz), 2.70 (t, 2H, *J* = 6.0 Hz), 1.94 (m, 4H).

S7. To a stirred suspension of zinc powder (5.3 g, 81.6 mmol) in 120 mL dry THF, TiCl₄ (2.5 mL, 5.2 g, 27.2 mmol) was added over 2 min at 0°C. The resulting slurry was heated at 80°C reflux for 3 h, then pyridine (1.1 mL, 1.1 g, 13.6 mmol) was added. A THF solution (50 mL) of **S6** (0.8 g, 2.2 mmol) was added over a 5 h period by syringe pump to the refluxing reaction mixture. The reflux was continued for 0.5 h after the addition was completed. Upon cooling to room temperature, the reaction mixture was poured into saturated aqueous K_2CO_3 (100 mL) and stirred until the organic phase was separated. The combined organic phase was evaporated under reduced pressure, CH_2Cl_2 (100 mL) was added and washed with water. The organic phase was dried over Na_2SO_4 and the solvent was removed under reduced pressure to afford 0.7 g of product. Yield: 90%. ¹H NMR (CDCl₃, 400 MHz): δ 7.96 (d, 1H, *J* = 2.0 Hz), 7.53 (d, 1H, *J* = 2.0 Hz), 7.26 (overlapped with CDCl₃, 1H), 7.15 (d, 1H, *J* = 8.0 Hz),

6.88 (dd, 1H, *J* = 8.0 Hz, 2.0 Hz), 6.76 (dd, 1H, *J* = 8.0 Hz, 2.0 Hz), 4.00 (t, 2H, *J* = 7.6 Hz), 3.00 (t, 2H, *J* = 6.0 Hz), 2.88 (m, 6H), 2.58 (t, 2H, *J* = 6.0 Hz), 1.92 (m, 4H).

(Z)-6'-((5-hydroxypentyl)oxy)-2,2',3,3'-tetrahydro-[1,1'-biindenylidene]-6-ol, S8. To a stirred solution of S7 (0.7 g, 2.0 mmol) in dry THF (100 mL) was added LiAlH₄ (0.3 g, 8.0 mmol) cautiously and the resulting mixture was stirred overnight. The reaction was quenched with methanol and the solid was removed by filtration. The filtrate was concentrated to a small volume, CH_2CI_2 (100 mL) was added and under reduced pressure and further purification was carried out by column chromatography using CH_2CI_2/CH_3OH (20:1, v/v) as eluent to afford 0.6 g of product. Yield: 80%. ¹H NMR (CDCI₃, 400 MHz): δ 7.68 (d, 1H, *J* = 2.0 Hz), 7.59 (d, 1H, *J* = 2.0 Hz), 7.17 (d, 1H, *J* = 8.4 Hz), 7.11 (d, 1H, *J* = 8.0 Hz), 6.72 (dd, 1H, *J* = 8.0 Hz, 2.0 Hz), 6.66 (dd, 1H, *J* = 8.0 Hz, 2.4 Hz), 3.97 (t, 2H, *J* = 6.6 Hz), 3.67 (t, 2H, *J* = 6.0 Hz), 2.89 (t, 4H, *J* = 6.4 Hz), 2.80 (t, 4H, *J* = 6.4 Hz), 1.79 (m, 2H), 1.63 (m, 2H), 1.54 (m, 2H).

Pseudorotaxane, S9. A solution of S8 (0.4 g, 1.2 mmol), A (1.7 g, 2.0 mmol) and K₂CO₃ (0.6 g, 4.0 mmol) in 10 mL DMF was heated at 60°C overnight. After the reaction was completed, 120 mL of brine was added and then extracted with EtOAc (50 mL, 3 times), the combined organic phase was washed with brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure and the further purification was carried out by column chromatography using CH_2Cl_2/Et_2O (10/1, v/v) as eluent to afford 1.1 g of product. Yield: 85%. ¹H NMR (CDCl₃, 400 MHz): δ 7.71 (d, 1H, J = 3.2 Hz), 7.58 (d, 1H, J = 1.6 Hz), 7.31 (d, 1H, J = 8.0 Hz), 7.22 (d, 1H, J = 8.4 Hz), 6.96-6.81 (m, 12H), 4.07 (t, 2H, J = 6.0 Hz), 3.97 (t, 2H, J = 6.2 Hz), 3.82-3.61 (m, 37H), 2.98 (m, 6H), 2.86 (t, 4H, J = 6.2 Hz), 2.14 (m, 2H), 2.05 (m, 2H), 1.67 (m, 2H), 0.03 (m, 2H), -0.05 (t, 1H, J = 6.4 Hz), -1.97 (m, 2H), -2.18 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.12, 157.51, 150.99, 150.79, 150.70, 150.52, 150.48, 150.45, 150.12, 141.85, 141.67, 140.86, 140.21, 135.98, 135.22, 129.23, 129.09, 128.63, 128.59, 128.54, 128.45, 128.03, 125.95, 125.39, 117.09, 115.18, 114.83, 114.22, 113.74, 113.71, 113.50, 113.45, 113.22, 111.99, 111.78, 108.26, 68.82, 68.08, 67.31, 62.84, 56.91, 56.78, 55.79, 55.61, 55.53, 55.48, 55.41, 55.33, 53.48, 35.53, 35.41, 30.04, 29.60, 29.43, 26.20, 26.15, 26.61, 26.15, 18.15. HR-ESI-MS: m/z calcd for [M+H]⁺ C₇₁H₈₁O₁₃: 1141.56717; found: 1141.56468, error: 2.2 ppm.

Pseudorotaxane, S10. To a stirred solution of **S9** (0.8 g, 0.7 mmol) in 5 mL dry CH₂Cl₂ containing 10 drops of acetone, CBr₄ (0.5 g, 1.4 mmol) and PPh₃ (0.4 g, 1.4 mmol) was added in sequence. The resulting mixture was stirred for 10 min and then purified immediately with column chromatography eluting with petroleum ether/CH₂Cl₂/Et₂O (10:10:1, v/v/v) to afford 0.7 g of product. Yield: 86%. ¹H NMR (CDCl₃, 400 MHz): δ 7.67 (d, 1H, *J* = 1.6 Hz), 7.56 (d, 1H, *J* = 1.6 Hz), 7.27 (d, 1H, *J* = 8.4 Hz), 7.23 (d, 1H, *J* = 8.4 Hz), 7.01-6.75 (m, 12H), 4.05 (t, 2H, *J* = 6.0 Hz), 3.95 (t, 2H, *J* = 6.2 Hz), 3.85-3.59 (m, 37H), 3.26 (t, 2H, *J* = 7.6 Hz), 2.98 (t, 4H, *J* = 6.4 Hz), 2.87 (t, 4H, *J* = 6.4 Hz), 2.04 (m, 4H), 0.53 (t, 2H, *J* = 4.8 Hz), 0.24 (m, 2H), -1.37 (m, 2H), -1.62 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.10, 157.68, 150.70, 150.64, 150.56, 150.43, 150.36, 150.25, 149.72, 142.02, 141.74, 140.98, 140.53, 136.38, 135.95, 135.29, 128.76, 128.67, 128.60, 128.50, 128.46, 128.42, 128.35, 128.22, 128.15, 128.04, 127.09, 125.98, 125.59, 116.81, 114.51, 114.02, 113.95, 113.47, 113.37, 113.26, 113.13, 113.07, 110.10, 108.59, 69.32, 68.55, 67.56, 56.22, 55.96, 55.75, 55.48, 55.32, 35.60,

35.52, 32.88, 30.13, 30.06, 29.35, 29.24, 29.21, 26.94, 26.29, 23.67, 20.51, 19.16. HR-ESI-MS: m/z calcd for [M+Na]⁺ C₇₁H₇₉O₁₂Br: 1225.46471; found: 1225.46331, error: 1.1 ppm.

S11. A solution of **S10** (0.7 g, 0.6 mmol) and potassium phthalimide (0.7 g, 3.8 mmol) in 30 mL DMF was heated at 40°C overnight. After the reaction was completed, 120 mL of brine was added and then extracted with EtOAc (50 mL, 3 times), the combined organic phase was washed with brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure and the further purification was carried out by column chromatography using CH₂Cl₂/Et₂O (25/1, v/v) as eluent to afford 0.7 g of **S11**. Yield: 92%. ¹H NMR (CDCl₃, 400 MHz): δ 7.89 (m, 2H), 7.79 (m, 2H), 7.64 (d, 1H, *J* = 2.0 Hz), 7.62 (d, 1H, *J* = 2.0 Hz), 7.27 (d, 1H, *J* = 8.4 Hz), 7.23 (d, 1H, *J* = 8.4 Hz), 6.78-6.72 (m, 12H), 4.00 (t, 2H, *J* = 6.0 Hz), 3.91 (t, 2H, *J* = 6.4 Hz), 3.86 (t, 2H, *J* = 6.4 Hz), 3.76-3.59 (m, 39H), 2.92 (t, 4H, *J* = 6.4 Hz), 2.81 (t, 4H, *J* = 6.4 Hz), 1.96 (m, 4H), 1.78 (m, 2H), 1.70 (m, 2H), 1.48 (m, 2H).

Pseudorotaxane, S12. To a solution of **S11** (0.7 g, 0.6 mmol) in CH_2CI_2 (10 mL) and CH_3OH (10 mL) under N₂ atmosphere, hydrazine monohydrate (2.0 mL, 2.0 g, 40.0 mmol) was added and the mixture was heated at 50°C overnight. After evaporation, the mixture was dissolved in 100 mL 15% aqueous NaOH and then extracted with CH_2CI_2 (50 mL, 3 times), the combined organic phase was washed with water, brine and dried over Na₂SO₄. The solvent was removed under reduced pressure to afford 0.6 g of product. Yield: 91%. ¹H NMR (CDCI₃, 400 MHz): δ 7.76 (d, 1H, *J* = 3.2 Hz), 7.66 (d, 1H, *J* = 1.6 Hz), 7.34 (d, 1H, *J* = 8.0 Hz), 7.26 (overlapped with CDCI₃, 1H), 6.96-6.69 (m, 12H), 5.38 (t, 1H, *J* = 6.4 Hz) 5.16 (t, 1H, *J* = 6.4 Hz), 4.10 (t, 2H, *J* = 6.0 Hz), 4.01 (t, 2H, *J* = 6.0 Hz), 3.85-3.66 (m, 37H), 3.19 (t, 2H, *J* = 8.0 Hz), 3.30 (t, 4H, *J* = 6.4 Hz), 2.89 (t, 4H, *J* = 6.4 Hz), 2.16 (m, 4H), 0.59 (t, 2H, *J* = 6.4 Hz), 0.30 (m, 2H), -1.90 (m, 2H), -2.11 (m, 2H).

Rotaxane, Z-1. To a solution of S4 in CH₂Cl₂ (5 mL) was added S12 (0.3g, 0.3 mmol) in the ice bath, Then the mixture was stirred for 10 h, after the reaction was completed, the resulting mixture was removed under reduced pressure and the further purification was carried out by column chromatography using CH₂Cl₂/Et₂O (50/1, v/v) as eluent to afford 250 mg Z-1. Yield: 70%. ¹H NMR (CDCl₃, 400 MHz): δ 7.71 (d, 1H, J = 1.2 Hz), 7.59 (d, 1H, J = 1.2 Hz), 7.30 (d, 1H, J = 5.6 Hz), 7.21 (d, 1H, J = 5.6 Hz), 6.96-6.81 (m, 12H), 6.61 (m, 3H), 4.87 (br, 1H), 4.05-3.92 (m, 6H). 3.86-3.64 (m, 37H), 3,32 (m, 2H), 3.12 (s, 1H), 3.05 (s, 1H), 2.98 (t, 4H, J = 6.4 Hz), 2.86 (m, 5H), 2.31 (s, 6H), 2.05 (m, 4H), 1.94 (br, 2H), 0.90 (m, 2H), 0.15 (br, 2H), -2.03 (br, 2H), -2.16 (br, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.27, 158.08, 157.72, 157.51, 151.07, 150.94, 150.89, 150.62, 150.52, 150.47, 141.89, 141.67, 140.90, 140.30, 139.38, 136.01, 135.24, 129.30, 129.26, 129.20, 129.14, 129.01, 128.98, 128.78, 128.74, 128.37, 125.97, 125.43, 122.77, 117.03, 115.07, 114.82, 114.67, 114.58, 114.37, 114.31, 114.25, 113.69, 113.24, 112.49, 112.07, 111.71, 108.36, 68.77, 68.09, 67.55, 65.94, 56.90, 56.82, 56.69, 56.63, 56.59, 56.45, 56.41, 55.81, 55.38, 40.25, 37.65, 35.53, 35.41, 30.88, 30.05, 29.84, 29.53, 29.36, 29.30, 29.22, 26.66, 26.16, 26.07, 21.59, 19.88, 14.21. HR-ESI-MS: m/z calcd for [M+H]⁺ C₈₃H₉₇N₂O₁₄ : 1345.69343; found: 1345.69409, error: 0.5 ppm.

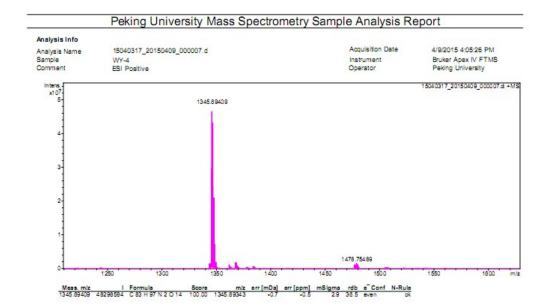
Rotaxane, *E*-1. We irradiate a solution of *Z*-1 (30 mg) with a Xe lamp and a narrow band filter centered at 387 ± 5 nm for about 2-2.5 h and further purification was carried out by column

chromatography using CH₂Cl₂/Et₂O (50/1, v/v) as eluent to afford 27 mg *E*-**1**. Yield: 90%. ¹H NMR (CDCl₃, 400 MHz): δ 7.22 (m, 4H), 6.94-6.62 (m, 12H), 6.52 (s, 1H), 6.24 (s, 2H), 4.29(m, 5H), 4.05 (t, 1H, *J* = 6.4 Hz), 3.81-3.34 (m, 37H), 3.20 (m, 5H), 3.06 (m, 5H), 2.84 (s, 1H), 2.37 (s, 6H), 2.02 (s, 1H), 1.82 (m, 6H), 1.52 (m, 4H), 1.19 (m, 2H), -0.01 (br, 2H), -1.65 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.54, 157.43, 157.33, 156.96, 152.73, 151.69, 151.63, 151.33, 151.19, 150.48, 150.33, 150.06, 149.97, 144.67, 144.47, 140.55, 140.04, 138.21, 135.64, 135.58, 130.73, 130.39, 130.09, 129.85, 128.95, 128.86, 128.81, 128.53, 128.48, 126.90, 125.63, 121.51, 118.57, 117.29, 116.96, 116.12, 115.94, 115.41, 114.42, 113.86, 113.06, 112.85, 112.31, 112.16, 111.19, 69.22, 68.69, 64.38, 59.29, 57.67, 57.32, 56.70, 56.06, 55.90, 55.85, 55.66, 55.01, 53.49, 40.67, 34.69, 34.05, 33.94, 31.04, 31.00, 30.94, 30.50, 30.31, 29.91, 29.83, 29.35, 29.10, 28.57, 26.06, 27.44, 26.85, 26.60, 24.27, 21.60. HR-ESI-MS: m/z calcd for [M+H]⁺ C₈₃H₉₇N₂O₁₄: 1345.69343; found: 1345.89572, error: 1.7 ppm.

1-((5-bromopentyl)oxy)-3,5-dimethoxybenzene, S13. To a stirred solution of 1,5-dibromopentane (33.9 g, 147.4 mmol) in acetone (250 mL) was added K_2CO_3 (15.0 g, 108.0 mmol) and 3,5-dimethoxyphenol (3.0 g, 24.5 mmol) and the mixture was stirred at 70°C overnight. After the reaction was completed, the solid was removed by filtration and the solvent was removed under reduced pressure to afford 6.4 g of product. Yield: 95%. ¹H NMR (CDCl₃, 400 MHz): δ 6.08 (s, 3H), 3.92 (t, 2H, *J* = 6.4 Hz), 3.76 (s, 6H), 3.43 (t, 2H, *J* = 6.8 Hz), 1.92 (m, 2H), 1.79 (m, 2H), 1.61 (m, 2H).

2-(5-(3,5-dimethoxyphenoxy)pentyl)isoindoline-1,3-dione, S14. A solution of **S13** (3.7 g, 13.8mmol) and potassium phthalimide (3.9 g, 21.0 mmol) in 30 mL DMF was heated at 40°C overnight. After the reaction was completed, 120 mL of brine was added and then extracted with EtOAc (50 mL, 3 times), the combined organic phase was washed with brine and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure and the further purification was carried out by column chromatography using CH₂Cl₂/Et₂O (25/1, v/v) as eluent to afford 4.0 g of **S14**. Yield: 98%. ¹H NMR (CDCl₃, 400 MHz): δ 7.84 (m, 2H), 7.71 (m, 2H), 6.06 (3, 3H), 3.91 (t, 2H, *J* = 5.6 Hz), 3.76 (s, 6H), 3.72 (t, 2H, *J* = 7.2 Hz), 1.78 (m, 4H), 1.52 (m, 2H).

5-(3,5-dimethoxyphenoxy)pentan-1-amine, S15. To a solution of **S14** (1.0 g, 3.4 mmol) in CH_2CI_2 (10 mL) and CH_3OH (10 mL) under N₂ atmosphere, hydrazine monohydrate (2.0 mL, 2.0 g, 40.0 mmol) was added and the mixture was heated at 50°C overnight. After evaporation, the mixture was dissolved in 100 mL 15% aqueous NaOH and then extracted with CH_2CI_2 (50 mL, 3 times), the combined organic phase was washed with water, brine and dried over Na₂SO₄. The solvent was removed under reduced pressure to afford 0.6 g of product. Yield: 91%. ¹H NMR (CDCI₃, 400 MHz): δ 6.07 (s, 3H), 3.91 (t, 2H, *J* = 6.4 Hz), 3.76 (s, 6H), 2.71 (t, 2H, *J* = 6.4 Hz), 1.78 (t, 2H, *J* = 6.4 Hz), 1.49 (m, 4H).


1-(5-(3,5-dimethoxyphenoxy)pentyl)-3-(3-(3,5-dimethylphenoxy)propyl)urea, **2.** To a solution of **S4** (0.1 g, 0.5 mmol) in CH_2Cl_2 (5 mL) was added **S15** (0.1 g, 0.4 mmol) in the ice bath and stirred at room temperature for 1 h. After the reaction was completed, the resulting mixture was removed under reduced pressure and the further purification was carried out by column chromatography using CH_2Cl_2/CH_3OH (40/1, v/v) as eluent to afford 30 mg **2**. Yield:

19%. ¹H NMR (CDCl₃, 400 MHz): δ 6.59 (s, 1H), 6.51 (s, 2H), 6.06 (s, 3H), 4.93 (t, 1H, *J* = 6.4 Hz), 4.73 (t, 1H, *J* = 6.4 Hz), 3.98 (t, 2H, *J* = 6.0 Hz), 3.88 (t, 2H, *J* = 6.4 Hz), 3.75 (s, 6H), 3.34 (t, 2H, *J* = 6.0 Hz), 3.14 (t, 2H, *J* = 6.0 Hz), 2.27 (s, 6H), 1.95 (m, 2H), 1.73 (m, 2H), 1.49 (m, 4H). ¹³C NMR (CDCl₃, 100 MHz): δ 161.74, 161.15, 158.96, 158.63, 139.35, 122.86, 112.51, 93.77, 93.23, 67.94, 65.97, 55.41, 40.62, 38.19, 30.16, 30.03, 29.08, 23.61, 21.47. HR-ESI-MS: m/z calcd for [M+H]⁺ C₂₅H₃₇N₂O₅: 445.26970 ; found: 445.27032 , error: 1.4 ppm.

Rotaxane, 3. To a solution of **S4** (0.1 g, 0.5 mmol) in CH₂Cl₂ (5 mL) was added **S15** (0.1 g, 0.4 mmol) and pillar[5]arene (0.5 g, 0.7 mmol). Then the mixture was stirred at ice bath for 1 h. After the reaction was completed, the resulting mixture was removed under reduced pressure and the further purification was carried out by column chromatography using CH₂Cl₂/Et₂O (50/1, v/v) as eluent to afford 54 mg **3**. Yield: 13%. ¹H NMR (CDCl₃, 400 MHz): δ 6.95 (d, 10H, J = 4.4 Hz), 6.63 (m, 3H), 6.11 (m, 3H), 4.94 (b, 1H), 4.02 -3.75 (m, 48H), 3.34 (b, 2H), 3.09 (b, 1H), 2.93 (b, 2H), 2.33 (s, 6H), 1.86 (m, 2H), 1.32 (m, 2H), -0.15 (br, 2H), -1.87 (br, 2H), -2.13 (br, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ 161.80, 161.47, 159.24, 157.81, 150.97, 150.69, 139.33, 129.09, 128.82, 122.76, 114.58, 113.99, 112.50, 94.19, 91.59, 68.27, 65.90, 56.59, 55.94, 55.40, 40.18, 37.65, 30.66, 29.30, 28.97, 26.95, 21.56, 19.61. HR-ESI-MS: m/z calcd for [M+H]⁺ C₇₀H₈₇N₂O₁₅: 1195.61010 ; found: 1195.61029 , error: 0.2 ppm.

1-(3-(3,5-dimethylphenoxy)propyl)-3-ethylurea, 4. To a solution of **S3** (0.4 g, 2.4 mmol) in dry CH₂Cl₂ (5 ml) was added ethyl isocyanate (0.2 g, 3.0 mmol), Then the mixture was stirred at room temperature for 10 h, After the reaction was completed, the resulting mixture was removed under reduced pressure and the further purification was carried out by column chromatography using CH₂Cl₂/CH₃OH (40/1, v/v) as eluent to afford 500 mg **4**. Yield: 85%. ¹H NMR (CDCl₃, 400 MHz): δ 6.60 (s, 1H), 6.51 (s, 2H), 4.88 (t, 1H, *J* = 6.4 Hz), 4.60 (t, 1H, *J* = 6.4 Hz), 3.99 (t, 2H, *J* = 6.0 Hz), 3.34 (m, 2H), 3.17 (m, 2H), 2.27 (s, 6H), 1.94 (m, 2H), 1.11 (m, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.28, 158.90, 138.98, 122.46, 112.31, 65.46, 53.33, 37.34, 34.89, 30.08, 21.24, 15.43. HR-ESI-MS: m/z calcd for [M+H]⁺ C₁₄H₂₃N₂O₂ : 251.17540; found: 251.17546, error: 0.2 ppm.

1-(5-(3,5-dimethoxyphenoxy)pentyl)-3-ethylurea, 5. To a solution of **S15** (0.2 g, 0.7 mmol) in dry CH₂Cl₂ (5 ml) was added ethyl isocyanate (0.2 g, 3.0 mmol). Then the mixture was stirred at room temperature for 10 h, After the reaction was completed, the resulting mixture was removed under reduced pressure and the further purification was carried out by column chromatography using CH₂Cl₂/CH₃OH (40/1, v/v) as eluent to afford 135 mg **5**. Yield: 68%. ¹H NMR (CDCl₃, 400 MHz): δ 6.07 (s, 3H), 4.23 (m, 2H), 3.91 (t, 2H, *J* = 6.4 Hz), 3.76 (s, 6H), 3.19 (m, 4H), 1.78 (m, 2H), 1.55 (m, 4H), 1.13 (m, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 161.63, 161.06, 159.01, 93.66, 93.09, 67.88, 55.31, 40.26, 35.10, 30.21, 29.04, 23.55, 15.56. HR-ESI-MS: m/z calcd for [M+H]⁺ C₁₆H₂₇N₂O₄: 311.19653; found: 311.19666, error: 0.4 ppm.

3. Characterization of compound Z-1, E-1, 2, 3, 4, 5.

Fig. S1. HR-ESI-MS spectrum of Z-1.

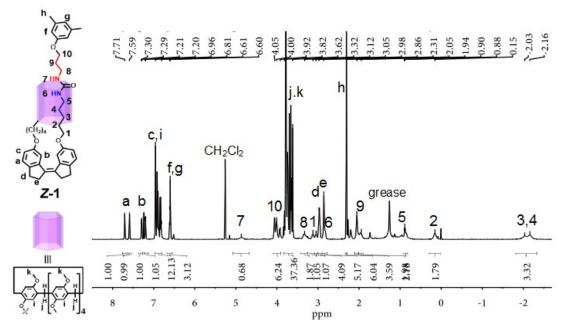


Fig. S2. ¹H NMR spectrum of Z-1 (CDCI₃, 400 MHz, 298 K).

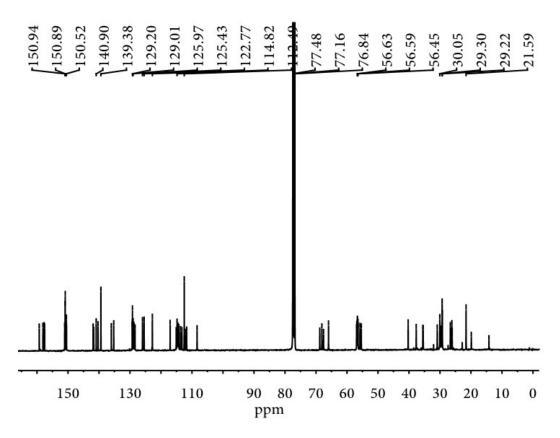


Fig. S3. ¹³C NMR spectrum of Z-1 (CDCI₃, 100 MHz, 298 K).

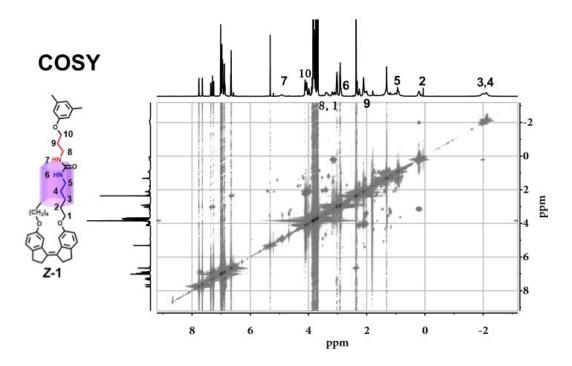


Fig. S4. COSY spectrum of Z-1 (CDCl₃, 600 MHz, 298 K).

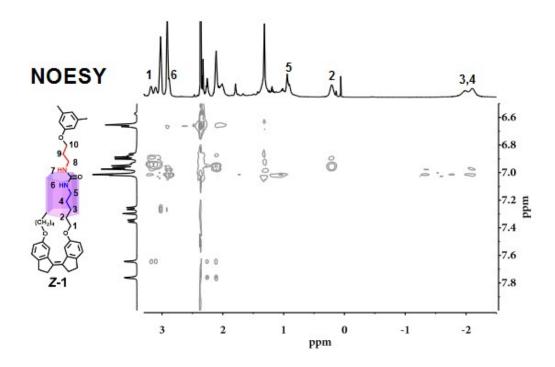


Fig. S5. NOESY spectrum of Z-1 (CDCl₃, 600 MHz, 298 K).

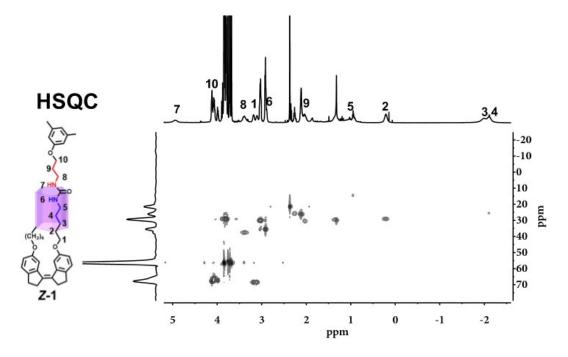


Fig. S6. HSQC spectrum of Z-1 (CDCl₃, 600 MHz, 298 K).

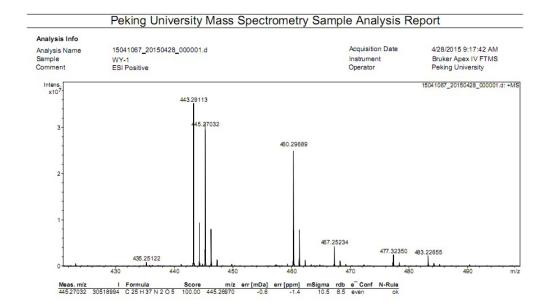


Fig. S7. HR-ESI-MS spectrum of 2.

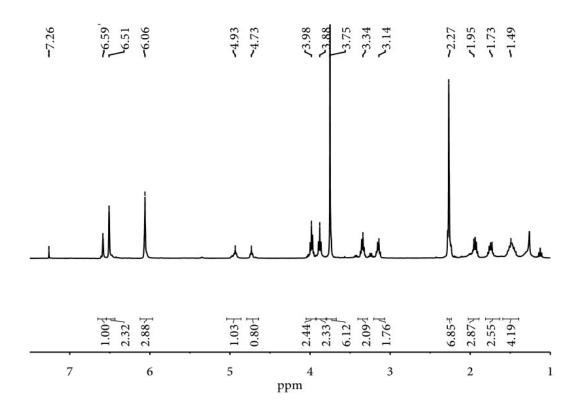


Fig. S8. ¹H NMR spectrum of **2** (CDCl₃, 400 MHz, 298 K).

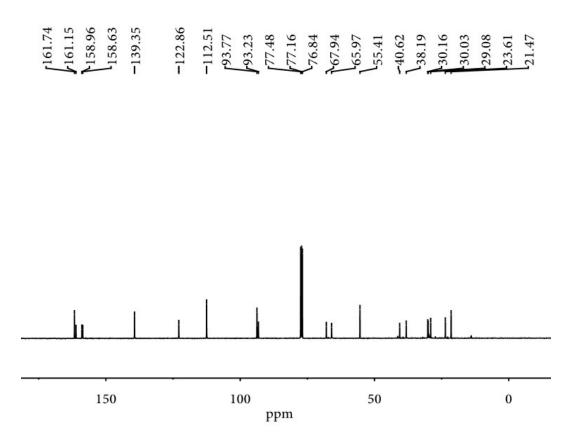


Fig. S9. ¹³C NMR spectrum of **2** (CDCl₃, 100 MHz, 298 K).

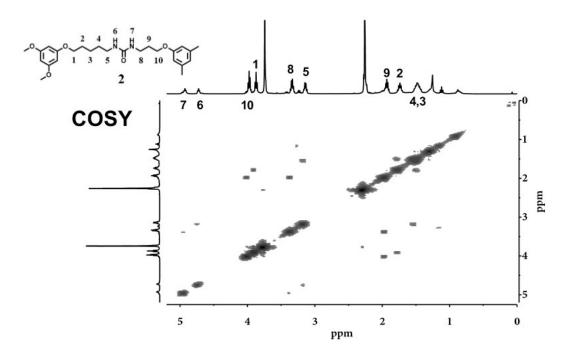


Fig. S10. COSY spectrum of 2 (CDCl₃, 600 MHz, 298 K).

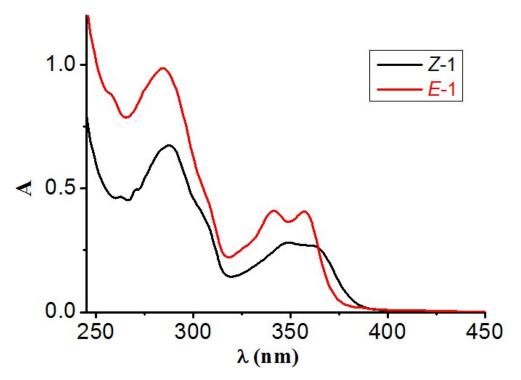


Fig. S11. UV-visible spectra of Z-1 and E-1 in CH_2CI_2 (c = 20.0 μ M).

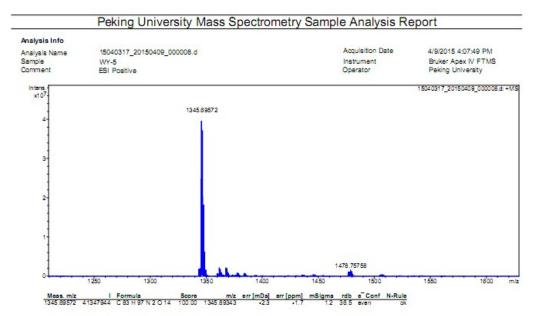


Fig. S12. HR-ESI-MS spectrum of E-1.

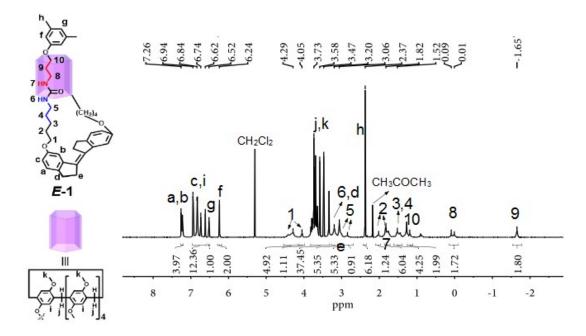


Fig. S13. ¹H NMR spectrum of *E*-1 (CDCl₃, 400 MHz, 298 K).

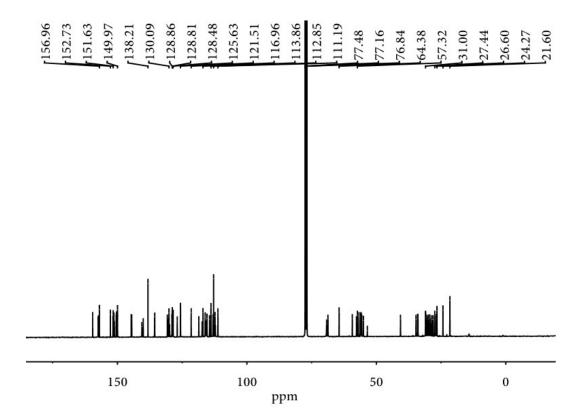


Fig. S14. ¹³C NMR spectrum of *E*-1 (CDCl₃, 100 MHz, 298 K).

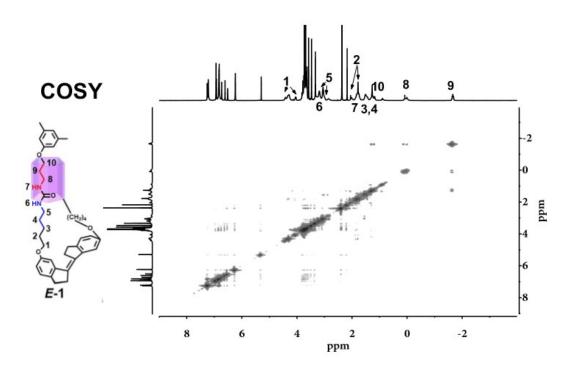


Fig. S15. COSY spectrum of *E*-1 (CDCI₃, 600 MHz, 298 K).

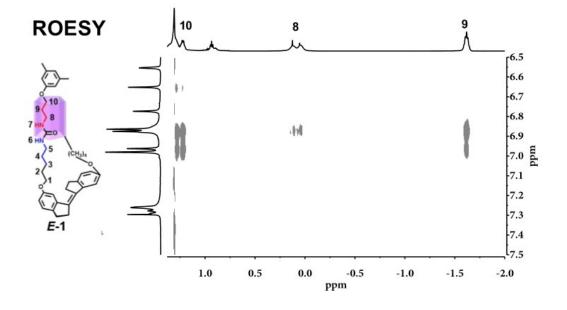


Fig. S16. ROESY spectrum of *E*-1 (CDCl₃, 600 MHz, 298 K).

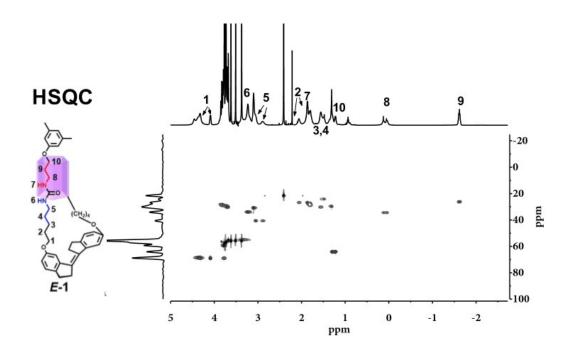


Fig. S17. HSQC spectrum of *E*-1 (CDCl₃, 600 MHz, 298 K).

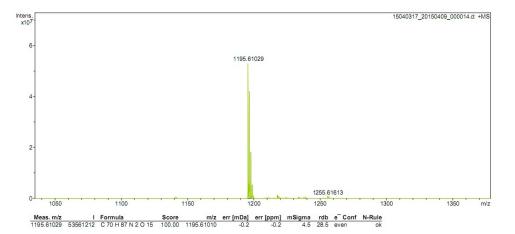


Fig. S18. HR-ESI-MS spectrum of 3.

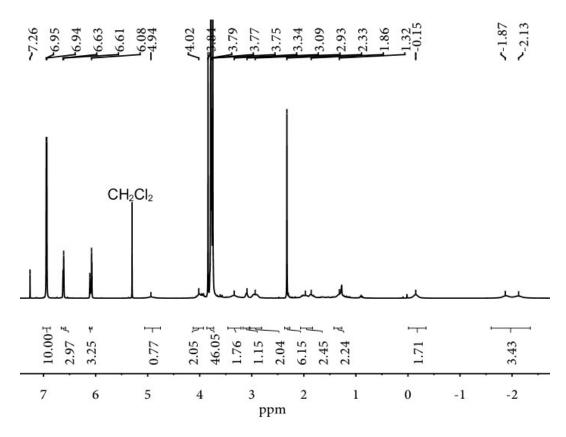


Fig. S19. ¹H NMR spectrum of **3** (CDCl₃, 400 MHz, 298 K).

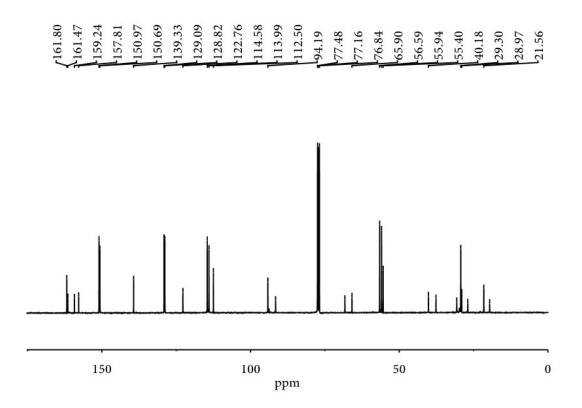


Fig. S20. ¹³C NMR spectrum of **3** (CDCl₃, 100 MHz, 298 K).

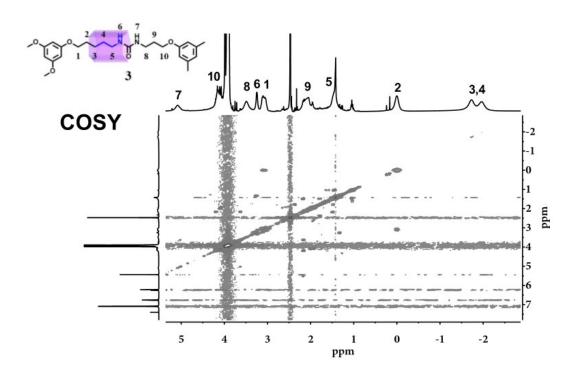


Fig. S21. COSY spectrum of **3** (CDCl₃, 600 MHz, 298 K).

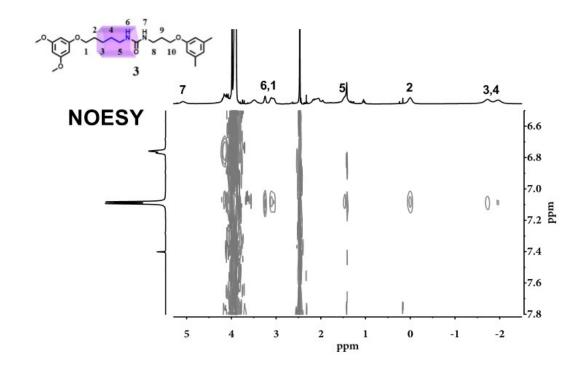


Fig. S22. NOESY spectrum of **3** (CDCl₃, 600 MHz, 298 K).

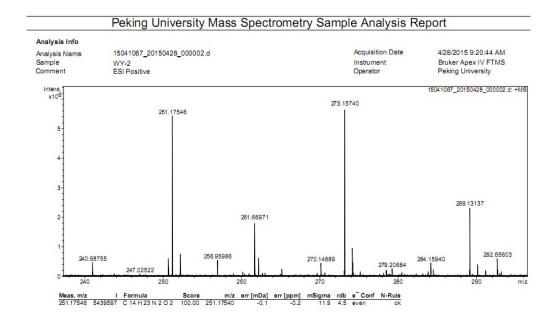


Fig. S23. HR-ESI-MS spectrum of 4.

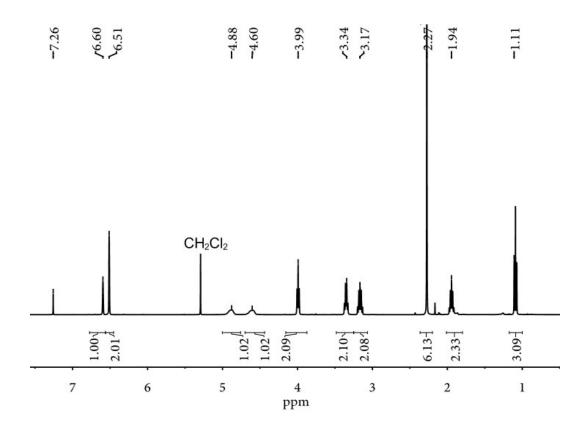


Fig. S24. ¹H NMR spectrum of **4** (CDCl₃, 400 MHz, 298 K).

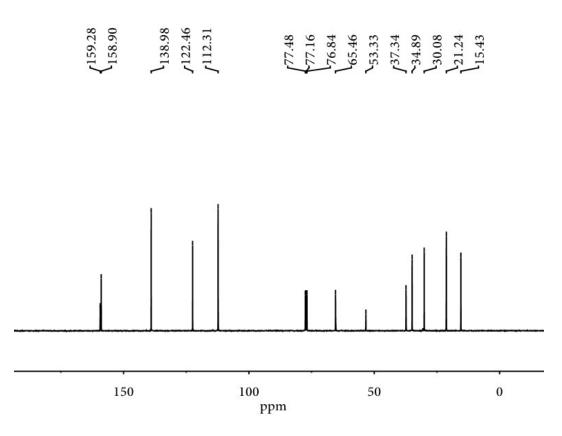


Fig. S25. ¹³C NMR spectrum of **4** (CDCl₃, 100 MHz, 298 K).

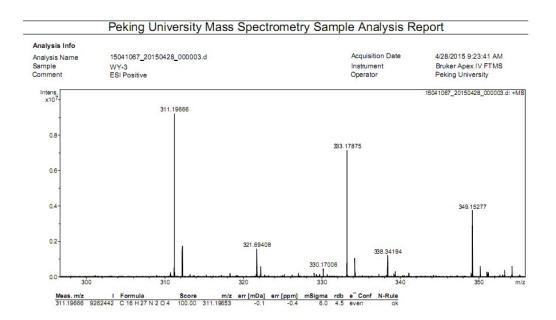


Fig. S26. HR-ESI-MS spectrum of 5.

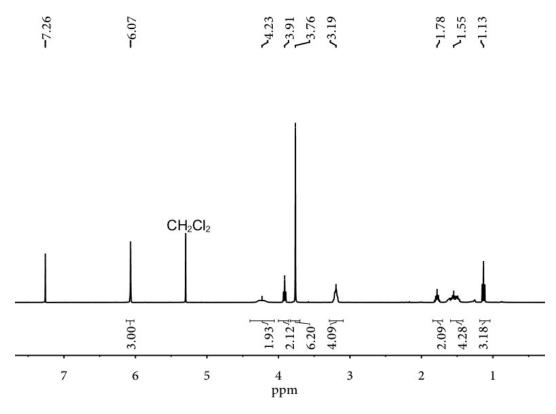


Fig. S27. ¹H NMR spectrum of **5** (CDCI₃, 400 MHz, 298 K).

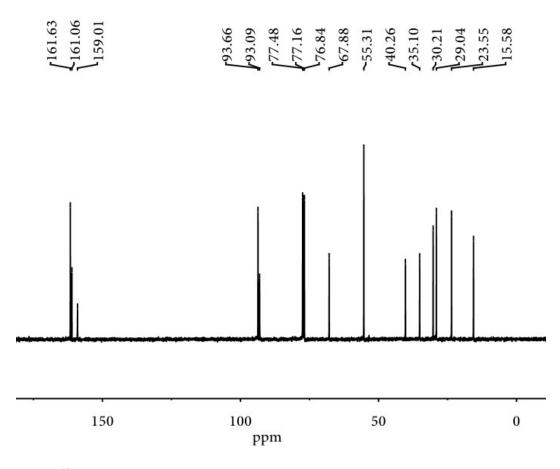
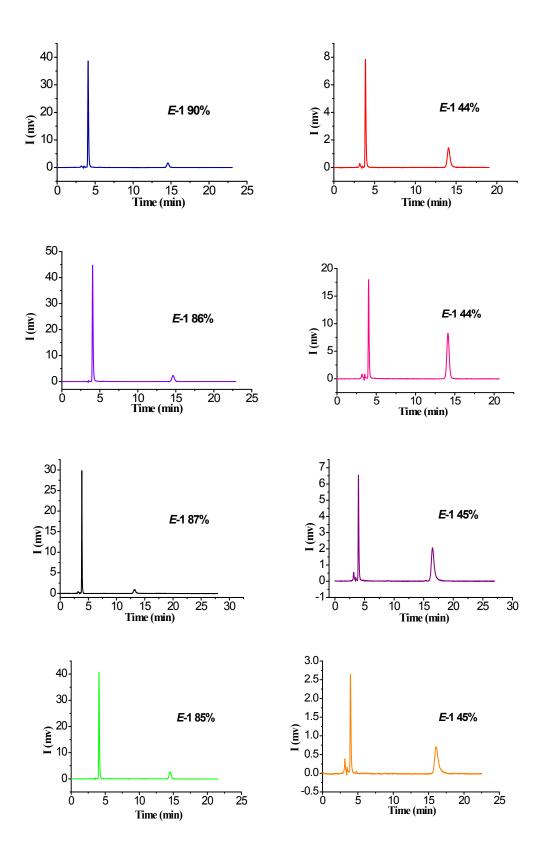



Fig. S28. ¹³C NMR spectrum of **5** (CDCl₃, 100 MHz, 298 K).

4. Cycling between Z-1 and E-1 upon irradiation.

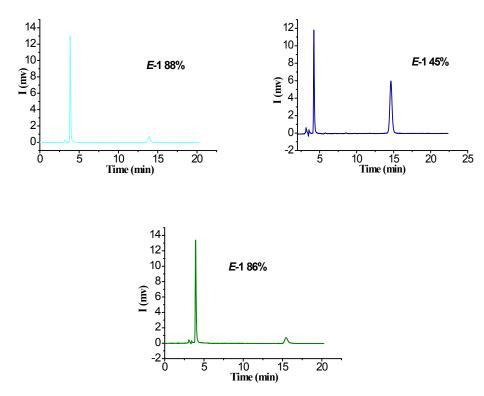
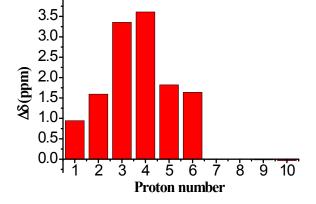
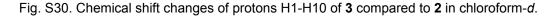


Fig. S29. HPLC of the photostationary mixtures obtained by repeated irradiation of *E*-1 at 387 nm (left chromatograms) and 360 nm (right chromatograms) observed at 350 nm; eluent: 20% EtOAc + 80% CH_2Cl_2 , flowrate 1ml/min, ambient temperature^[1].

5. Changes in the chemical shifts of protons H1-H10 of Z-1, *E*-1 and 3 compared to 2 in $CDCI_3$.


Protons	1	2	3	4	5	6	7	8	9	10
of 2										
δ	3.879	1.744	1.485	1.485	3.140	4.732	4.934	3.340	1.954	3.982
Protons	1	2	3	4	5	6	7	8	9	10
of Z- 1										
δ	3.141	0.173	-2.012	-2.142	0.885	2.846	4.882	3.344	1.963	3.981
Δδ	0.738	1.571	3.497	3.627	2.255	1.886	0.052	-0.004	-0.009	0.001


Table S2. Chemical shift changes of protons H1-H10 on E-1 compared with 2 in chloroform-d.

Protons	1	2	3	4	5	6	7	8	9	10
of 2										
δ	3.879	1.744	1.485	1.485	3.140	4.732	4.934	3.340	1.954	3.982
Protons	1	2	3	4	5	6	7	8	9	10
of <i>E</i> - 1										
δ	4.037	1.752	1.482	1.482	2.955	3.188	1.762	0.040	-1.656	1.192
Δδ	-0.158	-0.008	0.003	0.003	1.185	1.544	3.172	3.300	3.610	2.790

Protons	1	2	3	4	5	6	7	8	9	10
of 2										
δ	3.879	1.744	1.485	1.485	3.140	4.732	4.934	3.340	1.954	3.982
Protons	1	2	3	4	5	6	7	8	9	10
of 3										
δ	2.935	0.149	-1.87	-2.125	1.859	1.319	4.938	3.337	1.971	4.071
Δδ	0.944	1.595	3.355	3.610	1.821	1.640	-0.004	0.003	0.017	-0.035

Table S3. Chemical shift changes of protons H1-H10 on 3 compared with 2 in chloroform-d.

6. Determination of the association constants.

To determine the association constant between pillar[5]arene (P5A) and **4** or **5** (guest), proton NMR titrations were done with solutions which had a constant concentration of P5A (1.6 mM) and varying concentrations of **4** (or **5**). The binding constants were obtained by non-linear least-squares fitting of the difference in the chemical shift proton H_c of P5A, $\Delta\delta$, in the absence of **4** or **5** and in its presence at concentration [G]^[2]:

$$\begin{split} \Delta \delta &= (\Delta \delta_{\infty} / [\text{P5A}]_0) \; (0.5[\text{G}] + 0.5([\text{P5A}]_0 + 1/\text{K}_a) - (0.5\; ([\text{G}]^2 + (2[\text{G}](1/\text{K}_a - [\text{P5A}]_0)) + (1/\text{K}_a + [\text{P5A}]_0)^2)^{0.5})) \end{split}$$

where $\Delta \delta_{\infty}$ is the chemical shift change of H_c when P5A host is completely complexed, [P5A]₀ is the fixed initial concentration of P5A.

144 n	nM		\sim			
128 n	nM		~			
112 n	nM		~			
96 n	nM		~			
80 n	nM		~			
64 n	nM		~			
48 n	nM					
40 n	nM			\sim		
32 m	η Μ			\wedge		
24 n	ηΜ			\wedge		
16 n	nM					
8.0 n	nM			\wedge		
4.8 n	nM			~		
1.6 n	A PARA A PARA			~		
0 n	nM			~		
·			. ,			·,
00	6.95	6.90	6.85 ppm	6.80	6.75	6.:

Fig. S31. Partial ¹H NMR spectra (500 MHz, CDCl₃, 25°C) of Pillar[5]arene at a concentration of 1.6 mM upon addition of **4** : (1) 0 mM (2) 1.6 mM (3) 4.8 mM (4) 8 mM (5) 16 mM (6) 24 mM (7) 32 mM (8) 40 mM (9) 48 mM (10) 64 mM (11) 80 mM (12) 96 mM (13) 112 mM (14) 128 mM.

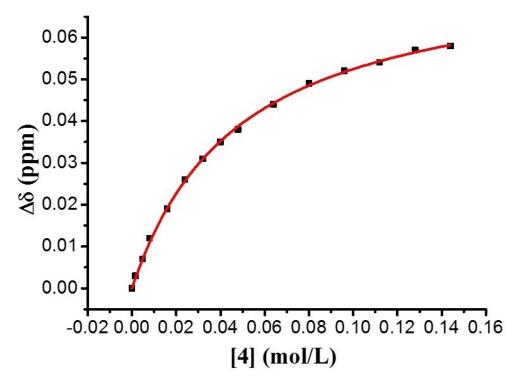


Fig. S32. The non-linear curve-fitting (NMR titrations) for the complexation of pillar[5]arene host (1.6 mM) with **4** in CDCl₃ at 298 K. The concentration of 4 was 0, 1.6, 4.8, 8, 16, 24, 32, 40, 48, 64, 80, 96, 112, 128 and 144 mM.

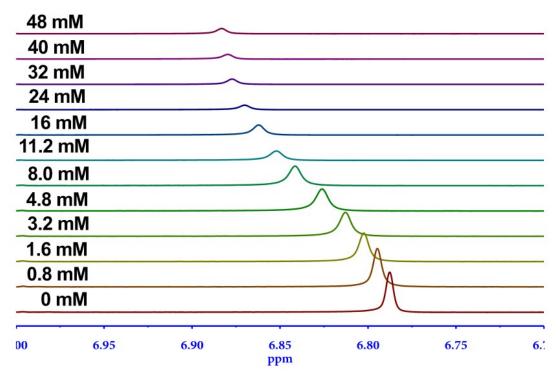


Fig. S33. Partial ¹H NMR spectra (CDCl₃, 400 MHz, 298 K) of pillar[5]arene at a concentration of 1.6 mM upon addition of **5** : (1) 0 mM (2) 0.8 mM (3) 1.6 mM (4) 3.2 mM (5) 4.8 mM (6) 8mM (7) 11.2 mM (8) 16 mM (9) 24 mM (10) 32 mM (11) 40 mM (12) 48 mM.

Fig. S34. The non-linear curve-fitting (NMR titrations) for the complexation of pillar[5]arene host (1.6 mM) with **5** in CDCl₃ at 298 K. The concentration of **5** was 0, 0.8, 1.6, 3.2, 4.8, 8, 11.2, 16, 24, 32, 40, 48 mM.

7. Quantum-chemical calculations

All optimizations were performed in Gaussian 09.E01 using the Berny algorithm. The conformational ensembles of **1** and **3** were built by systematically varying the torsions of all rotable bonds of the axle that were not encapsulated by pillar[5]arene (and of the strap connecting stiff stilbene with pillar[5]arene in **1**). The resulting guess structures were first optimized at the BLYP/6-31G(d) level in vacuum, followed by reoptimization of all unique conformers at the B3LYP/6-31G(d) level. Single-point energies of all conformers were calculated at the CAM-B3LYP/6-31+G(d) level. The molecules were too large to allow frequency calculations. Assuming that all conformers have the same thermodynamic corrections allowed us to calculate the relative electronic energies of conformational

ensembles, E_0 , as $E_0 = -RT ln \left(\sum_{i=1}^{n} e^{-(E_i - E_0)/RT} \right)$, where E_0 is the electronic energy of the global conformational minimum of **1** or **3**, E_i is the ith conformer of *Z*-**1**, *Z*-**1**', *E*-**1**, *E*-**1**' (Fig. 5, main text) or **3** or **3**' (Fig. S35)

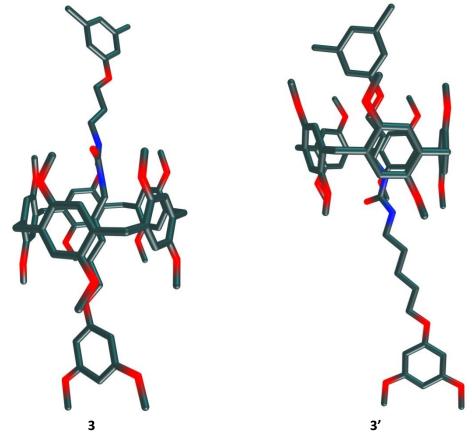


Fig. S35. Calculated minimum-energy molecular geometries of model rotaxane **3** with the "wheel" at the A (**3**) and B (**3**') stations, respectively.

8. References.

[1] S. Akbulatov, Y. Tian and R. Boulatov, *J. Am. Chem. Soc.* 2012, 134, 7620.
[2] (a) K. A. Connors, Binding Constants; Wiley: New York, 1987; (b) P. S. Corbin, Ph.D.

Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, **1999**; (c) P. R. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi and D. J. Williams, *J. Am. Chem. Soc.* **1996**, 118, 4931; (d) Y. Inoue, K. Yamamoto, T. Wada, S. Everitt, X.-M. Gao, Z.-J. Hou, L.-H. Tong, S.-K. Jiang and H.-M. Wu, *J. Chem. Soc., Perkin Trans.* **2**. **1998**, 1807.