Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2018

Supporting information

Integrated Production of Bio-Jet Fuel Containing Lignin-derived Arenes via Lipid Deoxygenation

Yijian Lu, Bing Ma, Chen Zhao*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China Email: <u>czhao@chem.ecnu.edu.cn</u>

Experimental Section

Chemicals. The chemicals were received from commercial supplier and directly used without any pretreatments. Stearic acid (Sinopec Co., Ltd., AR), ethylbenzene (Aladdin, AR), nano-alumina (Micxy reagent), Hβ (Nankai University, Si/Al ratio: 50), HUSY (Nankai University, Si/Al ratio: 50), HZSM-5 (Nankai University, Si/Al ratio: 100), PtCl₄ (J&K), IrCl₄ (J&K), NH₄ReCl₄ (Sinopec Co., Ltd., GR), SnCl₄·6H₂O (Sinopec Co., Ltd., AR), Ni(NO₃)₂·6H₂O (Sinopec Co., Ltd., AR), Ru/C (Shaanxi Kaida Co., Ltd, 5wt%), Air, H₂, and N₂ gases (99.999 vol.%) were supplied by Shanghai Pujiang Specialty Gases Co., Ltd.

Preparation of bimetallic Pt-M catalysts by incipient wetness impregnation. A typical Pt-Ir/ γ -Al₂O₃ was synthesized as follows. First an H₂PtCl₆ solution and an H₂IrCl₆ solution were prepared, and mixed them with γ -Al₂O₃, with continuous stirring at ambient temperature overnight. Afterwards, the as-formed catalysts were filtered, dried at 80 °C overnight, calcined in flowing air (flowing rate: 100 mL/min) at 350 °C for 4 h, and finally reduced in flowing H₂ (flowing rate: 100 mL/min) at 350 °C for 240 min.

Catalytic Measurements. A typical experiment was carried out as follows: stearic acid (0.5 g), ethyl-cyclohexane (25 mL), and PtIr/ γ -Al₂O₃ catalyst (0.3 g) were charged into a batch autoclave (High temperature and pressure reactor, 50 mL). The reactor was first flushed with N₂ at ambient temperature three times, and was then heated up to 400 °C at a stirring speed of 600 rpm. Conversion = (weight of converted reactant/weight of the starting reactant) × 100%. Yield of liquid products (C %) = (C atoms in liquid products/C atoms in the starting reactant) × 100%. Selectivity (C %) = (C atoms of each product/C atoms in all the liquid products) × 100%.

After cooling down to ambient temperature, liquid products were analyzed on a gas chromatograph equipped with a mass spectrometer (GC-MS, Shimadzu QP-2010 Ultra) with a Rtx-5Sil MS capillary column (30 m×0.25 mm×0.25 μ m). Analysis for gaseous products was performed on a GC (Techcomp 7900) equipped with thermal conductivity detector (TCD) and columns (TDX-01:30 cm × 3 mm, TDX-01:2 m × 3 mm), as well as a flame ionization detector (FID) and a HP-PLOT Q capillary column (50 m × 0.53 mm × 25 μ m).

Catalyst Characterization.

The specific surface area and pore size distribution were performed by N_2 adsorption at 77 K on a BELSORP-MAX instrument after activating the samples under vacuum at 573 K for 10 h.

The IR spectra of adsorbed pyridine (IR-Py) were recorded with a Bruker VERTEX 70 spectrometer equipped with an in situ IR cell. The samples were activated in vacuum at 673 K for 60 min before equilibration with pyridine at 423 K; then they were evacuated at 423 K for 60 min.

Powder X-ray diffraction (XRD) patterns were measured on Rigaku Ultima IV X-ray diffractometer utilizing Cu K α radiation ($\lambda = 1.5405$ Å) operated at 35 kV and 25 mA.

Transmission electron microscopy (TEM) images were performed on a FEI Tecnai G²F30 microscope working at 300 kV.

The IR spectra of adsorbed CO were measured on a Nicolet Fourier transform infrared spectrometer (NEXUS 670). The samples were activated in H₂ at 673 K for 1 h, and then H₂ was removed by Vacuum pump. After the temperature was cooled to 313 K, the samples were exposed to CO until adsorption saturation. Subsequently the samples were evacuated at 313 K to remove the physically adsorbed CO. Afterwards, the IR spectra of adsorbed CO were recorded until no further changes in the spectra were observed.

Computational methods.

DFT calculations were performed using Vienna *ab* initio Simulation Package (VASP). The projector augmented wave (PAW) method combined with cutoff energy of 400 eV were adopted to describe the core and valence electrons. The exchange-correlation effects were described within the generalized gradient approximation with the use of Perdew-burke-Ernzehof (PBE) functional.

The Pt(111) and Ir(111) were modeled by 4-layer slabs separated by 10 Å vacuum space, with the top two layers relaxed. The $p(2\times 2)$ unit cells were chosen, which means a coverage of 0.25 monolayer for a single adsorbate on the surface. The Brillouin zone of the systems were sampled with a $3\times 3\times 1$ Monkhorst-Pack grid.

In this paper, the adsorption energy E_{ad} is defined as:

 $E_{ad} = E_{adsorbate/slab} - E_{slab} - E_{adsorbate}$

Where $E_{adsorbate/slab}$ is the total energy of interacting system of both slab and adsorbate after surface optimization. E_{slab} is the energy of the 4-layer slab with 10 Å vacuum space along z direction and $E_{adsorbate}$ is the energy of adsorbate in vacuum.

Entry	Т	Time	SA	ECH	SA
Enuy	(°C) (h) Amount(g) Con	Conv.(%)	Conv.(%)		
1	350	0	0	12	/
2	350	0	0.5	0.2	75
3	400	0	0	16	/
4	400	0	0.5	18	100
5	400	1	0	32	/
6	400	1	0.5	31	100
7	400	2	0	32	/
8	400	2	0.5	47	100

Table S1. Conversion of ethyl-cyclohexane (ECH) and stearic acid (SA) with Pt-Ir/ γ -Al₂O₃ catalyst in different temperatures or times.

Reaction condition: 0.3 g Pt-Ir/ γ -Al₂O₃, 25 mL ethyl-cyclohexane, 0.1 MPa N₂, stirring at 600 rpm.

Entry		Acid <i>conc</i> . (mmol·g ⁻¹)		
	Catalyst	BAS	LAS	
1	$Pt-Ir/\gamma-Al_2O_3$	0	0.513	
2	Pt-Ir/HZSM-5 (100)	0.044	0.365	
3	Pt-Ir/Hβ (50)	0.113	0.664	
4	Pt-Ir/HUSY (50)	0.128	0.391	

Table S2. The calculated acid concentrations of different supported Pt-Ir catalyst as

 calculated by IR spectra of adsorbed pyridine.

Entry	Catalyst	Gas atmosphere	ECH Conv. (%)	Arene yields (%)	Light alkane yields (%)
1	1.5%Pt	N_2	26	10	16
2	1.5%Pt	10%CO in N ₂	15	9	6
3	2.0%Ir	N_2	25	19	6
4	2.0%Ir	10%CO in N ₂	8	6	2

Table S3. Conversion of ethyl-cyclohexane (ECH) with 1.5% Pt/ γ -Al₂O₃ and 2.0% Irt/ γ -Al₂O₃ catalyst in N₂ and 10%CO (in N₂) atmosphere.

Reaction condition: 0.3 g catalyst, 25 mL ethyl-cyclohexane, N_2 or 10% CO in N_2 (0.1 MPa), stirring at 600 rpm.

Figure S1. The GC-MS diagram with (a) Pt-Re/ γ -Al₂O₃, (b) Pt-Sn/ γ -Al₂O₃, (c) Pt-Ir/ γ -Al₂O₃. Reaction condition: 0.5 g stearic acid, 25 mL ethyl-cyclohexane, 0.3 g catalyst, 400 °C, 0.1 MPa N₂, 2 h, stirring at 600 rpm.

Figure S2. IR spectra of adsorbed pyridine on Pt-Ir/ γ -Al₂O₃, Pt-Ir/HZSM-5, Pt-Ir/H β , and Pt-Ir/HUSY catalysts.

Figure S3. Product distribution (a) without catalyst, (b) 0.3g Pt-Ir/ γ -Al₂O₃ catalyst from co-conversion of stearic acid and ethyl-cyclohexane. Reaction condition: 25 mL ethyl-cyclohexane, 0.5 g stearic acid, 400 °C, 0.1 MPa N₂, 2 h, stirring at 600 rpm.

Figure S4. GC diagram of product with conversion of ethyl-cyclohexane and stearic acid without catalyst. Reaction condition: 25 mL ethyl-cyclohexane, 0.5 g stearic acid, 400 $^{\circ}$ C, 0.1 MPa N₂, 2 h, stirring at 600 rpm.

Figure S5. GC diagram of product with conversion of ethyl-cyclohexane and stearic acid with 0.3g Pt-Ir/ γ -Al₂O₃ catalyst. Reaction condition: 25 mL ethyl-cyclohexane, 0.5 g stearic acid, 400 °C, 0.1 MPa N₂, 2 h, stirring at 600 rpm.

Figure S6. Conversion of ethyl-cyclohexane and stearic acid with Pt-Ir/ γ -Al₂O₃ catalyst at different reaction times. Reaction condition: 0.3 g 2.0% Ir-1.5% Pt/ γ -Al₂O₃, 5 g stearic acid, 25 mL ethyl-cyclohexane, 0.1 MPa N₂, 400 °C, stirring at 600 rpm.

Figure S7. (a) XRD patterns, (b) N₂ adsorption and desorption isotherms, and (c) IR spectra of adsorbed pyridine on γ -Al₂O₃, 1.5%Pt/ γ -Al₂O₃, 2.0%Ir/ γ -Al₂O₃ and 1.5%Pt-2.0%Ir/ γ -Al₂O₃.

Figure S8. TEM images and particle size distribution of (a) 1.5% Pt-2.0%Ir/ γ -Al₂O₃, (b) 1.5%Pt/ γ -Al₂O₃, (c) 2.0%Ir/ γ -Al₂O₃.

Figure S9. (a) IR spectra of CO adsorption at ambient temperatures on 1.5%Pt/ γ -Al₂O₃, 2.0%Ir/ γ -Al₂O₃, and 1.5%Pt-2.0%Ir/ γ -Al₂O₃ catalyst.

Figure S10. GC-MS spectrum of cycloalkanes mixture products derived lignin hydrogenation. Reaction conditions: 4 g lignin, 2 g Ni/ASA catalyst, dodecane solvent (80 mL), 300 $^{\circ}$ C, 5 MPa H₂, 4 h, stirring at 600 rpm.

Figure S11. GC-MS spectrum of hydrocarbon mixture converted from palm oil and cycloalkanes derived lignin. Reaction condition: 15 mL cycloalkanes derived from lignin, 10 g palm oil, 0.3 g 1.5Pt-2.0Ir/Al₂O₃, 400 °C, 0.1 MPa N₂, 12 h, stirring at 600 rpm.

Figure S12. GC-MS spectrum of commercial 3# jet fuel (purchased from SINOPEC).