Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Ruthenium(II)-catalyzed Selective C-H Difluoroalkylation of Aniline Derivatives with Pyrimidyl Auxiliaries

Xin-Gang Wang,^a Yuke Li,^b Lu-Lu Zhang,^a Bo-Sheng Zhang,^a Qiang Wang,^a Jun-Wei Ma,^a and Yong-Min Liang^{*a} ^a State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China ^b Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China. E-mail: liangym@lzu.edu.cn

Table of Contents

1. General Remarks
2. Optimization Studies
2. General Procedure for Ruthenium(II)-Catalyzed site-selective Difluoromethylation
3. Difluoromethylated aniline derivatives diversified transformations
(a) Cyclization (synthesis of difluoromethyl modified imidazo[1,2- <i>a</i>]pyrimidine 6)11
(b) Hydrolysis (procedure of hydrolysis of ethyl ester 7) 11
4. Mechanistic Studies
(a) H/D Scrambling12
(b) Reversible H/D exchange15
(c) Radical mechanism experiment17
(d) Control experiment17
5. Proposed mechanism
6. Computational Data19
a) Computational Methods19
b) Results19
c) Results Optimized Cartesian coordinates at B3LYP/6-31G level of theory21
7. Crystallographic Details
8. NMR spectra
References

1. General Remarks

Catalytic reactions were performed under Ar atmosphere using pre-dried glassware and standard Schlenk techniques. 1,4-Dioxane and toluene were dried with CaH₂ and freshly distilled, DCE was dried with P₂O₅ and freshly distilled. The substrates 1,¹ bromodifluoroamides 2z, 2aa,² 13,³ [Ru(O₂CMes)₂(*p*-*cymene*)],⁴ and [Ru(OAc)₂(*p*-*cymene*)]⁵ were synthesized according to previously described methods. Other chemicals were obtained from commercial sources and were used without further purification. For Column chromatography, 200-300 mesh silica gel and preparative TLC (PTLC) was employed. Analytical TLC was performed with silica gel GF254 plates. ¹H NMR (400 MHz), ¹³C NMR (100 MHz) and ¹⁹F NMR (376 MHz) were recorded in CDCl₃ using TMS as internal standard. All products were further characterized by high resolution mass spectra (HRMS, FTMS, ESI full ms [100-2000]), copies of their ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were provided. If not otherwise specified, chemical shifts (δ) are given in ppm.

2. Optimization Studies

Table S1. Testing of Bases, Solvents and Temperature.^a

	+ F Br	F [RuCl ₂ (F (5 CO ₂ Et Base solv	p-cymene)] ₂ mol%) (2.0 equiv) ent, <i>T</i> °C	HN N +		+		CF₂H
1a		2a		3a	4a		5	
	Entry	Base	T[℃]	Solvent	Y: 3a	ield [% 4a	6] 5	
	1	K ₂ CO ₃	120	1,4-dioxane	-	-	-	
	2	K ₂ CO ₃	120	DCE	<5	-	-	
	3	K ₂ CO ₃	120	TCE	-	-	-	
	4	K ₂ CO ₃	120	TBME	16	-	-	
	5	K ₂ CO ₃	120	DME	-	-	-	
	6	K ₂ CO ₃	120	MeCN	-	-	67 ^b	
	7	K ₂ CO ₃	120	toluene	39	-	-	
	8	K ₂ CO ₃	120	PhCF ₃	28	-	-	
	9	K ₂ CO ₃	120	o-xylene	30	-	-	
	10	K ₂ CO ₃	120	<i>m</i> -xylene	27	-	-	
	11	K ₂ CO ₃	120	<i>p</i> -xylene	26	-	-	
	12	K ₂ CO ₃	120	Mesitylene	21	-	-	
	13	K ₂ CO ₃	100	toluene	-	-	-	
	14	K ₂ CO ₃	140	toluene	35	13		
	15	K ₂ CO ₃	120	toluene				
	16	Na ₂ CO ₃	120	toluene	41	8		
	17	Cs ₂ CO ₃	120	toluene	29 ^b	-		
	18	K ₃ PO ₄	120	toluene	-	-		
	19	NaOAc	120	toluene	13 ^b	\mathbf{n}^{b}		
	20	KOAc	120	toluene	21 ^b	18 ^b		
	21	CsOAc	120	toluene	15 ^b	13 ^b		
	22	TMEDA	-	toluene	-	-		

^aStandard reaction conditions: aniline derivative (0.2 mmol), bromodifluoroacetate (0.6 mmol), $[RuCl_2(p-cymene)]_2$ (0.01 mmol), base (0.4 mmol), and solvent (1 mL) under argon atmosphere, yields of isolated products. ^bYield was determined by GC-MS spectroscopy using diphenyl oxide as the internal standard. DCE = 1,2-dichloromethane, TCE = 1,1,2-trichloromethane, DME = 1,2-dimethoxyethane. TMEDA = *N*,*N*²-tetramethylethylenediamine

Table S2. Optimization of Ruthenium(II)-Catalyzed C-H Difluoromethylation.^a

Entry	Catalyst	Additive	3a	Yield [%] 4a	5
1	$[RuCl_2(p-cymene)]_2$	NaOAc	25	13 ^b	-
2	$[RuCl_2(p-cymene)]_2$	KOAc	28	19 ^[b]	-
3	$[RuCl_2(p-cymene)]_2$	Piv-OH	22 ^b	31 ^b	-
4	$[RuCl_2(p-cymene)]_2$	1-AdCOOH	18 ^b	34 ^b	-
5	$[RuCl_2(p-cymene)]_2$	MesCO₂H	25 ^b (23)	40 ^b	-
6	$[RuCl_2(p-cymene)]_2$	N-Ac-L-Val	28 ^b	35 ^b	
7	$[RuCl_2(p-cymene)]_2$	N-Ac-L-Phe	24 ^b	3 8 ^b	-
8	$[RuCl_2(p-cymene)]_2$	N-Ac-L-Ile	27 ^b	41 ^b	-
9	$[RuCl_2(p-cymene)]_2$	N-Ac-L-Gly	25 ^b	36 ^b	-
10	$[\operatorname{RuCl}_2(p\text{-}cymene)]_2$	N-Ac-L-Cys	18 ^b	3 8 ^b	-
11	$[\operatorname{RuCl}_2(p\text{-}cymene)]_2$	N-Piv-Val	25 ^b	39 ^b	-
12	$[RuCl_2(p-cymene)]_2$	N-Piv-Leu	21 ^b	33 ^b	-
13	$[\operatorname{RuCl}_2(p\text{-}cymene)]_2$	PPh ₃	-	-	78
14	$[\operatorname{RuCl}_2(p\text{-}cymene)]_2$	AgNTf ₂	28 ^b	$8^{\rm b}$	-
15	$[\operatorname{RuCl}_2(p\text{-}cymene)]_2$	AgBH ₄	27 ^b	7 ^b	
16	$[\operatorname{RuCl}_2(p\text{-}cymene)]_2$	$AgSbF_6$	30p	-	-
17	$[\operatorname{RuCl}_2(p\text{-}cymene)]_2$	AgNO ₃	36 ^b	9^{b}	-
18	$[\operatorname{RuCl}_2(p\text{-}cymene)]_2$	AgOAc	29 ^b	21 ^b	
19	$[\operatorname{RuCl}_2(p\text{-}cymene)]_2$	AgTFA	19 ^b	14 ^b	-
20	$[RuCl_2(p-cymene)]_2$	Ag ₂ CO ₃	35 ^b	<5	-
21	$[RuCl_2(p-cymene)]_2$	AgNTf ₂ + <i>N</i> -Ac-L-Ile	20 ^b	46 ^b	-
22	$[RuCl_2(p-cymene)]_2$	AgNTf ₂ +MesCO ₂ H	14 ^b	54 ^b	-
23	$[RuCl_2(p-cymene)]_2$	AgNTf ₂ +N-Piv-Val	33 ^b	26 ^b	-
24	Ru ₃ (CO) ₁₂	-	-	-	-
25	RuCl ₂ (PPh ₃) ₃	-	-	-	59 ^b
26	RuCl₂(COD)	-	-	-	-
27	[Ru(OAc)₂(p-cymene)]	-	27	<5	-
28	[Ru(O ₂ CMes) ₂ (p-cymene)]	-	58	<5	-
29 ^c	[Ru(O ₂ CMes) ₂ (p-cymene)]	-	65	15	
30	[Ru(O ₂ CMes) ₂ (p-cymene)]	MesCO₂H	34 ^b	30 ^b	
31	[Ru(O ₂ CMes) ₂ (p-cymene)]	N-Ac-L-Ile	25 ^b	39 ^b	

^a Standard reaction conditions: aniline derivative (0.2 mmol), bromodifluoroacetate (0.6 mmol), $[Ru(O_2CMes)_2(p-cymene)]$ (0.02 mmol), base (0.4 mmol), and solvent (1 mL) under argon atmosphere, yields of isolated products. ^b GC yield. ^c Na₂CO₃ (0.4 mmol) was used. MesCO₂H = 2,4,6-trimethylbenzoic acid.

No better results were achieved by changing other *N*-substituted auxiliaries.

2. General Procedure for Ruthenium(II)-Catalyzed site-selective Difluoromethylation

General Procedure : A mixture of 1 (0.2 mmol, 1.0 equiv.), $BrCF_2CO_2Et$ (80 μ L, 121.8 mg, 3 equiv.), $[Ru(O_2CMes)_2(p-cymene)]$ (5.6 mg, 10 mol %), Na_2CO_3 (42.4 mg, 2 equiv.), and toluene (1 mL) in a 10 mL glass tube sealed under argon atmosphere was heated at 120 °C for 18 hours. The reaction mixture cooled to room temperature and concentrated in *vacuo*. The resulting residue was purified by column chromatography (PE/EA) on silica gel to give the product 3 or 4.

ethyl 2,2-difluoro-2-(4-(pyrimidin-2-ylamino)phenyl)acetate (3a)

amorphous yellow solid, 65% (38 mg), M.p. (from CHCl₃): 56-62 °C. **'H NMR** (400 MHz, Chloroform-*d*) δ 8.46 (d, *J* = 4.7 Hz, 2H), 7.74 (d, *J* = 8.5 Hz, 2H), 7.62 (s, 1H), 7.57 (d, *J* = 8.8 Hz, 2H), 6.80 (t, *J* = 4.7 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H).

¹³**C** NMR (101 MHz, Chloroform-*d*) δ 164.37 (t, *J* = 35.9 Hz), 158.00, 141.96, 128.93, 126.40 (t, *J* = 6.1 Hz), 126.23, 118.63, 113.48 (t, *J* = 251.7 Hz), 113.28, 63.01, 13.88.

¹⁹F NMR (376 MHz, Chloroform-d) δ -103.0.

HRMS(ESI) Calcd for C₁₄H₁₃F₂N₃O₂ [M+H⁺]: 294.1049, found: 294.1042.

ethyl 2,2-difluoro-2-(2-methyl-4-(pyrimidin-2-ylamino)phenyl)acetate (3b)

amorphous yellow solid, 68% (41.7 mg), M.p. (from CHCl₃): 70-74 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.47 (d, *J* = 4.8 Hz, 2H), 7.62 – 7.51 (m, 3H), 7.50 (s, 1H), 6.80 (t, *J* = 4.8 Hz, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 2.44 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 164.3 (t, *J* = 35.6 Hz), 159.8, 158.0 141.6, 137.5 (t, *J* = 3.0 Hz), 127.2 (t, *J* = 8.8 Hz), 124.7 (t, *J* = 23.8 Hz), 121.6, 116.0, 114.3 (t, *J* = 249.5 Hz), 113.1, 63.0, 19.9 (t, *J* = 2.6 Hz), 13.9.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -100.4.

HRMS(ESI) Calcd for C₁₅H₁₅F₂N₃O₂ [M+H⁺]: 308.1205, found: 308.1202.

ethyl 2,2-difluoro-2-(2-methoxy-4-(pyrimidin-2-ylamino)phenyl)acetate (3c)

amorphous yellow solid, 52% (33.5 mg), M.p. (from CHCl₃): 86-90 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.47 (d, *J* = 4.8 Hz, 2H), 7.84 (s, 1H), 7.67 (s, 1H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.09 (dd, *J* = 8.5, 2.0 Hz, 1H), 6.80 (t, *J* = 4.8 Hz, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.84 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H).

³³**C NMR** (101 MHz, Chloroform-*d*) δ 164.3 (t, *J* = 34.5 Hz), 159.8, 158.0, 157.5, 143.5, 126.9 (t, *J* = 7.3 Hz), 115.5 (t, *J* = 24.7 Hz), 113.3, 112.5 (t, *J* = 247.5 Hz), 110.4, 102.1, 62.6, 55.7, 14.0.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -101.51.

HRMS(ESI) Calcd for C₁₅H₁₅F₂N₃O₃ [M+H⁺]: 324.1154, found: 324.1158.

ethyl 2,2-difluoro-2-(2-fluoro-4-(pyrimidin-2-ylamino)phenyl)acetate (3d)

yellow solid, 39% (24.3 mg), M.p. (from CHCl₃): 130-136 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.50 (d, *J* = 4.8 Hz, 2H), 7.94 (d, *J* = 13.5 Hz, 1H), 7.81 (s, 1H), 7.55 (t, *J* = 8.4 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 1H), 6.86 (t, *J* = 4.8 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 163.6 (t, *J* = 34.6 Hz), 161.6 (t, *J* = 4.8 Hz), 159.4, 159.1 (t, *J* = 4.7 Hz), 158.1, 144.0 (d, *J* = 11.5 Hz), 127.4 (td, *J* = 6.8, 3.8 Hz), 113.9, 113.8 (d, *J* = 2.9 Hz), 111.8 (t, *J* = 250.3 Hz), 106.2 (d, *J* = 26.7 Hz), 63.3, 13.9. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -101.0 (d, *J* = 7.8 Hz), -112.7 (t, *J* = 7.6 Hz).

HRMS(ESI) Calcd for C₁₄H₁₂F₃N₃O₂ [M+H⁺]: 312.0954, found: 312.0947.

ethyl 2-(2-chloro-4-(pyrimidin-2-ylamino)phenyl)-2,2-difluoroacetate (3e)

amorphous yellow oil, 45% (29.4 mg), M.p. (from CHCl₃): 68-74°C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.50 (d, *J* = 4.0 Hz, 2H), 8.04 (s, 1H), 7.87 (s, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.50 (m, *J* = 8.6, 2.1 Hz, 1H), 6.85 (t, *J* = 4.8 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H).

³³**C NMR** (101 MHz, Chloroform-*d*) δ 163.4 (t, *J* = 34.6 Hz), 159.4, 158.0, 142.8, 132.5 (t, *J* = 4.4 Hz), 127.7 (t, *J* = 8.4 Hz), 124.1 (t, *J* = 24.8 Hz), 119.9, 116.4, 113.7, 112.3 (t, *J* = 250.1 Hz), 63.3, 13.8.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -101.2.

HRMS(ESI) Calcd for C₁₄H₁₂ClF₂N₃O₂ [M+H⁺]: 328.0659, found: 328.0653.

ethyl 2-(2-bromo-4-(pyrimidin-2-ylamino)phenyl)-2,2-difluoroacetate (3f) amorphous yellow solid, 43% (31.8 mg), M.p. (from CHCl₃): 115-120 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.50 (d, *J* = 4.8 Hz, 2H), 8.18 (s, 1H), 8.05 (s, 1H), 7.66 (d, *J* = 8.8 Hz, 1H), 7.60 (d, *J* = 8.6 Hz, 1H), 6.85 (t, *J* = 4.8 Hz, 1H), 4.36 (q, *J* = 7.2 Hz, 2H), 1.33 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (101 MHz, Chloroform-*d*) δ 163.4 (t, *J* = 34.6 Hz), 159.4 , 158.1 , 142.8 , 128.1 (t, *J* = 8.8 Hz), 125.8 (t, *J* = 24.6 Hz), 123.3 , 120.8 (t, *J* = 4.2 Hz), 117.0 , 113.8 , 113.0 (t, *J* = 248.7 Hz), 63.4 , 13.9 .

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -100.6.

HRMS(ESI) Calcd for C₁₄H₁₂BrF₂N₃O₂ [M+H⁺]: 372.0154, found: 372.0159.

ethyl 2,2-difluoro-2-(2-(methylthio)-4-(pyrimidin-2-ylamino)phenyl)acetate (3g) amorphous yellow solid, 40% (27.2 mg), M.p. (from CHCl₃): 98-102 °C.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.48 (d, *J* = 4.8 Hz, 2H), 7.95 (s, 1H), 7.73 (s, 1H), 7.63 (d, *J* = 8.6 Hz, 1H), 7.51 (d, *J* = 8.5 Hz, 1H), 6.82 (t, *J* = 4.8 Hz, 1H), 4.35 (q, *J* = 7.1 Hz, 2H), 2.47 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H).

¹³**C** NMR (101 MHz, Chloroform-*d*) δ 164.1 (t, *J* = 34.8 Hz), 159.6, 158.0, 142.1, 137.5 (t, *J* = 4.2 Hz), 127.1 (t, *J* = 9.1 Hz), 126.3 (t, *J* = 23.6 Hz), 120.0, 116.1, 113.4, 113.2 (t, *J* = 248.0 Hz), 63.0, 18.2, 13.8.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -98.3. HRMS(ESI) Calcd for C₁₅H₁₅F₂N₃O₂S [M+H⁺]: 340.0926, found: 340.0922.

ethyl 2,2-difluoro-2-(4-(pyrimidin-2-ylamino)-2-(trifluoromethyl)phenyl)acetate (3h)

yellow solid, 23% (16.6 mg), M.p. (from CHCl₃): 98-100 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.52 (d, *J* = 4.9 Hz, 2H), 8.17 – 8.14 (m, 1H), 8.08 (s, 1H), 7.99 (d, *J* = 8.7 Hz, 1H), 7.78 (d, *J* = 8.7 Hz, 1H), 6.88 (t, *J* = 4.8 Hz, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 1.31 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 163.5 (t, *J* = 35.1 Hz), 159.4, 158.1, 142.2, 129.2 (t, *J* = 10.1 Hz), 128.5 (d, *J* = 32.7 Hz), 123.4 (t, *J* = 26.2 Hz), 123.3 (q, *J* = 273.9 Hz), 120.7, 117.3 (q, *J* = 6.2 Hz), 114.0, 113.0 (t, *J* = 252.2 Hz), 63.3, 13.8.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -58.6 (t, *J* = 11.3 Hz), -98.0 (q, *J* = 11.1, 10.4 Hz).

HRMS(ESI) Calcd for C₁₅H₁₂F₅N₃O₂ [M+H⁺]: 362.0922, found: 362.0915.

ethyl 2-(2,6-dimethyl-4-(pyrimidin-2-ylamino)phenyl)-2,2-difluoroacetate (3j) amorphous yellow solid, 51% (32.7 mg), M.p. (from CHCl₃): 65-70 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.46 (d, *J* = 4.8 Hz, 2H), 7.75 – 7.52 (m, 1H), 7.36 (s, 2H), 6.78 (t, *J* = 4.8 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 2.48 (t, *J* = 4.3 Hz, 6H), 1.31 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 164.6 (t, *J* = 35.9 Hz), 159.8, 158.0, 140.5, 138.9 (t, *J* = 3.2 Hz), 123.5 (t, *J* = 22.8 Hz), 120.9, 120.1, 116.1 (t, *J* = 253.0 Hz), 113.0, 63.0, 22.0 (t, *J* = 5.9 Hz), 13.8.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -94.3.

HRMS(ESI) Calcd for C₁₆H₁₇F₂N₃O₂ [M+H⁺]: 322.1362, found: 322.1360.

ethyl 2-(2,6-dimethoxy-4-(pyrimidin-2-ylamino)phenyl)-2,2-difluoroacetate (3k)

amorphous yellow solid, 41% (28.9 mg), M.p. (from CHCl₃): 104-110 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.48 (d, *J* = 4.8 Hz, 2H), 7.75 (s, 1H), 7.03 (s, 2H), 6.81 (t, *J* = 4.8 Hz, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 3.83 (s, 6H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³**C** NMR (101 MHz, Chloroform-*d*) δ 164.8 (t, *J* = 33.3 Hz), 159.7, 159.6 (t, *J* = 2.6 Hz), 157.9, 143.6, 113.3, 113.3 (t, *J* = 247.6 Hz), 103.4 (t, *J* = 24.0 Hz), 95.3, 62.4, 56.1, 14.0.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -96.4.

HRMS(ESI) Calcd for C₁₆H₁₇F₂N₃O₄ [M+H⁺]: 354.1260, found: 354.1255.

ethyl 2,2-difluoro-2-(3-methyl-4-(pyrimidin-2-ylamino)phenyl)acetate (3l)

amorphous yellow solid, 56% (34.3 mg), M.p. (from CHCl₃): 64-68 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.38 (d, *J* = 4.4 Hz, 2H), 7.98 (d, *J* = 7.8 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 8.0 Hz, 1H), 7.28 (s, 1H), 6.72 (t, *J* = 4.0 Hz, 1H), 4.32 (q, *J* = 8.0 Hz, 2H), 2.34 (s, 3H), 1.31 (t, *J* = 8.0 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 164.3 (t, *J* = 35.0 Hz), 160.7, 158.2, 138.4, 132.2 (t, *J* = 23.0 Hz), 128.8 (t, *J* = 3.0 Hz), 126.3, 126.0, 122.4 (t, *J* = 9.0 Hz), 114.0 (t, *J* = 250.0 Hz), 112.7, 63.3, 14.0 (t, *J* = 3.0 Hz), 13.9.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -99.8.

HRMS(ESI) Calcd for C₁₅H₁₅F₂N₃O₂ [M+H⁺]: 308.1205, found: 308.1206.

ethyl 2,2-difluoro-2-(3-methoxy-4-(pyrimidin-2-ylamino)phenyl)acetate (3m) amorphous yellow solid, 40% (25.8 mg), M.p. (from CHCl₃): 75-82 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.61 – 8.57 (m, 1H), 8.47 (d, *J* = 4.8 Hz, 2H), 7.61 (s, 1H), 7.34 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.29 – 7.24 (m, 1H), 6.79 (t, *J* = 4.8 Hz, 1H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 163.7 (t, J = 33.7 Hz), 159.7, 158.1, 146.5 (t, J = 5.3 Hz), 133.3, 127.1 (t, J = 25.2 Hz), 124.7, 122.9, 119.2 (t, J = 7.2 Hz), 113.2, 112.0 (t, J = 248.3 Hz), 62.9, 62.0, 13.8.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -100.0.

HRMS(ESI) Calcd for C₁₅H₁₅F₂N₃O₃ [M+H⁺]: 324.1154, found: 324.1161.

ethyl 2-(3-chloro-4-(pyrimidin-2-ylamino)phenyl)-2,2-difluoroacetate (30)

amorphous yellow solid, 37% (24.2 mg), M.p. (from CHCl₃): 68-71 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.74 (t, *J* = 5.0 Hz, 1H), 8.48 (d, *J* = 4.8 Hz, 2H), 7.70 (s, 1H), 7.43 (d, *J* = 5.0 Hz, 2H), 6.84 (t, *J* = 4.8 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H).

¹³**C** NMR (101 MHz, Chloroform-*d*) δ 163.2 (t, *J* = 33.9 Hz), 159.4, 158.0, 137.0, 131.4 (t, *J* = 24.4 Hz), 127.2, 122.7, 120.3 (t, *J* = 8.9 Hz), 119.8 (t, *J* = 4.3 Hz), 113.8, 112.2 (t, *J* = 250.7 Hz), 63.4, 13.8.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -102.01.

HRMS(ESI) Calcd for C₁₄H₁₂ClF₂N₃O₂ [M+H⁺]: 328.0659, found: 328.0654.

ethyl 2-(3-bromo-4-(pyrimidin-2-ylamino)phenyl)-2,2-difluoroacetate (3p)

amorphous yellow solid, 32% (23.7 mg), M.p. (from CHCl₃): 79-84 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.66 (dd, *J* = 7.8, 2.0 Hz, 1H), 8.48 (d, *J* = 4.8 Hz, 2H), 7.75 (s, 1H), 7.51 – 7.40 (m, 2H), 6.84 (t, *J* = 4.8 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 163.1 (t, *J* = 33.9 Hz), 159.5, 158.0, 138.1, 133.4 (t, *J* = 24.2 Hz), 127.9, 123.1, 121.2 (t, *J* = 9.5 Hz), 113.8, 112.8 (d, *J* = 249.2 Hz), 111.2 (d, *J* = 4.0 Hz), 63.4, 13.8.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -101.2.

HRMS(ESI) Calcd for C₁₄H₁₂BrF₂N₃O₂ [M+H⁺]: 372.0154, found: 372.0161.

ethyl 2-(2,3-dimethyl-4-(pyrimidin-2-ylamino)phenyl)-2,2-difluoroacetate (3q)

amorphous yellow solid, 46% (29.6 mg), M.p. (from CHCl₃): 62-66 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.41 (d, *J* = 4.8 Hz, 2H), 7.86 (d, *J* = 8.6 Hz, 1H), 7.50 (d, *J* = 8.7 Hz, 1H), 7.08 (s, 1H), 6.74 (t, *J* = 4.8 Hz, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 2.33 (s, 3H), 2.25 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H).

¹³**C** NMR (101 MHz, Chloroform-*d*) δ 164.7 (t, *J* = 35.4 Hz), 160.6, 158.3, 139.5, 136.0 (t, *J* = 2.0 Hz), 129.7, 127.2, 124.3 (t, *J* = 9.6 Hz), 119.9, 113.2 (t, *J* = 250.0 Hz), 112.9, 63.2, 16.8, 14.2, 14.0.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -99.11.

HRMS(ESI) Calcd for C₁₆H₁₇F₂N₃O₂ [M+H⁺]: 322.1362, found: 322.1361.

ethyl 2,2-difluoro-2-(4-(pyrimidin-2-ylamino)naphthalen-1-yl)acetate (3r)

yellow solid, 53% (36.3 mg), M.p. (from CHCl₃): 155-158 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.64 (s, 1H), 8.36 (d, *J* = 4.9 Hz, 2H), 8.27 (d, *J* = 8.1 Hz, 1H), 8.19 (dd, *J* = 8.1, 4.0 Hz, 2H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.58 (dddd, *J* = 17.4, 8.1, 6.8, 1.4 Hz, 2H), 6.72 (t, *J* = 4.8 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H).

³**C** NMR (101 MHz, Chloroform-*d*) δ 164.5 (t, *J* = 35.2 Hz), 160.7, 158.2, 137.6, 130.4, 127.4, 127.3, 126.2, 125.4 (t, *J* = 9.6 Hz), 125.0 (t, *J* = 3.1 Hz), 123.9 (t, *J* = 23.6 Hz), 121.9, 117.1, 114.4 (t, *J* = 251.3 Hz), 113.0, 63.2, 13.8.

¹⁹**F NMR** (376 MHz, Chloroform-d) δ -99.4.

HRMS(ESI) Calcd for C₁₈H₁₅F₂N₃O₂ [M+H⁺]: 344.1205, found: 344.1211.

ethyl 2,2-difluoro-2-(4-(quinazolin-2-ylamino)phenyl)acetate (3s)

yellow solid, 51% (35 mg), M.p. (from CHCl₃): 132-138 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.12 (s, 1H), 7.95 (d, *J* = 8.5 Hz, 2H), 7.85 – 7.69 (m, 3H), 7.62 (d, *J* = 8.5 Hz, 2H), 7.58 (s, 1H), 7.42 – 7.36 (m, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H).

³³**C NMR** (101 MHz, Chloroform-d) δ 164.5 (t, *J* = 39.3 Hz), 161.96, 156.35, 151.26, 142.15, 134.63, 128.97, 127.49, 126.5 (t, *J* = 5.7 Hz), 126.13, 124.37, 121.08, 118.36, 113.56 (t, *J* = 251.9 Hz), 63.05, 13.93.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.0.

HRMS(ESI) Calcd for C₁₈H₁₅F₂N₃O₂ [M+H⁺]: 344.1205, found: 344.1208.

ethyl 2,2-difluoro-2-(4-((5-methylpyrimidin-2-yl)amino)phenyl)acetate (3t)

amorphous yellow solid, 45% (27.5 mg), M.p. (from CHCl₃): 58-64 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.30 (s, 2H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.47 (s, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 2.22 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H).

³³**C NMR** (101 MHz, Chloroform-*d*) δ 164.24 (t, *J* = 35.9 Hz), 158.05, 157.92, 142.29, 136.25, 126.40 (t, *J* = 6.1 Hz), 125.73, 122.02, 118.13, 113.53 (t, *J* = 251.4 Hz), 62.99, 14.86, 13.89.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -103.0.

HRMS(ESI) Calcd for C₁₅H₁₅F₂N₃O₂ [M+H⁺]: 308.1205, found: 308.1202.

ethyl 2-(4-((5-chloropyrimidin-2-yl)amino)phenyl)-2,2-difluoroacetate (3u) amorphous yellow solid, 41% (26.8 mg), M.p. (from CHCl₃): 54-58 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.4 (s, 2H), 7.7 (d, *J* = 8.4 Hz, 2H), 7.6 (d, *J* = 8.4 Hz, 2H), 7.4 (s, 1H), 4.3 (q, *J* = 7.2 Hz, 2H), 1.3 (t, *J* = 7.2 Hz, 3H).

³³**C NMR** (101 MHz, Chloroform-*d*) δ 164.1 (t, *J* = 35.3 Hz), 157.9, 156.3, 139.4, 133.6 (t, *J* = 25.6 Hz), 129.4, 121.5, 121.5, 119.7 (t, *J* = 6.1 Hz), 116.1 (t, *J* = 6.5 Hz), 113.2 (t, *J* = 252.4 Hz), 63.2, 13.9.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.2.

HRMS(ESI) Calcd for C₁₄H₁₂ClF₂N₃O₂ [M+H⁺]: 328.0659, found: 328.0653.

ethyl 2-fluoro-2-(3-(pyrimidin-2-ylamino)phenyl)acetate (4w)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.44 (d, *J* = 4.8 Hz, 2H), 7.77 (s, 1H), 7.74 (s, 1H), 7.70 (d, *J* = 7.0 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.14 (dd, *J* = 7.7, 1.6 Hz, 1H), 6.76 (t, *J* = 4.8 Hz, 1H), 5.79 (d, *J* = 47.8 Hz, 1H), 4.25 (dd, *J* = 19.9, 7.1 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 3H).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -180.1.

ethyl 2-fluoro-2-(4-(pyrimidin-2-ylamino)phenyl)acetate (3w)

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.45 (d, *J* = 4.5 Hz, 2H), 7.74 (s, 1H), 7.68 (d, *J* = 4.8 Hz, 2H), 7.43 (d, 2H), 6.77 (s, *J* = 4.8 Hz, 1H), 5.74 (d, *J* = 47.8 Hz, 1H), 4.26 - 4.18 (m, 2H), 1.26 (t, 3H).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -175.9.

Mixture (**4w**:**3w** = 5:1) yellow oil, 37% (20.3 mg).

¹³**C** NMR (101 MHz, Chloroform-*d*) δ 168.7, 168.4, 159.9 (d, *J* = 8.1 Hz), 158.0, 139.9, 135.1, 134.9, 129.3, 127.8 (d, *J* = 5.5 Hz), 120.6, 120.3, 120.3, 119.2, 117.3, 117.2, 112.9, 89.3 (d, *J* = 185.7 Hz), 89.2 (d, *J* = 184.6 Hz), 61.9, 61.8, 14.0. **HRMS(ESI)** Calcd for C₁₄H₁₄FN₃O₂ [M+H⁺]: 276.1143, found: 276.1149.

methyl 2,2-difluoro-2-(3-(pyrimidin-2-ylamino)phenyl)acetate (4x)

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.46 (d, *J* = 4.8 Hz, 2H), 8.01 (s, 1H), 7.88 (s, 1H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.42 (t, *J* = 7.9 Hz, 1H), 7.26 (s, 1H), 6.78 (t, *J* = 4.8 Hz, 1H), 3.85 (s, 3H).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.9.

methyl 2,2-difluoro-2-(4-(pyrimidin-2-ylamino)phenyl)acetate (3x)

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.46 (d, *J* = 4.9 Hz, 2H), 8.01 (s, 3H), 7.76 (d, *J* = 8.6 Hz, 2H), 7.59 (d, *J* = 8.7 Hz, 2H), 6.82 (t, *J* = 4.8 Hz, 1H), 3.87 (s, 3H).

¹⁹F NMR (376 MHz, Chloroform-d) δ -103.1.

Mixture (4x:3x = 10:1) yellow oil, 55% (30.6 mg).

³**C** NMR (101 MHz, Chloroform-*d*) δ 164.7 (t, J = 35.7 Hz), 159.8, 158.0, 140.0, 136.2, 133.3 (t, J = 25.4 Hz), 129.3, 128.6, 126.4 (t, J = 5.9 Hz), 121.8, 119.2 (t, J = 6.2 Hz), 118.8, 116.1 (t, J = 6.4 Hz), 115.8, 113.3, 113.1, 110.8, 53.6.

 $\label{eq:HRMS} \textbf{HRMS(ESI)} \ \textbf{Calcd for} \ C_{{}_{13}}H_{{}_{11}}F_{2}N_{3}O_{2} \ [M+H^{+}]: \textbf{280.0892, found: 280.0894.}$

N-(tert-butyl)-2,2-difluoro-2-(3-(pyrimidin-2-ylamino)phenyl)acetamide (4y)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.45 (d, *J* = 4.8 Hz, 2H), 7.90 (s, 1H), 7.88 (s, 1H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.40 (t, *J* = 8.0 Hz, 1H), 7.25 (d, *J* = 6.4 Hz, 1H), 6.76 (t, *J* = 4.8 Hz, 1H), 6.31 (s, 1H), 1.40 (s, 9H).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -101.8.

N-(tert-butyl)-2,2-difluoro-2-(4-(pyrimidin-2-ylamino)phenyl)acetamide (3y)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.45 (d, *J* = 4.8 Hz, 2H), 7.72 (d, *J* = 8.7 Hz, 2H), 7.56 (d, *J* = 8.7 Hz, 2H), 7.42 (s, 1H), 6.79 (t, *J* = 4.8 Hz, 1H), 6.25 (s, 1H), 1.40 (s, 9H).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -100.8.

Mixture (**4y**:**3y** = 1:1) white solid, 41% (26.2 mg).

³**C** NMR (101 MHz, Chloroform-*d*) δ 163.35, 163.13, 159.92, 159.81, 158.17, 158.04, 145.37, 141.83, 139.88, 134.07 (t, *J* = 25.4 Hz), 133.34, 133.25, 129.39, 129.25, 126.61, 126.54, 121.60, 118.77, 117.67, 116.46, 116.39, 114.81, 114.58, 113.98, 113.87, 113.24, 113.09, 113.03, 52.21, 52.13, 28.57, 28.49.

HRMS(ESI) Calcd for C₁₆H₁₈F₂N₄O [M+H⁺]: 321.1521, found: 321.1526.

3. Difluoromethylated aniline derivatives diversified transformations

(a) Cyclization (synthesis of difluoromethyl modified imidazo[1,2-*a*]pyrimidine 6)

To an oven-dried flask containing substrates **3a** (0.3 mmol, 88 mg) and PIFA (0.45 mmol, 1.5 equiv.), MeCN (1.5 mL) was added. The reaction mixture was stirred at room temperature, which was monitored by TLC. Upon completion, the mixture was extracted with ethyl acetate (3*10 mL). The combined organic phase was washed with brine and dried with Na₂SO₄. After that, the solid was filtered off through a thin pad of *Celite*, and the filtrate was evaporated in vacuo to give the crude product, which was purified by column chromatography on silica gel (ethyl acetate) to give ethyl 2-(benzo[4,5]imidazo[1,2-a]pyrimidin-7-yl)-2,2-difluoroacetate **6** as light yellow solid (75 mg, 86%), M.p.:218-222 °C.

ethyl 2-(benzo[4,5]imidazo[1,2-a]pyrimidin-7-yl)-2,2-difluoroacetate (6)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.93 (dd, *J* = 6.8, 2.2 Hz, 1H), 8.89 (dd, *J* = 4.1, 2.1 Hz, 1H), 8.24 (d, *J* = 1.6 Hz, 1H), 8.07 (d, *J* = 8.7 Hz, 1H), 7.80 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.06 (dd, *J* = 6.8, 4.1 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 164.35 (t, *J* = 36.0 Hz), 156.84, 151.93, 145.92, 133.91, 126.57, 126.49 (t, *J* = 26.2 Hz), 123.66 (t, *J* = 5.4 Hz), 121.04, 112.42 (t, *J* = 251.8 Hz), 109.1 (t, *J* = 7.0 Hz), 107.52, 63.48, 13.98.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -102.27.

HRMS(ESI) Calcd for C₁₄H₁₁F₂N₃O₂ [M+H⁺]: 292.0892, found: 292.0896.

(b) Hydrolysis (procedure of hydrolysis of ethyl ester 7)

To a solution of **3f** (37.2 mg, 0.1 mmol) in MeOH (1 mL) was added K_2CO_3 (1 mL, 1N) at 23 °C. The mixture was stirred at 23 °C for 20 min and poured into 5% HCl (1 mL), and successively extracted with EtOAc (5 mL × 3). The combined organic phase was washed with brine and dried over anhydrous Na_2SO_4 . After removal of the solvents in vacuo, the residue was purified by column chromatography (CH₂Cl₂/MeOH = 5/1) to give 7 (34 mg, 98%) as colorless solid.

2-(2-Bromo-4-(pyrimidin-2-ylamino)phenyl)-2,2-difluoroacetic acid (7):

¹**H** NMR (400 MHz, DMSO- d_6) δ 9.94 (d, J = 1.6 Hz, 1H), 8.55 (d, J = 4.8 Hz, 2H), 8.18 (d, J = 2.1 Hz, 1H), 7.75 (dd, J = 8.6, 2.2 Hz, 1H), 7.47 (d, J = 8.7 Hz, 1H), 6.92 (t, J = 4.8 Hz, 1H).

¹³**C** NMR (101 MHz, DMSO- d_6) δ 159.69 (t, *J* = 34.6 Hz), 158.25, 142.26, 129.34, 129.08, 128.18 (t, *J* = 8.3 Hz), 122.77, 119.71 (t, *J* = 3.5 Hz), 116.46, 115.60 (t, *J* = 248.7 Hz), 113.33.

¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -96.36.

HRMS(ESI) Calcd for C12H8BrF2N3O2 [M+H+]: 343.9841, found: 343.9846.

4. Mechanistic Studies

(a) H/D Scrambling

Synthesis² of $1a-[d_5]$:

To a 250 mL three-necked round bottomed flask was charged 2-amino-4-chloroaminopyrimidine (1.42 g, 11 mmol), copper iodide (952 mg, 5 mmol, 50 mol%) and potassium carbonate (2.76 g, 20 mmol). A condenser was equipped and the flask was evacuated and refilled with nitrogen three times. d_5 -bromobenzene (1.05 mL, 1.62 mL, 10 mmol), *N*,*N*'-dimethylethylenediamine (538 μ L, 441 mg, 5 mmol, 50 mol%) and 1,4-dioxane (40 mL) were then added *via* septum. The reaction mixture was heated to 100 °C for 72 h. After this time, the reaction mixture was allowed to cool to room temperature and concentrated ammonia solution (20 mL) and brine (80 mL) were added and extracted with EtOAc (3 x 100 mL). The combined organic phases were dried over MgSO₄ and concentrated *in vacuo*. The crude residue was purified *via* silica gel column chromatography (EtOAc/Hexanes, 5:95 v:v) to give pure white solid, 33% (706 mg).

1a-[d_5] (0.2 mmol, 1.0 equiv.), BrCF₂CO₂Et (80 μ L, 121.8 mg, 3 equiv.), [Ru(O₂CMes)₂(*p*-*cymene*)] (5.6 mg, 10 mol %), Na₂CO₃ (42.4 mg, 2 equiv.), and toluene (1 mL) were placed in a 10 mL glass tube sealed under argon atmosphere was heated at 120 °C for 18 hours. The reaction mixture cooled to room temperature and concentrated in vacuo. The resulting residue was purified by column chromatography (PE/EA) on silica gel to give the product 3a-[d_n] and 4a-[d_n] The D incorporation was determined by 'H-NMR spectroscopy.

3a- $[d_n]$ – 34% H in each ortho position

para-selective C-H Alkylation of 1a-d5

 $1a-[d_5]$ (0.2 mmol, 1.0 equiv.), BrCF₂CO₂Et (80 μ L, 121.8 mg, 3 equiv.), [RuCl₂(p-cymene)]₂ (6.1 mg, 5 mol %), K₂CO₃ (27.8 mg, 2 equiv.), and toluene (1 mL) were placed in a 10 mL glass tube sealed under argon atmosphere was heated at 120 °C for 18 hours. The reaction mixture cooled to room temperature and concentrated in vacuo. The resulting residue was purified by column chromatography (PE/EA) on silica gel to give $1a-[d_n]$ and the product $3a-[d_n]$. The D incorporation was determined by 'H-NMR spectroscopy.

1a- $[d_n]$ – 34% H in each *ortho* position

3a- $[d_n]$ – 34% H in each ortho position

(b) Reversible H/D exchange

(b) Reversible H/D exchange

1a (0.2 mmol, 1.0 equiv.), BrCF₂CO₂Et (80 μ L, 121.8 mg, 3 equiv.), [RuCl₂(p-cymene)]₂ (6.1 mg, 5 mol %), K₂CO₃ (27.8 mg, 2 equiv.), D₂O (50 μ L) and toluene (1 mL) were placed in a 10 mL glass tube sealed under argon atmosphere was heated at 120 °C for 5 hours. At ambient temperature, the reaction mixture was diluted with H₂O (5 mL) and extracted with EtOAc (3*10 mL). The combined organic layer was dried with Na₂SO₄ and concentrated underreduced pressure. The resulting residue was purified by column chromatography (PE/EA) on silica gel to give**1a**-[*d_n*] and the product **3a**-[*d_n*]. The D incorporation was determined by ¹H-NMR spectroscopy.

1a- $[d_n]$ – 67% D incorporation in each *ortho* position

3a- $[d_n]$ – 66% D incorporation in each *ortho* position

(c) Radical mechanism experiment

(c) Radical mechanism experiment

- a) A mixture of 1 (0.2 mmol, 1.0 equiv.), BrCF₂CO₂Et (80 µL, 121.8 mg, 3 equiv.), TEMPO (93.7 mg, 0.6 mmol), [Ru(O₂CMes)₂(*p*-*cymene*)] (5.6 mg, 10 mol %), Na₂CO₃ (42.4 mg, 2 equiv.), and toluene (1 mL) in a 10 mL glass tube sealed under argon atmosphere was heated at 120 °C for 18 hours. After completion of the reaction, GC-MS was employed to detect the result.
- b) A mixture of 1 (0.2 mmol, 1.0 equiv.), BrCF₂CO₂Et (80 μL, 121.8 mg, 3 equiv.), 10 (34.2 μL, 0.2 mmol), [Ru(O₂CMes)₂(p-cymene)] (5.6 mg, 10 mol %), Na₂CO₃ (42.4 mg, 2 equiv.), and toluene (1 mL) in a 10 mL glass tube sealed under argon atmosphere was heated at 120 °C for 5 hours. After completion of the reaction, 11, 12 and the ratio was determined by GC-MS.
- c) A mixture of 1 (0.2 mmol, 1.0 equiv.), BrCF₂CO₂Et (80 μL, 121.8 mg, 3 equiv.), 13 (34.2 μL, 0.2 mmol), [Ru(O₂CMes)₂(*p*-*cymene*)] (5.6 mg, 10 mol %), Na₂CO₃ (42.4 mg, 2 equiv.), and toluene (1 mL) in a 10 mL glass tube sealed under argon atmosphere was heated at 120 °C for 18 hours. After completion of the reaction, The resulting residue was purified by column chromatography (PE/EA) on silica gel to give the product 14.

ethyl 3-(3,4-dihydronaphthalen-1-yl)-2,2-difluoropropanoate (14):

colorless oil, 36%.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.09 (m, 4H), 6.06 (t, *J* = 4.6 Hz, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.22 (t, *J* = 15.9 Hz, 2H), 2.71 (t, *J* = 8.0 Hz, 2H), 2.25 (td, *J* = 8.0, 4.7 Hz, 2H), 1.18 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 164.03 (t, *J* = 32.7 Hz), 136.29, 133.84, 131.56, 127.58, 127.32 (t, *J* = 4.4 Hz), 127.12, 126.28, 122.81, 115.48 (t, *J* = 252.2 Hz), 62.63, 37.28 (t, *J* = 24.2 Hz), 27.99, 23.16, 13.70.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.25.

Spectra data was consist with the literature.⁶

(d) Control experiment

(d) Control experiments

General procedure :

Condition A: 1 (0.2 mmol, 1.0 equiv.), BrCF₂CO₂Et (80 μ L, 121.8 mg, 3 equiv.), [Ru(O₂CMes)₂(*p*-cymene)] (5.6 mg, 10 mol %), Na₂CO₃ (42.4 mg, 2 equiv.), and toluene (1 mL) were placed in a 10 mL glass tube sealed under argon atmosphere was heated at 120 °C for 18 hours.

Condition **B**: **1** (0.2 mmol, 1.0 equiv.), BrCF₂CO₂Et (80 μ L, 121.8 mg, 3 equiv.), [RuCl₂(*p*-*cymene*)]₂ (6.1 mg, 5 mol %), K₂CO₃ (27.8 mg, 2 equiv.), and toluene (1 mL) were placed in a 10 mL glass tube sealed under argon atmosphere was heated at 120 °C for 18 hours.

5. Proposed mechanism

6. Computational Data

a) Computational Methods7

The density functional theory (DFT) calculations are performed by Gaussian 09 program. All geometries are optimized at the B3LYP level with 6-31G(d) basis set (lanl2dz basis set for Ru). Harmonic frequency calculations are performed for stationary points and transition states. Local minima are confirmed without imaginary frequency. Transition states are verified with one imaginary frequency.

b) Results

Regionselecvity

Based on our experimental finds, we speculated that there are two active Ru intermediate isomers A_C and A_N shown in the Figure S1. For A_C , the carbon atom on the phenyl group bonds to the metal center. While, For A_N , the nitrogen atom between the phenyl group and pyrimidine group bonds to the metal center. A_N is 3.6 kcal/mol lower than A_C . Then, we paid attention to the radical addition step, which is consider as the step that determines the regionselecvity. Both the radical addition of $\cdot CF_2CO_2Et$ to A_C and A_N were taken into account. As shown in Figure S2 and Figure S3, four possible transition states and products were located. Reactant B_N is lower than the Reactant B_C . TS_*para*_ B_N and *Para*_ B_N are the lowest energy transition state and product in respectively. At the same time, B_N , TS_*para*_ B_N and *Para*_ B_N leads to the *para*-product *Para*_ B_N kinetically and thermodynamically favorable. This consists with the experimental results.

Figure S2. free energy surface of the radical addition of $\cdot CF_2CO_2Et$ to A_N

Figure S3. free energy surface of the radical addition of $\cdot CF_2CO_2Et$ to A_C

Yield of meta-production

The yield of *meta*-production in presence of Na_2CO_3 is bigger than the yield in the presence of K_2CO_3 . We find the cation can interact with the *Meta_B_N* forming a more stable structure shown in the Figure S₃. The binding energy of Na^+ is 20.7 kcal/mol bigger than the binding energy of K^+ . *Meta_B_N* binding with Na^+ is more stable intermediate.

(a) (b) Figure S4 a) Structure of Meta_B_N binding with Na⁺; b) Structure of Meta_B_N binding with K⁺,

c) Results Optimized Cartesian coordinates at B3LYP/6-31G level of theory

Ac			
At	om X	Y	Ζ
С	0.727400	2.793700	0.136100
С	1.710200	2.441300	1.085700
С	2.912700	1.785300	0.668300
С	3.173700	1.528600	-0.697400
С	2.201700	1.984200	-1.658200
С	1.021300	2.606400	-1.263100
Н	1.530400	2.585100	2.143900
Н	3.622800	1.454600	1.419500
Н	2.370600	1.777300	-2.711900
Η	0.262200	2.847900	-1.997100
С	-0.583100	3.467600	0.512100
Н	-1.308300	3.165600	-0.252800
С	4.456700	0.879800	-1.150900
Н	5.177600	1.639200	-1.482300
Н	4.918600	0.307500	-0.341400
Н	4.284400	0.201000	-1.992700
С	-1.145600	3.049000	1.877100
Η	-0.498500	3.368000	2.703600
Н	-2.121900	3.521400	2.033600

Η	-1.279000	1.964800	1.928100
С	-0.412000	4.999700	0.422200
Н	-0.050500	5.309900	-0.564800
Н	-1.370600	5.499000	0.603300
Н	0.303700	5.359000	1.171700
u	1.209100	0.525000	-0.047000
С	-4.575500	-2.008300	0.505700
С	-3.273300	-1.575500	0.225700
С	-3.089200	-0.322000	-0.401600
С	-4.216000	0.466800	-0.735800
С	-5.493300	-0.000300	-0.412300
С	-5.698600	-1.237600	0.204100
Η	-4.711300	-2.978600	0.979800
Η	-6.353800	0.620900	-0.655200
С	-2.126500	-2.491300	0.599100
Η	-1.556700	-2.097300	1.445200
Η	-2.508000	-3.483400	0.864400
Η	-1.412400	-2.609300	-0.222300
С	-7.093600	-1.733500	0.507600
Η	-7.578800	-2.138700	-0.390800
Η	-7.080400	-2.530200	1.259000
Η	-7.734300	-0.926400	0.881500
С	-4.098800	1.811700	-1.420600
Η	-3.655100	1.712500	-2.414200
Η	-5.085400	2.278200	-1.512700
H	-3.453800	2.499800	-0.861300
С	-1.698000	0.178400	-0.742700
0	-1.475300	0.721900	-1.839800
0	-0.821400	-0.013800	0.193700
N	2.807400	-2.360400	0.286900
Η	3.406900	-3.173700	0.354700
С	2.256000	-1.886600	1.507700
С	1.476500	-0.717900	1.567900
С	2.537800	-2.650900	2.651000
С	0.938800	-0.398200	2.826100
С	2.018700	-2.281400	3.888200
Н	3.153800	-3.545100	2.562800

С	1.201300	-1.153500	3.972600
Η	0.293100	0.470900	2.912900
Η	2.239300	-2.877700	4.769200
Η	0.768700	-0.860200	4.926100
С	2.302100	-2.219500	-0.965000
С	2.200400	-3.080200	-3.079700
С	0.869400	-1.218100	-2.474600
С	1.213100	-2.155900	-3.435700
Η	2.568200	-3.816200	-3.793100
Η	0.127600	-0.441100	-2.640600
Η	0.749500	-2.151100	-4.414800
N	1.439000	-1.210300	-1.248100
N	2.734900	-3.128000	-1.866100

A_{N}

Ato	m	Х	Y	Z
С	-0.	605900	2.770500	-0.789100
С	-1.	798000	2.229900	-1.317200
С	-2.	902900	1.914700	-0.458100
С	-2.	872400	2.184800	0.929200
С	-1.	637700	2.696100	1.455200
С	-0.	537700	3.004500	0.624400
Н	-1.	.868300	1.987400	-2.369800
Н	-3.	772200	1.424700	-0.885700
Н	-1.	.530300	2.810200	2.529900
Н	0.	399800	3.307500	1.073400
С	0.	600300	3.091900	-1.655400
Н	1.	476800	3.032600	-0.998600
С	-4.	047700	1.899300	1.826300
Н	-4.	.641900	2.809100	1.983000
Н	-4.	703900	1.140600	1.389700
Н	-3.	720000	1.543000	2.808100
С	0.	824800	2.106800	-2.811600
Н	0.	020200	2.155600	-3.555800
Н	1.	756900	2.357200	-3.330000
Н	0.	903800	1.082900	-2.436100
С	0.	486800	4.546400	-2.160500

Η	0.373200	5.255600	-1.332700
Н	1.386900	4.821300	-2.721500
Н	-0.376000	4.664000	-2.827100
Ru	-1.122400	0.830000	0.359900
С	4.391500	-2.155000	-0.583600
С	3.150900	-1.641900	-0.190400
С	3.079800	-0.306600	0.270600
С	4.252300	0.481300	0.327500
С	5.464000	-0.072100	-0.100900
С	5.559400	-1.388900	-0.554300
Н	4.442700	-3.186300	-0.928300
Н	6.359900	0.545500	-0.072600
С	1.945700	-2.555400	-0.259400
Н	1.245600	-2.242100	-1.038700
Н	2.261800	-3.583000	-0.467600
Н	1.381400	-2.561200	0.678800
С	6.886600	-1.978100	-0.973000
Н	7.339400	-2.560300	-0.158800
Н	6.774100	-2.654700	-1.827800
Н	7.602200	-1.196900	-1.251200
С	4.255700	1.909900	0.828500
Н	4.045400	1.952600	1.900700
Н	5.228000	2.376800	0.638400
Н	3.485700	2.520200	0.342700
С	1.767000	0.301700	0.720900
0	1.704600	0.998900	1.740100
0	0.763700	0.039400	-0.075800
Ν	-1.821700	-1.165100	0.009400
С	-2.324200	-1.890600	-1.072500
С	-2.995400	-3.125500	-0.939100
С	-2.185000	-1.344600	-2.363200
С	-3.507900	-3.768900	-2.064200
Н	-3.093800	-3.572600	0.041300
С	-2.701500	-1.999200	-3.478900
Н	-1.643300	-0.411100	-2.475200
С	-3.372000	-3.216300	-3.339800
Н	-4.021700	-4.719000	-1.937200

Η	-2.572200	-1.556700	-4.463900
Н	-3.775700	-3.727300	-4.209400
С	-1.542200	-1.602000	1.240600
С	-0.616200	-0.685800	3.192800
С	-1.234900	-2.976600	3.021400
С	-0.701600	-1.939200	3.797900
Н	-0.184500	0.182900	3.678700
Н	-1.326700	-3.977800	3.441700
Н	-0.362500	-2.101700	4.813700
N	-1.643400	-2.843100	1.759500
N	-1.069200	-0.519700	1.955600

$\mathbf{B}_{\mathbf{N}}$

Ato	om X	Y	Ζ
С	1.240900	3.072700	-0.298600
С	0.014400	2.864100	-0.978400
С	-1.196800	2.663200	-0.245700
С	-1.242500	2.725900	1.170800
С	0.014300	2.890700	1.834600
С	1.227700	3.092500	1.127900
Η	-0.003900	2.787600	-2.058000
Η	-2.100800	2.415200	-0.791000
Η	0.046500	2.825300	2.918600
Η	2.162500	3.140200	1.672100
С	2.559500	3.252900	-1.030600
Η	3.335400	2.867000	-0.358600
С	-2.527800	2.544100	1.935200
Η	-2.997200	3.515700	2.139000
Η	-3.239300	1.935600	1.370800
Η	-2.345200	2.053900	2.896900
С	2.656100	2.475300	-2.351300
Η	1.971900	2.872300	-3.111500
Η	3.670600	2.564200	-2.755000
Η	2.439100	1.415200	-2.193700
С	2.819500	4.760300	-1.240800
Н	2.803000	5.310800	-0.293400
Н	3.801100	4.910700	-1.703700

Н	2.063400	5.200700	-1.901900
Ru	0.254000	1.135700	0.500000
С	4.779400	-3.020600	-1.047300
С	3.734200	-2.223000	-0.566900
С	4.041000	-0.966600	0.006300
С	5.388400	-0.539500	0.079600
С	6.392300	-1.364600	-0.437200
С	6.113500	-2.612800	-0.998200
Н	4.537800	-3.991200	-1.476600
Н	7.424500	-1.021600	-0.392200
С	2.324800	-2.767100	-0.667100
Н	1.717100	-2.189500	-1.368400
Н	2.346400	-3.810300	-0.999200
Н	1.803200	-2.732300	0.294900
С	7.222600	-3.504800	-1.505400
Н	7.611900	-4.150400	-0.706100
Н	6.874000	-4.161200	-2.310300
Н	8.066400	-2.919000	-1.886600
С	5.799600	0.784400	0.688500
Н	5.587900	0.809900	1.760400
Н	6.869500	0.957500	0.531100
Н	5.254200	1.627000	0.247700
С	2.955200	-0.074400	0.574500
0	3.126100	0.532100	1.639200
0	1.878100	-0.006700	-0.164200
Ν	-0.915300	-0.600900	0.024100
С	-1.630900	-1.063200	-1.080000
С	-2.483000	-2.189900	-1.051000
С	-1.520600	-0.346800	-2.288300
С	-3.200100	-2.557100	-2.189700
Н	-2.561300	-2.770800	-0.141700
С	-2.241700	-0.725500	-3.418100
Н	-0.843900	0.500400	-2.328100
С	-3.095100	-1.830500	-3.378200
Η	-3.856200	-3.422500	-2.141500
Η	-2.132300	-0.153300	-4.336300
Н	-3.663300	-2.123300	-4.256200

С	-0.677000	-1.220300	1.183200
С	0.572800	-0.767400	3.118100
С	-0.609600	-2.807800	2.809200
С	0.221200	-2.022300	3.617000
Н	1.236400	-0.083300	3.636700
Η	-0.924800	-3.793800	3.149800
Η	0.578900	-2.370000	4.578400
N	-1.058800	-2.444500	1.605900
N	0.095500	-0.367300	1.946300
С	-5.667600	-0.645400	-0.554700
0	-6.442900	-1.475800	-0.993500
0	-5.174600	-0.600100	0.700300
С	-5.220000	0.499500	-1.330800
С	-5.602200	-1.679700	1.565900
С	-4.814200	-1.570800	2.856800
Η	-5.422300	-2.629500	1.054600
Η	-6.681500	-1.585700	1.729100
Η	-5.137400	-2.354700	3.550700
Η	-3.743800	-1.697100	2.667300
Η	-4.976900	-0.599800	3.336300
F	-4.236500	1.290900	-0.922300
F	-5.405500	0.533100	-2.630100

$TS_meta_B_N$

At	om X	Y	Z
С	-1.270800	3.025900	0.251600
С	-0.116000	2.771300	1.041000
С	1.138100	2.490200	0.418700
С	1.305100	2.508000	-0.991500
С	0.118400	2.712600	-1.762200
С	-1.138300	3.006500	-1.166200
Η	-0.191600	2.717800	2.119300
Η	1.979700	2.201300	1.041500
Η	0.172800	2.612800	-2.842700
Η	-2.020300	3.092900	-1.788300
С	-2.634300	3.296000	0.864200
Н	-3.369500	2.891800	0.157800

С	2.641200	2.237400	-1.632400
Н	3.172700	3.178600	-1.826200
Н	3.273800	1.620000	-0.987800
Н	2.519800	1.720400	-2.589800
С	-2.862200	2.612600	2.220200
Н	-2.223000	3.036600	3.004500
Н	-3.900200	2.764200	2.535700
Η	-2.677400	1.537000	2.150700
С	-2.852700	4.821700	0.959500
Н	-2.747700	5.308800	-0.016400
Н	-3.859000	5.033500	1.337800
Н	-2.130900	5.280100	1.646300
u	-0.321600	1.021200	-0.399400
С	-4.989900	-3.022000	0.990700
С	-3.914900	-2.247700	0.539700
С	-4.174600	-0.970900	-0.009200
С	-5.506100	-0.502100	-0.096300
С	-6.542700	-1.305300	0.390000
С	-6.309500	-2.568500	0.938400
Η	-4.785100	-4.011500	1.395600
Η	-7.564000	-0.933600	0.328500
С	-2.523100	-2.836400	0.630700
Η	-1.892900	-2.277900	1.327500
Η	-2.573700	-3.879400	0.960300
Η	-2.009100	-2.816300	-0.336500
С	-7.445700	-3.408200	1.474200
Η	-7.629500	-3.199300	2.537100
Η	-8.380400	-3.207500	0.939000
Η	-7.228700	-4.478600	1.388200
С	-5.861500	0.841800	-0.695500
Η	-5.592600	0.886700	-1.753700
Η	-6.934500	1.033700	-0.589800
Η	-5.325500	1.662800	-0.204200
С	-3.049600	-0.107800	-0.546400
0	-3.158300	0.475300	-1.631900
0	-2.009000	-0.041000	0.242300
N	0.782300	-0.710700	0.173600

С	1.652200	-0.995000	1.222800
С	2.797200	-1.783400	1.091600
С	1.372100	-0.403000	2.479300
С	3.762000	-1.832000	2.145400
Η	2.994900	-2.286900	0.154500
С	2.233100	-0.585300	3.567700
Н	0.455100	0.168200	2.585100
С	3.403400	-1.312900	3.432500
Η	4.509200	-2.624000	2.113000
Η	1.966600	-0.159800	4.532200
Η	4.080600	-1.442200	4.270200
С	0.626300	-1.354400	-0.985800
С	-0.583700	-1.003400	-2.962200
С	0.679900	-2.981700	-2.565200
С	-0.173300	-2.260400	-3.409700
Η	-1.254300	-0.358100	-3.520500
Η	1.051800	-3.958500	-2.873500
Η	-0.495600	-2.653100	-4.366200
N	1.086200	-2.564200	-1.363600
N	-0.151000	-0.548700	-1.792600
С	5.884900	-1.004100	0.380500
0	6.825300	-1.763600	0.505700
0	5.270600	-0.706900	-0.782700
С	5.164100	-0.414900	1.541100
С	5.786200	-1.391400	-1.950700
С	4.817000	-1.143900	-3.091000
Η	5.886600	-2.455200	-1.716900
Η	6.786800	-1.002300	-2.167400
Η	5.176500	-1.644600	-3.996800
Η	3.824600	-1.537000	-2.847700
Η	4.726000	-0.073700	-3.303800
F	4.462500	0.706800	1.289200
F	5.946500	-0.235100	2.612300

$Meta_B_N$

Atc	m	Х	Y	Z
С	1.6	22100	3.049500	-0.478700

С	0.607700	2.707700	-1.428100
С	-0.741100	2.551500	-1.016700
С	-1.155600	2.760300	0.333600
С	-0.120100	3.029800	1.269800
С	1.241100	3.213800	0.874200
Н	0.871400	2.504200	-2.457700
Н	-1.473700	2.209600	-1.741700
Н	-0.368100	3.077100	2.326500
Н	2.001500	3.375900	1.628700
С	3.080400	3.222200	-0.868700
Н	3.664700	2.837700	-0.024800
С	-2.599300	2.620200	0.741300
Н	-3.125000	3.577000	0.622800
Н	-3.121500	1.876200	0.131500
Н	-2.684700	2.323100	1.791600
С	3.494300	2.441700	-2.124900
Н	3.024300	2.846600	-3.030000
Н	4.578000	2.521100	-2.264200
Н	3.237400	1.382500	-2.036800
С	3.388300	4.727400	-1.025800
Н	3.155100	5.287300	-0.113400
Н	4.451200	4.871600	-1.249800
Н	2.808800	5.163900	-1.848500
Ru	0.470600	1.160600	0.231200
С	4.852600	-3.324400	-0.604200
С	3.832400	-2.429300	-0.262800
С	4.179700	-1.125900	0.164300
С	5.543200	-0.754700	0.242700
С	6.522700	-1.680500	-0.131600
С	6.202700	-2.972500	-0.553100
Н	4.579000	-4.328500	-0.923200
Н	7.568300	-1.381300	-0.085800
С	2.402400	-2.919400	-0.345700
Н	1.844300	-2.408000	-1.134200
Н	2.383400	-3.996300	-0.543700
Н	1.854800	-2.739900	0.585400
С	7.283000	-3.966900	-0.910200

Η	7.584100	-4.560000	-0.035700
Η	6.942600	-4.672000	-1.676700
Η	8.181700	-3.465100	-1.285600
С	5.997800	0.612900	0.706100
Н	5.715300	0.792500	1.746200
Η	7.084900	0.703800	0.609300
Η	5.540700	1.417000	0.118100
С	3.115700	-0.121600	0.564300
0	3.265600	0.603000	1.556600
0	2.082200	-0.095200	-0.235000
N	-0.738800	-0.566200	-0.061800
С	-1.674300	-0.933400	-1.031100
С	-2.893300	-1.500200	-0.733500
С	-1.334300	-0.652300	-2.391400
С	-3.945500	-1.736900	-1.780300
Н	-3.124800	-1.769800	0.290400
С	-2.240200	-0.953900	-3.432700
Η	-0.349700	-0.250800	-2.606400
С	-3.480700	-1.472500	-3.184200
Η	-4.335900	-2.766500	-1.700400
Η	-1.932600	-0.773700	-4.460500
Η	-4.172800	-1.684600	-3.992200
С	-0.604900	-1.035100	1.181600
С	0.646000	-0.465500	3.079100
С	-0.729400	-2.406800	2.981700
С	0.170500	-1.616200	3.708900
Η	1.358000	0.215400	3.533700
Η	-1.150200	-3.305600	3.431800
Η	0.480300	-1.880200	4.712700
N	-1.124800	-2.148700	1.733900
N	0.225500	-0.164400	1.855700
С	-5.837200	-1.222100	-0.115800
0	-6.263500	-2.332700	0.105600
0	-5.841200	-0.199800	0.745300
С	-5.191600	-0.861000	-1.468000
С	-6.424200	-0.481700	2.044700
С	-6.339600	0.789900	2.866300

Η	-5.871000	-1.309000	2.499800
Η	-7.456900	-0.811800	1.896400
Н	-6.773300	0.618000	3.857500
Η	-5.298700	1.103700	2.995600
Н	-6.890000	1.604400	2.385000
F	-4.870700	0.464800	-1.511300
F	-6.150500	-1.073800	-2.425100

TS_para_B_N

At	om X	Y	Z
С	-1.418600	2.930800	0.267700
С	-0.159300	2.589000	0.827700
С	0.969600	2.350400	-0.014700
С	0.901500	2.490400	-1.425000
С	-0.391500	2.768600	-1.969800
С	-1.524400	3.022100	-1.150400
Н	-0.056900	2.446800	1.895700
Н	1.896500	2.005400	0.434200
Н	-0.518400	2.762700	-3.048900
Н	-2.494300	3.171900	-1.607900
С	-2.647800	3.184700	1.123500
Н	-3.512800	2.899100	0.512700
С	2.109300	2.271700	-2.298000
Н	2.604400	3.226700	-2.517700
Н	2.837400	1.623500	-1.801400
Н	1.831900	1.812700	-3.252400
С	-2.697000	2.362800	2.419500
Н	-1.911700	2.662700	3.124200
Н	-3.657300	2.527800	2.920400
Н	-2.598200	1.294700	2.208100
С	-2.752100	4.698600	1.412000
Н	-2.772200	5.287300	0.488200
Н	-3.670500	4.911000	1.970400
Н	-1.903300	5.043100	2.014900
u	-0.646700	0.970100	-0.702400
С	-5.250500	-2.909400	1.258900
С	-4.210300	-2.186100	0.665200

С	-4.487400	-0.907600	0.125900
С	-5.801100	-0.386900	0.194500
С	-6.799300	-1.141200	0.820600
С	-6.550000	-2.406900	1.354500
Η	-5.033300	-3.896800	1.662700
Н	-7.803400	-0.726200	0.886200
С	-2.839900	-2.827800	0.612900
Н	-2.122400	-2.299500	1.246200
Η	-2.898900	-3.870100	0.943600
Н	-2.421900	-2.819900	-0.399300
С	-7.655000	-3.219600	1.988300
Н	-8.110500	-3.907600	1.262900
Н	-7.280100	-3.828700	2.818400
Η	-8.455000	-2.577800	2.373000
С	-6.181500	0.963700	-0.374200
Н	-6.095100	0.972600	-1.463800
Н	-7.210300	1.215900	-0.096000
Н	-5.527400	1.763700	-0.009000
С	-3.405900	-0.084500	-0.544700
0	-3.637500	0.546500	-1.582800
0	-2.260200	-0.097800	0.086400
N	0.464700	-0.835500	-0.434800
С	1.475500	-1.219400	0.421500
С	2.538900	-2.087400	0.052900
С	1.484700	-0.663600	1.726600
С	3.612300	-2.266400	0.899400
Η	2.491100	-2.603700	-0.897900
С	2.550700	-0.857800	2.578200
Η	0.616200	-0.093500	2.043000
С	3.721200	-1.539500	2.125100
Η	4.424500	-2.922200	0.597400
Η	2.537400	-0.426000	3.574400
Н	4.456700	-1.856200	2.860700
С	0.089300	-1.387300	-1.599200
С	-1.359900	-0.821100	-3.348100
С	-0.197900	-2.898500	-3.263700
С	-1.099600	-2.061400	-3.932800

Н	-2.059100	-0.100700	-3.759200
Η	0.052800	-3.873400	-3.680100
Η	-1.576200	-2.360300	-4.858400
N	0.394500	-2.595500	-2.106500
N	-0.739000	-0.482000	-2.224100
С	6.285700	-0.320300	1.319100
0	7.113300	-0.525700	2.188200
0	6.427400	-0.647900	0.015700
С	4.921200	0.170500	1.602300
С	7.678700	-1.284800	-0.327800
С	7.624300	-1.626600	-1.805100
Η	7.806900	-2.174200	0.297800
Η	8.499400	-0.598200	-0.095200
Η	8.559100	-2.110400	-2.109000
Η	6.796200	-2.310200	-2.018100
Η	7.489900	-0.724400	-2.410400
F	4.263900	0.748100	0.575900
F	4.832000	0.943000	2.694300

$Para_B_N$

Ato	om X	Y	Z
С	1.234200	2.985600	-0.359000
С	0.063900	2.499800	-1.018100
С	-1.105500	2.184500	-0.274100
С	-1.179200	2.368700	1.137000
С	0.022500	2.781100	1.779700
С	1.198700	3.128300	1.050400
Н	0.075700	2.312800	-2.083900
Н	-1.954000	1.740600	-0.787000
Н	0.050400	2.818000	2.865200
Н	2.101300	3.400400	1.584200
С	2.504800	3.340900	-1.111700
Н	3.335500	3.100300	-0.438200
С	-2.439900	2.060900	1.902400
Н	-3.052900	2.965100	2.012500
Н	-3.042600	1.312100	1.380000
Н	-2.214200	1.686900	2.906400

С	2.707700	2.551900	-2.413900
Н	1.968600	2.826800	-3.176700
Н	3.695700	2.779100	-2.829000
Н	2.648500	1.474400	-2.236400
С	2.525800	4.862900	-1.374600
Н	2.440200	5.436500	-0.445000
Н	3.465000	5.146000	-1.862800
Н	1.700700	5.160000	-2.033300
Ru	0.555100	0.976700	0.602500
С	5.222100	-2.923000	-1.138800
С	4.194100	-2.158600	-0.574000
С	4.436600	-0.797600	-0.279200
С	5.706700	-0.236700	-0.551600
С	6.692000	-1.037100	-1.137700
С	6.474800	-2.384600	-1.436000
Н	5.031900	-3.972600	-1.355400
Н	7.660500	-0.593300	-1.361700
С	2.876100	-2.842700	-0.280600
Н	2.067000	-2.443800	-0.897500
Н	2.959200	-3.919300	-0.462400
Н	2.570100	-2.703100	0.761900
С	7.571600	-3.236300	-2.032000
Н	8.262100	-3.597500	-1.257700
Н	7.163900	-4.116200	-2.540900
Н	8.169200	-2.672000	-2.757300
С	6.046000	1.206200	-0.244400
Н	5.990500	1.405500	0.828700
Н	7.053600	1.443800	-0.601200
Н	5.347900	1.900900	-0.726100
С	3.363300	0.070300	0.350400
0	3.628100	0.828600	1.291100
0	2.187900	-0.056000	-0.206400
Ν	-0.444900	-0.907000	0.505600
С	-1.492300	-1.364600	-0.253300
C	-2.561400	-2.179000	0.253500
C	-1.553400	-0.960700	-1.629300
С	-3.693800	-2.380500	-0.470900

Η	-2.434800	-2.654100	1.220100
С	-2.660100	-1.153800	-2.390700
Н	-0.658200	-0.516700	-2.057900
С	-3.934800	-1.693800	-1.793600
Н	-4.480000	-3.027700	-0.091600
Н	-2.671500	-0.867300	-3.437700
Н	-4.436900	-2.379900	-2.490300
С	-0.000600	-1.346800	1.693700
С	1.495400	-0.594800	3.327800
С	0.411400	-2.714200	3.452400
С	1.312600	-1.798500	4.012700
H	2.177600	0.182200	3.656900
Н	0.214900	-3.661100	3.954100
Н	1.841700	-2.009900	4.933800
N	-0.244700	-2.521000	2.307000
N	0.816900	-0.365000	2.210400
С	-6.321400	-0.993200	-1.099100
0	-6.837500	-2.023200	-1.473000
0	-6.857700	-0.123000	-0.240600
С	-4.945500	-0.532500	-1.622600
С	-8.178600	-0.463000	0.256900
С	-8.607000	0.644400	1.199800
Η	-8.119900	-1.435100	0.756100
Η	-8.854300	-0.566500	-0.597700
Η	-9.603700	0.424700	1.597600
Н	-7.911800	0.733700	2.040500
Н	-8.647200	1.606900	0.680100
F	-4.432900	0.441400	-0.809800
F	-5.179400	0.057100	-2.843300

$\mathbf{B}_{\mathbf{C}}$

Atom X		Y	Z
С	-1.294800	-2.851100	-0.920100
С	0.016900	-2.629100	-1.392900
С	1.121400	-2.632900	-0.482400
С	0.938900	-2.910800	0.892100
С	-0.393500	-3.231600	1.335200
С	-1.477500	-3.217100	0.461900
---	-----------	-----------	-----------
Н	0.193000	-2.373400	-2.430500
Н	2.111300	-2.385000	-0.849300
Н	-0.560500	-3.426800	2.391400
Н	-2.481900	-3.365800	0.839300
С	-2.514900	-2.833200	-1.827300
Н	-3.356800	-2.528500	-1.194400
С	2.101500	-2.950700	1.851500
Н	2.444800	-3.983400	2.000500
Н	2.943800	-2.364400	1.475700
Н	1.821400	-2.553000	2.833000
С	-2.423600	-1.838000	-2.992100
Н	-1.639200	-2.114500	-3.707500
Н	-3.371000	-1.826800	-3.542900
Н	-2.229400	-0.826500	-2.624600
С	-2.795500	-4.264700	-2.333500
Н	-2.904200	-4.973600	-1.504900
Н	-3.721600	-4.284500	-2.919200
Н	-1.980900	-4.619800	-2.976400
u	-0.327400	-1.098700	0.265200
С	-4.594800	3.541900	-0.439700
С	-3.652700	2.562800	-0.101500
С	-4.055900	1.208400	-0.069200
С	-5.393000	0.867000	-0.380600
С	-6.288600	1.880100	-0.736200
С	-5.914500	3.226100	-0.765100
Н	-4.281400	4.584400	-0.451900
Н	-7.311100	1.607700	-0.992100
С	-2.245400	3.013800	0.229200
Н	-1.537300	2.724700	-0.552400
Η	-2.215800	4.102900	0.344600
Н	-1.877900	2.563200	1.156900
С	-6.915300	4.305400	-1.108000
Н	-7.507200	4.595500	-0.228900
Н	-6.419000	5.209100	-1.478000
Н	-7.622500	3.968900	-1.874700
С	-5.895900	-0.560600	-0.360300

Η	-5.835800	-0.986700	0.644100
Н	-6.933800	-0.603700	-0.707300
Н	-5.298900	-1.211800	-1.010100
С	-3.078800	0.118200	0.329800
0	-3.429300	-0.779000	1.117700
0	-1.906900	0.228000	-0.214500
N	1.982500	0.902500	1.539700
Η	2.775600	1.374500	1.955500
С	1.806000	1.079500	0.142400
С	0.826700	0.375000	-0.579400
С	2.671700	1.994600	-0.479400
С	0.718700	0.689000	-1.944900
С	2.559400	2.251100	-1.843600
Н	3.426600	2.508500	0.113600
С	1.565700	1.602300	-2.578300
Η	-0.053000	0.200500	-2.532800
Η	3.230500	2.959600	-2.321200
Η	1.451200	1.803100	-3.640600
С	1.045900	0.579900	2.466300
С	0.431100	0.689200	4.664400
С	-1.049400	-0.200500	3.045300
С	-0.831600	0.168400	4.363700
Η	0.704800	0.950700	5.685600
Η	-1.983100	-0.633800	2.696200
Η	-1.598600	0.035600	5.117100
N	-0.101600	-0.043500	2.093700
N	1.357500	0.906600	3.739500
С	5.755400	0.481300	-1.357600
0	5.986700	0.522800	-2.551600
0	6.181500	1.366200	-0.431900
С	5.039400	-0.620700	-0.729700
С	6.992900	2.450000	-0.947200
С	7.425400	3.296100	0.234800
Η	6.397700	3.020200	-1.667600
Η	7.845800	2.023000	-1.484400
Η	8.045400	4.128300	-0.115400
Н	6.558800	3.710600	0.759900

Η	8.010800	2.705000	0.946300
F	4.596900	-0.561400	0.515800
F	4.362600	-1.468400	-1.479500

$TS_meta_B_C$

Atc	om X	Y	Z
С	0.946500	-1.141800	2.710900
С	-0.445800	-1.019400	2.516700
С	-1.157100	-1.999200	1.753500
С	-0.501600	-3.132000	1.219000
С	0.901000	-3.286500	1.509200
С	1.605100	-2.334200	2.240200
Н	-0.978900	-0.146800	2.873400
Н	-2.210400	-1.839900	1.547500
Н	1.430300	-4.139800	1.092800
Η	2.677500	-2.425600	2.361900
С	1.763500	-0.128200	3.497100
Н	2.781600	-0.180300	3.093200
С	-1.249500	-4.189400	0.447300
Η	-1.521000	-5.026900	1.103700
Η	-2.170500	-3.786500	0.016700
Η	-0.639700	-4.594400	-0.367300
С	1.282200	1.322700	3.358800
Η	0.282400	1.468000	3.785900
Η	1.962800	1.988400	3.901500
Η	1.268200	1.631700	2.309700
С	1.818200	-0.560600	4.978600
Η	2.202100	-1.581100	5.089600
Н	2.474100	0.111000	5.544100
Н	0.821500	-0.523400	5.434800
Ru	0.466700	-1.201800	0.421000
С	4.232900	3.385200	-1.825800
С	3.470000	2.264400	-1.479300
С	3.845000	1.504200	-0.346800
С	4.974900	1.888300	0.412000
С	5.689400	3.031200	0.037400
С	5.342200	3.791600	-1.081300

Η	3.944800	3.959400	-2.704800
Н	6.547000	3.330900	0.637100
С	2.285300	1.912600	-2.354400
Н	1.337900	2.084200	-1.836000
Н	2.299900	2.514800	-3.269400
Н	2.289900	0.856400	-2.643600
С	6.157300	4.995900	-1.492100
Н	5.530400	5.766300	-1.954900
Н	6.669100	5.445600	-0.634300
Н	6.929300	4.724300	-2.225200
С	5.439700	1.120400	1.630800
Н	5.737400	0.102700	1.367400
Н	6.285700	1.630900	2.103200
Н	4.645100	1.027700	2.380800
С	3.066200	0.263500	0.047100
0	3.664400	-0.774500	0.383500
0	1.777800	0.403900	-0.005600
N	-1.256500	-1.561800	-2.389200
Н	-1.837700	-1.789400	-3.186400
С	-1.654700	-0.436600	-1.626500
С	-0.938700	-0.032600	-0.473200
С	-2.786300	0.241100	-2.066600
С	-1.351400	1.182800	0.121000
С	-3.314600	1.326200	-1.311000
Н	-3.324400	-0.105300	-2.946400
С	-2.480000	1.870200	-0.286200
Н	-0.762000	1.582400	0.940800
Н	-4.046000	1.970900	-1.793600
Н	-2.776500	2.784300	0.220400
С	-0.026000	-2.129700	-2.488100
С	1.370000	-3.414900	-3.762300
С	2.139100	-2.439600	-1.747200
С	2.428500	-3.187400	-2.877600
Н	1.498300	-4.032600	-4.649800
Н	2.877600	-2.206200	-0.984700
Н	3.422200	-3.583800	-3.047700
N	0.903400	-1.939800	-1.517600

Ν	0.163500	-2.890500	-3.587200
С	-5.546100	1.337900	0.596100
0	-5.198100	1.630400	1.724900
0	-6.499700	1.979200	-0.116400
С	-4.851300	0.334600	-0.240200
С	-7.147600	3.077400	0.564000
С	-8.186400	3.648800	-0.382800
Η	-6.389500	3.817700	0.841000
Η	-7.596800	2.703500	1.489700
Η	-8.704000	4.487300	0.096100
Η	-7.719300	4.012200	-1.303900
Η	-8.929700	2.890800	-0.649600
F	-5.579900	-0.230900	-1.219900
F	-4.218900	-0.615600	0.466700

Meta_B_C

				_
Ato	om	Х	Y	Z
С	0.9	971200	-1.180000	2.700200
С	-0.	423400	-1.080000	2.506800
С	-1.	118100	-2.073800	1.746900
С	-0.	445300	-3.198700	1.216400
С	0.	960900	-3.324800	1.500300
С	1.	649900	-2.360500	2.231400
Η	-0.	.969900	-0.214000	2.859300
Н	-2.	173700	-1.930800	1.538500
Н	1.	504200	-4.169200	1.083500
Η	2.	723700	-2.433600	2.353500
С	1.	773300	-0.150800	3.481100
Н	2.	784600	-0.172300	3.058400
С	-1.	177700	-4.274300	0.454900
Η	-1.	.440900	-5.107100	1.120700
Η	-2.	102000	-3.888100	0.016700
Н	-0.	.560000	-4.681300	-0.352700
С	1.	250000	1.287600	3.365600
Η	0.	255300	1.401500	3.813400
Η	1.	923000	1.966600	3.901200
Н	1.	206200	1.606200	2.320300

С	1.864900	-0.593900	4.957700
Н	2.277300	-1.604700	5.053400
Н	2.512300	0.090200	5.518000
Н	0.875200	-0.586800	5.430600
Ru	0.486500	-1.254400	0.407000
С	4.068300	3.486700	-1.827100
С	3.353800	2.333200	-1.485300
С	3.750900	1.593100	-0.346800
С	4.855900	2.028900	0.420900
С	5.521500	3.202200	0.050200
С	5.150800	3.944500	-1.073000
Н	3.763100	4.045300	-2.710300
Н	6.359500	3.541200	0.656600
С	2.196500	1.925300	-2.372900
Н	1.236900	2.040300	-1.861800
Н	2.186400	2.534900	-3.283100
Н	2.261200	0.873400	-2.670900
С	5.914300	5.184000	-1.478300
Н	6.699100	4.947800	-2.210100
Н	5.256200	5.928100	-1.940800
Н	6.404000	5.652800	-0.617800
С	5.345200	1.284800	1.644800
Н	5.681100	0.277500	1.387300
Н	6.170100	1.828900	2.116900
Н	4.552500	1.166600	2.393200
С	3.022000	0.321300	0.045000
0	3.660100	-0.689400	0.391100
0	1.729400	0.405600	-0.020500
N	-1.266300	-1.756800	-2.355200
Н	-1.847100	-2.034400	-3.137000
С	-1.738800	-0.663700	-1.585900
С	-0.959300	-0.158800	-0.498200
С	-2.951100	-0.130800	-1.942100
C	-1.390000	1.089900	0.045000
C	-3.590500	0.957900	-1.130900
Η	-3.519200	-0.542800	-2.772700
С	-2.593100	1.661000	-0.249900

Η	-0.717300	1.602200	0.728300
Н	-4.097200	1.678600	-1.790500
Н	-2.875000	2.617000	0.185100
С	0.006100	-2.217200	-2.488900
С	1.470000	-3.379800	-3.805700
С	2.201900	-2.381400	-1.788500
С	2.524300	-3.092100	-2.934100
Н	1.626700	-3.972900	-4.705400
Н	2.934300	-2.113600	-1.031400
Н	3.539900	-3.417300	-3.124400
N	0.938800	-1.971700	-1.533200
N	0.232200	-2.946100	-3.602500
С	-5.485700	1.383200	0.602300
0	-5.443600	1.397100	1.809100
0	-6.139000	2.268000	-0.166200
С	-4.753300	0.357100	-0.282400
С	-6.865500	3.304400	0.542100
С	-7.534300	4.183500	-0.496800
Η	-6.158200	3.861400	1.164700
Η	-7.589800	2.825000	1.207800
Η	-8.096700	4.980600	0.001400
Η	-6.792400	4.645500	-1.156000
Η	-8.229300	3.602900	-1.111500
F	-5.675400	-0.211400	-1.128100
F	-4.292700	-0.631900	0.532600

TS_para_B_C

At	om X	Y	Z
С	-0.915100	-2.684700	-0.804200
С	0.449300	-2.367000	-0.972400
С	1.352100	-2.457100	0.134400
С	0.919500	-2.911400	1.400900
С	-0.456600	-3.317200	1.527900
С	-1.346800	-3.221000	0.462100
Η	0.819600	-1.974900	-1.911500
Η	2.377600	-2.130400	-0.002100
Н	-0.817400	-3.649100	2.498100

Η	-2.396200	-3.446300	0.608900
С	-1.928700	-2.597200	-1.934400
Н	-2.903000	-2.432300	-1.458500
С	1.873500	-3.046800	2.560600
Н	2.235600	-4.080200	2.645400
Н	2.742800	-2.395300	2.434200
Н	1.389300	-2.790100	3.509000
С	-1.689600	-1.439900	-2.914300
Н	-0.749600	-1.555800	-3.467200
Н	-2.497100	-1.413000	-3.654500
Н	-1.675900	-0.481600	-2.387500
С	-1.985000	-3.953500	-2.670400
Н	-2.196900	-4.780000	-1.982400
Н	-2.771900	-3.937500	-3.432900
Н	-1.032800	-4.166600	-3.171000
Ru	-0.291200	-1.059800	0.755600
С	-4.574000	3.484300	-0.390300
С	-3.664400	2.520100	0.060000
С	-3.988600	1.152300	-0.086600
С	-5.218700	0.782500	-0.678900
С	-6.082000	1.783800	-1.134300
С	-5.781200	3.141600	-1.001700
Н	-4.326400	4.536200	-0.259200
Н	-7.021900	1.491200	-1.599200
С	-2.381500	2.997800	0.707300
Н	-1.515500	2.811700	0.065700
Н	-2.440200	4.072100	0.913900
Н	-2.180600	2.480000	1.651000
С	-6.723400	4.202400	-1.521900
Н	-6.609100	5.144200	-0.974200
Η	-6.534400	4.418500	-2.582400
Η	-7.769500	3.886500	-1.438800
С	-5.641600	-0.661100	-0.848600
Н	-5.753000	-1.157300	0.118600
Η	-6.590000	-0.718500	-1.393200
Η	-4.898000	-1.239200	-1.410300
С	-3.048700	0.075200	0.420000

0	-3.492000	-0.893800	1.061400
0	-1.801900	0.272400	0.119000
N	1.643500	0.866700	2.652800
Η	2.300800	1.333000	3.266300
С	1.769200	1.136600	1.277100
С	0.956800	0.502600	0.308500
С	2.745900	2.094400	0.918700
С	1.125600	0.919600	-1.008200
С	2.944100	2.437100	-0.400400
Н	3.326700	2.582400	1.700600
С	2.192600	1.776800	-1.421000
Н	0.480300	0.511300	-1.778400
Н	3.693600	3.176800	-0.664400
Н	2.131300	2.237400	-2.405600
С	0.559600	0.412700	3.340900
С	-0.464200	0.286500	5.379200
С	-1.553000	-0.509800	3.432300
С	-1.609500	-0.263800	4.795400
Η	-0.405800	0.465000	6.451700
Η	-2.378400	-0.940100	2.871400
Η	-2.494900	-0.504800	5.371200
N	-0.455600	-0.216400	2.697100
N	0.603600	0.633500	4.671300
С	4.601700	1.029800	-2.922100
0	4.473500	1.389300	-4.077600
0	5.638400	1.347300	-2.117500
С	3.539700	0.317200	-2.174300
С	6.660000	2.172200	-2.723500
С	7.719500	2.431900	-1.669100
Η	6.198800	3.098100	-3.083200
Η	7.066500	1.647100	-3.593800
Η	8.517600	3.053000	-2.090400
Н	7.294000	2.954900	-0.806500
Η	8.160500	1.493100	-1.319200
F	3.935600	-0.387700	-1.098800
F	2.758300	-0.448700	-2.957700

Para_B_C

Ato	om X	Y	Z
С	0.472400	-0.609200	2.792200
С	-0.869500	-0.724800	2.375300
С	-1.333900	-1.932500	1.763200
С	-0.483400	-3.051200	1.611400
С	0.853200	-2.951500	2.141700
С	1.319500	-1.774700	2.717800
Н	-1.542100	0.122500	2.426500
Н	-2.347300	-1.964600	1.376300
Н	1.529100	-3.794200	2.022100
Н	2.357300	-1.690600	3.016100
С	1.035200	0.651500	3.429800
Н	2.111500	0.643900	3.219200
С	-0.973300	-4.342200	1.005800
Н	-1.245800	-5.058700	1.792300
Н	-1.856700	-4.177400	0.382000
Н	-0.200800	-4.811900	0.387600
С	0.462200	1.959600	2.867200
Н	-0.609100	2.063800	3.077100
Н	0.966400	2.812700	3.335100
Н	0.619400	2.020100	1.786700
С	0.853500	0.571900	4.961100
Н	1.296400	-0.341100	5.375400
Η	1.333400	1.430400	5.444500
Η	-0.209800	0.583000	5.230200
Ru	0.406600	-1.221100	0.543000
С	4.165400	3.175600	-2.064200
С	3.429900	2.077200	-1.604600
С	3.684300	1.577800	-0.305900
С	4.668000	2.194700	0.501600
С	5.357800	3.305400	0.004400
С	5.129600	3.809200	-1.277900
Η	3.972300	3.548800	-3.068500
Η	6.100300	3.786200	0.639000
С	2.404900	1.466700	-2.537300
Н	1.385400	1.646100	-2.184800

Η	2.511300	1.888400	-3.542700
Н	2.516000	0.379600	-2.610600
С	5.922000	4.981500	-1.808700
Н	6.827800	4.646700	-2.332800
Н	5.336200	5.572300	-2.521700
Н	6.243900	5.647400	-1.000400
С	5.001400	1.712200	1.897200
Н	5.420100	0.703000	1.877600
Н	5.719700	2.389400	2.371800
Н	4.111800	1.665000	2.536400
С	2.932300	0.371100	0.222900
0	3.536500	-0.520500	0.846100
0	1.661100	0.381600	-0.033900
N	-0.746100	-2.238700	-2.426300
Η	-1.149600	-2.666300	-3.251400
С	-1.369500	-1.081400	-1.950500
С	-0.936200	-0.395100	-0.773500
С	-2.455100	-0.591300	-2.739100
С	-1.558400	0.787200	-0.473600
С	-3.140300	0.533900	-2.406800
Η	-2.721900	-1.128200	-3.650100
С	-2.787600	1.317700	-1.173700
Η	-1.224700	1.370500	0.376900
Η	-3.945200	0.899700	-3.036300
Η	-2.664300	2.382200	-1.433100
С	0.480400	-2.755800	-2.152500
С	2.112800	-4.196500	-2.845500
С	2.472200	-2.769700	-0.987900
С	2.984100	-3.719100	-1.858100
Η	2.418100	-4.979900	-3.537600
Η	3.051000	-2.331000	-0.179700
Η	4.001400	-4.078000	-1.760100
N	1.205100	-2.307500	-1.094200
N	0.884700	-3.724200	-3.004900
С	-5.252300	1.980000	-0.689100
0	-5.258800	2.796300	-1.584200
0	-6.323000	1.574900	-0.002300

С	-3.961400	1.313500	-0.166200
С	-7.582500	2.196100	-0.368200
С	-8.651000	1.625800	0.544100
Н	-7.779500	1.982300	-1.423400
Н	-7.478700	3.280200	-0.260700
Н	-9.621700	2.069800	0.297700
Н	-8.727500	0.540300	0.426500
Н	-8.427100	1.845100	1.592800
F	-4.241100	0.041600	0.245500
F	-3.605600	2.023300	0.962200

Structure of Meta_B_N binding with $Na^{\scriptscriptstyle +}$

Ato	om X	Y	Ζ
С	3.233500	1.652500	-1.365300
С	2.325200	2.720700	-1.507700
С	2.077600	3.633900	-0.426400
С	2.723300	3.502500	0.818600
С	3.604800	2.376700	0.978700
С	3.868200	1.490300	-0.083700
Н	1.764900	2.837700	-2.427600
Η	1.346200	4.424000	-0.563300
Η	4.046000	2.177800	1.950300
Н	4.483500	0.618600	0.102100
С	3.540200	0.662800	-2.475300
Η	3.775500	-0.289600	-1.984500
С	2.485200	4.465700	1.950600
Н	3.300200	5.198800	1.999400
Н	1.548200	5.014400	1.818600
Н	2.450300	3.947400	2.914000
С	2.370400	0.405600	-3.434400
Н	2.110000	1.297000	-4.018000
Н	2.651600	-0.374100	-4.149500
Н	1.485500	0.063200	-2.889400
С	4.802100	1.132600	-3.232200
Η	5.653900	1.270900	-2.557200
Η	5.085200	0.388900	-3.984400
Н	4.620300	2.083100	-3.747600

Ru	1.655400	1.523700	0.303600
С	0.776300	-4.755300	-0.492700
С	0.803700	-3.410900	-0.110100
С	2.042600	-2.800200	0.182700
С	3.235600	-3.554800	0.076900
С	3.158100	-4.888900	-0.335600
С	1.941700	-5.515000	-0.617600
Н	-0.184100	-5.220700	-0.706300
Н	4.080200	-5.458000	-0.432700
С	-0.512800	-2.669500	-0.023700
Н	-0.608600	-1.953900	-0.846400
Н	-1.347100	-3.378500	-0.079100
Н	-0.603700	-2.099300	0.907800
С	1.886700	-6.970200	-1.017600
Н	1.809900	-7.620200	-0.135700
Н	1.019300	-7.180300	-1.652400
Н	2.787600	-7.270400	-1.562800
С	4.603100	-2.979800	0.378200
Н	4.713700	-2.755200	1.442400
Н	5.384800	-3.686700	0.083800
Н	4.782600	-2.040100	-0.157600
С	2.132800	-1.357800	0.630000
0	2.874800	-1.029000	1.560900
0	1.397800	-0.518400	-0.065600
N	-0.523800	1.586900	0.382500
С	-1.566000	1.686400	-0.550100
С	-2.345100	0.611000	-0.920800
С	-1.756700	2.956500	-1.185100
С	-3.415600	0.713000	-1.982600
Η	-2.100500	-0.372900	-0.531300
С	-2.709600	3.108200	-2.217000
Н	-1.143200	3.791900	-0.867300
С	-3.503900	2.071600	-2.624400
Η	-3.232000	-0.049700	-2.761500
Η	-2.808500	4.075500	-2.702700
Н	-4.227800	2.202200	-3.421400
С	-0.590500	1.123400	1.626700

С	0.919200	0.592500	3.340900
С	-1.430000	0.399800	3.632300
С	-0.158400	0.269600	4.175400
Н	1.955100	0.481500	3.641400
Н	-2.303200	0.162100	4.238300
Н	-0.005500	-0.075800	5.189900
N	-1.682300	0.797500	2.368600
N	0.695800	1.045400	2.118100
С	-4.872800	-1.128400	-0.882700
0	-4.995500	-2.080700	-1.603500
0	-4.716500	-1.173600	0.462000
С	-4.809300	0.313700	-1.425000
С	-4.741700	-2.522400	1.051500
С	-4.613600	-2.371800	2.552800
Н	-3.916600	-3.089700	0.614500
Н	-5.682500	-2.991400	0.756100
Н	-4.648100	-3.361700	3.019000
Н	-3.657000	-1.913000	2.829800
Н	-5.439200	-1.781900	2.967200
F	-5.156300	1.198400	-0.391900
F	-5.756300	0.441700	-2.373900
Na	-3.864700	0.885900	1.401200

Structure of Meta_B_N binding with $K^{\scriptscriptstyle +}$

At	om X	Y	Ζ
С	-3.410000	2.054800	1.196600
С	-2.291100	2.743400	1.715100
С	-1.545600	3.657100	0.897500
С	-1.904400	3.933500	-0.439300
С	-2.996400	3.169700	-0.973900
С	-3.745200	2.266200	-0.183400
Η	-1.962500	2.556600	2.730200
Η	-0.670200	4.144000	1.317800
Η	-3.237000	3.262100	-2.029200
Η	-4.517900	1.665700	-0.647300
С	-4.233600	1.084500	2.023900
Н	-4.641600	0.347100	1.322000

С	-1.163500	4.939100	-1.286300
Н	-1.721800	5.883000	-1.334000
Н	-0.174900	5.157600	-0.870200
Н	-1.034900	4.579800	-2.314400
С	-3.431500	0.317200	3.084200
Н	-3.055900	0.977000	3.876000
Н	-4.081000	-0.421600	3.565300
Н	-2.590300	-0.212900	2.629000
С	-5.421100	1.848900	2.650400
Η	-6.025100	2.357900	1.890700
Η	-6.071000	1.149000	3.186500
Η	-5.070300	2.601500	3.366700
u	-1.589000	1.652000	-0.177600
С	-2.136500	-4.677000	0.088700
С	-1.873300	-3.326200	-0.159900
С	-2.949000	-2.464800	-0.474100
С	-4.267100	-2.978100	-0.531800
С	-4.478800	-4.330900	-0.249300
С	-3.430400	-5.202000	0.056400
Η	-1.303300	-5.338400	0.318300
Η	-5.496200	-4.715700	-0.276400
С	-0.434200	-2.859500	-0.104400
Η	-0.259500	-2.190300	0.742600
Η	0.237200	-3.720200	-0.014100
Η	-0.151400	-2.305700	-1.007400
С	-3.686500	-6.668100	0.313600
Η	-3.730700	-7.232900	-0.627200
Η	-2.894300	-7.113400	0.924300
Η	-4.641100	-6.823700	0.827900
С	-5.469200	-2.127900	-0.883700
Η	-5.456600	-1.842700	-1.939800
Η	-6.394000	-2.677200	-0.681000
Η	-5.499900	-1.192800	-0.313700
С	-2.727700	-1.001900	-0.779400
0	-3.313700	-0.447000	-1.714900
0	-1.902000	-0.395100	0.044400
N	0.533600	1.047400	-0.171900

С	1.421700	0.631300	0.826300
С	2.348100	-0.397400	0.730800
С	1.263100	1.308400	2.084100
С	3.237100	-0.793100	1.894500
Н	2.344600	-1.045000	-0.142500
С	1.933700	0.869500	3.240800
Н	0.548300	2.119500	2.136700
С	2.844100	-0.150800	3.199000
Н	3.230300	-1.889600	2.007300
Н	1.704100	1.342100	4.192400
Н	3.344700	-0.490400	4.098200
С	0.539200	0.758000	-1.474800
С	-1.004100	0.846500	-3.242000
С	1.209300	0.047200	-3.543700
С	-0.037100	0.311900	-4.099600
Н	-2.020000	1.060300	-3.554200
Н	2.001400	-0.364100	-4.169100
Н	-0.255100	0.105300	-5.139800
N	1.529000	0.250400	-2.251200
N	-0.699300	1.092900	-1.977000
С	5.505700	-1.390900	0.667900
0	5.583900	-2.576200	0.852200
0	6.094100	-0.700900	-0.341100
С	4.738300	-0.449100	1.633300
С	7.176900	-1.343800	-1.098900
С	8.313700	-0.340000	-1.199400
Н	6.770400	-1.614500	-2.078600
Н	7.459600	-2.260200	-0.579100
Н	9.088700	-0.721000	-1.871800
Н	7.972500	0.627000	-1.590900
Н	8.765200	-0.167200	-0.218200
F	4.838700	0.852900	1.181800
F	5.450500	-0.518000	2.792100
K	4.115500	0.694900	-1.530700

7. Crystallographic Details

Crystals were grown from a mixture of CH_2Cl_2 and n-hexane.

Molecular structure of compound **3c**. The ellipsoid contour percent probability level is 30% in the caption of the thermal ellipsoid plot. (CCDC 1827733)

Table S3.Crystal data and structure refinement for 3c.		
Identification code	3c	
Empirical formula	$C_{15}H_{15}F_2N_3O_3$	
Formula weight	323.30	
Temperature/K	289.7(5)	
Crystal system	triclinic	
Space group	P-1	
a/Å	12.5999(8)	
b/Å	12.8512(7)	
c/Å	13.5479(9)	
a/°	63.165(6)	
β/°	62.666(7)	
γ/°	64.519(6)	
Volume/Å ³	1668.7(2)	
Z	4	
$ ho_{calc}g/cm^3$	1.287	
μ/mm ⁻¹	0.907	
F(000)	672.0	
Crystal size/mm ³	0.23 × 0.21 × 0.15	
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)	
2Θ range for data collection/°	7.744 to 139.966	

Index ranges	$\text{-15} \le h \le 14, \text{-15} \le k \le 11, \text{-16} \le l \le 12$
Reflections collected	10134
Independent reflections	6075 [$R_{int} = 0.0531$, $R_{sigma} = 0.0583$]
Data/restraints/parameters	6075/18/419
Goodness-of-fit on F ²	1.169
Final R indexes [I>=2σ (I)]	$R_1 = 0.0789, wR_2 = 0.2500$
Final R indexes [all data]	$R_1 = 0.0990, wR_2 = 0.3102$
Largest diff. peak/hole / e Å ⁻³	0.40/-0.44

8. NMR spectra

---0.000

 $\left\{ \begin{smallmatrix} 1.349 \\ 1.332 \\ 1.314 \end{smallmatrix} \right.$

---0.000

F F 3f

---100.62

-0.000

---96.39

-0.000

---100.04

0 3r

---0.000

 $\begin{pmatrix} 1.270 \\ 1.253 \\ 1.235 \end{pmatrix}$

0	-20	-40	-60	-80	-100 ppm	-120	-140	-160	-180	-200
957 936 798	795 791 785 783	765 762 608	579 415 412 407	405 395 392	384 374 262	338 320 385			342 324 306	000

7.725 7.704 7.569 7.548 7.548 7.548 -8.302

4.320 4.303 4.285 4.285 $\left\{ \begin{matrix} 1.328 \\ 1.310 \\ 1.292 \end{matrix} \right.$

-2.223

-0.000

S84

165,010 164,656 164,656 158,823 158,823 158,829 139,972 133,520 133,520 133,520 133,520 133,520 133,520 133,520 133,520 133,520 133,520 133,520 133,520 133,520 133,520 133,520 133,520 133,520 126,325 126,325 126,325 126,325 126,325 126,325 119,317 119,317 119,125 126,125 119,125 119,12	77.318 77.000 76.682	53.636
VII	~	- T

$$\mathbf{y} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y}$$

---100.81

<0.943 $\left\{ \begin{matrix} 8.554 \\ 8.542 \\ 8.542 \\ 7.776 \\ 7.774 \\ 7.748 \\ 7.748 \\ 7.748 \\ 6.937 \\ 6.937 \\ 6.913 \end{matrix} \right.$

72.525 72.522 72.513 72.513 72.513 72.503

References

- 1. 2. 3. 4. 5. 6. 7.
- (a) J. Li, S. Warratz, D. Zell, S. De Sarkar, E. E. Ishikawa and L. Ackermann, J. Am. Chem. Soc., 2015, DOI: 10.1021/jacs.5b08435; (b) J. A. Leitch, C. L. McMullin, A. J. Paterson, M. F. Mahon, Y. Bhonoah and C. G. Frost, *Angew. Chem. Int. Ed.*, 2017, **56**, 15131-15135. A. Prieto, R. Melot, D. Bouyssi and N. Monteiro, *ACS Catal.*, 2016, **6**, 1093-1096. W. Xuesong, R. Jan and D. V. M., *Angew. Chem. Int. Ed.*, 2017, **56**, 11589-11593.
- L. Ackermann, R. Vicente, H. K. Potukuchi and V. Pirovano, Org. Lett., 2010, 12, 5032-5035.

L. Ackermann, R. Vicente, H. K. Potukuchi and V. Pirovano, *Org. Lett.*, 2010, **12**, 5032-5035. J. Zhang, R. Shrestha, J. F. Hartwig and P. Zhao, *Nat. Chem.*, 2016, **8**, 1144. N. Xingliang, C. Cungui and Z. Gangguo, *Angew. Chem. Int. Ed.*, 2017, **56**, 1898-1902. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian. Inc. Wallingford CT. 2016 C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.