Supporting Information for

Synthesis of Heteroaromatic Trifluoromethyl Ethers with Trifluoromethyl Triflate as the Source of the Trifluoromethoxy Group

Qing-Wei Zhang, and John F. Hartwig*

Department of Chemistry, University of California Berkeley, California, 94720, United States

Email: jhartwig@berkeley.edu

• INDEX

1.	General information	S2
2.	General procedures	S3
3.	Optimization of the reaction of phenanthridine N-oxide	S4
4.	References	S4
5.	Spectroscopic data of key compounds	S5
6.	Copies of ¹ H, ¹³ C NMR and ¹⁹ F NMR spectra for key compounds	S15

General information

Nuclear magnetic resonance (¹H NMR, ¹⁹F NMR, ¹³C NMR) spectra were acquired on commercial instruments (DRX500, AV600, AV700 MHz) at the University of California, Berkeley NMR facility. ¹³C nuclear magnetic resonance (¹³C NMR) spectra were acquired at 100 M, 151 MHz and 176MHz on the DRX500, AV600, AV700 instruments. ¹⁹F nuclear magnetic resonance spectra were acquired at 376 MHz on the AVQ400 instrument. The ¹H NMR signal for residual non-deuterated solvent (δ 7.27 for CHCl₃, 2.50 for DMSO, 2.05 for acetone, 3.31 for methanol) was used as an internal reference for ¹H NMR spectra. The ¹³C NMR signal for CDCl₃ (δ 77.0), *d*₆-DMSO (δ 39.5), *d*₄-methanol (δ 49.0) or *d*₆-acetone (δ 29.8) was used as an internal reference for ¹³C NMR spectra. Coupling constants are reported in Hz. High-resolution mass spectra of the products **2** and **3** (EI) were recorded on a commercial GC-HRMS spectrometer at the Micro Mass/Analytical Facility operated by the College of Chemistry, University of California, Berkeley. High-resolution mass spectra of the starting materials **1** were recorded on a commercial LC-HRMS spectrometer(PerkinElmer) in the LBNL catalysis facility.

Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F254 glass plates precoated with a 0.25 mm thickness of silica gel. TLC plates were visualized with UV light. Products were generally purified by column chromatography performed on a Teledyne Isco Combiflash® R*f* system with Redi*Sep* GoldTM columns.

Substrates 1d (ref. 1), 1g and 1r (ref. 2) were synthesized according to literature procedures. All other substrates were synthesized by oxidation of the corresponding N-heterocycles with *m*-CPBA (ref. 3). $C_2F_5SO_2(OC_2F_5)$ and $C_4F_9SO_2(OC_4F_9)$ were synthesized according to ref. 4

Tetrahydrofuran (THF), was purged with nitrogen and dried with an Innovative Pure-Solv solvent purification system. Dry DME and all other solvents were purchased and used without further purification.

General procedures

Preparation of TFMT

$$Tf_2O \xrightarrow{SbF_5(0.5 \text{ mol}\%)} TfOCF_3 + SO_2$$

TFMT was synthesized according to slightly modified literature procedure⁵ with Tf₂O (100 mL, 0.60 mol) and SbF₅ (0.65 g, 3 mmol). Tf₂O was added by a syringe pump in three hours to a flask containing SbF₅ equipped with a distillation apparatus. The flask was kept warm at 25 °C and the receiver was cooled to -78 °C. After addition of Tf₂O, the reaction flask was heated to 60 °C and stirred for additional 15 min. The receiver was warmed to -15 °C, 3 M KOH (15 mL) solution was added to destroy unreacted Tf₂O. The TFMT layer was separated, dried with P₂O₅ and distilled to afford pure TFMT (110 g, 84%). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -52.4 (q, *J* = 3.9 Hz), -73.0 (q, *J* = 3.9 Hz). Lit.⁵ (-53.3, -74.0, *J* = 3.3 Hz)

Procedure 1: the reaction of quinoline N-oxides (1a-1i, 1p-1t) Procedure 1a

Qunioline oxides **1a-1i**, **1p-1t**, (1 mmol) were dissolved in a mixture containing DME (16 mL) and *t*-BuC(O)Me (1 mL). TFMT (0.5 M, 3 mL) was then added at room temperature, and the mixture was stirred until the starting material was consumed (3-8 h), as indicated by TLC. Et₃N (0.2 mL) and water (30 mL) were added, and the system was extracted with ether (30 mL x 2). The combined organic phase was sequentially washed with water (20 mL) and brine (20 mL), dried over MgSO₄, and filtered. The filtrate was concentrated under vacuum. The residue was purified by flash chromatography on silica gel with a mixture of ethyl acetate (EtOAc) or DCM with hexane as eluent. The same procedure was adopted for other reaction scale under the same concentration (0.05 M).

8-Methyl-qunioline N-oxides **1a** (1 mmol) were dissolved in a mixture containing DME (19 mL) and tBuC(O)Me (1 mL). $C_nF_{(2n+1)}SO_2(OC_nF_{(2n+1)})$ (1.5 equiv, 1.5 mmol) was then added at room temperature for 4 h, as indicated by TLC. Et₃N (0.2 mL) and water (30 mL) were added, and the system was extracted with ether (30 mL x 2). The combined organic phase was sequentially washed with water (20 mL) and brine (20 mL), dried over MgSO₄, and filtered. The filtrate was concentrated under vacuum. The residue was purified by flash

chromatography on silica gel with a mixture of ethyl acetate (EtOAc) or DCM with hexane as eluent.

Procedure 2: the reaction of other heterocyclic N-oxides (1j-1o) Procedure 2a

Tricyclic oxides **1j-1o** (1 mmol) and 2,6-dichloropyridine N-Oxide (1.5 equiv) were dissolved in DME (97 mL), and 4 Å molecular sieves (1.0 g) were added. TFMT (0.5 M, 3 mL) was then added at room temperature, and the mixture was stirred for 8 h. Et₃N (0.2 mL) was then added to the system. The mixture was filtered, and the filtrate was concentrated under vacuum. The residue was purified by flash chromatography on silica gel with a mixture of ethyl acetate and hexane as eluent. The same procedure was adopted for other reaction scale under the same concentration (0.01 M).

Procedure 2b

Phenanthridine N-oxides **1j** (1 mmol) and 2,6-dichloropyridine N-Oxide (1.5 equiv) were dissolved in DME (100 mL), and 4 Å molecular sieves (1.0 g) were added. $C_nF_{(2n+1)}SO_2(OC_nF_{(2n+1)})$ (1.5 equiv, 1.5 mmol) was then added at room temperature, and the mixture was stirred for 4 h. Et₃N (0.2 mL) was then added to the system. The mixture was filtered, and the filtrate was concentrated under vacuum. The residue was purified by flash chromatography on silica gel with a mixture of ethyl acetate and hexane as eluent.

Reduction of 2d

Substrate **2d** (0.10 mmol, 29.2 mg) was dissolved in dry THF (1 mL) under argon. The solution was cooled to -78 °C in a dry ice/acetone bath. *n*-BuLi (0.12 mmol, 2.5 M, 48 μ L) was added slowly to the stirring solution at -78 °C. After stirring for an additional 5 min, water (5 mL) was added. The mixture was warmed to room temperature, at which point *n*-hexane (10 mL) was added. The organic phase was separated, dried over MgSO₄, and filtered. The filtrate was concentrated and purified by preparative TLC. Compound **2d'** was obtained as a colorless oil (18.3 mg, 86%). ¹H NMR (700 MHz, CDCl₃) δ 8.24 (d, *J* = 8.8

Hz, 1H), 8.01 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.75 (t, J = 7.8 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.12 (dd, J = 8.9, 2.1 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 154.8, 145.8, 140.7, 130.6, 128.6, 127.5, 126.6, 126.5, 120.3 (q, J = 260 Hz), 112.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -55.5. **HRMS** (ESI) calcd for C₁₀H₆F₃NO⁺ [M]⁺ 213.0396, Found: 213.0398.

 TABLE S1. Evaluation of reaction parameters for the trifluoromethyl etherification of phenanthridine N-oxide.^a

^{*a*} substrate (0.1 mmol) in solvent (2 mL), additive (1.5 equiv) and TFMT (1.5 equiv). ^{*b*} ¹⁹F NMR yield using trifluorotoluene as internal standard. ^{*c*} Isolated yield.

References:

- [1] Ukai, T.; Yamamoto, Y.; Hirano, S. Yakugaku Zasshi, 1953, 73, 823.
- [2] Hwang, H.; Kim, J.; Jeong, J.; Chang, S. J. Am. Chem. Soc. 2014, 136, 10770.
- [3] Wengryniuk, S. E.; Weickgenannt, A.; Reiher, C.; Strotman, N. A.; Chen, K.; Eastgate,
- M. D.; Baran, P. S. Org. Lett. 2013, 15, 792.
- [4] Oudrhiri-Hassani, M.; Brunel, D.; Germain, A.; Commeyras, A. J. Fluorine Chem. **1984**, 25, 219.
- [5] Taylor S.; Martin, J. J. Org. Chem., 1987, 52, 4147.

8-bromoquinoline 1-oxide (1d). The product was synthesized from 3.10 g quinoline N-oxide (xH₂O) according to ref. 1 to give 697 mg of 1d (24% yield over two steps). ¹H NMR (600 MHz, CDCl₃) δ 8.46 (d, J = 5.8 Hz, 1H), 7.96 Ò (d, J = 7.4 Hz, 1H), 7.77 (d, J = 7.9 Hz, 1H), 7.66 (d, J = 8.2 Hz, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.28 – 7.22 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 138.9, 137.8, 137.7, 133.2, 128.5, 128.5, 125.8, 121.5, 112.8.

Br

8-fluoroquinoline 1-oxide (1e). Synthesized from 1.47 g of starting material according to ref. 3 to give 245 mg of 1e (15% yield). ¹H NMR (700 MHz, CDCl₃) δ 8.44 (dd, J = 6.1, 1.0 Hz, 1H), 7.67 (dt, J = 8.4, 1.2 Hz, 1H), 7.63 (dt, J = 8.1, 1.3 Hz, 1H), 7.52 (td, J = 8.0, 4.0 Hz, 1H), 7.35 (ddd, J = 12.9, 1H), 7.35 (ddd, J = 12.9, 1H), 7.52 (td, J = 12.9, 1H), 7.52 (td, J = 12.9, 1H), 7.52 (td, J = 12.9, 1H), 7.53 (td7.8, 1.3 Hz, 1H), 7.30 – 7.25 (m, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 154.7 (d, J = 265 Hz), 138.0, 133.4, 132.4, 128.7 (d, J = 8.3 Hz), 125.0 (d, J = 3.3 Hz), 124.3 (d, J = 5.8 Hz),

121.8, 116.4 (d, J = 21.8 Hz). ¹⁹F NMR (376 MHz, DMSO) δ -114.6.

7,8-dimethylquinoline 1-oxide (1h). Synthesized from 1.00 g starting material according to ref. 3 to give 223 mg of **1h** (21% yield). ¹H NMR $(700 \text{ MHz}, \text{CDCl}_3) \delta 8.42 \text{ (d}, J = 6.0 \text{ Hz}, 1\text{H}), 7.61 \text{ (d}, J = 8.3 \text{ Hz}, 1\text{H}),$ 7.55 (d, J = 8.3 Hz, 1H), 7.39 (d, J = 8.3 Hz, 1H), 7.13 (dd, J = 8.3, 6.0

Hz, 1H), 3.12 (s, 3H), 2.48 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 141.4, 140.1, 137.9, 131.4, 131.0, 126.7, 125.5, 119.7, 21.8, 18.4. (1 C overlapped) HRMS (ESI) calcd for C₁₃H₉FNO⁺ [M+H]⁺ 174.0913, Found: 174.0906.

7-chloro-8-methylquinoline 1-oxide (1i). Synthesized from 1.00 g starting material according to ref. 3 to give 180 mg of **1i** (17% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.44 (dd, J = 6.1, 1.2 Hz, 1H), 7.61 (dd, J =8.3, 1.2 Hz, 1H), 7.59 (d, J = 8.9 Hz, 1H), 7.57 (d, J = 8.9 Hz, 1H), 7.21

(dd, J = 8.3, 6.1 Hz, 1H), 3.28 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 142.1, 138.4, 137.6, 131.3, 131.1, 130.2, 126.8, 126.1, 121.0, 19.5. HRMS (ESI) calcd for C₁₀H₉ClNO⁺ [M+H]⁺ 194.0367, Found: 194.0368.

phenanthridine 5-oxide (1j). Synthesized from 900 mg starting material according to ref. 3 to give 829 mg of **1j** (85% yield). ¹H NMR (600 MHz, $CDCl_3$) δ 8.93 (dd, J = 7.8, 1.9 Hz, 1H), 8.91 (s, 1H), 8.57 (d, J = 7.9 Hz, 1H), 8.50 (d, J = 8.3 Hz, 1H), 7.82 (td, J = 7.0, 1.7 Hz, 2H), 7.79 (d, J =

8.1 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.67 (t, J = 7.5 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 139.2, 134.7, 129.6, 129.5, 129.3, 128.8, 126.8, 126.6, 126.6, 126.1, 122.7, 122.0, 120.6.

[1,3]dioxolo[4,5-j]phenanthridine 5-oxide (1k). Synthesized from 249 mg starting material according to ref. 3 to give 124 mg of 1k (50% yield). ¹H NMR (700 MHz, CDCl₃) δ 8.53 – 8.49 (m, 1H), 8.50 (s, 1H), 8.19 – 8.08 (m, 1H), 7.60 (s, 1H), 7.51 – 7.43 (m, 2H), 6.87 (s, 1H), 5.89 (s, 2H). ¹³C NMR (176 MHz, CDCl₃/DMSO-d₆) δ 149.9, 148.6, 137.5, 133.4, 128.2, 128.0, 125.5, 123.0, 122.2, 122.1, 119.5, 102.4, 101.6, 99.8. HRMS (ESI) calcd for C₁₄H₁₀NO₃⁺ [M+H]⁺ 240.0655, Found: 240.0639.

8,9-dimethoxyphenanthridine 5-oxide (11). Synthesized from 941 mg starting material according to ref. 3 to give 654 mg of 11 (65% yield). ¹H NMR (700 MHz, CDCl₃) δ 8.78 (dd, J = 8.2, 1.6 Hz, 1H), 8.64 (s, 1H), 8.23 (dd, J = 7.9, 1.6 Hz, 1H), 7.64 (dddd,

J = 17.7, 8.5, 6.9, 1.4 Hz, 2H), 7.57 (s, 1H), 6.92 (s, 1H), 4.02 (s, 3H), 3.96 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 151.4, 150.6, 138.0, 133.6, 128.5, 128.3, 125.7, 122.0, 121.7, 121.4, 120.4, 105.1, 102.0, 56.0, 56.0, HRMS (ESI) calcd for C₁₅H₁₄NO₃⁺ [M+H]⁺ 256.0968., Found: 256.0969.

9-methoxyphenanthridine 5-oxide (1m). Synthesized from 643 mg starting material according to ref. 3 to give 426 mg of 1m (62% yield). ¹H NMR (700 MHz, CDCl₃) δ 8.93 (dd, J = 8.5, 1.3 Hz, 1H), 8.83 (s, 1H), 8.50 (dd, J = 8.2, 1.3 Hz, 1H), 7.86 – 7.81 (m, 2H),

7.81 - 7.76 (m, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.31 - 7.27 (m, 1H), 4.03 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 160.8, 139.2, 134.4, 129.7, 128.8, 128.6, 127.9, 126.0, 122.7, 121.1, 120.8, 119.0, 103.6, 55.7. **HRMS** (ESI) calcd for C₁₄H₁₂NO₂⁺ [M+H]⁺ 226.0863, Found: 226.0853.

8-methoxyphenanthridine 5-oxide (1n). Synthesized from 341 mg starting material according to ref. 3 to give 124 mg of 1n (35% yield). ¹H NMR (700 MHz, Methanol-*d*₄) δ 8.82 (s, 1H), 8.61 (d, *J* = 8.5 Hz, 1H), 8.49 (d, J = 8.1 Hz, 1H), 7.79 (t, J = 7.7 Hz, 1H), MeO 7.76-7.69 (m, 3H), 7.17 (dd, J = 8.7, 2.3 Hz, 1H), 3.94 (s, 3H). ¹³C NMR (176 MHz, Methanol-d₄) δ 163.5, 138.8, 137.8, 131.3, 131.2, 130.3, 130.2, 127.2, 124.5, 121.3, 120.6, 120.5, 104.4, 56.4. **HRMS** (ESI) calcd for $C_{14}H_{12}NO_2^+$ [M+H]⁺ 226.0863, Found: 226.0855.

9-fluorophenanthridine 5-oxide (10). Synthesized from 332 mg starting material according to ref. 3 to give 203 mg of 10 (56% yield). ¹H NMR (700 MHz, Methanol- d_4) δ 9.10 (s, 1H), 8.75 (d, J = 8.6 Hz, 1H), 8.69 (d, J = 8.1 Hz, 1H), 8.39 (dd, J = 10.3, 2.4 Hz, 1H), 8.07 (dd,

J = 8.8, 5.5 Hz, 1H), 7.93 (t, J = 7.7 Hz, 1H), 7.89 (t, J = 7.5 Hz, 1H), 7.54 (td, J = 8.5, 2.2 Hz, 1H). ¹³C NMR (176 MHz, Methanol- d_4) δ 165.0 (d, J = 253 Hz), 139.4, 137.4, 131.9, 131.4 (d, J = 9.8 Hz), 131.3 (d, J = 8.8 Hz), 119.5 (d, J = 25.0 Hz), 131.1, 127.4, 125.0, 124.2, 120.8, 109.2 (d, J = 24.0 Hz). HRMS (ESI) calcd for C₁₃H₉FNO⁺ [M+H]⁺ 214.0663., Found: 214.0670.

benzo[h]quinoline 1-oxide (**1p**). Synthesized from 1.27 g starting material according to ref. 3 to give 950 mg of **1p** (69% yield). ¹H NMR (700 MHz, CDCl₃) δ 10.86 (d, *J* = 8.3 Hz, 1H), 8.65 (d, *J* = 6.3 Hz, 1H), 7.93 – 7.89 (m, 1H), 7.82 (d, *J* = 8.8 Hz, 1H), 7.78 (q, *J* = 8.2, 7.6 Hz, 2H), 7.73 (d, *J* = 8.1 Hz, 1H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.40 – 7.35 (m, 1H). ¹³C

NMR (176 MHz, CDCl₃) δ 139.2, 138.4, 134.0, 131.2, 130.5, 129.0, 128.2, 128.0, 127.7, 126.0, 125.7, 124.9, 121.2.

benzo[f]quinoline 4-oxide (**1q**). Synthesized from 538 mg starting material according to ref. 3 to give 208 mg of **1q** (39% yield). ¹H NMR (600 MHz, CDCl₃) δ 10.86 (dd, J = 8.0, 1.7 Hz, 1H), 8.66 (dd, J = 6.2, 1.3 Hz, 1H), 7.92 (dd, J = 6.9, 2.4 Hz, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.82 – 7.71 (m, 3H), 7.64 (d, J = 8.8 Hz, 1H), 7.39 (dd, J = 8.0, 6.2 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 139.3, 138.5, 134.0, 131.2, 130.5, 129.0, 128.2, 128.0, 127.7, 126.0, 125.7,

125.0, 121.2.

8-bromo-6-methoxyquinoline 1-oxide (1t). Synthesized from 175 mg starting material according to ref. 2 to give 86 mg of 1t (34% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.78 (d, *J* = 9.6 Hz, 1H), 8.44 (d, *J* = 5.9 Hz, 1H), 8.09 (d, *J* = 8.8 Hz, 1H), 7.49 (d, *J* = 9.6 Hz, 1H), 7.36 (dd, *J* = 8.9, 1H), 7.49 (d, *J* = 9.6 Hz, 1H), 7.36 (dd, *J* = 8.9, 1H), 7.49 (d, *J* = 9.6 Hz, 1H), 7.49 (d, *J* = 8.9, 1H), 7.49 (d, *J* = 9.6 Hz, 1H), 7.49 (d, *J* = 8.9 Hz, 1H), 7.49 (d, *J* = 9.6 Hz, 1H), 7.49 (d, *J* = 8.8 Hz, 1H), 7.49 (d, *J* = 9.6 Hz, 1H), 7.49 (d, *J* = 8.8 Hz, 1H), 7.49 (d, *J* = 9.6 Hz, 1H), 7.49 (d, *J* = 8.8 Hz, 1H), 7.49 (d, *J* = 9.6 Hz, 1H), 7.49 (d, *J* = 9.6 Hz, 1H), 7.49 (d, *J* = 9.6 Hz, 1H), 7.49 (d, *J* = 8.8 Hz, 1H), 7.49 (d, *J* = 9.6 Hz, 1H), 7.49 (d, *J* = 8.8 Hz, 1H), 7.49 (d, *J* = 9.6 Hz, 1H), 7.49 (d, J = 9.6 Hz, 1H)

5.9 Hz, 1H), 4.08 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 155.8, 137.6, 133.9, 131.2, 124.7, 122.2, 120.9, 116.4, 108.0, 57.1. **HRMS** (ESI) calcd for C₁₀H₉BrNO₂⁺ [M+H]⁺ 253.9811, Found: 253.9804.

8-methyl-2-(trifluoromethoxy)quinoline (2a). To obtain a yield by NMR spectroscopy, the reaction was run according to general procedure 1a on a 0.10 mmol scale to give 47% yield of the product by ¹⁹F NMR spectroscopy using PhCF₃ as internal standard. For

isolation, the reaction was run according to the same general procedure on a 1 mmol scale. The product was isolated (94.9 mg, 42% yield) by flash chromatography on silica gel using hexane/EtOAc as eluent. ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, *J* = 8.7 Hz, 1H), 7.67 (d, *J* = 8.1 Hz, 1H), 7.60 (d, *J* = 7.0 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.08 (d, *J* = 8.7 Hz, 1H), 2.74 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 153.8, 144.7, 140.9, 136.7, 130.6, 126.5, 126.1, 120.2 (q, *J* = 263 Hz), 125.2, 111.5 (q, *J* = 1.4 Hz), 17.4. ¹⁹F NMR (376 MHz, CDCl₃) δ - 55.7. **HRMS** (ESI) calcd for C₁₁H₈F₃NO [M]⁺ 227.0552, Found: 227.0561.

8-isopropyl-2-(trifluoromethoxy)quinoline (2b). To obtain a yield by NMR spectroscopy, the reaction was run according to general procedure 1a on a 0.10 mmol scale to give 48% yield of the product by ¹⁹F NMR yield using PhCF₃ as internal standard. For isolation, the

reaction was run according to the same general procedure on a 1 mmol scale. The product was isolated (145.3 mg, 57% yield) by flash chromatography on silica gel using hexane/EtOAc as eluent. ¹H NMR (600 MHz, CDCl₃) δ 8.20 (d, *J* = 8.8 Hz, 1H), 7.66 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.63 (s, 1H), 7.51 (d, *J* = 1.7 Hz, 1H), 7.06 (d, *J* = 8.7 Hz, 1H), 4.09 (heptet, *J* = 4.2 Hz, 1H), 1.42-1.35 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 153.7, 146.7,

143.6, 141.0, 126.6, 126.5, 126.3, 125.1, 120.3 (q, J = 263 Hz), 111.4, 28.1, 23.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -55.8. **HRMS** (ESI) calcd for C₁₃H₁₂F₃NO [M]⁺ 255.0866, Found: 255.0869.

8-methoxy-2-(trifluoromethoxy)quinoline (2c). To obtain a yield by NMR spectroscopy, the reaction was run according to general procedure 1a on a 0.10 mmol scale to give 55% yield of the product by ¹⁹F NMR yield using PhCF₃ as internal standard. For isolation, the

reaction was run according to the same general procedure on a 1 mmol scale. The product was isolated (126.4 mg, 52% yield) by flash chromatography on silica gel using hexane/EtOAc as eluent. ¹H NMR (600 MHz, CDCl₃) δ 8.23 (d, *J* = 8.8 Hz, 1H), 7.49 (t, *J* = 8.0 Hz, 1H), 7.42 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.20 (d, *J* = 8.7 Hz, 1H), 7.12 (dd, *J* = 7.8, 1.2 Hz, 1H), 4.07 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 155.0, 153.7 (q, *J* = 1.8 Hz), 140.8, 137.6, 128.0, 126.9, 120.2 (q, *J* = 261 Hz), 119.2, 112.8 (q, *J* = 1.8 Hz), 109.72, 56.38. ¹⁹F NMR (376 MHz, CDCl₃) δ -55.3. **HRMS** (ESI) calcd for C₁₁H₈F₃NO₂ [M]⁺ 243.0502, Found: 243.0508.

8-bromo-2-(trifluoromethoxy)quinoline (2d). To obtain a yield by NMR spectroscopy, the reaction was run according to general procedure 1a on a 0.10 mmol scale to give 66% yield of the product by 19 F NMR yield using PhCF₃ as internal standard. For isolation, the

reaction was run according to the same general procedure on a 1 mmol scale. The product was isolated (179.6 mg, 62% yield) by flash chromatography on silica gel using hexane/DCM as eluent. ¹H NMR (700 MHz, CDCl₃) δ 8.21 (d, *J* = 8.7 Hz, 1H), 8.04 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.77 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.38 (t, *J* = 7.8 Hz, 1H), 7.12 (d, *J* = 8.7 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 155.2, 143.1, 141.3, 134.2, 127.6, 127.2, 126.9, 123.4, 120.1 (q, *J* = 262 Hz), 112.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -56.7. **HRMS** (ESI) calcd for C₁₀H₅BrF₃NO [M]⁺ 290.9501, Found: 290.9508.

8-fluoro-2-(trifluoromethoxy)quinoline (2e). To obtain a yield by NMR spectroscopy, the reaction was run according to general procedure 1a on a 0.10 mmol scale to give 49% yield of the product by ¹⁹F NMR yield using PhCF₃ as internal standard. ¹H NMR (700

MHz, CDCl₃) δ 8.24 (dd, J = 8.9, 3.1 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.49 – 7.45 (m, 1H), 7.45 – 7.40 (m, 1H), 7.15 (d, J = 9.0 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 157.1 (d, J = 257 Hz), 154.8, 140.6 (d, J = 2.8 Hz), 135.6 (d, J = 12.1 Hz), 128.2, 126.4(d, J = 7.6 Hz), 123.0 (d, J = 4.8 Hz), 120.0 (d, J = 264 Hz), 115.0 (d, J = 18.5 Hz), 113.18. ¹⁹F NMR (376 MHz, CDCl₃) δ -56.3, -124.4. **HRMS** (ESI) calcd for C₁₀H₅F₄NO [M]⁺ 231.0302, Found: 231.0307.

8-chloro-2-(trifluoromethoxy)quinoline (2f). To obtain a yield by NMR spectroscopy, the reaction was run according to general procedure 1a on a 0.10 mmol scale to give 50% yield of the product by 19 F NMR yield using PhCF₃ as internal standard. For isolation, the

reaction was run according to the same general procedure on a 0.46 mmol scale. The

product was isolated (55.5 mg, 49% yield) by flash chromatography on silica gel using hexane/DCM as eluent. ¹H NMR (700 MHz, CDCl₃) δ 8.23 (d, *J* = 8.7 Hz, 1H), 7.83 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.73 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.14 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 155.0, 142.2, 141.2, 132.6, 130.7, 127.7, 126.4, 126.4, 120.1 (q, *J* = 262 Hz), 112.8 (q, *J* = 1.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.4. **HRMS** (ESI) calcd for C₁₀H₅ClF₃NO [M]⁺ 247.0006, Found: 247.0017.

8-iodo-2-(trifluoromethoxy)quinoline (2g). To obtain a yield by NMR spectroscopy, the reaction was run according to general procedure 1a on a 0.10 mmol scale to give 31% yield of the product by ¹⁹F NMR yield using PhCF₃ as internal standard. ¹H NMR (600

MHz, CDCl₃) δ 8.34 (dd, J = 7.5, 1.3 Hz, 1H), 8.18 (d, J = 8.7 Hz, 1H), 7.82 (dd, J = 8.1, 1.3 Hz, 1H), 7.28 (dd, J = 8.1, 7.4 Hz, 1H), 7.11 (d, J = 8.7 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 155.5, 145.3, 141.5, 141.0, 128.1, 127.6, 126.9, 120.1 (q, J = 263 Hz), 112.8, 101.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -56.4. **HRMS** (ESI) calcd for C₁₀H₅F₃INO [M]⁺ 338.9362, Found: 338.9368.

7,8-dimethyl-2-(trifluoromethoxy)quinoline) (2h). To obtain a yield by NMR spectroscopy, the reaction was run according to general procedure 1a on a 0.10 mmol scale to give 43% yield of the product by ¹⁹F NMR yield using PhCF₃ as internal standard.

For isolation, the reaction was run according to the same general procedure on a 0.5 mmol scale. The product was isolated (58.7 mg, 49% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, *J* = 8.6 Hz, 1H), 7.57 (d, *J* = 8.2 Hz, 1H), 7.36 (d, *J* = 8.2 Hz, 1H), 7.00 (d, *J* = 8.7 Hz, 1H), 2.68 (s, 3H), 2.51 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.9, 144.7, 140.7, 138.7, 134.1, 129.1, 124.9, 124.3, 120.3 (q, *J* = 261 Hz), 110.4 (q, *J* = 1.4 Hz), 20.6, 13.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -56.2. **HRMS** (ESI) calcd for C₁₂H₁₀F₃NO [M]⁺ 241.0709, Found: 241.0713.

7-chloro-8-methyl-2-(trifluoromethoxy)quinoline (2i). To obtain a yield by NMR spectroscopy, the reaction was run according to general procedure 1a on a 0.10 mmol scale to give 54% yield of the product by ¹⁹F NMR yield using PhCF₃ as

internal standard. For isolation, the reaction was run according to the same general procedure on a 0.5 mmol scale. The product was isolated (69.2 mg, 53% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, *J* = 8.7 Hz, 1H), 7.60 (d, *J* = 8.7 Hz, 1H), 7.52 (d, *J* = 8.7 Hz, 1H), 7.06 (d, *J* = 8.7 Hz, 1H), 2.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 154.5, 145.2, 140.8, 136.2, 134.5, 127.7, 125.5, 125.0, 120.2 (q, *J* = 262 Hz), 111.5 (q, *J* = 1.3 Hz), 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -56.3. **HRMS** (ESI) calcd for C₁₁H₇ClF₃NO [M]⁺ 261.0163, Found: 261.0172.

6-(trifluoromethoxy)phenanthridine (2j). The reaction was run according to the general procedure 2a on a 1.0 mmol scale. The product was isolated (215.7 mg, 82% yield) by flash chromatography on silica gel using hexane/EtOAc as eluent. ¹H NMR (600 MHz, CDCl₃) δ 8.51 (d, *J* = 8.3 Hz, 1H), 8.44 (dd, *J* = 8.2, 1.4 Hz, 1H), 8.26 (dd, *J* = 8.2, 1.3 Hz, 1H),

8.02 (dd, J = 8.2, 1.3 Hz, 1H), 7.86 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H), 7.74 – 7.66 (m, 2H), 7.63 (ddd, J = 8.3, 7.1, 1.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 151.9, 141.4, 135.4, 131.7, 129.2, 129.2, 127.8, 126.7, 124.3, 123.6, 122.1, 122.0, 120.4 (q, J = 263 Hz), 118.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -55.0. **HRMS** (ESI) calcd for C₁₄H₈F₃NO [M]⁺ 263.0552, Found: 263.0561.

6-(trifluoromethoxy)-[1,3]dioxolo[4,5-j]phenanthridine (2k). The reaction was run according to the general procedure 2a on a 0.10 mmol scale. The product was isolated (15.4 mg, 50% yield) by flash chromatography on silica gel using hexane/EtOAc as eluent. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (dd, J = 8.2, 1.4 Hz, 1H), 7.99 (dd, J = 8.2,

1.4 Hz, 1H), 7.87 (s, 1H), 7.67 (ddd, J = 8.3, 7.0, 1.5 Hz, 1H), 7.60 (ddd, J = 8.3, 7.0, 1.4 Hz, 1H), 7.57 (s, 1H), 6.19 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.1, 151.5, 148.6, 141.2, 133.4, 129.2, 128.6, 126.4, 123.7, 121.8, 120.4 (q, J = 263 Hz), 114.3, 102.2, 101.8, 100.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -54.9. **HRMS** (ESI) calcd for C₁₅H₈F₃NO₃ [M]⁺ 307.0451, Found: 307.0454.

8,9-dimethoxy-6-(trifluoromethoxy)phenanthridine (21). The reaction was run according to the general procedure 2a on a 0.1 mmol scale. The product was isolated (8.7 mg, 27% yield) by flash chromatography on silica gel using hexane/EtOAc as eluent. ¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, *J* = 8.2 Hz, 1H), 8.03 – 7.98 (m,

1H), 7.88 (s, 1H), 7.71 – 7.65 (m, 1H), 7.65 – 7.59 (m, 1H), 7.56 (s, 1H), 4.16 (s, 3H), 4.09 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.5, 151.3, 150.2, 146.9, 141.2, 131.5, 129.3, 128.4, 126.3, 123.4, 121.6, 120.4 (q, *J* = 262 Hz), 103.8, 102.4, 56.2, 56.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -54.7. **HRMS** (ESI) calcd for C₁₆H₁₂F₃NO₃ [M]⁺ 323.0764, Found: 323.0773.

9-methoxy-6-(trifluoromethoxy)phenanthridine (2m). The reaction was run according to the general procedure 2a on a 0.10 mmol scale. The product was isolated (12.0 mg, 41% yield) by flash chromatography on silica gel using hexane/EtOAc as eluent. ¹H NMR (600 MHz, CDCl₃) δ 8.34 (d, *J* = 8.2 Hz, 1H), 8.14 (d, *J* = 8.9

Hz, 1H), 7.98 (dd, J = 8.2, 1.3 Hz, 1H), 7.79 (d, J = 2.4 Hz, 1H), 7.69 (t, J = 7.2 Hz, 1H), 7.58 (7.2, 1H), 7.24 (dd, J = 9.0, 2.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 162.3, 152.0, 142.0, 137.7, 129.3, 129.2, 126.2, 126.2, 123.4, 122.0, 120.4 (q, J = 263 Hz), 117.8, 112.7, 103.2, 55.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -54.8. **HRMS** (ESI) calcd for C₁₅H₁₀F₃NO₂ [M]⁺ 293.0658, Found: 293.0668.

8-methoxy-6-(trifluoromethoxy)phenanthridine (2n). The reaction was run according to the general procedure 2a on a 0.10 mmol scale. The product was isolated (24.9 mg, 85% yield) by flash chromatography on silica gel using hexane/EtOAc as eluent. ¹H NMR (600 MHz, CDCl₃) δ 8.45 (d, *J* = 9.0 Hz, 1H), 8.39 (dd, *J* =

8.1, 1.4 Hz, 1H), 8.00 (dd, J = 8.2, 1.2 Hz, 1H), 7.66 (ddd, J = 8.2, 7.0, 1.5 Hz, 1H), 7.61 (ddd, J = 8.3, 7.0, 1.4 Hz, 1H), 7.56 (d, J = 2.7 Hz, 1H), 7.49 (dd, J = 9.0, 2.7 Hz, 1H), 4.00 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.2, 151.4, 140.5, 129.9, 129.1, 128.2, 126.7, 123.9, 123.8, 122.7, 121.5, 120.4 (q, J = 261 Hz), 119.6, 104.0, 55.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -55.0. **HRMS** (ESI) calcd for C₁₅H₁₀F₃NO₂ [M]⁺ 293.0658, Found: 293.0661.

9-fluoro-6-(trifluoromethoxy)phenanthridine (20). The reaction was run according to the general procedure 2a on a 0.10 mmol scale. The product was isolated (15.7 mg, 56% yield) by flash chromatography on silica gel using hexane/EtOAc as eluent. ¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, J = 8.0 Hz, 1H), 8.34 (dd, J = 9.0, 5.7 Hz, 1H), 8.20 (dd, J =

10.1, 2.4 Hz, 1H), 8.03 (dd, J = 8.2, 1.3 Hz, 1H), 7.76 (ddd, J = 8.3, 7.1, 1.4 Hz, 1H), 7.67 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H), 7.46 (ddd, J = 9.0, 8.0, 2.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 164.7 (d, J = 254 Hz), 151.5, 141.9, 138.0 (d, J = 9.1 Hz), 130.0, 129.3, 127.5 (d, J = 9.1 Hz), 126.8, 123.1 (d, J = 3.0 Hz), 122.3, 120.3 (q, J = 263 Hz), 117.0 (d, J = 24 Hz), 115.2, 107.7 (d, J = 23 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -55.1, -103.8. **HRMS** (ESI) calcd for C₁₄H₇F₄NO [M]⁺ 281.0458, Found: 281.0465.

1-(trifluoromethoxy)benzo[h]isoquinoline (**2p**). The reaction was run according to the general procedure 2a on a 0.10 mmol scale to give 21% yield of the product by ¹⁹F NMR yield using PhCF₃ as internal standard. ¹H NMR (700 MHz, CDCl₃) δ 9.17 (d, *J* = 7.9 Hz, 1H), 8.26 (dd, *J* = 8.5,

1.4 Hz, 1H), 7.97 - 7.91 (m, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.80 - 7.69 (m, 3H), 7.21 (dd, J = 8.5, 1.4 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 154.6, 144.4, 140.3, 133.9, 130.6, 128.7, 127.7, 127.5, 127.2, 124.7, 124.4, 124.4, 120.3 (q, J = 262 Hz), 111.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -55.6. **HRMS** (ESI) calcd for C₁₄H₈F₃NO [M]⁺ 263.0552, Found: 263.0561.

5-iodo-4-(trifluoromethoxy)benzo[f]isoquinoline (**2r**). The reaction was run according to the general procedure 2a on a 0.10 mmol scale to give 19% yield of the product by ¹⁹F NMR yield using PhCF₃ as internal standard. ¹H NMR (700 MHz, CDCl₃) δ 8.98 (d, *J* = 8.8 Hz, 1H), 8.72 (s, 1H), 8.53 (d, *J* = 8.4 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.75 (t, *J* = 7.7

Hz, 1H), 7.67 (t, J = 7.5 Hz, 1H), 7. 28 (d, J = 8.4 Hz, 1H), ¹³C NMR (176 MHz, CDCl₃) δ 155.4, 144.6, 142.4, 135.9, 132.7, 129.3, 128.0, 128.0, 127.8, 123.5, 122.5, 120.7 (q, J = 262 Hz), 112.0, 99.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -55.8. **HRMS** (ESI) calcd for C₁₄H₇F₃INO [M]⁺ 388.9524, Found: 388.9528.

8-bromo-6-methoxy-2-(trifluoromethoxy)quinoline (2t).

The reaction was run according to the general procedure 1a on a 0.10 mmol scale. The product was isolated (16.2 mg, 19% yield) by flash chromatography on silica gel using

hexane/EtOAc as eluent. ¹H NMR (600 MHz, CDCl₃) δ 8.60 (dd, J = 9.1, 0.8 Hz, 1H), 7.98 (dd, J = 9.2, 0.8 Hz, 1H), 7.50 (d, J = 9.2 Hz, 1H), 7.17 (d, J = 9.1 Hz, 1H), 4.06 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 154.1, 153.8, 141.4, 139.5, 129.2, 127.2, 120.1 (q, J = 263Hz), 117.2, 113.7, 107.6, 57.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -55.6. HRMS (ESI) calcd for C₁₁H₇BrF₃NO₂ [M]⁺ 320.9607, Found: 320.9616.

8-methyl-2-(perfluoroethoxy)quinoline (3a). The reaction was run according to the general procedure 1b on a 1.0 mmol scale. The product was isolated (154.2 mg, 56% yield) by flash chromatography on silica gel using hexane/EtOAc as eluent. ¹H NMR (600 MHz,

 $CDCl_3$) δ 8.19 (d, J = 8.7 Hz, 1H), 7.67 (dd, J = 8.1, 1.4 Hz, 1H), 7.60 (d, J = 7.2 Hz, 1H), 7.45 (dd, J = 8.1, 7.1 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 2.75 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) & 153.9, 144.8, 140.9, 136.8, 130.7, 126.7, 126.2, 125.2, 112.0, 17.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -85.6 (CF₃), -89.2 (OCF₂). HRMS (ESI) calcd for C₁₂H₈F₅NO [M]⁺ 277.0521, Found: 277.0526.

8-methyl-2-(perfluorobutoxy)quinoline (4a). The reaction was run according to the general procedure 1b on a 1.0 mmol scale. The product was isolated (181.0 mg, 48% yield) by flash chromatography on silica gel using hexane/EtOAc as eluent. ¹H NMR (600 MHz,

 $CDCl_3$) δ 8.18 (td, J = 8.5, 4.1 Hz, 1H), 7.66 (t, J = 7.2 Hz, 1H), 7.60 (d, J = 7.1 Hz, 1H), 7.45 (td, J = 7.8, 2.2 Hz, 1H), 7.07 (dd, J = 8.6, 3.4 Hz, 1H), 2.75 (d, J = 2.8 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.8, 144.8, 140.9, 136.9, 130.7, 126.7, 126.3, 125.2, 112.0, 17.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -80.2 (CF₃), -84.2 (OCF₂), -125.5 (2CF₂). HRMS (ESI) calcd for C₁₄H₈F₉NO [M]⁺ 377.0457, Found: 377.0462.

6-(perfluoroethoxy)phenanthridine (3j). The reaction was run according to the general procedure 1b on a 1.0 mmol scale. The product was isolated (248.1 mg, 79% yield) by flash chromatography on silica gel using hexane/EtOAc as eluent. ¹H NMR (600 MHz, CDCl₃) δ 8.62 (d, J = 8.3 OC_2F_5 Hz, 1H), 8.53 (dd, J = 8.1, 1.4 Hz, 1H), 8.26 (dd, J = 8.1, 1.3 Hz, 1H), 8.06

(dd, J = 8.1, 1.3 Hz, 1H), 7.93 (ddd, J = 8.4, 7.1, 1.3 Hz, 1H), 7.75 (td, J = 8.2, 1.2 Hz, 2H), 7.68 (td, J = 7.7, 7.0, 1.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 152.1, 141.5, 135.7, 131.9, 129.4, 129.3, 128.0, 126.9, 124.4, 123.8, 122.3, 122.2, 118.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -86.0 (CF₃), -89.4 (OCF₂). HRMS (ESI) calcd for C₁₅H₈F₅NO [M]⁺ 313.0521, Found: 313.0531.

6-(perfluorobutoxy)phenanthridine (**4j**). The reaction was run according to the general procedure 1b on a 1.0 mmol scale. The product was isolated (305.4 mg, 81% yield) by flash chromatography on silica gel using hexane/EtOAc as eluent. ¹H NMR (600 MHz, CDCl₃) δ 8.56 (d, *J* =

 OC_4F_9 8.3 Hz, 1H), 8.48 (dd, J = 8.1, 1.3 Hz, 1H), 8.20 (dd, J = 8.3, 1.2 Hz, 1H), 8.04 (dd, J = 8.2, 1.3 Hz, 1H), 7.89 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H), 7.72 (dddd, J = 8.2, 7.2, 5.8, 1.2 Hz, 2H), 7.65 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 152.0, 141.4, 135.7, 131.8, 129.3, 129.3, 128.0, 126.9, 124.1, 123.7, 122.2, 122.1, 118.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -80.1 (CF₃), -84.0 (OCF₂), -125.4 (2CF₂). **HRMS** (ESI) calcd for C₁₇H₈F₉NO [M]⁺ 413.0457, Found: 413.0468.

F	+ N - O ()									
 40	20	0	-20	-40	-60	-80	-100	 -140	–160 p	pm

— –114.5

8

.

9

_ _ _ _

1

2

Т

3

ppm

0

8.52 8.51 8.51 8.51 8.14 8.14 8.13 8.13 8.13 7.47 7.47 7.47 7.47 7.47 7.47 6.87 6.87

- 5.89

2.74

— –55.78 OCF₃ `N[^] Me `Me 100 80 40 20 0 -20 -60 60 -80 -40 -100 ppm

OCF₃ Ν . Br

8.21 8.20 8.03 8.03 7.77 7.40 7.37 7.37 7.13 7.13 7.13 7.13 7.13

	N Br	OCF ₃					
 		·	 · · · · · · · · · · · · · · · · · · ·	 	 	·	

CI OCF3

	CI	N OCF3									
60	40	20	0	-20	-40	-60	-80	-100	-120	-140	ppr

OCF₃ N

8.15 8.14 7.57 7.57 7.37 7.37 7.36 7.36 7.36 7.27 7.01 7.01 2.68 2.51 J \langle

- -56.16

2.78

8.18 8.16 7.59 7.52 7.51 7.57 7.07 7.07 7.06 L K

— -54.71

55.

OC₄F₉ Ν Мe

--125.5

N OC₄F₉

----- -85.97 ----- -89.44

 $\infty \infty \infty \infty$

. . . .

88887777777778888

•

1

•

. . . .

- T T T T

0

ppm

.

		hada yana kata yana kata kata kata kata kata kata kata k							na panina na mangana na mangana na mangana kana na kana		with a state of the second
40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	ppm

8.23 8.01 8.01 8.00 7.35 7.75 7.75 7.55 7.12 7.12 7.12 7.12 7.12

— –55.53

