Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

TfNHNHBoc as a SCF₃ source in the sulfenylation of indoles

Jing-Yu Guo, Rui-Han Dai, Wen-Cong Xu, Ruo-Xin Wu and Shi-Kai Tian*

Hefei National Laboratory for Physical Sciences at the Microscale, Center for Excellence in Molecular Synthesis, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

Supporting information

Table of contents

General information	S-2
Preparation of TfNHNHCO2Et	S-2
General procedure for the sulfenylation of indoles with TfNHNHBoc (Scheme 1)	S-2
Analytical data for the products shown in Scheme 1	S-3
Sulfenylation of pyrole 5 with TfNHNHBoc (eqn (1))	S-10
Mechanistic studies	S-11
References	S-14
Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	S-16

General information

¹H NMR and ¹³C NMR spectra were recorded on a Bruker AC-400 FT spectrometer (400 MHz and 100 MHz, respectively) and were referenced internally with tetramethylsilane (δ H 0.00), CDCl₃ (δ C 77.16), and acetone- d_6 (δ H 2.05, δ C 29.84). ¹⁹F NMR was recorded on a Bruker AC-400 FT spectrometer (376 MHz, CFCl₃ as an external standard). Chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz, respectively. The following abbreviations are used in reporting NMR data: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer (Micromass). Electrospray ionization (ESI) mass spectrometry data were acquired using a Thermo LTQ Orbitrap XL instrument equipped with an ESI source and controlled by Xcalibur software. Melting points are uncorrected.

Trifluoromethanesulfonyl hydrazides **2a** and **2c-f** were prepared according to literature procedures.¹ The rest of chemicals were purchased from the Sinopharm Chemical Reagent Co., Meryer, Acros, Alfa Aesar, Adamas, and TCI, and used as received.

Abbreviations: Bn = benzyl, Boc = *tert*-butoxycarbonyl, Cbz = benzyloxycarbonyl, DCE = 1,2-dichloroethane, DMF = N,N-dimethylformamide, DMSO = dimethyl sulfoxide, TBHP = *tert*-butyl hydroperoxide, Tf = trifluoromethylsulfonyl, Ts = *p*-toluenesulfonyl.

Preparation of TfNHNHCO₂Et

$$EtO_2CNHNH_2 + Tf_2O \xrightarrow{NEt_3, CH_2Cl_2, -78 \circ C} TfNHNHCO_2Et$$

To a solution of triflic anhydride (5.64 g, 3.36 mL, 20.0 mmol) in dichloromethane (20 mL) was added dropwise to a mixture of EtO₂CNHNH₂ (2.08 g, 20.0 mmol) and triethylamine (2.23 g, 3.05 mL, 22.0 mmol) in dichloromethane (100 mL) under nitrogen at -78 °C. The mixture was allowed to warm to room temperature and stirred for 2 h, then washed twice with water, once with 5% aqueous hydrochloric acid, and once with water, dried over anhydrous sodium sulfate, and the solvent was evaporated in vacuum. The residue was purified by silica gel column chromatography, eluting with ethyl acetate/petroleum ether (4:1 v/v), to give TfNHNHCO₂Et (**2b**) as a white solid (1.30 g, 28% yield). m.p. 80-81 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, br, 1H), 6.87 (s, br, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.5, 119.4 (q, *J* = 321.8 Hz), 63.9, 14.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.94; HRMS (ESI) calcd for C₄H₈F₃N₂O₄S⁺ (M + H)⁺ 237.0151, found 237.0144.

General procedure for the sulfenylation of indoles with TfNHNHBoc (Scheme 1)

To a reaction tube equipped with a magnetic stir bar was charged with TfNHNHBoc (2a) (211 mg, 0.80 mmol), indole 1 (0.40 mmol), and CuCl (4.0 mg, 10 mol%). The tube was sealed with a septum, evacuated, and backfilled with nitrogen three times. DMSO (31.2 mg, 28 μ L, 0.40 mmol) and MeCN (2.0 mL) were added via syringe with gentle stirring. The reaction vessel was allowed to stir at 80 °C for 10 h. The mixture was cooled to room temperature and purified directly by silica gel

chromatography, eluting with ethyl acetate/petroleum ether $(1:10\sim1:5 \text{ v/v})$, to give thioether 3.

Analytical data for the products shown in Scheme 1

3-((Trifluoromethyl)thio)-1*H*-indole (**3a**)² was obtained in 80% yield (69.4 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, br, 1H), 7.83-7.78 (m, 1H), 7.45-7.43 (m, 1H), 7.38-7.33 (m, 1H), 7.30-7.24 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.1, 132.9, 129.6 (q, *J* = 309.9 Hz), 129.5, 123.5, 121.7, 119.3, 111.9, 95.3 (q, *J* = 2.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.35.

4-Methyl-3-((trifluoromethyl)thio)-1*H*-indole (**3b**)³ was obtained in 64% yield (59.1 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, br, 1H), 7.38 (s, 1H), 7.17-7.13 (m, 2H), 6.97 (d, *J* = 6.0 Hz, 1H), 2.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.4, 134.2, 131.7, 129.3 (q, *J* = 309.3 Hz), 126.8, 123.5, 109.9, 95.0 (q, *J* = 2.4 Hz), 19.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -45.76.

4-Methoxy-3-((trifluoromethyl)thio)-1*H*-indole (**3c**)³ was obtained in 66% yield (65.2 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, br, 1H), 7.31 (s, 1H), 7.16 (t, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 6.62 (d, *J* = 8.0 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 138.0, 132.6, 129.6 (q, *J* = 309.4 Hz), 124.4, 118.6, 105.0, 102.2, 94.4 (q, *J* = 2.5 Hz), 55.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -45.40.

3-((Trifluoromethyl)thio)-1*H*-indol-4-ol (**3d**)⁴ was obtained in 54% yield (50.2 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, br, 1H), 7.42 (d, *J* = 2.0 Hz, 1H), 7.16 (t, *J* = 8.0 Hz, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.78-6.69 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 137.8, 132.9, 128.4 (q, *J* = 311.0 Hz), 125.2, 116.6, 107.2, 104.6, 91.5 (q, *J* = 2.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃)

 δ -45.73.

4-Chloro-3-((Trifluoromethyl)thio)-1*H*-indole (**3e**) was obtained in 74% yield (74.7 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, br, 1H), 7.53 (d, *J* = 2.8 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.22-7.13 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 135.1, 129.2 (q, *J* = 309.5 Hz), 126.8, 125.1, 124.1, 123.2, 110.8, 95.4 (q, *J* = 2.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -45.46; HRMS (ESI) calcd for C₉H₆ClF₃NS⁺ (M + H)⁺ 251.9856, found 251.9862.

4-Bromo-3-((trifluoromethyl)thio)-1*H*-indole (**3f**)² was obtained in 54% yield (64.2 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, br, 1H), 7.55 (d, J = 1.2 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.08 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 135.5, 129.1 (q, J = 309.5 Hz), 126.8, 126.1, 124.4, 114.4, 111.5, 96.3 (q, J = 2.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -45.40.

Methyl 3-((trifluoromethyl)thio)-1*H*-indole-4-carboxylate (**3g**) was obtained in 71% yield (78.1 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, br, 1H), 7.60-7.57 (m, 1H), 7.48-7.43 (m, 2H), 7.21 (t, *J* = 7.8 Hz, 1H), 4.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 137.4, 136.2, 129.6 (q, *J* = 309.3 Hz), 125.6, 124.4, 123.3, 122.4, 115.9, 94.6 (d, *J* = 2.3 Hz), 52.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -45.10; HRMS (ESI) calcd for C₁₁H₉F₃NO₂S⁺ (M + H)⁺ 276.0301, found 276.0306.

5-Methyl-3-((trifluoromethyl)thio)-1*H*-indole (**3h**)² was obtained in 68% yield (62.8 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, br, 1H), 7.58 (s, 1H), 7.36 (d, *J* = 2.8 Hz, 1H), 7.22 (d, *J* = 8.4 Hz, 1H), 7.09 (dd, *J* = 8.4, 1.2 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 134.4,

133.0, 131.4, 129.8, 129.6 (q, J = 309.9 Hz), 125.2, 118.9, 111.5, 94.8 (q, J = 2.3 Hz), 21.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.50.

5-Methoxy-3-((trifluoromethyl)thio)-1*H*-indole (**3i**)² was obtained in 76% yield (75.1 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, br, 1H), 7.43 (d, J = 2.8 Hz, 1H), 7.26-7.22 (m, 2H), 6.93 (d, J = 8.8 Hz, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 133.4, 131.0, 130.4, 129.6 (q, J = 309.9 Hz), 114.1, 112.7, 100.6, 95.0, 55.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.59.

5-(Benzyloxy)-3-((trifluoromethyl)thio)-1*H*-indole (**3j**) was obtained in 52% yield (67.2 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, br, 1H), 7.47 (d, *J* = 7.2 Hz, 2H), 7.37 (t, *J* = 7.2 Hz, 2H), 7.33-7.27 (m, 3H), 7.17-7.13 (m, 1H), 6.96 (dd, *J* = 8.8, 2.4 Hz, 1H), 5.10 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 137.2, 133.6, 131.2, 130.3, 129.6 (d, *J* = 310.0 Hz), 128.7, 128.2, 128.0, 114.5, 112.8, 102.1, 94.8 (d, *J* = 2.3 Hz), 71.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.47; HRMS (ESI) calcd for C₁₆H₁₃F₃NOS⁺ (M + H)⁺ 324.0664, found 324.0682.

5-Fluoro-3-((trifluoromethyl)thio)-1*H*-indole (**3k**)³ was obtained in 86% yield (81.2 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, br, 1H), 7.51 (s, 1H), 7.43 (d, J = 9.2 Hz, 1H), 7.30 (dd, J = 8.8, 4.0 Hz, 1H), 7.01 (t, J = 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2 (d, J = 237.5 Hz), 134.5, 132.6, 130.5 (d, J = 10.4 Hz), 129.5 (q, J = 310.0 Hz), 112.7 (d, J = 9.6 Hz), 112.2 (d, J = 26.6 Hz), 104.6 (d, J = 24.7 Hz), 95.8 (d, J = 2.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.55, -121.64.

5-Chloro-3-((trifluoromethyl)thio)-1*H*-indole (**3**)³ was obtained in 75% yield (75.5 mg) as a

yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, br, 1H), 7.74 (d, J = 1.2 Hz, 1H), 7.46 (d, J = 2.8 Hz, 1H), 7.25 (d, J = 8.4 Hz, 1H), 7.19 (dd, J = 8.4, 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 134.4, 134.2, 130.7, 129.4 (q, J = 310.0 Hz), 127.7, 124.0, 118.9, 113.0, 95.4 (q, J = 2.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.38.

5-Bromo-3-((trifluoromethyl)thio)-1*H*-indole (**3m**)² was obtained in 61% yield (72.2 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, br, 1H), 7.91 (s, 1H), 7.48 (d, *J* = 2.4 Hz, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.25-7.22 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 134.8, 133.9, 131.3, 129.4 (q, *J* = 310.0 Hz), 126.6, 122.0, 115.3, 113.3, 95.4 (q, *J* = 2.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.44.

Methyl 3-((trifluoromethyl)thio)-1*H*-indole-5-carboxylate (**3n**)⁴ was obtained in 58% yield (63.8 mg) as a yellow oil. ¹H NMR (400 MHz, acetone-*d*₆) δ 11.41 (s, br, 1H), 8.46 (s, 1H), 7.99 (d, *J* = 2.8 Hz, 1H), 7.94 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.66-7.62 (m, 1H), 3.92 (s, 3H); ¹³C NMR (100 MHz, Acetone-*d*₆) δ 167.8, 140.2, 137.2, 130.5 (q, *J* = 308.9 Hz), 130.0, 124.8, 124.3, 121.8, 113.3, 95.33 (q, *J* = 2.4 Hz), 52.2; ¹⁹F NMR (376 MHz, acetone-*d*₆) δ -45.70.

6-Methyl-3-((trifluoromethyl)thio)-1*H*-indole (**30**) was obtained in 75% yield (68.9 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.42-7.40 (m, 1H), 7.18 (s, 1H), 7.11 (d, J = 8.0 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.6, 133.6, 132.3, 129.6 (q, J = 309.8 Hz), 127.4, 123.6, 119.1, 111.7, 95.4, 21.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.58; HRMS (ESI) calcd for C₁₀H₉F₃NS⁺ (M + H)⁺ 232.0402, found 232.0410.

6-Methoxy-3-((trifluoromethyl)thio)-1*H*-indole $(3p)^3$ was obtained in 63% yield (62.5 mg) as a

yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.43 (d, J = 2.4 Hz, 1H), 6.94 (dd, J = 8.8, 2.0 Hz, 1H), 6.89 (d, J = 2.0 Hz, 1H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 137.0, 131.7, 129.5 (q, J = 310.1 Hz), 123.7, 120.2, 111.8, 95.7, 95.1, 55.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.62.

6-Fluoro-3-((trifluoromethyl)thio)-1*H*-indole $(3q)^2$ was obtained in 52% yield (48.8 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, br, 1H), 7.70 (dd, J = 8.4, 5.2 Hz, 1H), 7.49 (d, J = 2.4 Hz, 1H), 7.10-7.00 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.6 (d, J = 240.0 Hz), 136.1 (d, J = 12.6 Hz), 133.3, 129.5 (q, J = 309.9 Hz), 126.0, 120.5 (d, J = 10.1 Hz), 110.7 (d, J = 24.7 Hz), 98.2 (d, J = 26.6 Hz), 96.0 (q, J = 2.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.48, -119.06.

6-Chloro-3-((trifluoromethyl)thio)-1H-indole $(3r)^3$ was obtained in 70% yield (70.4 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, br, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.46 (d, J = 2.8 Hz, 1H), 7.34 (d, J = 1.2 Hz, 1H), 7.22 (dd, J = 8.8, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.4, 133.5, 129.5, 129.4 (q, J = 309.9 Hz), 128.1, 122.6, 120.4, 111.8, 96.1 (q, J = 2.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.39.

6-Bromo-3-((trifluoromethyl)thio)-1H-indole (**3s**) was obtained in 52% yield (61.4 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, br, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.47 (s, 1H), 7.43 (d, J = 1.2 Hz, 1H), 7.34 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.8, 133.4, 129.4 (q, J = 309.9 Hz), 128.4, 125.1, 120.8, 117.1, 114.7, 96.1 (q, J = 2.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -44.34; HRMS (ESI) calcd for C₉H₆BrF₃NS⁺ (M + H)⁺ 295.9351, found 295.9352.

5,6-Difluoro-3-((trifluoromethyl)thio)-1H-indole (3t) was obtained in 45% yield (45.6 mg) as a

yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 7.58-7.49 (m, 2H), 7.22 (dd, J = 10.0, 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0 (dd, J = 243.6, 16.0 Hz), 148.0 (dd, J = 241.2, 14.8 Hz), 134.2, 131.0 (d, J = 10.7 Hz), 129.4 (q, J = 309.9 Hz), 125.3 (d, J = 8.1 Hz), 106.4 (d, J = 20.2 Hz), 100.0 (d, J = 22.3 Hz), 96.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.55, -141.44 (d, J = 20.6 Hz), -144.28 (d, J = 20.6 Hz); HRMS (ESI) calcd for C₉H₅F₅NS⁺ (M + H)⁺ 254.0057, found 254.0057.

7-Methyl-3-((trifluoromethyl)thio)-1*H*-indole (**3u**)² was obtained in 78% yield (72.5 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, br, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 2.8 Hz, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 7.04 (d, *J* = 7.2 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.7, 132.7, 129.7 (q, *J* = 309.9 Hz), 129.2, 124.0, 121.9, 121.1, 117.0, 95.9 (dd, *J* = 2.4 Hz), 16.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.38.

7-Methoxy-3-((trifluoromethyl)thio)-1*H*-indole $(3v)^5$ was obtained in 85% yield (84.3 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, br, 1H), 7.43-7.37 (m, 2H), 7.18 (dd, J = 10.4, 8.0 Hz, 1H), 6.70 (d, J = 7.6 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 132.4, 130.9, 129.6 (q, J = 310.0 Hz), 126.8, 122.2, 111.8, 103.2, 95.8 (d, J = 2.4 Hz), 55.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.60.

2-Methyl-3-((trifluoromethyl)thio)-1*H*-indole $(3w)^2$ was obtained in 46% yield (42.5 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, br, 1H), 7.70 (d, J = 7.2 Hz, 1H), 7.28-7.19 (m, 3H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 135.1, 130.7, 129.9 (q, J = 310.7 Hz), 122.7, 121.5, 118.8, 110.9, 92.6 (q, J = 2.2 Hz), 12.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.39.

5-Methoxy-2-methyl-3-((trifluoromethyl)thio)-1*H*-indole (**3x**)⁶ was obtained in 52% yield (54.1 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, br, 1H), 7.19-7.14 (m, 2H), 6.84 (dd, J = 8.8, 2.4 Hz, 1H), 3.88 (s, 3H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 144.2, 131.6, 123.0 (q, J = 310.9 Hz), 129.9, 112.6, 111.7, 100.6, 92.2, 56.0, 12.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.50.

5-Fluoro-2-methyl-3-((trifluoromethyl)thio)-1*H*-indole (**3**y) was obtained in 69% yield (68.6 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, br, 1H), 7.34 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.20 (dd, *J* = 8.8, 4.0 Hz, 1H), 6.93 (td, *J* = 11.2, 2.4 Hz, 1H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1 (d, *J* = 236.6 Hz), 145.5, 131.6 (d, *J* = 10.3 Hz), 131.5, 129.8 (q, *J* = 310.7 Hz), 111.7 (d, *J* = 9.6 Hz), 111.0 (d, *J* = 26.3 Hz), 104.2 (d, *J* = 24.7 Hz), 92.9 (q, *J* = 2.4 Hz), 12.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.46, -122.26; HRMS (ESI) calcd for C₁₀H₈F₄NS⁺ (M + H)⁺ 250.0308, found 250.0312.

2,6-Dimethyl-3-((trifluoromethyl)thio)-1*H*-indole (**3z**) was obtained in 43% yield (41.9 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, br, 1H), 7.48 (s, 1H), 7.17 (d, *J* = 8.2 Hz, 1H), 7.02 (d, *J* = 8.2 Hz, 1H), 2.52 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 133.4, 131.0, 130.9, 129.9 (d, *J* = 310.3 Hz), 124.2, 118.5, 110.6, 92.0 (d, *J* = 1.9 Hz), 21.6, 12.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.46; HRMS (ESI) calcd for C₁₁H₁₁F₃NS⁺ (M + H)⁺ 246.0559, found 246.0559.

2-Phenyl-3-((trifluoromethyl)thio)-1*H*-indole (**3aa**)² was obtained in 70% yield (82.0 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, br, 1H), 7.85-7.82 (m, 1H), 7.71-7.67 (m, 2H), 7.48-7.39 (m, 3H), 7.34-7.30 (m, 1H), 7.28-7.24 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 135.4, 131.5, 130.7, 129.9 (q, *J* = 311.4 Hz), 129.4, 128.9, 128.8, 123.8, 121.9, 119.9, 111.4, 92.4 (d,

1-Methyl-2-phenyl-3-((trifluoromethyl)thio)-1*H*-indole (**3ab**)⁷ was obtained in 64% yield (78.8 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.2 Hz, 1H), 7.53-7.47 (m, 3H), 7.44-7.38 (m, 3H), 7.36-7.28 (m, 2H), 3.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 137.2, 130.9, 130.3, 129.9, 129.8 (q, J = 311.2 Hz), 129.3, 128.5, 123.3, 121.8, 119.7, 110.1, 92.7 (d, J = 2.2 Hz), 31.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -43.86.

1-Methyl-3-((trifluoromethyl)thio)-1*H*-indole $(3ac)^2$ was obtained in 61% yield (56.4 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.6 Hz, 1H), 7.35-7.24 (m, 4H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 137.1, 130.3, 129.6 (q, J = 310.1 Hz), 123.0, 121.4, 119.5, 110.0, 93.1 (q, J = 2.4 Hz), 33.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.89.

1-Benzyl-3-((trifluoromethyl)thio)-1*H*-indole (**3ad**)⁸ was obtained in 69% yield (84.7 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.79 (m, 1H), 7.38 (s, 1H), 7.29-7.22 (m, 6H), 7.09-7.06 (m, 2H), 5.22 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.9, 136.5, 136.2, 130.5, 129.6 (q, J = 310.1 Hz), 129.1, 128.2, 127.1, 123.2, 121.6, 119.7, 110.6, 94.0 (q, J = 2.3 Hz), 50.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -44.59.

Sulfenylation of pyrole 5 with TfNHNHBoc (eqn (1))

The procedure for the sulfenylation of pyrole **5** with TfNHNHBoc is the same as that for the sulfenylation of indoles (see above).

1-Benzyl-2-((trifluoromethyl)thio)-1H-pyrrole (5)⁹ was obtained in 30% yield (30.5 mg) as a

yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.25 (m, 3H), 7.08-7.04 (m, 2H), 6.91 (s, 1H), 6.72 (s, 1H), 6.26 (d, J = 2.8 Hz, 1H), 5.25 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 128.9, 128.4 (q, J = 311.4 Hz), 127.9, 127.6, 127.2, 123.1, 109.9, 109.8 (q, J = 2.3 Hz), 50.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -45.34.

Mechanistic studies

eqn (2)

TfNHNHBoc
$$\xrightarrow{\text{MeCN, 80 °C, 4 h}}$$
 CF₃SSCF₃
2a Detected by ¹⁹F NMR

To a reaction tube equipped with a magnetic stir bar was charged with TfNHNHBoc (**2a**) (211 mg, 0.80 mmol). The tube was sealed with a septum, evacuated, and backfilled with nitrogen three times. Acetonitrile (2.0 mL) was added via syringe with gentle stirring. The reaction vessel was allowed to stir at 80 °C for 4 h. A small portion of the mixture was subjected to ¹⁹F NMR spectroscopic analysis (using PhCF₃ as an internal standard), and CF₃SSCF₃ was identified. CF₃SSCF₃: ¹⁹F NMR (376 MHz, CDCl₃) δ -45.77.⁴

eqn (3)

To a reaction tube equipped with a magnetic stir bar was charged with TfNHNHBoc (**2a**) (211 mg, 0.80 mmol) and CuCl (79.2 mg, 0.80 mmol). The tube was sealed with a septum, evacuated, and backfilled with nitrogen three times. Acetonitrile (2.0 mL) was added via syringe with gentle stirring. The reaction vessel was allowed to stir at 80 °C for 0.5 h. A small portion of the mixture was subjected to ¹⁹F NMR spectroscopic analysis (using PhCF₃ as an internal standard), and CuSCF₃ was identified. CuSCF₃: ¹⁹F NMR (376 MHz, CDCl₃) δ -27.50.¹⁰

To a reaction tube equipped with a magnetic stir bar was charged with TfNHNHBoc (2a) (211 mg, 0.80 mmol). The tube was sealed with a septum, evacuated, and backfilled with nitrogen three times. Acetonitrile (2.0 mL) was added via syringe with gentle stirring. After stir at 80 °C for 4 h, indole (1a) (46.9 mg, 0.40 mmol), CuCl (4.0 mg, 10 mol%), and DMSO (31.2 mg, 28 μ L, 0.40 mmol) was added to the reaction tube. The mixture was stirred at 80 °C for 10 h to give thioether **3a** in 25% yield (determined by ¹⁹F NMR spectroscopic analysis using PhCF₃ as an internal standard).

To a reaction tube equipped with a magnetic stir bar was charged with TfNHNHBoc (2a) (211 mg, 0.80 mmol) and indole (1a) (46.9 mg, 0.40 mmol). The tube was sealed with a septum, evacuated, and backfilled with nitrogen three times. DMSO (31.2 mg, 28 μ L, 0.4 mmol) and MeCN (2.0 mL) were added via syringe with gentle stirring. The reaction vessel was allowed to stir at 80 °C for 10 h. Only a trace amount of thioether **3a** was determined by ¹⁹F NMR spectroscopic analysis.

eqn (6)

To a reaction tube equipped with a magnetic stir bar was charged with TfNHNHBoc (**2a**) (211 mg, 0.80 mmol), indole (**1a**) (46.9 mg, 0.40 mmol), dibenzyl sulfoxide (92.1 mg, 0.40 mmol), and CuCl (4.0 mg, 10 mol%). The tube was sealed with a septum, evacuated, and backfilled with nitrogen three times. MeCN (2.0 mL) was added via syringe with gentle stirring. The reaction vessel was allowed to stir at 80 °C for 10 h. The mixture was cooled to room temperature and purified directly by silica gel chromatography, eluting with ethyl acetate/petroleum ether (1:10), to give thioether **3a** in 61% yield (52.9 mg) and BnSBn in 41% yield (35.0 mg). BnSBn: ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.22 (m, 10H), 3.59 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 138.2, 129.1, 128.6, 127.1, 35.6.¹¹

References

¹ J.-Y. Guo, R.-X. Wu, J.-K. Jin and S.-K. Tian, Org. Lett., 2016, 18, 3850.

² H. Chachignon, M. Maeno, H. Kondo, N. Shibata and D. Cahard, Org. Lett., 2016, 18, 2467.

X. Zhao, A. Wei, B. Yang, T. Li, Q. Li, D. Qiu and K. Lu, J. Org. Chem., 2017, 82, 9175. 3

⁵ D.-W. Sun, X. Jiang, M. Jiang, Y. Lin and J.-T. Liu, *Eur. J. Org. Chem.*, 2017, 3505.

- ⁷ J. Sheng, S. Li and J. Wu, *Chem. Commun.*, 2014, **50**, 578.
- ⁸ M.-j. Bu, G.-p. Lu and C. Cai, *Org. Chem. Front.*, 2017, 4, 266.
 ⁹ Z. Huang, Y.-D. Yang, E. Tokunaga and N. Shibata, *Org. Lett.*, 2015, 17, 1094.
- ¹⁰ Y. Yang, L. Xu, S. Yu, X. Liu, Y. Zhang and D. A. Vicic, *Chem. Eur. J.*, 2016, **22**, 858.
- ¹¹ S. Enthaler and M. Weidauer, *Catal. Lett.*, 2011, **141**, 833.

⁴ L. Jiang, J. Qian, W. Yi, G. Lu, C. Cai and W. Zhang, Angew. Chem. Int. Ed., 2015, 54, 14965.

⁶ P. Zhang, M. Li, X.-S. Xue, C. Xu, Q. Zhao, Y. Liu, H. Wang, Y. Guo, L. Lu and Q. Shen, J. Org. Chem., 2016, 81, 7486.

 133.022

 131.190

 129.487

 129.487

 129.487

 129.109

 123.502

 121.732

 119.342

 111.880
 $\begin{pmatrix} 95.370 \\ 95.346 \\ 95.323 \end{pmatrix}$ 2

080 271

36.

¹³C NMR (100 MHz, CDCl₃)

----45.457

S-56

S-58

---44.339

⁻-141.411
−-141.466
−-144.249
└-144.304

S-109

S-112

