SUPPORTING INFORMATION

The perfluorinated alcohols $cC_6F_{11}OH$, $cC_6F_{10}(OH)_2$ and $cC_6F_{10}(CF_3)OH$

Jonas Schaab^a, Miriam Schwab^a, Daniel Kratzert^a, Jan Schwabedissen ^b, Hans-Georg Stammler^b, Norbert W. Mitzel^b and Ingo Krossing^{*a}

Table of contents

1.	[N(CH ₃) ₄][C ₇ F ₁₃ O]	2
1.1	Synthesis	2
1.2	Analysis with vibrational spectroscopy	2
1.3	Analysis with NMR-spectroscopy	4
1.4	Single crystal X-ray diffraction analysis	7
1.5	Thermodynamics	10
1.6	Hypothetic reaction mechanism	11
2.	C ₇ F ₁₃ OH	12
2.1	Synthesis	12
2.2	Analysis with NMR-spectroscopy	12
2.3	Single crystal X-ray diffraction analysis	14
3.	[N(CH ₃) ₄][C ₆ F ₁₁ O]	16
3.1	Synthesis	16
3.2	Analysis with vibrational spectroscopy	16
3.3	Single crystal X-ray diffractometric analysis	18
4.	Decafluorocyclohexan-1,1-diol (6): C ₆ F ₁₀ (OH) ₂	23
4.1	Synthesis	23
4.2	Analysis with vibrational spectroscopy	23
4.3	Analysis with NMR-spectroscopy	25
4.4	decafluorocyclohexanon in sulphuric acid	26
4.5	mechanism	28
4.6	single crystal X-Ray diffraction	28
5.	Gas phase electron diffraction	32
6.	Undecafluorocyclohexanol (2): C ₆ F ₁₁ OH	34
6.1	Synthesis:	34
6.2	Analysis with vibrational spectroscopy	34
6.3	Analysis with NMR-spectroscopy	37
6.4	Attempts to obtain a crystal structure	41
6.5	Gas-phase IR	41
7.	Analytical methods	43
7.1	NMR spectrometry	43
7.2	IR-spectroscopy	43
7.3	Raman-spectroscopy	43
7.4	Single crystal X-ray diffractometer	43
7.5	Gas phase electron detraction	43
8.	Bibliography	44
9.	Appendix to the Gas Phase Electron Diffraction	45

1. [N(CH₃)₄][C₇F₁₃O]

1.1 Synthesis

The synthesis was done in a glass Schlenk flask with Argon as inert gas. Tetramethylammoniumfluoride (N(CH₃)₃F) ([TMA]F) (1.40 g, 15 mmol, 1.0 eq.) was dissolved in an excess dimethoxyethane (DME) (40 mL) at -30 °C. Subsequently decafluorocyclohexanon (C₆F₁₀O) (**3**) (2.5 mL, 4.17 mg, 15 mmol, 1.0 eq) and trifluoromethyl-trimethylsilane ((CH₃)₃SiCF₃) (2.5 mL, 2.1 g, 15 mmol, 1.0 eq) were condensed onto the solution at -30 °C. The solution was warmed to ambient temperature and was stirred for 15 h. After removing all volatile components with dynamic vacuum and recrystallization from dichloromethane (CH₂Cl₂), the ammonium alkoxide was obtained as colourless block-shaped crystals in 42% (2.51 g, 5.96 mmol) yield.

1.2 Analysis with vibrational spectroscopy

As vibrational analysis IR and Raman spectroscopy was done in pure substance at 298 K. The experimental data are shown in Figure 1-1 and the assignment was done in Table 1-1. The theoretical values were calculated using DFT at the BP86^{1, 2}/SV(P)³-level of theory with Turbomole^{4, 5}. In addition, the module AORORCE^{6, 7} was used to calculate the frequencies in the analytic mode.

Figure 1-1: IR (top black) and Raman (bottom black) spectra of $[N(CH_3)_4]^+[C_7F_{13}O]^-$ are compared to the calculated spectra of the anion $C_7F_{13}O^-$ (dotted blue). The calculated spectrum is shown as Lorenz lines with 10 cm⁻¹ line broadening.

-	IR	Raman	Me ₄ N ⁺	OC ₇ F ₁₃ ⁻	assignment
	(exp.)	(exp.)	(cal.) ^{a)}	(cal.) ^{a)}	-
-	3022 (mw)	3027 (ms)	2992 (vw)	-	C-H
	-	2994 (ms)	-	-	-
	-	2967 (ms)	-	-	-
	-	2932 (ms)	-	-	-
	-	2907 (m)	-	-	-
	-	2877 (mw)	-	-	-
	2827 (vw)	2826 (ms)	-	-	-
	-	1507 (w)	-	-	-
	1493 (ms)	1462 (s)	1463 (vs)	-	C-H
	1422 (w)	1422 (mw)	1385 (mw)	-	C-H
	1308 (ms)	1322 (ms)	-	1335 (ms)	C-O, C-C
	1269 (s)	1289 (w)	-	1277 (mw)	C-F, C-C
	1259 (ms)	1269 (w)	-	1266 (m)	C-C, C-F
	1248 (s)	-	-	-	-
	1224 (vs)	1225 (w)	-	1228 (m)	C-C, C-F
	1197 (vs)	1202 (mw)	-	1206 (m)	C-C, C-F
	1182 (vs)	1177 (mw)	-	1167 (vs)	C-F, C-C
	-	1159 (mw)	-	1153 (m)	C-F, C-C
	1139 (mw)	1136 (w)	-	1125 (mw)	C-F, C-C, C-O
	1108 (mw)	1105 (w)	-	1088 (w)	C-C, C-F, C-O
	-	-	-	1049 (w)	C-C, C-F
	1027 (mw)	-	-	1030 (vw)	C-C, C-F
	1010 (ms)	1007 (w)	-	993 (m)	C-F, C-C, C-O
	948 (vs)	955 (m)	-	936 (ms)	C-F, C-C
	-	945 (m)	918 (m)	-	C-H, C-N
	839 (s)	839 (vw)	-	812 (m)	C-F, C-C, C-O
	-	754 (s)	-	-	-
	723 (m)	724 (ms)	-	700 (w)	C-F, C-C, C-O
	683 (vw)	683 (vs)	-	-	C-F, C-C, C-O
	648 (w)	648 (vw)	-	655 (vw)	C-F, C-C
	628 (w)	631 (w)	-	625 (vw)	C-F, C-C
	-	598 (w)	-	605 (vw)	C-F, C-C
	588 (vw)	587 (mw)	-	561 (vw)	C-F, C-C
	536 (vw)	538 (w)	-	513 (vw)	C-F, C-C
	505 (w)	506 (mw)	-	484 (vw)	C-F, C-C
	468 (w)	461 (mw)	-	448 (vw)	C-F, C-C

a) The broadening of the spectra was simulated by displaying the calculated vibrations as Lorenz lines with 10 cm⁻¹ widths.

1.3 Analysis with NMR-spectroscopy

The NMR spectra were measured at 298 K in deutero-dichloromethane (CD₂Cl₂). ¹⁹F-shifts are given with respect to CFCl₃, ¹H and ¹³C shifts with respect to TMS. The shifts are listed and assigned in Table 1-3. In the following also the measured NMR spectra are shown (Figure 1-2 to Figure 1-5). Individual coupling constants cannot be directly measured from line distances in the spectrum, because the spin system is an AA'BB'CC'DD'EFG₃ and therefore of higher order. The big doublet splitting of the ¹⁹F signals of the CF₂-groups for example result from a sum of more than one coupling constant, which is dominated by the ²J_{F-F} coupling.

	shift [ppm]	multiplicity	assignment	Lewis structure of the anion C ₇ F ₁₃ O ⁻ with atom numbering		
	-73,1	m	CF₃			
	-116,5	m	2a, 3a			
$\delta^{\rm 19} F$	-122,7	m	4a			
	-135,1	m	2e	O F		
	-138,8	m	3e			
	-142,2	m	4e	1 2		
$\delta^{1} H$	3,3	t	CH₃	$= F_3C$ $= F_e$ $= F_e$		
	84.3		1	\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow		
	114,1		2			
$\delta^{13}C$	109,5		3	'a 'a		
	108,5		4			
	124.6		CF ₃			

Table 1-3: NMR-shifts of $[N(CH_3)_4]^+[C_7F_{13}O]^-$ in CD_2Cl_2 at 298 K. Assignments according to the figure shown on the right.

Figure 1-2: ¹⁹F-NMR spectrum (376.54 MHz) of $[N(CH_3)_4]^+[C_7F_{13}O]^-$ in CD_2Cl_2 at 298 K. Chemical shifts in ppm.

Figure 1-3: ¹⁹F,¹³C HSQC NMR spectrum (376.54 MHz, optimized for ¹J_{F-C}-couplings) of $[N(CH_3)_4]^+[C_7F_{13}O]^-$ in CD₂Cl₂ at 298 K. (¹⁹F plotted horizontal and ¹³C vertical).

Figure 1-4: ${}^{19}F$ COSY NMR spectrum (376.54 MHz) of $[N(CH_3)_4]^+[C_7F_{13}O]^-$ in CD_2Cl_2 at 298 K.

Figure 1-5: Selected area from the ¹⁹F,¹³C HSQC NMR spectrum (376.54 MHz, optimized for coupling constants of 60 Hz) of $[N(CH_3)_4]^+[C_7F_{13}O]^-$ in CD_2Cl_2 at 298 K. The crosspeak to the ¹³C resonance at 124.6 ppm results from a ¹J correlation (¹⁹F spectra plotted horizontal and ¹³C spectra vertical).

1.4 Single crystal X-ray diffraction analysis

The crystals of $[N(CH_3)_4]^+[C_7F_{13}O]^-$ were obtained by recrystallization in CH_2Cl_2 . In the following the crystal data and structure refinement parameters are shown in Table 1-4, the asymmetric unit in Figure 1-6 as well as the unit cell along direction a (Figure 1-7), b (Figure 1-8) and c (Figure 1-9).

compound	NMe ₄ ⁺ C ₇ F ₁₃ O ⁻	
CCDC	1839041	
Empirical formula	C ₁₁ H ₁₂ F ₁₃ NO	
Formula weight	421.22	
Temperature/K	100	
Crystal system	orthorhombic	
Space group	Pnna	
a/Å	14.4972(6)	
b/Å	14.7800(5)	b/Å
c/Å	28.496(2)	c/Å
α/°	90	α/°
β/°	90	
γ/°	90	
Volume/ų	6105.8(5)	
Z	16	
$\rho_{calc}g/cm^3$	1.833	
µ/mm⁻¹	0.224	
F(000)	3360.0	
Crystal size/mm ³	0.29 × 0.25 × 0.22	

Table 1-4: Crystal data and structure refinement parameters for $[N(CH_3)_4]^+[C_7F_{13}O]^-$

Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	6.21 to 54.94
Index ranges	-18 ≤ h ≤ 18, -19 ≤ k ≤ 19, -36 ≤ l ≤ 36
Reflections collected	95237
Independent reflections	6993 [R _{int} = 0.1074, R _{sigma} = 0.0453]
Data/restraints/parameters	6993/0/479
Goodness-of-fit on F ²	1.052
Final R indexes [I>=2σ (I)]	R ₁ = 0.0459, wR ₂ = 0.1041
Final R indexes [all data]	R ₁ = 0.0847, wR ₂ = 0.1191
Largest diff. peak/hole / e Å ⁻³	0.24/-0.33

Figure 1-6: Asymmetric unit of $[N(CH_3)_4]^+[C_7F_{13}O]^-$ with two formula units

The C-C bonds are in a range of 1.530(3) (C3-C4) and 1.572(3) Å (C8-C13), which is rather long for a C-C singe bond. The previously published perfluoro-alkylalcohol (F_5C_6)($F_{10}C_5$)COH is with an average aliphatic C-C-bond length of 1.556(5) Å in the same range.⁸ Also heptafluorocyclobutanol, another perfluoro-alkylalcohol is showing C-C-bond lengths in the same range.⁹

The C-O bonds are 1.328(3) Å and is significantly shorter than a typical C-O single bond. Instead it is more in the magnitude of a C=O double bond. The C-F bonds are ranging from 1.338(3) (C7-F11) till 1.367(2) (C6-F9), which is in a normal range for perfluoro-alkylalcohols.^{8, 9} All C-C-C-angles are in between 106.3(3) (C9-C8-C13) and 114.2(2) Å (C3-C4-C5). The F-C-F angle are ranging from 105.8(2) (F10-C6-F9) to 108.0(2)° (F19-C11-F18). The CCF-angles are in a range of 106.0(2) (F1-C2-C3) and 116.7(2)° (F25-C14-C8). The CCO angle is 110.5(2)° and 110.6(2)°. All observed angles are similar to literature values.^{8, 9}

The anions are connected via intermolecular hydrogen bonding from fluorine to the Carbons of the cations. Each cation is bonded to different anions and vice versa. The chair conformation of the anion is more stable, because of the sterically demanding CF_3 -group.

Figure 1-7: Unit cell of $[N(CH_3)_4]^+[C_7F_{13}O]^-$ with view along a.

Figure 1-8: Unit cell of $[N(CH_3)_4]^+[C_7F_{13}O]^-$ with view along b.

Figure 1-9: Unit cell of $[N(CH_3)_4]^+[C_7F_{13}O]^-$ with view along c.

1.5 Thermodynamics

The thermodynamic calculations were done with a combination to Born-Fajans-Haber-Cycles. An overall exergonic reaction resulted with $\Delta_{\rho}G^{\circ} = -225.5$ kJ/mol. The individual values were determined in the following way and were summed up in Figure 1-10:

- Entropies in the gaseous phase were calculated using DFT on BP86^{1, 2}/SV(P)³-level with the FREEH-tool.
- The fluoride ion was calculated by the Sackur-Tetrode-equation.¹⁰
- COSMO^{11, 12} (ε_r = 7,22) was used on BP86/SV(P)-level to calculate free solvation energies.
- The Gibbs free energies in the gaseous phase were calculated with a combination of highly correlated calculations (G3-method¹³) on small molecules as well as an isodesmic reaction on BP86/SV(P)-level.

$$C_{6}F_{10}O_{(g)} + Me_{3}SiCF_{3(g)} + NMe_{4}^{+}{}_{(g)} + F^{-}{}_{(g)} \xrightarrow{-372,9} NMe_{4}^{+}{}_{(g)} + C_{7}F_{13}O^{-}{}_{(g)} + Me_{3}SiF_{(g)}$$

$$\uparrow -3,0 \qquad \uparrow -0,5 \qquad \uparrow +480,5 \qquad \qquad \downarrow -329,6 \qquad 0$$

$$C_{6}F_{10}O_{(solv)} + Me_{3}SiCF_{3(solv)} + NMe_{4}F_{(s)} \xrightarrow{\Delta G^{\circ}} C_{7}F_{13}ONMe_{4(s)} + Me_{3}SiF_{(g)}$$

Figure 1-10: Born-Fajans-Haber-Cycle (BFHC) for the assessment of the total reaction: ΔG° in kJ/mol.

1.6 Hypothetic reaction mechanism

For a better understanding of this reaction, the reaction mechanism was tried to clarify. Thus, the reaction is only taking place, if [TMA]F was used in stoichiometric amounts. After 4 h $[N(CH_3)_4]^+[C_6F_{11}O]^-$ was detected as intermediate product next to $[N(CH_3)_4]^+[C_7F_{13}O]^-$. The first reaction step is the reaction of $C_6F_{10}O$ with [TMA]F to $[N(CH_3)_4]^+[C_6F_{11}O]^-$ as shown in the first step of Figure 1-11. The second step of the reaction could either occur by fluoride elimination and a trigonal-bypyramidal intermediate or as a cooperative mechanism.

To investigate this mechanism, calculations using DFT on BP86^{1, 2}/SV(P)³-level with Turbomole^{4, 5} were done. The results of the mechanism by fluoride elimination and a trigonal-bypyramidal intermediate are shown in Figure 1-11. This mechanism seems to be unlikely, due to the prohibitively endergonic step with +177.5 kJ/mol.

Figure 1-11: Calculated ΔG° values in $k/mol}$ for the possible mechanism with fluoride elimination and a trigonal-bypyramidal intermediate.

The second possibility would be a cooperative step, where the silicon atom of Me₃SiCF₃ is coordinating to the negatively charged oxygen-atom and exchange a CF₃-group. This would couple the endergonic to the exergonic step and result in an exergonic step. The consulted step could look like it is drawn in Figure 1-12. This unusual mechanism would be driven by the enormous stability of the alkoxid $[N(CH_3)_4]^+[C_7F_{13}O]^-$. This is the more likely mechanism, due to the coupling of the endergonic to the exergonic step.

Figure 1-12: Me₃SiCF₃ coordination to the oxygen atom of the alkoxide-intermediate.

With the stoichiometric demand of the reaction in [TMA]F and complete conversion to $[N(CH_3)_4]^+[C_6F_{11}O]^-$ necessary for a complete reaction with F_3C -SiMe₃, this cooperative mechanism appears more likely.

2. C₇F₁₃OH

2.1 Synthesis

The synthesis was done in glass Schlenk-vessels and YOUNG®-NMR-tubes.

 $[NMe_4]^+[C_7F_{13}O]^-$ (1.402 g, 3.328 mmol) was dissolved in concentrated H₂SO₄ (98 %; ca. 3 mL) at 25 °C. After stirring the solution for a short time, the NMR-spectra were measured at 25 °C. The pure isolated product C₇F₁₃OH could be obtained in 60% yield (0.695 g, 1.997 mmol) through condensation as a colourless liquid.

2.2 Analysis with NMR-spectroscopy

The NMR data of $C_7F_{13}OH$ were obtained in CD_2Cl_2 at 298 K. In Table 2-1 the assignments of the NMR signals are shown. ¹⁹F-shifts are given with respect to CFCl₃, ¹H and ¹³C shifts with respect to TMS. In the following figures, the NMR spectra are shown. Individual coupling constants cannot be directly measured from line distances in the spectrum, because the spin system is an AA'BB'CC'DD'EFG₃X and therefore of higher order. The great doublet splitting of the ¹⁹F signals of the CF₂-groups for example results from a sum of more than one coupling constant, which is dominated by the ²J_{F-F} coupling.

	shift [ppm]	multiplicity	assignment	Lewis structure of C ₇ F ₁₃ OH. Numbering Scheme.
	-70.8	m	CF₃	
	-119.1	m	2a	
δ ¹⁹ Ε	-120.7	m	3a	
0 1	-124.0	m	4a	OH F
	-132.2	m	2e	
	-139.5	m	3e	
	-142.1	m	4e	F ₃ C
$\delta^1 H$	4.0	br (Δν½= 9 Hz)	ОН	Fe la Fe
	74.4		1	F _e F
	110.7		2	F _a F _a
$\delta^{13}C$	107.9		3	
	107.2		4	
	120.8		CF ₃	

Table 2-1: NMR-shifts of C₇F₁₃OH in CD₂Cl₂ at 298 K. Assignments are given with respect to the numbering scheme in the figure on the right.

Figure 2-1: ¹⁹F-NMR spectrum (376.54 MHz) of C₇F₁₃OH in CD₂Cl₂ at 298 K with detailed spectra of selected resonances.

Figure 2-2: Selected area from the ${}^{19}F$, ${}^{13}C$ HSQC NMR spectrum (376.54 MHz, optimized for ${}^{1}J_{F-C}$ couplings) of $C_7F_{13}OH$ in CD_2Cl_2 at 298 K. (${}^{19}F$ spectra plotted horizontal and ${}^{13}C$ spectra vertical).

Figure 2-3: Selected area from the ¹⁹F,¹³C HSQC NMR spectrum (376.54 MHz, optimized for coupling constants of 40 Hz) of $C_7F_{13}OH$ in CD_2Cl_2 at 298 K. The crosspeak to the ¹³C signal at 120.8 ppm results from a ¹J correlation (¹⁹F spectra plotted horizontal and ¹³C spectra vertical).

2.3 Single crystal X-ray diffraction analysis

A small amount 1-trifluoromethyl perfluorocyclohexane-1-ol was condensed into a selfmade glass capillary and overlaid with pentane. From this mixture, a single crystal was grown manually by generating a crystal seed and cooling the sample to 200 K with 20 K/h and subsequently with 50 K/h to 100 K. A suitable crystal measured on an Agilent SuperNova, Single Source at offset, Eos diffractometer using Mo-K α radiation (λ = 0.71073 Å) at 100.0(1) K. Using Olex2¹⁴, the structure was solved with the ShelXT¹⁵ structure solution program using Direct Methods and refined with the ShelXL¹⁵ refinement package using least-square minimisation. More details are listed in Table 2-2 and Table 2-3. CCDC 1848204 contains the supplementary crystallographic data for this paper. These data can be obtained from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/conts/retrieving.htm.

	(1) ₃ ⋅(H ₂ O) ₂
chemical formula	C21H7F39O5
<i>M</i> r	1080.21
wavelength (Å)	Μο Κα (0.71073)
crystal system	monoclinic
space group	<i>P</i> 2 ₁ / <i>c</i> (No.14)?
a (Å)	7.0390(4)

Table 2-2: Summary of crystallographic data for 1-trifluoromethyl perfluorocyclohexane-1-ol $\mathbf{1} \times \frac{2}{3} H_2 O$.

b (Å)	22.2491(13)
<i>c</i> (Å)	21.3552(12)
α (°)	90
в (°)	93.561(5)
γ (°)	90
V (Å ³)	432.066(9)
Ζ	4
Z	1
Т (К)	100.0(1)
$ ho_{calc}$ (mg/mm ³)	2.150
μ (mm ⁻¹)	0.290
2 <i>Θ</i> _{max} [°]	3.7 to 52.0
Index range <i>h</i>	-8 ≤ h ≤ 8
Index range k	$-27 \le k \le 27$
Index range <i>I</i>	-26 ≤ <i>l</i> ≤ 26
Refl. collect.	75798
Indep. refl.	6588
R _{int}	0.0690
Data/restraints/parameters	6588/0/614
<i>R</i> 1, <i>I</i> >2σ(<i>I</i>) / all dataª	0.0408/0.0204
wR2, I>2σ(I) / all data ^ь	0.0825/0.0919
GoF	1.052
$ ho_{ m max/min}$ [e Å ⁻³]	0.34/-0.25

Table 2-3: Summary of hydrogen bonds for 1-trifluoromethyl perfluorocyclohexane-1-ol $\mathbf{1} \times \frac{2}{3} H_2 O$.

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
01	H1	04	0.76(3)	1.98(3)	2.705(3)	160(3)
03	H3	04	0.73(3)	1.99(4)	2.711(3)	168(4)
02	H2	05	0.79(3)	1.92(3)	2.643(3)	153(3)
04	H4A	05 ^c	0.72(3)	2.27(3)	2.920(3)	150(3)
04	H4B	F16 ^c	0.82(4)	2.54(4)	3.279(3)	150(3)
04	H4B	02 ^c	0.82(4)	2.18(4)	2.843(2)	137(3)
05	H5A	F35	0.82(3)	2.62(3)	3.314(3)	144(3)
05	H5A	03	0.82(3)	2.22(3)	2.961(3)	150(3)
05	H5B	01	0.75(4)	2.28(4)	2.938(3)	147(3)

^a R_1 is defined as Σ|| F_o |-| F_c ||/Σ | F_o | for $I > 2\sigma(I)$. ^b wR_2 is defined as $[\Sigma w \{F_o^2 - F_c^2\}^2 / \Sigma w (F_o^2)^2]^{1/2}$ for $I > 2 \sigma(I)$.

^c 1+X, +Y, +Z

3. $[N(CH_3)_4][C_6F_{11}O]$

3.1 Synthesis

The synthesis {1} was done once in a glass Schlenk flask and once in a T-reactor out of PFA with a diameter of $\frac{1}{2}$ " or $\frac{1}{2}$ ", which were closed with a KEL-F valve. Prior synthesis the vessels were dried using anhydrous HF. The PFA vessels were used to secure that glass is not directly eliminating HF.

NMe₄F (60.6 mg, 0.6 mmol, 1.0 eq) was weighed and handled in glove box. Anhydrous dimethoxyethane (DME) (1.2 mL) was transferred using a syringe at a glass-vacuum line. As third decafluorocyclohexanon (C₆F₁₀O) (0.65 mmol, 1.0 eq) was condensed onto the mixture at -40 °C. The reaction was running 15 h with occasional mixing of the liquid at 25 °C. Afterwards DME was removed using dynamic vacuum at room temperature. A colourless powder was obtained, which analyses according to Raman spectroscopy and a single crystal structure determination as [NMe₄]⁺[C₆F₁₁O]⁻. It was not analysed further.

3.2 Analysis with vibrational spectroscopy

As vibrational analysis IR and Raman spectroscopy was used. The experimental data are shown in Figure 3-1 and the assignment was done in Table 3-1. The calculation was done using DFT on def2-TZVPP¹⁶-level with Turbomole^{4, 5}. In addition, the module AORORCE^{6, 7} was used to calculate the frequencies on analytical level. The calculations were done for the OH in axial and in equatorial position.

Figure 3-1: Raman spectra of $[N(CH_3)_4]^+[C_6F_{11}O]^-$. The Raman was measured in vacuum at low temperature.

CH ₃) ₄] ⁺		[C ₆ F ₁₁ O] [−]	
Raman	Raman	vibration	assignment
(exp) [cm ⁻¹]	(exp) [cm ⁻¹]	(cal.) [cm ⁻¹]	
3073 (vw)	1424 (m)	1425	us(CO)
3043 (s)	1302 (m)	1304	Us(CC)
3032 (m, sh)	-	1292	Uas(CC)
2997 (m)	-	1290	Uas(CC)
2972 (m)	-	1276	Uas(CC)
2966 (m)	1224 (w)	1230	Uas(CC)
2935 (s)	1204 (m)	1196	Us(CC)
2911 (m)	1181 (w)	1179	υ(CF)
2893 (vw)	1159 (w)	1159	υ(CF)
2878 (vw)	1147 (vw)	1137	υ(CF), υ _{as} (CC)
2859 (vs)		1122	υ(CF), υ _{as} (CC)
2830 (m)	-	1095	υ(CF), υ _{as} (CC)
2611 (vw)	-	1082	us(CF)
2230 (vw)	1018 (vw)	1015	Uas(CF), Uas(CC)
2093 (vw)	986 (vw)	991	δ (CCF)
2084 (w)	954 (m)	967	υ(CF)
2029 (vw)	-	923	υ(CF)
1486 (w)	-	861	δ (CCF)
1462 (s)	682 (w, sh)	682	δ (FCF), δ (FCO)
	CH₃)₄] ⁺ Raman (exp) [cm ⁻¹] 3073 (vw) 3043 (s) 3032 (m, sh) 2997 (m) 2997 (m) 2972 (m) 2966 (m) 2935 (s) 2911 (m) 2893 (vw) 2859 (vs) 2830 (m) 2611 (vw) 2230 (vw) 2093 (vw) 2093 (vw) 2084 (w) 2029 (vw) 1486 (w) 1462 (s)	CH ₃) ₄]* Raman Raman Rep) [cm ⁻¹] 3073 (vw) 1424 (m) 3073 (vw) 1424 (m) 3043 (s) 1302 (m) 3032 (m, sh) - 2997 (m) 1224 (w) 2935 (s) 1204 (m) 2893 (vw) 1181 (w) 2893 (vw) 1147 (vw) 2859 (vs) - 2830 (m) - 2230 (vw) 986 (vw) 2093 (vw) 986 (vw) 2084 (w) 954 (m)	$CH_3)_4]^+$ [C_6F_11O]^- Raman Raman vibration $(exp) [cm^{-1}]$ $(cal.) [cm^{-1}]$ $3073 (vw)$ $1424 (m)$ 1425 $3043 (s)$ $1302 (m)$ 1304 $3032 (m, sh)$ - 1292 $2997 (m)$ - 1290 $2997 (m)$ 1204 (m) 1196 $2935 (s)$ $11204 (m)$ 1196 $2893 (vw)$ $1147 (vw)$ 1137 $2859 (vs)$ $1147 (vw)$ 1082 $2830 (m)$ - 1095 $2011 (vw)$ $1018 (vw)$ 015

Table 3-1: experimental IR and calculated vibrational data of $[NMe_4]^+[C_6F_{11}O]^-$.

[N(CH ₃) ₄] ⁺	1381 (m)	670 (s)	672	δ _s (FCF)
[N(CH ₃) ₄] ⁺	756 (s)	-	626	δ _{as} (FCF)
[N(CH ₃) ₄] ⁺	734 (vs)	-	614	δ _{as} (FCF) , δ(FCO)
[N(CH ₃) ₄] ⁺	538 (m)	606 (w)	601	$\delta_{as}(FCF)$, $\delta(FCO)$
[N(CH ₃) ₄] ⁺	386 (m)	595 (w)	592	$\delta_{as}(FCF)$
		568 (m)	550	δ _{as} (FCF)
		460 (m)	472	δ _{as} (FCF)
		448 (vw, sh)	458	$\delta_{as}(FCF)$
		414 (w)	416	δ _{as} (FCF)
		368 (m)	369	Rocking CF ₂
		361 (m)	359	Rocking CF ₂
		342 (s, sh)	345	Rocking CF ₂
		333 (vs)	334	Rocking CF ₂
		324 (w, sh)	328	Framework vib
		309 (w)	307	Wagging CF ₂
		-	306	Wagging CF ₂
		-	296	Wagging CF ₂
		289 (m)	287	Wagging CF ₂
		242 (vw)	243	Wagging CF ₂

3.3 Single crystal X-ray diffractometric analysis

The crystals of NMe₄⁺[C₆F₁₁O]⁻ were obtained by recrystallization in CH₂Cl₂. In the following the crystal data and structure refinement parameters are shown in Table 3-2, the asymmetric unit in Figure 3-2 as well as the unit cell along direction a (Figure 3-4), b (Figure 3-5) and c (Figure 3-6).

Compound	NMe4 ⁺ C6F11O ⁻
CCDC	1839048
Empirical formula	C ₁₀ H ₁₂ F ₁₁ NO
Formula weight	371.21
Temperature/K	100.15
Crystal system	monoclinic
Space group	P21/c
a/Å	7.4929(2)
b/Å	10.3291(2)
c/Å	18.0550(4)
α/°	90
β/°	94.4750(10)
γ/°	90
Volume/ų	1393.11(6)
Z	4
$\rho_{calc}g/cm^3$	1.770
µ/mm⁻¹	0.213
F(000)	744.0

Table 3-2: Crystal data and structure refinement parameters for $[N(CH_3)_4]^+[C_6F_{11}O]^-$

Crystal size/mm ³	$0.11 \times 0.1 \times 0.08$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.546 to 60.044
Index ranges	-10 ≤ h ≤ 10, -14 ≤ k ≤ 14, -25 ≤ l ≤ 25
Reflections collected	29035
Independent reflections	4062 [R _{int} = 0.0285, R _{sigma} = 0.0176]
Data/restraints/parameters	4062/0/244
Goodness-of-fit on F ²	1.073
Final R indexes [I>=2σ (I)]	R ₁ = 0.0340, wR ₂ = 0.0857
Final R indexes [all data]	R ₁ = 0.0418, wR ₂ = 0.0904
Largest diff. peak/hole / e Å ⁻³	0.52/-0.25

Figure 3-2: asymmetric unit of $[N(CH_3)_4]^+[C_6F_{11}O]^-$.

The C-C bonds are in a range of 1.532(2) (C3-C4) to 1.563(2) Å (C2-C1), which is rather long for a C-C singe bond. The previously published perfluoro-alkylalcohol (F_5C_6)($F_{10}C_5$)COH is with an average aliphatic C-C-bond length of 1.556(5) Å in the same range.⁸ Also Heptafluorocyclobutanol, another perfluoro-alkylalcohol is showing C-C-bond lengths in the same order.⁹

The C-O bond is 1.257(1) Å and is significantly shorter than a typical C-O single bond. Instead it is more in the magnitude of a C=O double bond. It is still shorter than the C-O bond in $[NMe_4]^+[C_7F_{13}O]^-$ (1.328(3) Å). It is conspicuous that the bond between C1 and F11 is with 1.489(1) Å very long compared to all other CF bonds of the molecule. They are ranging from 1.344(1) (C5-F8) till 1.357(1) Å (C6-F9), which is in a normal range for perfluoro-alkylalcohols and also similar to the previously described $[NMe_4]^+[C_7F_{13}O]^{-}$.^{8, 9} This leads to an assumption that the molecule could be more likely be described as the ketone with an added F⁻. Also in comparison to the only known crystal structure of an α -fluoroalcohol, heptafluorocyclobutanol, where the CF bond at C1 is 1.362(4) Å.⁹

To demonstrate the correct assignment of the atoms, we have done further refinements of the single crystal x-ray data set and show the residual electron densities for alternative assignments of O1 and F11 in the following Figure 3-3. It follows, that only the assignment in the

middle below is in good agreement with the experiment and it has least remaining residual electron densities.

Figure 3-3: showing of the remaining electron density if F11 would be an Oxygen Atom (left), If F11 is fluorine and O1 is Oxygen (middle) and if O1 would be an fluorine Atom (right). The remaining electron density is shown as doted sphere with Fo-Fc of 0.20 $e/Å^3$ and a map radius of 3.20 Å.

There are several further evidences, that O1 is in equatorial and F11 in axial position:

- Moreover, the bond lengths are an evidence for this orientation. The C1-O1 bond is with 1.257(1) Å too short for an CF bond and the C1-F11 bond is with 1.489(1) Å to long for an C-O single bond.¹⁷
- The calculated difference between O1 in equatorial and axial position is +3.59 ^{kl}/_{mol}. The calculation was done using DFT with def2-TZVPP¹⁶-basis set with Turbomole^{4, 5}.

Thus, we are confident that our assignment is correct.

All C-C-C-angles are in between 109.9(9) (C6-C1-C2) and 117.1(9)° (C5-C6-C1). The F-C-F angle are ranging from 106.9(9) (F2-C2-F1) to 107.9(9)° (F6-C4-F5). The CCF-angel are in a range of 100.2(8) (F11-C1-C2) and 110.2(9)° (F4-C3-C2). The FCO angle is 114.0(9)°. All observed angles are similar to $[NMe_4]^+[C_7F_{13}O]^-$ and literature values.^{8,9}

The anions are connected via intermolecular hydrogen bonding from fluorine to the Carbons of the cations. Each cation is bonded to different anions and vice versa. The anion is present in a chair conformation with oxygen in equatorial position.

Figure 3-4: Unit cell of $[N(CH_3)_4]^+[C_6F_{11}O]^-$ with view along a.

Figure 3-5: Unit cell of $[N(CH_3)_4]^+[C_6F_{11}O]^-$ with view along b.

Figure 3-6: Unit cell of $[N(CH_3)_4]^+[C_6F_{11}O]^-$ as 3-dimensional view.

4. Decafluorocyclohexan-1,1-diol (6): C₆F₁₀(OH)₂

4.1 Synthesis

The synthesis {2} was done once in glass Schlenk-flask, YOUNG[®]-NMR-Tube and once in a T-reactor made from PFA with a diameter of 1/8" or 1/8". It was closed with KEL-F valves. Prior to synthesis, the vessels were dried using anhydrous HF.

NMe₄F (5.19 g, 16.8 mmol, 1.00 eq) was weighed and handled in glove box. Anhydrous dimethoxyethane (DME) (50 mL) was transferred using a syringe at a glass-vacuum line. As third decafluorocyclohexanon ($C_6F_{10}O$) (5.06 g, 18.2 mmol, 1.08 eq) was condensed onto the mixture at –30 °C. The reaction was running 15 h with occasional mixing of the liquid at 25 °C. Afterwards DME was removed using dynamic vacuum at room temperature. [NMe₄]⁺[$C_6F_{11}O$]⁻ was obtained as colourless powder, which was dissolved in concentrated H₂SO₄ (ca. 4 mL) at 25 °C. After stirring the solution for a short time, the NMR-spectra were measured at 25 °C. The pure isolated product $C_6F_{10}(OH)_2$ could be obtained in 63 % (3.11 g, 10.5 mmol) yield through sublimation and recrystallization in dichloromethane (CH₂Cl₂). Colourless block shaped crystals were obtained for single crystal X-ray diffractometry.

4.2 Analysis with vibrational spectroscopy

As vibrational analysis IR and Raman spectroscopy was used. The experimental data are shown in Figure 4-1 and the assignment was done in Table 4-1. The calculation was done using DFT on $BP86^{1, 2}/SV(P)^3$ -level with Turbomole^{4, 5}. In addition, the module $AORORCE^{6, 7}$ was used to calculate the frequencies on analytical level.

IR (exp.)	Raman (exp)	C ₆ F ₁₀ (OH) ₂	assignment
[cm ⁻¹]	[cm ⁻¹]	(cal.)	
2586 ()	-	3790	u₅(OH)
3380 (W)	-	3786	u _{as} (OH)
3474 (w)	-	-	H ₂ O
1396 (vw)	1394 (vw)	1399	δ _s (COH)
-	-	1368	δ _{as} (COH)
1313 (m)	1315 (m)	1311	us (CC)
-	-	1295	u _{as} (CC)
-	-	1293	u _{as} (CC)
1249 (m)	1240 (w)	1239	Uas (CC)
1230 (m, sh)	-	1231	Uas (CC)
-	-	1226	U _{as} (CC)

Table 4-1: experimenta	I IR and calculated	vibrational data of	C ₆ F ₁₀ (OH) ₂
------------------------	---------------------	---------------------	--

1213 (s)	-	1213	u _s (CC)
1176 (s)	1180 (w)	1175	Us (CC)
-	1164 (w)	1166	Uas (CC)
-	1149 (w)	1165	u _{as} (CC)
1157 (m)	-	1160	u _{as} (CC)
-	-	1131	Uas (CC)
1119 (m)	-	1120	Uas (CC)
-	1051 (vw)	1045	Uas (CC)
1036 (m)	1043 (vw)	1034	u _{as} (CC)
960 (s, sh)	-	973	Uas (CF)
937 (vs)	-	936	δ _s (FCF)
844 (vw)	-	838	δ _s (FCF)
690 (vw)	691 (vs)	690	δ (FCF)
678 (w)	-	676	δ (FCF)
-	-	637	δ (FCF)
632 (s)	-	632	δ (FCF)
600 (vw)	600 (w)	602	δ (FCF)
-	-	598	δ (FCF)
567 (vw)	568 (m)	560	δ (FCF)
-	-	482	δ (COH)
471 (s)	-	473	δ (FCC)
-	-	432	δ (COH)
418 (w)	-	404	δ (COH)
-	374 (s)	373	Framework vib
-	338 (s)	340	twisting OH
-	314 (w, sh)	312	Framework vib
-	289 (m)	288	Framework vib
-	276 (vw, sh)	280	twisting OH
-	249 (w)	249	Framework vib
-	196 (w)	193	Framework vib
_	168 (w)	173	Framework vib
—	\ /	1/3	

Figure 4-1: Raman (black, bottom) and IR spectrum (blue, top). The OH vibrations in the IR spectrum are a broad signal, probably due to partially occurring H-bonding (see crystal structure).

4.3 Analysis with NMR-spectroscopy

The NMR data of $C_6F_{10}(OH)_2$ were obtained in CD_2Cl_2 at 298 K. In Table 4-2 assignments of the NMR signals are shown. ¹⁹F-shifts are given with respect to CFCl₃, ¹H and ¹³C shifts with respect to TMS. In the following figures, the NMR spectra are shown. The ¹⁹F-resonances can't be assigned to single fluorine atoms, because there is only a very broad coalescence signal with centre at about –132 ppm, a width of 1600 Hz and without fine structure (see Figure 4-2).

	shift [ppm]	multiplicity	assignment	Lewis structure of C ₆ F ₁₀ (OH) ₂ . Numbering Scheme.
$\delta^{19}F$	-132	br (Δν½= 1600 Hz)	-	
$\delta^{1}H$ $\delta^{13}C$	3.94	S	ОН	
	90.8		1	
	110.2		2	
	108.1		3	I ^г е I F _a F _a
	107.8		4	

Table 4-2: NMR-shifts of $C_6F_{10}(OH)_2$ in CD_2Cl_2 at 298 K. Assignment according to the numbering scheme shown in the figure on the right.

0 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -21 f1 (ppm)

116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 f1 (ppm)

Figure 4-3: Selected area from the ${}^{13}C$ NMR spectra (75.48 MHz) of $C_6F_{10}(OH)_2$ in CD_2Cl_2 at 298 K ${}^{19}F$ -decoupled (bottom, 1) and ${}^{19}F$ -coupled (top, 2).

4.4 Decafluorocyclohexanon in sulphuric acid

To clarify the mechanism of reaction {2} (see chapter 4.5), sulphuric acid (96%) was mixed with **3** (equation {3}). The two liquids do not form a uniform solution. Several drops of **3** were dispersed in sulphuric acid. The ¹⁹F signals of the starting material in Figure 4-4 result from these drops, whereas the broad ¹⁹F resonance at about –131 ppm belongs to the product **6**. The presence of **6** is unambiguously proven by the ¹³C signal at 91 ppm in the ¹³C NMR spectrum in Figure 4-5. Thus **3** is able to dehydrate concentrated sulphuric acid forming **6**.

Figure 4-4: ¹⁹F NMR spectrum (188.29 MHz) of the inhomogeneous mixture of **3** in H_2SO_4 at 298 K. The three signals at -127, -135 and -135.7 belong to the starting material. The broad signal at about -131 ppm with a width of 780 Hz is the coalescence signal of the fluorine atoms of **6**.

Figure 4-5: Selected area from the ¹³C NMR spectrum (50.33 MHz) of the inhomogeneous mixture of **3** in H_2SO_4 at 298 K. The signal at 91 ppm proves the formation of **6**.

4.5 mechanism

First the evidences to form a mechanism are summarized:

- $\mathbf{3} + H_2SO_4 \rightarrow \mathbf{6}$
- $4 + H_2SO_4 \rightarrow 1$
- $5 + H_2SO_4 \rightarrow 6$
- $2 \rightarrow 3 + HF (H^0 = 78.1 \text{ kJ mol}^{-1}, G^0 = 31.8 \text{ kJ mol}^{-1})$
- 2 is decomposing with non-inert atmosphere
- the C1-F11 bond of **5** is very long and C1-O1 has double bond character.

From these evidences the mechanism, shown in Figure 4-6, was postulated. The single steps were calculated using PBEh-3c method implemented with ORCA 4.0.

Figure 4-6: postulated mechanism for reaction {2} and calculated reaction enthalpies in kJ mol⁻¹.

4.6 Single crystal X-Ray diffraction

Formula weight

Temperature/K

The crystals of $C_6F_{10}(OH)_2$ were obtained by recrystallization in CH_2Cl_2 . In the following the crystal data and structure refinement parameters are shown in Table 4-3, the asymmetric unit in Figure 4-7 as well as the unit cell along direction a (Figure 4-8), b (Figure 4-9) and c (Figure 4-10).

296.08 100.02

Compound	C ₆ F ₁₀ (OH) ₂
CCDC	1839049
Empirical formula	$C_6H_2F_{10}O_2$

Table 4-3: Crystal data and structure refinement parameters for C₆F₁₀(OH)₂

Crystal system	orthorhombic
Space group	Pca2 ₁
a/Å	10.3768(4)
b/Å	20.2598(6)
c/Å	8.3401(3)
α/°	90
β/°	90
γ/°	90
Volume/ų	1753.35(11)
Z	8
ρ _{calc} g/cm ³	2.243
µ/mm⁻¹	0.297
F(000)	1152.0
Crystal size/mm ³	$0.2 \times 0.12 \times 0.12$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.02 to 54.98
Index ranges	-13 ≤ h ≤ 13, -26 ≤ k ≤ 26, -10 ≤ l ≤ 10
Reflections collected	18866
Independent reflections	4001 [R _{int} = 0.0228, R _{sigma} = 0.0176]
Data/restraints/parameters	4001/7/333
Goodness-of-fit on F ²	1.086
Final R indexes [I>=2σ (I)]	R ₁ = 0.0258, wR ₂ = 0.0669
Final R indexes [all data]	R ₁ = 0.0283, wR ₂ = 0.0685
Largest diff. peak/hole / e Å ⁻³	0.45/-0.24
Flack parameter	0.0(3)

Figure 4-7: Asymmetric unit of $C_{6}F_{10}(OH)_{2}$ with two formula units.

The C-C bonds are in a range of 1.539(4) (C6-C5) and 1.552(4) Å (C1-C6), which is rather long for a C-C singe bond. The previously mentioned alkoxides are in the same magnitude. Also hexafluorocyclobutan-1,1-diol, another perfluoro-alkyldiol is showing C-C-bond lengths in in the same order.⁹

The C-O bond is between 1.380(3) Å and 1.406(3) Å and in a normal range for an C-O single bond¹⁷ and is similar to hexafluorocyclobutan-1,1-diol.⁹ The C-F bonds are ranging from 1.334(3) Å (C10-F16) till 1.354(3) Å (C6-F10), which is similar to the previously described $[NMe_4]^+[C_7F_{13}O]^-$ and $[NMe_4]^+[C_6F_{11}O]^-$ as well as to literature values.^{8, 9} All C-C-C-angles are in between 110.7(2)° (C2-C1-C6) and 114.7(2)° (C5-C6-C1). The F-C-F angles are ranging from 107.8(2)° (F19-C12-F20) to 108.8(2)° (F16-C10-F15). The CCF-angel are in a range of 108.0(2)° (F19-C12-C11) and 109.6(2)° (F17-C11-C12). The OCO angles are 108.8(2) (O1-C1-O2) and 113.3(2)° (O4-C7-O3). All observed angles are similar to $[NMe_4]^+[C_7F_{13}O]^-$ as well as $[NMe_4]^+[C_6F_{11}O]^-$ and literature values.^{8, 9}

The molecules are connected with hydrogen bonds between the Hydrogen and the Oxygen atoms of another molecule with an average length of 2.055 Å. The molecules are forming pillars containing four stacks of molecules hold together with hydrogen bonds (see Figure 4-10). The backbone of the pillars are aggregating in fluorinated domains.

Figure 4-8: Unit cell of $C_6F_{10}(OH)_2$ with view along a.

Figure 4-9: Unit cell of $C_6F_{10}(OH)_2$ with view along b.

Figure 4-10: Unit cell of $C_6F_{10}(OH)_2$ with view along c.

5. Gas phase electron diffraction

The electron diffraction patterns were recorded on the heavily improved Balzers Eldigraph KD-G2 gas-phase electron diffractometer at Bielefeld University. Experimental details are listed in Table 5-1, instrumental details are reported elsewhere.^{18, 19}

Table 5-1: Details of the gas-phase electron diffraction experiment for 1-trifluoromethyl perfluorocyclohexan-1-ol and perfluorocyclohexanol.

	1-trifluoromethylperfluoro-		perfluorocyclohexan-1,1-diol (6)	
	cyclohexa	n-1-ol (1)		
Parameters	short detector	long	short detector	long detector
	distance	detector	distance	distance
		distance		
noozle-to-plate distance,	250.0	500.0	250.0	500.0
mm				
accelerating voltage, kV	60	60	60	60
fast electron current, μ A	1.54	1.54	1.52	1.52
electron wavelength,ª Å	0.048761	0.048592	0.048654	0.048598
nozzle temperature, K	291	294	298	298
Sample pressure, ^b mbar	1.4×10 ⁻⁶	1.1×10 ⁻⁶	3.6×10 ⁻⁶	2.7×10 ⁻⁶
residual gas pressure ^c , mbar	2.0×10 ⁻⁷	2.5×10 ⁻⁷	5.4×10 ⁻⁷	7.2×10 ⁻⁷
exposure time, s	8	10	10	10
used <i>s</i> range, Å ^{–1}	5.0 to 31.0	2.1 to 14.0	5.0 to 31.0	2.1 to 14.0
number of inflection points ^d	4	3	3	4
R _f factor	3.315	0.883	3.701	2.380

^a Determined from CCl₄ diffraction patterns measured in the same experiment.

^b During the measurement.

^c Between measurements.

^d Number of inflection points on the background lines.

The electron diffraction patterns, three for each, long and short nozzle-to-plate distance were measured on the Fuji BAS-IP MP 2025 imaging plates, which were scanned by using calibrated Fuji BAS.1800II scanner. The intensity curves (Figure 5-1 and Figure 5-2) were obtained by applying the method described earlier.²⁰ Sector function and electron wavelength were refined²¹ using carbon tetrachloride diffraction patterns, recorded in the same experiment as the substance under investigation.

Figure 5-1: Experimental (circles) and model (lines) molecular intensity curves of 1-trifluoromethyl perfluorocyclohexan-1-ol for long and short nozzle-to-plate distance. The respective difference curves are shown at the bottom.

Figure 5-2: Experimental (circles) and model (lines) molecular intensity curves of perfluorocyclohexan-1,1diol for long and short nozzle-to-plate distance. The respective difference curves are shown at the bottom.

Gas-phase structure analysis

The structural analysis was performed using the UNEX program.^{20, 21} All refinements were performed using two intensity curves simultaneously (Figures 5-1 and 5-2), one from the short and another from the long nozzle-to-detector distance. These were obtained by averaging intensity curves measured in independent experiments obtained at the same camera distance. For the structure of both molecules the starting geometry was taken form PBE0/cc-pVTZ calculations was taken. On the same level of theory starting values for the amplitudes of vibration curvilinear corrections were calculated for the gas-phase structure refinement. The groups where the differences are fixed at the computational level can be seen in Table 9-1 and Table 9-4 for the $c-C_6F_{10}$ -1-(CF₃)OH and $c-C_6F_{10}$ -1,1-(OH)₂, respectively. In both cases, the Z-matrix did not obey any symmetry. All experimental and refinement data are listed in the appendix (Table 9-1 to Table 9-8).

6. Undecafluorocyclohexanol (2): C₆F₁₁OH

6.1 Synthesis:

Addition of HF to **3** at room temperature to obtain the fluoroalcohol **2** (equation {4}). All experiments were done in PFA reaction vessels with a diameter of $\frac{1}{2}$ " or $\frac{1}{2}$ ", which are closed with a KEL-F valve. Prior synthesis, the vessels were dried using anhydrous HF. First 0.5 mmol **3** was condensed using liquid nitrogen (LN2) at a grease-free glass-vacuum line into a PFA-Vessel. In a second step, an excess of HF (~2 mL) was condensed onto the ketone, using a stainless-steel-vacuum-line. The mixture was warmed up to room temperature and the components were mixed for a few minutes. Afterwards it was cooled down with LN2. The removal of HF occurred at -78°C (dry Ice) in a dynamic vacuum overnight. **2** decomposes in a reverse of Eq. {4}. It is stable with inert conditions below -30 °C and under its own vapor pressure, it is stable even at ambient temperature.

6.2 Analysis with vibrational spectroscopy

As vibrational analysis IR and Raman spectroscopy was used. The Raman spectrum was measured at -196 °C (77 K) and the IR at -30 °C (243 K) due to instrumental limitations, which can cause a shift of some cm^{-1} between the spectra. The experimental data are shown in Figure 6-1 and the assignment was done in Table 4-1. The calculation was done using DFT on def2-TZVPP¹⁶-level with Turbomole^{4, 5}. In addition, the module AORORCE^{6, 7} was used to calculate the frequencies on analytical level. The calculations were done for the OH in axial and in equatorial position.

The OH-vibration at 3589 cm⁻¹ is a sharp peak in the IR-spectrum. Comparing to **6**, which observed a broad OH-vibration, which is more a broad signal rather than a sharp one. The other signals are similar to **6** and are underlying only slight shifts, which are caused by the different compound. It can be expected, that the difference between **6** and the **2** should be small in vibrational spectroscopy, because fluorine and a hydroxyl group are isoelectronic.

IR	Raman	C ₆ F ₁₁ O	Н	assignment
(exp) [cm ⁻¹]	(exp) [cm ⁻¹]	Equatorial OH (cal.)	Axial OH (cal.)	
3589 (w)	-	3800	3806	υ(OH)
-	2859 (w)	-	-	*
-	2229 (vw)	-	-	*
-	2084 (vw)	-	-	*
-	2029 (vw)	-	-	*

Table 6-1: experimental IR and calculated vibrational data of C₆F₁₁OH.

1392 (vw)	1394 (vw)	1363	1368	δ (COH)
-	1330	-	-	*
1312 (m)	1319 (m)	1310	1318	us (CC)
1301 (m, sh)	1303 (w, sh)	1299	1301	U _{as} (CC)
-	-	1295	1295	U _{as} (CC)
-	-	1288	1281	Uas (CC)
-	1273 (w)	1268	1267	Uas (CO)
1249 (s)	1239 (w)	1243	1241	Uas (CC)
1225 (s)	1205 (vw)	1219	1199	u _{as} (CC)
1185 (vs)	1181 (vw)	1186	1177	Uas(CF)
-	1168 (vw)	1168	1167	Uas(CF)
-	1163 (vw)	1161	1158	υ _{as} (CF), υ(CO)
1153 (s)	-	1159	1150	Uas(CC)
-	-	1138	1140	Uas(CF)
1119 (m)	1113 (vw)	1102	1133	δ (COH)
-	-	1058	1052	Uas(CF)
1042 (s)	1049 (w)	1053	1049	Uas(CF), Uas(CC)
963 (s, sh)	-	986	980	υ _{as} (CF), δ (CCF)
945 (vs)	-	980	979	υ _{as} (CF), δ (CCF)
851 (m)	-	861	858	δ (CCF)
-	730 (vw)	-	-	*
692 (vw)	697 (vs)	685	690	δ _s (FCF), δ(OCF)
676 (w)	680 (vw)	678	676	$\delta_{as}(FCF), \delta(OCF)$
-	634 (vw)	631	639	δ _{as} (FCF), δ(OCF)
632 (vs)	-	631	633	δ _{as} (FCF)
599 (w)	601 (w)	599	601	δas(FCF), δ(OCF)
-	-	596	595	δ _{as} (FCF)
558 (vw)	565 (m)	562	558	$\delta_{as}(FCF), \delta(OCF)$
-	538 (w)	-	-	*
-	473 (vw)	475	475	$\delta_{as}(FCF), \delta(OCC)$
469 (vs)	-	470	470	Framework vib
415 (vw)	-	412	416	Framework vib
-	386 (m)	369	372	Framework vib
-	374 (m)	367	367	Framework vib
-	342 (s)	335	337	Rocking CF ₂
-	333 (m, sh)	331	330	Rocking CF ₂
-	325 (w, sh)	329	329	Wagging CF ₂
-	310 (vw)	316	313	Wagging CF ₂
-	-	306	304	Wagging CF ₂
-	-	300	302	Wagging CF ₂
			284	Wagging CF ₂
-	285 (w)		284	Wagging CF ₂

* These vibrations belong to the starting material decafluorocyclohexanon ($C_6F_{10}O$).

Figure 6-1: IR and Raman measurements of the product **2**, obtained by HF addition to the ketone **3** (starting material vibrations marked with *). The Raman was measured in vacuum at low temperature. The IR was measured in the glove box, after the sample was cooled to -35°C in the freezer and fast handling afterwards.

6.3 Analysis with NMR-spectroscopy

The NMR data of the two isomers of **2** were obtained in CFCl₃ at 223K. In Table 4-12 the assignments of the NMR signals are shown. ¹⁹F-shifts are given with respect to CFCl₃, ¹H and ¹³C shifts with respect to TMS. In the following figures, the NMR spectra are shown.

	sh	ift [ppm] 	multiplicity	assignment	Lewis structure of C ₇ F ₁₃ OH.
		II		5	Numbering Scheme
	-134.4	-121.6	br	1	
$\delta^{19}F$	-122.6	-121,1	br	2a	(I) OH F
	-122.6	-123.4	br	3a	F_a F_a
	-123.5	-123.5	br	4a	F F
	-142.4	-142.6	br	2e	
	-141.5	-141.1	br	3e	F _e ' Fa Fa
	-142.0	-142.0	br	4e	F F
δ¹Η	4.74 ^a	4.71ª	S	ОН	(II) $\begin{bmatrix} F_a & F \\ I & I \end{bmatrix}$
	100.9	100.9		1	- HO - 2.00 - 1.1
- 12	109.0	108.3		2	
9-3C	107.6	107.7		3	F <mark>♥</mark> 「 F F
	107.4	107.4		4	'a 'a

Table 6-2: NMR-shifts of **2** in CFCl₃ at 223 K. Assignments according to the schemes on the right. The molar ratio of the products I and II in CFCl₃ at 223 K is 2:1.

^{a)} The ¹H spectrum was not calibrated

Figure 6-2: ¹⁹F NMR spectra (376.54 MHz) of **2** in CFCl₃ at 223 K (red, bottom) and the starting material $C_{6}F_{10}O$ (282.42 MHz, pure substance) at 298 K (blue, top).

Figure 6-3: Selected area from the ¹⁹F NMR spectrum (376.54) **2** in CFCl₃ at 223 K. The detailed spectra insets show the resonances of the axial (left) and the equatorial fluorine atoms (right) together with their assignments. The assignment of the isomers is shown by subscripts (I = axial OH group, II = equatorial OH group). Asterisks mark signals of remnants of **3**.

Figure 6-4: ¹⁹F COSY NMR spectrum (376.54 MHz) of **2** in CFCl₃ at 223 K.

The ¹⁹F COSY NMR (Figure 4-35) allows the assignment of the positions of the fluorine atoms. Intensive crosspeaks result first of all from the great ${}^{2}J_{F-F}$ couplings. Additional crosspeaks are due to formal ${}^{3}J_{F-F}$ or ${}^{4}J_{F-F}$ couplings. The absolute value of these couplings grows larger, when the coupling fluorine atoms are pointing to one another leading to more intensive crosspeaks between the signals of such fluorine atoms. This indicates that there are substantial contributions of through-space interactions to these formal ${}^{3}J_{F-F}$ and ${}^{4}J_{F-F}$ couplings. Furthermore, the fact that there is a crosspeak between the fluorine resonance of 1_{11} at -121.6 ppm and the fluorine signal of $3a_{11}$ and no correlation of the signal of 1_{11} to the resonance of $2a_{11}$ allows to identify this molecule as isomer II.

Figure 6-5: ¹³C NMR spectra (75.48 MHz) of **2** in CFCI₃ at 298 K. The upper spectrum is ¹⁹F decoupled and the lower spectrum is not decoupled. The signal at 100.9 ppm shows a doublet splitting of 253 Hz. Thus, only one fluorine atom is directly attached to this carbon atom. The other signals in this area show a triplet splitting with ¹J_{F-C} couplings and hence belong to CF₂ groups.

Figure 6-6: ${}^{19}F$, ${}^{13}C$ HSQC NMR spectrum (376.54 MHz, optimized for ${}^{1}J_{F-C}$ couplings) of **2** in CFCl₃ at 223 K.

In the ¹J ¹⁹F, ¹³C correlation in Figure 4-37 it is easy to identify which fluorine atoms are attached to the same carbon atom. As for $C_7F_{13}OH$ and *6* in **2** the carbon atom in position 2 shows the farthest downfield shift of the CF₂ groups in the perfluorocyclohexyl ring.

Figure 6-7: ¹⁹F NMR spectrum (376.54 MHz) of **2** in CFCl₃ at 298 K. Asterisks mark signals of remnants of **3**.

In the ¹⁹F NMR spectrum of **2** in CFCl₃ at ambient temperature (Figure 4-38) only two very broad and overlapping coalescence signals are detected for the fluorine atoms of **2**. The fluorine atoms of **2** must exchange so fast, that both isomers cannot be distinguished anymore on the NMR timescale and only one broad signal is found for axial and equatorial positions respectively. In contrast, the resonances of remnants of **3** in the sample have grown sharper compared to the measurement at 223 K. Therefore, the exchange must be chiefly due to the folding of the six membered ring. Elimination and addition of HF can only play a minor role if any at all in this exchange process of **2** in CFCl₃ solution for otherwise individual resonances of **3** as inevitable intermediate of such an intermolecular exchange would not be detected.

6.4 Attempts to obtain a crystal structure

To obtain crystals, it was tried to crystallize out of HF, $CFCI_3$, ortho-difluorobenzene and $CHFCI_2$. The used temperatures were: -78 °C, -48 °C, -30 °C, -20 °C, -10 °C and 0 °C. However, none of these methods succeeded.

6.5 Gas-phase IR

The Gas-Phase IR spectra of the vapour of $C_6F_{11}OH$ will be compared to the solid-state IR of $C_6F_{11}OH$ and to the Gas-Phase IR of $C_6F_{10}O$ (starting material). The CO-vibration at 1808 cm⁻¹ is visible significant and according to $C_6F_{10}O$. A OH-vibration is present at 3628 and 3589 cm⁻¹. In the solid-state-IR of $C_6F_{11}OH$ is only one vibration at 3589 cm⁻¹ with a significantly higher

intensity visible. These both vibrations were also detected in the starting material, which could be an impurity.

Comparing the finger-print area, shows an unambiguous result: The finger print is perfect matching to the starting material and only a rare coincidence to the solid state spectra of $C_6F_{11}OH$.

Summarizing the solid $C_6F_{11}OH$ has a vapour pressure, which is depending on the temperature. The vapour pressure at room temperature is higher than on 0 °C. The gas-IR spectra clearly show that $C_6F_{11}OH$ is decomposing to $C_6F_{10}O$ and HF. HF is not visible in the gas-IR, because it will stick to the stainless steel line and react with the glass of the cell or the tube, which was used for transferring the gas into the gas-IR-cell.

Figure 6-8: Gas-Phase IR of the vapour of $C_6F_{11}OH$ at room temperature with 15 mbar pressure (red, middle spectrum). As comparison, a $C_6F_{10}O$ gas-IR with 10 mbar pressure (green, bottom) and $C_6F_{11}OH$ solid-IR (blue, top) are shown.

7. Analytical methods

7.1 NMR spectrometry

All measurements were done on a Bruker Avance II⁺ 400 MHz WB with a BBFO probe head, Bruker Avance IIIHD 300 MHz with BBFO probe head and Bruker 200 MHz with QNP probe head. The low Temperature measurements were done at the Bruker Avance II⁺ 400 MHz. For measurements the Software Topspin version 3.2 and for analysis MestReNova Version 12.0 were used.

7.2 IR-spectroscopy

As instrument, a Bruker Alpha-P IR spectrometer equipped with a Platinum-ATR with a diamond crystal was used to gather spectra in Argon atmosphere (glove box). To measure gas-IR a Nicolet Magna IR spectrometer for FIR (250-600cm⁻¹) and MIR (400-4000 cm⁻¹) measurements was used. The evaluation ensued using OPUS software.

7.3 Raman-spectroscopy

As instrument, a Bruker Vertex 70 Raman spectrometer was used for Raman-spectra acquiring. A special low temperature unit allowed measurements at -196 °C. The evaluation ensued using OPUS software.

7.4 Single crystal X-ray diffractometer

All crystal structures were obtained at 100 K using a Bruker Smart APEX II QUAZAR singlecrystal diffractometer with Oxford Cryosystems 800 crystal cooling device. As X-ray Mo-K α with λ = 0.7107 Å was used.

7.5 Gas phase electron diffraction

The electron diffraction patterns were recorded on the heavily improved Balzers Eldigraph KD-G2 gas-phase electron diffractometer at Bielefeld University. Experimental details are listed in Table S4, instrumental details are reported elsewhere.^{18, 19}

8. Bibliography

- 1. J. P. Perdew, *Phys. Rev. B: Condens. Matter*, 1986, **33**, 8822.
- 2. A. D. Becke, *Phys. Rev. A*, 1988, **38**.
- 3. A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, **97**, 2571.
- 4. R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, *Chem. Phys. Lett.*, 1989, **162**, 165.
- 5. O. Treutler and R. Ahlrichs, J. Chem. Phys., 1995, **102**, 346.
- 6. P. Deglmann and F. Furche, J. Chem. Phys., 2002, **117**, 9535.
- 7. P. Deglmann, F. Furche and R. Ahlrichs, *Chem. Phys. Lett.*, 2002, **362**, 511.
- 8. N. Trapp, H. Scherer, S. A. Hayes, R. J. F. Berger, A. Kutt, N. W. Mitzel, J. Saame and I. Krossing, *Phys. Chem. Chem. Phys.*, 2011, **13**, 6184-6191.
- 9. A. F. Baxter, J. Schaab, K. O. Christe and R. Haiges, *Angew. Chem. Int. Ed.*, 2018, DOI: 10.1002/anie.201804101, in press.
- 10. P. W. Atkins and A. Höpfner, *Physikalische Chemie*, Wiley VCH Verlag GmbH, 2002.
- 11. A. Klamt and G. Schüürmann, J. Chem. Soc., 1993, 799.
- 12. A. Schäfer, A. Klamt, D. Sattel, J. C. W. Lohrenz and F. Eckert, *Phys. Chem. Chem. Phys.*, 2000, 2187.
- R. D. Gaussian, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. V. Jr., K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, *Gaussian, Inc., Wallingford CT*, 2004.
- 14. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Journal of Applied Crystallography %@ 0021-8898*, 2009, **42**, 339-341.
- 15. G. M. Sheldrick, *Acta Crystallogr.*, 2008, **64A**, 112-122.
- 16. F. Weigend, M. Häser, H. Patzelt and R. Ahlrichs, *Chem. Phys. Letters*, 1998, 143.
- 17. D. R. Lide, Handbook of Chemistry and Physics, CRC Press, 2004.
- 18. R. J. F. Berger, M. Hoffmann, S. A. Hayes and N. W. Mitzel, *Z. Naturforsch.*, 2009, **64b**, 1259.
- 19. C. G. Reuter, Y. V. Vishnevskiy, S. Blomeyer and N. W. Mitzel, *Z. Naturforsch.*, 2016, **71b**, 1-13.
- 20. Y. V. Vishnevskiy, Journal of Molecular Structure, 2007, 833, 30-41.
- 21. Y. V. Vishnevskiy, The initial processing of the gas electron diffraction data: New method for simultaneous determination of the sector function and electron wavelength from gas standard data, 2007.

9. Appendix to the Gas Phase Electron Diffraction

Table 9-1. Z-Matrix used in the refinement of the gas-phase structure of 1-trifluoromethylperfluorocyclohexan-1-ol. Distances r are given in Å, angles a and dihedrals d are given in °. The numberswritten in line with the parameter indicate the groups they were refined in.1 c

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	rcc1 rcf1 1 rcf2 1 rcf3 1 rcc 2 rch 1 rcc2 2 rcc3 2 rcc4 1 rcc5 1 rcc6 11 rcf4 1 rcf5 1 rcf6 1 rcf7 1 rcf8 8 rcf9 8 rcf10 9 rcf11 9 rcf12 10 rcf13 10	accfl accf2 accf3 acco acoh accc1 accc2 accc3 accc4 rcc7 accf4 accf6 accf7 accf8 accf10 accf11 accf12 accf13	3 af. 3 af. 3 df. 2 dc. 6 ao. 2 dcc. 2 dcc. 8 fc. 2 dcc. 8 fc. 1 dcc. 1 dccc. 1 dccc. 1 dccc. 1 dcc. 1 dcc. 1 dcc. 1 dccc. 1 dccc.	cf1 1 cf2 -1 cco coh cc2 1 cc2 1 cc2 1 cc2 4 cf1 cf2 cf2 cf2 cf2 cf2 cf2 cf3 cf4 -1 cf3 cf4 -1 cf3 cf4 -1 cf3 cf4 -1 cf3 cf4 -1 cf4 -1 cc2 cf4 cf4 -1 cc2 cf4 cf4 cf4 cf4 cf4 cf4 cf4 cf4 cf4 cf4
Variables rcc1 rcf1 rcf2 rcf3 rco roh rcc2 rcc3 rcc4 rcc5 rcc6 rcc7 rcf4 rcf5 rcf6 rcf7 rcf8 rcf9 rcf10 rcf11 rcf12 rcf13 accf1 accf2 accf1 accf2 acc6 acc6 acc7 rcf4 rcf5 rcf6 rcf7 rcf8 rcf9 rcf10 rcf11 accf2 acc6 acc6 acc6 acc6 acc6 acc6 acc6 acc	: 1.55252 1.32475 1.32475 1.32475 1.32475 1.34255 1.41277 0.97482 1.54362 1.54362 1.54362 1.53392 1.33075 1.35035 1.34125 1.35035 1.34125 1.33675 1.34125 1.33675 1.34445 111.50195 107.92785 109.27430 105.12575 108.98740 109.98570 111.89233 112.25056 100.66300 112.06976 108.99126 108.91276 109.2576 109.2576 109.2576 109.2576 109.2576 109.2576 109.2576 109.2576 109.2576 109.2576 109.2576 109.2576 109.2576 109.2576 109.2576 109.2576 109.2576 109.2576 10.31816 109.2576 110.44347 109.25636 100.44347 100.4447 100.25636 100.4447 100.4447 100.4447 100.25636 100.4447 100.4447	964 9110 9110 9110 9010 9054 9064 9008 9008 9592 9592 952 952 952 952 952 9	1 2 2 2 4 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	

dfccf1	-65.28328115	14
dfccf2	168.99592770	13
dfccf3	68.81791885	14
dfccf4	-163.46127230	13

 Table 9-2: Cartesian coordinates for the refined structure of 1-trifluoromethyl perfluorocyclohexan-1-ol.

N	At	An	Mass	X	¥	Z
1	С	6	12.00000000	-1.005879296322	0.003220744171	0.355437262954
2	С	6	12.00000000	-2.491025266689	0.033013087318	-0.096007234309
3	F	9	18.99840320	-2.604525794576	-0.145431848390	-1.401742849907
4	F	9	18.99840320	-3.128838736852	-0.941290265054	0.535572073438
5	F	9	18.99840320	-2.927475999320	1.263641441690	0.216255567780
6	0	8	15.99491462	-0.925114125458	0.139375277866	1.759317862659
7	Н	1	1.00782503	-1.366145864709	-0.596749829921	2.221876055444
8	С	6	12.00000000	-0.229612244116	1.262643743012	-0.099578952343
9	С	6	12.00000000	-0.293331131275	-1.311975917620	-0.067023943675
10	С	6	12.00000000	1.279606564033	1.268750838423	0.224479292587
11	С	6	12.00000000	1.222045635590	-1.277387432279	0.215244577467
12	С	6	12.00000000	1.916203398987	-0.018080735598	-0.315658743919
13	F	9	18.99840320	-0.697558246637	2.364767660944	0.485720025041
14	F	9	18.99840320	-0.388450795235	1.422947422943	-1.431243860946
15	F	9	18.99840320	-0.863893963023	-2.347776675984	0.584913881020
16	F	9	18.99840320	-0.439492928577	-1.578954007804	-1.373283462947
17	F	9	18.99840320	1.855843645539	2.317017570278	-0.373737323503
18	F	9	18.99840320	1.470781477979	1.352175741037	1.546881249533
19	F	9	18.99840320	1.811314264060	-2.324728944405	-0.368596815716
20	F	9	18.99840320	1.444164918356	-1.375553616358	1.535853123226
21	F	9	18.99840320	3.219617561229	-0.050824708977	-0.034237172310
22	F	9	18.99840320	1.848452676582	-0.016525814472	-1.658400778774
Rot	atior	nal co	nstants (MHz):	488.30737183	337.08446441	271.33123605

Table 9-3: Full listing of structural parameters of 1-trifluoromethyl perfluorocyclohexan-1-ol. r_a , r_g , r_e values are given in Å. Errors correspond to one time standard deviation. For atom numbering, see Table S5.

No.	Туре	i	j	k	1	a-Value	g-Value	c-Value	Error
1	stretch	1	2	0	0	1.56433	1.56614	1.55253	0.00035
2	stretch	1	6	0	0	1.41978	1.42131	1.41278	0.00012
3	stretch	1	8	0	0	1.55853	1.56031	1.54783	0.00035
4	stretch	1	9	0	0	1.56423	1.56608	1.55433	0.00035
5	stretch	2	3	0	0	1.32885	1.33035	1.32275	0.00012
6	stretch	2	4	0	0	1.33125	1.33275	1.32475	0.00012
7	stretch	2	5	0	0	1.34825	1.34982	1.34255	0.00012
8	stretch	6	7	0	0	0.98966	0.99458	0.97486	0.00434
9	stretch	8	10	0	0	1.55343	1.55518	1.54363	0.00035
10	stretch	8	13	0	0	1.33925	1.34073	1.33275	0.00012
11	stretch	8	14	0	0	1.35625	1.35777	1.35065	0.00012
12	stretch	9	11	0	0	1.55163	1.55337	1.54183	0.00035
13	stretch	9	15	0	0	1.35665	1.35818	1.35035	0.00012
14	stretch	9	16	0	0	1.34725	1.34876	1.34125	0.00012
15	stretch	10	12	0	0	1.54413	1.54585	1.53393	0.00035
16	stretch	10	17	0	0	1.34375	1.34523	1.33745	0.00012
17	stretch	10	18	0	0	1.34485	1.34634	1.33875	0.00012
18	stretch	11	12	0	0	1.54303	1.54474	1.53283	0.00035
19	stretch	11	19	0	0	1.34215	1.34363	1.33605	0.00012
20	stretch	11	20	0	0	1.34925	1.35075	1.34275	0.00012
21	stretch	12	21	0	0	1.34025	1.34172	1.33385	0.00012
22	stretch	12	22	0	0	1.35035	1.35186	1.34445	0.00012
23	bend	2	1	6	0		1	.09.98571	0.33494
24	bend	2	1	8	0		1	12.25057	0.10437
25	bend	2	1	9	0		1	12.06977	0.10437
26	bend	1	2	3	0		1	.11.50195	0.12138
27	bend	1	2	4	0		1	07.92785	0.12138
28	bena	Ţ	2	5	0		1	.05.12575	0.12138
29	bend	6	1	8	0		1	.00.66300	0.33254
30	bend	6	Ţ	9	0		1	11 000000	0.24409
31	bend	1	1	/	0		1	10 05174	0.34862
32	bena	1	1	10	0		1	15 50470	0.22110
20	bend	1	0	10	0		1	11 57027	0.24409
35	bend	1	0	14	0		1	00 11207	0.00239
20	bend	1	0	11	0		1	12 11650	0.00239
30	bend	1	9	15	0		1	09 01277	0.06259
30	bend	1	9	16	0		1	12 53057	0.06259
30	bend	3	2	10	0		1	09 27/31	0.00239
40	bend	3	2	5	0		1	08 98741	0 24591
41	bend	4	2	5	0		1	14 00044	0 45313
42	bend	10	8	13	Ő		1	04 34848	0 32073
43	bend	10	8	14	0		1	08 75317	0 51918
44	bend	- 0	10	12	0		1	09 17879	0 27476
45	bend	8	10	17	Ő		1	09 29577	0 06259
10	20110	0	± 0	± /	0		1		5.00255

46	bend	8	10	18	0	110.31817 0.06259
47	bend	13	8	14	0	107.07080 0.33510
48	bend	11	9	15	0	110.12695 0.31108
49	bend	11	9	16	0	106.85003 0.62475
50	bend	9	11	12	0	113.58521 0.28577
51	bend	9	11	19	0	109.62717 0.06259
52	bend	9	11	20	0	109.93767 0.06259
53	bend	15	9	16	0	105.75156 0.47155
54	bend	12	10	17	0	108.73648 0.47601
55	bend	12	10	18	0	109.92806 0.20814
56	bend	10	12	11	0	112.29101 0.26576
57	bend	10	12	21	0	110.59997 0.06259
58	bend	10	12	22	0	109.25637 0.06259
59	bend	17	10	18	0	109.35692 0.42417
60	bend	12	11	19	0	107.03383 0.36160
61	bend	12	11	20	0	109.01365 0.42753
62	bend	11	12	21	0	110.44348 0.06259
63	bend	11	12	22	0	108.90767 0.06259
64	bend	19	11	20	0	107.42845 0.47474
65	bend	21	12	22	0	105.06931 0.37390
66	torsion	3	2	1	6	-177.51264 0.35694
67	torsion	4	2	1	6	-57 49004 0 41766
68	torsion	5	2	1	6	64 53527 0 46204
69	torsion	2	1	6	7	62 12155 0 34999
70	torsion	3	2	1	8	71 29364 0 37490
71	torsion	4	2	1	Ř	-168 68376 0 39380
72	torsion	5	2	1	8	-46 65846 0 50575
73	torsion	2	1	g i	10	-175 96797 0 45659
74	torsion	2	1	0	13	65 03562 0 20013
75	torgion	2	⊥ 1	0	1 J	-53 06030 0.20013
75	torsion	2	2	0	14	=JJ.00939 0.29044
יט רר	torgior	2	2	1	3	-JULUDBI U.41235 62 01670 0 47165
70	torsion	4	2	1	9	
78	torsion	5	1	T	11	-174.05/91 0.49/44
19	LOISION	2	1	9	11	1/2.6/540 0.4503/
80	torsion	2	1	9	15	-64.97378 0.20013
81	torsion	2	1	9	16	51.95000 0.54935
82	torsion	1	6	1	8	-179.29236 0.35756
83	torsion	6	1	8	10	67.10835 0.57189
84	torsion	6	1	8	13	-51.88807 0.37198
85	torsion	6	1	8	14	-169.99307 0.20985
86	torsion	7	6	1	9	-61.10794 0.45511
87	torsion	6	1	9	11	-65.34777 0.66338
88	torsion	6	1	9	15	57.00305 0.43190
89	torsion	6	1	9	16	173.92683 0.20985
90	torsion	10	8	1	9	-48.66563 0.43304
91	torsion	13	8	1	9	-167.66204 0.35383
92	torsion	14	8	1	9	74.23295 0.33032
93	torsion	8	1	9	11	45.27657 0.38596
94	torsion	8	1	9	15	167.62739 0.25408
95	torsion	8	1	9	16	-75.44883 0.54051
96	torsion	1	8	10	12	52.98854 0.45390
97	torsion	1	8	10	17	171.81183 0.38226
98	torsion	1	8	10	18	-67.91545 0.44047
99	torsion	1	9	11	12	-49.84710 0.46657
100	torsion	1	9	11	19	-169.51995 0.33350
101	torsion	1	9	11	20	72.59989 0.61618
102	torsion	12	10	8	13	175.89342 0.42243
103	torsion	17	10	8	13	-65.28328 0.20013
104	torsion	18	10	8	13	54.98943 0.37927
105	torsion	12	10	8	14	-70.10008 0.25631
106	torsion	17	10	8	14	48.72321 0.42819
107	torsion	18	10	8	14	168.99593 0.20985
108	torsion	8	10	12	11	-55.26711 0.22745
109	torsion	8	10	12	21	-179.14107 0.26636
110	torsion	8	10	12	22	65.67567 0.33873
111	torsion	12	11	9	15	-171.50924 0.43197
112	torsion	19	11	9	15	68.81792 0.20013
113	torsion	20	11	9	15	-49.06225 0.51888
114	torsion	12	11	9	16	74.09174 0.39507
115	torsion	19	11	9	16	-45.58110 0.45306
116	torsion	20	11	9	16	-163.46127 0.20985
117	torsion	9	11	12	10	55.82139 0.31560
118	torsion	9	11	12	21	179.78247 0.42964
119	torsion	9	11	12	22	-65.32180 0.32056
120	torsion	11	12	10	17	-174.43818 0.36443
121	torsion	21	12	10	17	61.68785 0.43784
122	torsion	2.2	12	10	17	-53.49541 0 39886
123	torsion	11	12	10	18	65 87456 0 30163
124	torsion	21	12	10	1.8	-57 99940 0 38855
125	torsion	22	12	10	1.8	-173 18267 0 34411
126	torsion	10	12	11	10	176 95858 0 2020/
127	torsion	10	12	1 1	20	-67 13/57 0 203/6
128	torsion	21	12	11	10	-59 02035 0.20340
129	torsion	22	12	11	19	55 81539 0 20451
130	torsion	21	12	11	20	56 82651 0 41013
131	torgion	22	10	11	20	171 70001 0.41012
- J T	COT 9 TOU	22	± 2	± ±	20	1/1./2224 U.20J12

Table 9-4: Full listing of interatomic distances, refined vibrational amplitudes I and corrections of 1trifluoromethyl perfluorocyclohexan-1-ol, all is given in Å. The numbers at the Gu column indicate the groups the amplitudes were refined in.

At.1	At.2	r.	 1	corr	a	 Gr	 Gu
06	H7	0.989659	0.069801	-0.014800	0.000000	0	100
C2	E3	1.328851	0.044649	-0.006100	0.000000	0	101
C2	F13	1.339251	0.044457	-0.006500	0.000000	0	101
C12	F21	1.340251	0.044361	-0.006400	0.000000	0	101
C11	F19	1.342151	0.044553	-0.006100	0.000000	0	101
C10	F17	1.343751	0.044649	-0.006300	0.000000	0	101
C10	F18	1.344851	0.044745	-0.006100	0.000000	0	101
C2	F10 F5	1 348251	0.045996	-0.005700	0.000000	0	101
C11	F20	1.349251	0.045034	-0.006500	0.000000	Ő	101
C12	F22	1.350351	0.045130	-0.005900	0.000000	0	101
C8	F14	1.356251	0.045419	-0.005600	0.000000	0	101
C9	F15	1.356651	0.045612	-0.006300	0.000000	0	101
C11	C12	1 543030	0.040374	-0.010200	0.000000	0	101
C10	C12	1.544130	0.051535	-0.010200	0.000000	õ	102
С9	C11	1.551630	0.052035	-0.009800	0.000000	0	102
C8	C10	1.553430	0.052134	-0.009800	0.000000	0	102
C1	C8	1.558530	0.052634	-0.010700	0.000000	0	102
CI C1	C9 C2	1.564230	0.053832	-0.009900	0.000000	0	102
C1	H7	2.011126	0.097338	-0.017800	0.000000	0	102
F21	F22	2.131936	0.061036	-0.006100	0.000000	0	103
F15	F16	2.152699	0.061534	-0.006600	0.000000	0	103
F13	F14	2.163883	0.061135	-0.005800	0.000000	0	103
EJ ETA	F20 F4	2.165620	0.060736	-0.008300	0.000000	0	103
F3	F5	2.175624	0.060338	-0.005900	0.000000	õ	103
F17	F18	2.189368	0.060637	-0.005800	0.000000	0	103
F4	F5	2.244614	0.059939	-0.007600	0.000000	0	103
C10	F13	2.288071	0.068730	-0.012400	0.000000	0	104
06	C8 55	2.292260	0.071256	-0.011700	0.000000	0	104
C12	F19	2.321539	0.069678	-0.011900	0.000000	0	104
C11	F16	2.330221	0.070941	-0.011800	0.000000	0	104
C1	F4	2.344359	0.071362	-0.013800	0.000000	0	104
C12	F17	2.348400	0.069572	-0.011800	0.000000	0	104
C11 C12	F22	2.355953	0.071046	-0.011800	0.000000	0	104
C10	F22	2.361530	0.070941	-0.011900	0.000000	0	104
C8	F17	2.365269	0.069888	-0.012400	0.000000	0	104
C10	F14	2.366337	0.071467	-0.011000	0.000000	0	104
C12	F18	2.366895	0.071046	-0.012100	0.000000	0	104
C11	F19 F21	2.367626	0.069783	-0.012600	0.000000	0	104
C10	F21	2.372178	0.069783	-0.011700	0.000000	0	104
С9	F20	2.375973	0.071362	-0.011200	0.000000	0	104
C1	F15	2.379534	0.069783	-0.013100	0.000000	0	104
C8	F18	2.380483	0.071677	-0.011900	0.000000	0	104
C11	F15	2.385506	0.069572	-0.012000	0.000000	0	104
C1	F3	2.393321	0.073256	-0.013100	0.000000	0	104
C1	F13	2.396250	0.069467	-0.011100	0.000000	0	104
C1	F16	2.422222	0.072835	-0.011300	0.000000	0	104
06	C9	2.430136	0.072098	-0.013300	0.000000	0	104
F4	H7	2.469918	0.256818	-0.006300	0.000000	0	104
H7	F15	2.484281	0.247556	-0.035200	0.000000	0	104
F5	F13	2.509024	0.116359	-0.007500	0.000000	0	105
C8	C12	2.524280	0.063068	-0.016000	0.000000	0	105
06	EI3	2.564/06	0.063068	-0.01/900	0.000000	0	105
F16	F19	2.586810	0.106287	-0.011600	0.000000	0	105
C1	C11	2.588470	0.062775	-0.014900	0.000000	0	105
С9	C12	2.589053	0.063264	-0.016500	0.000000	0	105
C8	C9	2.590814	0.064926	-0.015200	0.000000	0	105
C2	C9	∠.591/00 2 593061	0.063457 0.063459	-0.01/600 -0.016300	0.000000	0	105 105
F3	F16	2.621660	0.142173	-0.024900	0.000000	õ	105
F13	F18	2.626143	0.112447	-0.008300	0.000000	0	105
C1	C10	2.630253	0.062384	-0.014500	0.000000	0	105
F14	F17	2.645546	0.107656	-0.008400	0.000000	0	105
г⊥9 Н7	122 C9	2.651379	0.169551	-0.024300	0.000000	0	105
F17	F22	2.670502	0.111470	-0.006700	0.000000	Õ	105
C2	H7	2.673470	0.170040	-0.021200	0.00000	0	105
F4	F15	2.680473	0.100323	-0.013900	0.000000	0	105
F17	F20 F22	2.086825	0.113230	-0.00/900	0.000000	0	105 105
06	F18	2.705558	0.152048	-0.011800	0.000000	0	105
F13	F17	2.710889	0.103158	-0.016300	0.000000	Õ	105

F19	F21	2.711206	0.104429	-0.015700	0.000000	0	105
F20	F21	2.720802	0.111567	-0.005600	0.000000	0	105
F5	C8	2 731988	0 069815	-0 015700	0 000000	0	105
E3	E1 /	2 745002	0.192165	-0 030900	0.000000	0	105
F J 0	F14 E01	2.743902	0.102100	-0.030900	0.000000	0	105
FIS	FZI	2.750197	0.110589	-0.006700	0.000000	0	105
F.T.8	F20	2./5/882	0.1/6004	-0.030000	0.000000	0	105
F4	06	2.761089	0.139435	-0.018500	0.000000	0	105
06	F15	2.767163	0.114892	-0.016000	0.000000	0	105
F17	F21	2.768710	0.104918	-0.015200	0.000000	0	105
F5	06	2.783771	0.133372	-0.017100	0.000000	0	105
F16	F22	2 812969	0 173018	-0 027800	0 000000	0	106
06	F20	2 838269	0 154573	-0 017200	0.000000	0	106
D1 F	F20	2.030209	0.100257	-0.01/200	0.000000	0	100
FID	F19	2.854950	0.106357	-0.014800	0.000000	0	100
C2	F.T.4	2.8/2496	0.109765	-0.020200	0.000000	0	106
C8	F22	2.917309	0.110166	-0.021700	0.000000	0	106
C2	F16	2.919037	0.104853	-0.014100	0.000000	0	106
06	C10	2.924406	0.107961	-0.010300	0.000000	0	106
F3	C9	2.924817	0.126506	-0.012100	0.00000	0	106
F/	CQ	2 935336	0 069368	-0 012900	0 000000	0	106
C12	E14	2.057216	0.000000	0.010200	0.000000	0	100
C12	C14	2.93/310	0.1110/0	-0.019200	0.000000	0	100
08	CII	2.960779	0.069468	-0.018300	0.000000	0	106
C2	F15	2.979400	0.101646	-0.016400	0.000000	0	106
C10	F20	2.979801	0.111970	-0.023600	0.000000	0	106
C11	F18	2.981194	0.112572	-0.023200	0.000000	0	106
C9	F22	2.989427	0.110868	-0.023300	0.000000	0	106
H7	F20	2 990032	0 295714	0 005800	0 000000	0	106
06	C11	3 01/179	0.107961	-0.013900	0.000000	0	106
00	011	2.014175	0.107001	-0.013900	0.000000	0	100
CI	CIZ	3.014431	0.069067	-0.016200	0.000000	0	100
C2	F13	3.015068	0.095932	-0.016400	0.000000	0	106
F14	F16	3.017495	0.187754	-0.014600	0.000000	0	106
C12	F16	3.036217	0.113775	-0.018900	0.000000	0	106
F5	F14	3.047688	0.108262	-0.016800	0.000000	0	106
C9	C10	3 054023	0 069468	-0 017700	0 000000	0	106
C1	E20	3 066717	0.103040	-0.017600	0.000000	0	106
C1	F20	3.000717	0.100049	-0.017000	0.000000	0	100
E S		3.071125	0.136530	-0.018500	0.000000	0	100
C9	F14	3.076169	0.115579	-0.018400	0.000000	0	106
C1	F18	3.077846	0.103049	-0.016300	0.000000	0	106
C8	F16	3.133166	0.117584	-0.012100	0.000000	0	106
F5	H7	3.181713	0.256119	-0.031900	0.000000	0	106
Н7	C8	3.191555	0.096333	-0.007500	0.00000	0	106
н7	C11	3 353732	0 245823	-0 008800	0 000000	0	107
	D1 C	2.262207	0.243023	0.000000	0.000000	0	107
F 4	F10	3.303307	0.113220	-0.004300	0.000000	0	107
F.3	F15	3.431130	0.243/81	0.00/900	0.000000	0	107
F16	F20	3.483088	0.072016	-0.011400	0.000000	0	107
Н7	F13	3.491804	0.158221	0.005600	0.000000	0	107
06	F14	3.495897	0.072124	-0.015200	0.000000	0	107
H7	F18	3.499233	0.220456	0.008200	0.000000	0	107
F20	F22	3 506105	0 071479	-0 011300	0 000000	0	107
E10	522	3 516793	0.071596	_0 011100	0.000000	0	107
C1	E22	2 510100	0.07157	0.021000	0.000000	0	107
C1 .	FZZ	3.518100	0.12/15/	-0.024800	0.000000	0	107
F14	F18	3.522450	0.072231	-0.010900	0.000000	0	107
06	C12	3.531747	0.126190	-0.009900	0.000000	0	107
C8	F20	3.550507	0.119203	-0.024000	0.000000	0	107
C11	F14	3.568245	0.127910	-0.019100	0.000000	0	107
F3	06	3.601300	0.072661	-0.010500	0.00000	0	107
C 9	F18	3 601433	0 119633	-0 021700	0 000000	0	107
06	E16	2 610002	0.072004	0.021700	0.000000	0	107
00	F10 F10	3.019003	0.072904	-0.013300	0.000000	0	107
CIZ	F13	3.644358	0.072231	-0.01/800	0.000000	0	107
F.3	F.T 3	3.684054	0.210890	-0.009800	0.000000	0	10/
C10	F19	3.698800	0.072339	-0.018100	0.000000	0	107
C10	F16	3.705899	0.131779	-0.015700	0.000000	0	107
C8	F21	3.708030	0.072769	-0.016600	0.000000	0	107
F4	C8	3.712890	0.124685	-0.016100	0.000000	0	107
C11	F17	3.715073	0.072231	-0.018000	0.00000	0	107
F5	C9	3 720766	0 134896	-0 025800	0 000000	0	107
C1	E10	2 7/20/00	0.072521	0.023000	0.000000	0	107
C1 20	F19	3.743000	0.073321	-0.01/400	0.000000	0	107
08	F15	3.141212	0.0/3199	-0.018200	0.000000	0	107
C9	F21	3.749411	0.072769	-0.016800	0.000000	0	107
C12	F15	3.755106	0.072769	-0.017800	0.000000	0	107
C9	F13	3.756369	0.073306	-0.016400	0.000000	0	107
C1	F17	3.769241	0.072984	-0.017600	0.000000	0	107
H7	C10	3.802905	0.161983	0.001000	0.00000	0	107
ц7	F16	3 868380	0 176404	-0 028000	0 000000	0	107
11 / E 2	117	2.000300	0.100010	0.020000	0.000000	0	107
r 3 ~ 0	п/ а1 í	3.0/3/90	0.100013	-U.UI/900	0.000000	U	10/
C2	C11	3.971900	0.069627	-0.022100	0.00000	U	108
C2	C10	4.003482	0.070128	-0.022600	0.00000	0	108
F5	F16	4.106520	0.225778	-0.008100	0.00000	0	109
F13	F22	4.116174	0.107607	-0.023500	0.000000	0	109
F4	F14	4.117088	0.211858	0.002100	0.000000	0	109
F2	F13	4 132100	0 131/00	-0 028100	0 000000	0	100
£ 4 0 (F 1 7	T. IJOE20	0.104440	0.020100	0.000000	0	100
00	Ľ 1 /	4.140330	0.104448	-0.014300	0.000000	U	T03
CII	F13	4.145834	0.0/5226	-0.019900	0.000000	U	109
C8	F19	4.154060	0.075917	-0.018000	0.00000	0	109
F14	F21	4.161864	0.110273	-0.021600	0.00000	0	109
F18	F19	4.184785	0.111556	-0.024900	0.000000	0	109
H7	C12	4.190704	0.196556	-0.001700	0.000000	0	109
F17	F20	4 202051	0 110865	-0 024600	0 000000	0	100
' F16	E20	1 207760	0 111161	-0 0224000	0 000000	0	100
LTO LTO		4.20//09	0.140654	-0.022400	0.000000	0	109
E.D	FID C1C	4.218318	U.142654	-0.042600	0.000000	U	109
F5	C10	4.229794	υ.079965	-0.022700	υ.υυυυοο	υ	109

C10	F15	4.239352	0.076214	-0.019900	0.000000	0	109
F15	F22	4.245650	0.107508	-0.023800	0.000000	0	109
C9	F17	4.247085	0.077398	-0.018300	0.00000	0	109
C1	F21	4 257971	0 075720	-0 014200	0 000000	0	109
06	F19	4 271484	0 104646	-0.018500	0 000000	0	109
H7	F14	4 302931	0 107481	-0.015700	0.000000	0	110
E1 /	E14 E15	4.302931	0.107401	-0.013700	0.000000	0	110
F14 E2	C11	4.322043	0.117554	-0.020400	0.000000	0	110
F 3	CII	4.323330	0.113690	-0.019/00	0.000000	0	110
F.T 3	F.T 0	4.380943	0.1183/2	-0.013400	0.000000	0	110
F4	C11	4.396587	0.080306	-0.021000	0.000000	0	110
06	F22	4.423391	0.113079	-0.019100	0.000000	0	110
C2	C12	4.437995	0.079695	-0.025000	0.000000	0	110
F13	F20	4.461388	0.153588	-0.025200	0.000000	0	110
F3	C10	4.466958	0.127532	-0.025000	0.000000	0	110
H7	F19	4.469800	0.249467	-0.020900	0.000000	0	110
F14	F19	4.490419	0.161527	-0.016800	0.00000	0	110
F14	F20	4 495637	0 113079	-0 024200	0 000000	0	110
E15	E10	4.503080	0.159270	-0 023600	0.000000	0	110
F1J	F10	4.503080	0.130270	-0.023000	0.000000	0	110
E 3	FZZ	4.504651	0.227009	-0.042800	0.000000	0	110
CZ	F20	4.510653	0.111451	-0.023700	0.000000	0	110
C2	F18	4.510725	0.109415	-0.023500	0.000000	0	110
06	F21	4.522857	0.163665	-0.002700	0.000000	0	110
F16	F18	4.577196	0.114199	-0.020000	0.000000	0	110
F5	F18	4.620184	0.148092	-0.024200	0.000000	0	110
F16	F17	4.644910	0.169670	-0.013900	0.000000	0	110
C2	F22	4.645839	0.164784	-0.033400	0.000000	0	110
F13	F21	4.648483	0.086718	-0.017100	0.000000	0	110
F17	F19	4 657663	0 087736	-0 015700	0 000000	0	110
E3	C12	4 680406	0 129568	-0.029300	0 000000	0	110
E /	E20	4.000400	0.136499	-0.029300	0.000000	0	110
E 4 E 1 0	F20	4.729024	0.130409	-0.020300	0.000000	0	110
F13	FIS	4.734922	0.086/18	-0.018400	0.000000	0	110
F15	F21	4.742229	0.08/939	-0.016300	0.000000	0	110
F5	C11	4.896733	0.111496	-0.031000	0.000000	0	111
C2	F19	4.936791	0.084321	-0.023200	0.000000	0	111
C2	F17	4.943140	0.086619	-0.024900	0.000000	0	111
F5	F17	4.954540	0.083522	-0.021200	0.000000	0	111
F4	C10	4.963499	0.108099	-0.022300	0.000000	0	111
F3	F19	5.051138	0.149061	-0.019600	0.000000	0	111
H7	F17	5.060181	0.138771	0.000300	0.000000	0	111
F5	C12	5.066849	0.096710	-0.028300	0.000000	0	111
H7	F22	5.089364	0.182930	-0.017200	0.00000	0	111
н7	F21	5 127377	0 249767	0 012400	0 000000	0	111
E3	F20	5 166971	0.125279	-0.015800	0.000000	0	112
E 4	C1 2	5.201077	0.120270	0.010000	0.000000	0	110
F 4 E 2	C12 E17	5.221077	0.100049	-0.022100	0.000000	0	112
F S	F1/	5.225729	0.1/3231	-0.028100	0.000000	0	112
E'4	F19	5.22/6/4	0.084495	-0.018400	0.000000	0	112
F4	F18	5.265048	0.139513	-0.026800	0.000000	0	112
F3	F18	5.270566	0.124371	-0.022200	0.000000	0	112
F5	F20	5.306571	0.150416	-0.032300	0.000000	0	112
F5	F22	5.322773	0.176754	-0.034800	0.000000	0	113
F13	F19	5.405820	0.073388	-0.019200	0.000000	0	113
F15	F17	5.503685	0.073689	-0.019500	0.000000	0	113
F4	F22	5.543039	0.179461	-0.025600	0.000000	0	113
C2	F21	5.733992	0.075520	-0.022400	0.000000	0	114
F5	F19	6.007721	0.137624	-0.034900	0.00000	0	115
F3	F21	6.010382	0.113516	-0.027100	0.000000	0	115
F4	F17	6 047957	0 133005	-0.023800	0 000000	Õ	115
F 5	F21	6 315151	0 104973	-0.024100	0 000000	0	116
E.)	F21	6 456077	0.102162	-0 020200	0 000000	0	116
E 4	сст	0.400077	0.102103	0.020200	0.000000	0	1 1 V

Table 9-5: Z-Matrix used in the refinement of the gas-phase structure of perfluorocyclohexan-1,1-diol. Distances r are given in Å, angles a and dihedrals d are given in °. The numbers written in line with the parameter indicate the groups they were refined in.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	rcfl rco 2 a roh 1 a rcc1 2 af rcc2 2 af rcc3 1 ac rcc4 1 ac rcc5 8 r rcf2 1 ac rcf3 1 ac rcf3 1 ac rcf3 1 ac rcf4 1 ac rcf5 5 ac rcf6 5 ac rcf7 5 ac rcf8 6 ac rcf9 6 ac rcf10 7 ac rcf11 7 acc rcf11 7 acc	fco coh 2 cc1 3 cc2 3 cc2 2 cc6 6 cf1 2 cf2 3 cf3 2 cf3 2 cf3 2 cf4 3 cf5 10 cf6 11 cf7 12 cf8 13 cf8 13 sf10 8 oh2 3	dfcoh aocc1 dfccc1 dfccc2 fcccc dfccf1 doccf1 dfccf2 dfccf3 dfccf3 dfccf4 dfccf5 dfccf1 accf11 accf12 docoh	-1 1 -4 -1	
Variables rcf1	1.37821639		1		
rco	1.35751239		1		
roh rccl	0.96681402 1.54699159		20		
rcc2	1.55296559		2		
rcc3 rcc4	1.53817559		2		
rcc5	1.54172059		2		
rcf2	1.32637339		1		
rcf3	1.34804839		1		
rcf5	1.34242839		1		
rcf6 rcf7	1.33321839		1		
rcf8	1.33274539		1		
rcf9 rcf10	1.33415239 1.33013439		1		
rcf11	1.33487539		1		
ronz afco	111.17846643		3		
acoh	108.02410668		4		
arcci aoccl	109.70161895		6		
afcc2	108.55561895		6		
accc1	115.13369311		6 5		
accc2	115.17269311		5		
accii accf2	109.38264010		7		
accf3	107.56964010		7		
accf5	109.24964010		7		
accf6	108.73164010		7		
accf8	108.36864010		7		
accf9	108.72764010		7 7		
accf10	108.56464010		7		
accf12	108.05764010		7		
dfcoh	65.21901580		10		
dfccc1	-170.58921345		12 12		
fcccc	-133.30911068		21		
dfccf1	72.74386190		13		
dfccf2	-71.57853810		13		
doccf2	170.05273114		14		
dfccf4	172.19403114		14		
dfccf5	70.36386190		13		
docoh	178.02639964		11		

 Table 9-6: Cartesian coordinates for the refined structure of perfluorocyclohexan-1,1-diol.

N	 	An	Mass	X	Y	Z			
1	С	6	12.00000000	-0.101141759579	1.528656723853	0.215534207411			
2	0	8	15.99491462	-0.205251312690	2.738169765175	-0.436937867025			
3	0	8	15.99491462	-0.024145319314	1.701598986988	1.559782100267			
4	Н	1	1.00782503	-0.861836077234	2.078486743095	1.861376467658			
5	С	6	12.00000000	1.211319217446	0.823101542246	-0.200183289857			
6	С	6	12.00000000	-1.348263350322	0.670863986967	-0.131714220430			
7	С	6	12.00000000	1.349344425873	-0.634655169373	0.276023043867			
8	С	6	12.00000000	-1.222278004215	-0.827665089273	0.191585075081			
9	С	6	12.00000000	0.130184192503	-1.421962622684	-0.244263094242			
10	F	9	18.99840320	2.241101960286	1.443226029768	0.360405221590			
11	F	9	18.99840320	1.328824265762	0.957469673709	-1.536361503038			
12	F	9	18.99840320	-2.401573759003	1.211928094445	0.501687549962			
13	F	9	18.99840320	-1.540240909318	0.686536151745	-1.460252126985			
14	F	9	18.99840320	2.463414579007	-1.150266407053	-0.244038498435			
15	F	9	18.99840320	1.390417141414	-0.647682403254	1.607040146176			
16	F	9	18.99840320	-2.221617230472	-1.482073932304	-0.399414449853			
17	F	9	18.99840320	-1.393379826066	-0.990310210200	1.504685725377			
18	F	9	18.99840320	0.204159959861	-2.671020016553	0.207002564801			
19	F	9	18.99840320	0.167670869311	-1.430458698566	-1.578584966746			
20	Η	1	1.00782503	-0.226824918196	2.585105342319	-1.391512278239			
Rot	Rotational constants (MHz): 558.01200190 539.73361179 399.01541392								

Table 9-7: Full listing of structural parameters of perfluorocyclohexan-1,1-diol. *r*_a, *r*_g, *r*_e values are given in Å. Errors correspond to one time standard deviation. For atom numbering, see Table S9

No	Type	i	÷	k	1	a-Value	a-Value	e-Value	Error
		1				1 20450	1 20644	1 27000	0 00017
T	stretch	T	2	0	0	1.38452	1.38644	1.3/822	0.0001/
2	stretch	1	3	0	0	1.36601	1.36782	1.35751	0.00017
3	stretch	1	5	0	0	1.55829	1.56017	1.54699	0.00038
4	stretch	1	6	0	0	1.56487	1.56682	1.55297	0.00038
5	stretch	2	20	0	0	0.98111	0.98606	0.96701	0.00441
6	stretch	3	4	0	0	0 98111	0 98607	0 96681	0 00441
7	strotch	5	7	0	0	1 55027	1 55210	1 53077	0.00039
,	stretch	5	10	0	0	1 22207	1 22474	1 22627	0.00033
8	stretch	5	10	0	0	1.33297	1.334/4	1.32637	0.00017
9	stretch	5	11	0	0	1.35515	1.35701	1.34805	0.00017
10	stretch	6	8	0	0	1.54928	1.55111	1.53818	0.00038
11	stretch	6	12	0	0	1.34781	1.34966	1.34291	0.00017
12	stretch	6	13	0	0	1.34913	1.35099	1.34243	0.00017
13	stretch	7	9	0	0	1 55182	1 55366	1 54172	0 00038
1 /	strotch	- 7	1 /	0	0	1 33032	1 3/110	1 33322	0.00017
1 4	Stretti	,	1 -	0	0	1.00001	1.34110	1.00171	0.00017
15	stretch	/	15	0	0	1.33821	1.33999	1.331/1	0.0001/
16	stretch	8	9	0	0	1.55113	1.55297	1.54023	0.00038
17	stretch	8	16	0	0	1.33895	1.34073	1.33275	0.00017
18	stretch	8	17	0	0	1.34055	1.34234	1.33415	0.00017
19	stretch	9	18	0	0	1.33663	1.33841	1.33013	0.00017
20	stretch	9	19	0	0	1 34058	1 34237	1 33488	0 00017
21	bond	2	1	ş	0	2.01000	1.01207	111 17947	0 34044
21	bena	2	1	5	0		-	111.17047	0.34944
22	bend	2	1	5	0		-	109./0162	0.08244
23	bend	2	1	6	0		1	108.55562	0.08244
24	bend	1	2	20	0		1	109.27511	0.64272
25	bend	3	1	5	0		1	106.02662	0.08244
26	bend	3	1	6	0		1	109.71462	0.08244
27	bend	1	2	4	0		1	108.02411	0 64272
20	bond	5	1	c I	0		-	111 67260	0.25210
20	bena	5	1	0	0		-	111.07200	0.33319
29	bena	1	5	/	0		-	115.13369	0.251/8
30	bend	1	5	10	0		1	109.38264	0.06313
31	bend	1	5	11	0		1	107.14864	0.06313
32	bend	1	6	8	0		1	115.17269	0.25178
33	bend	1	6	12	0		1	107.56964	0.06313
34	bend	1	6	13	0		1	109 24964	0 06313
35	bond	7	5	10	0		- 1	104 02373	0 34153
20	bena	,	J E	11	0		-	112 14767	0.54155
36	bena	/	5	11	0		-	113.14/6/	0.51556
37	bend	5	.7	9	0		1	107.95160	0.30670
38	bend	5	7	14	0		1	108.68764	0.06313
39	bend	5	7	15	0		1	108.73164	0.06313
40	bend	10	5	11	0		1	107.73703	0.31929
41	bend	8	6	12	0		1	110 95445	0 30780
12	bond	0	6	13	0		-	103 36159	0.30700
42	bena	0	0	13	0		-	103.30130	0.43274
43	bena	6	8	9	0		-	112.851//	0.32450
44	bend	6	8	16	0		1	108.88964	0.06313
45	bend	6	8	17	0		1	108.36864	0.06313
46	bend	12	6	13	0		1	110.48188	0.35000
47	bend	9	7	14	0		1	109.36939	0.63416
48	bend	9	7	15	0		1	110 89694	0 89135
10	bond	7	à	-0	0		-	113 60317	0 30465
49	bena	,	9	10	0		-	100 70764	0.30403
50	bena	<i>'</i>	9	10	0		-	100.72704	0.00313
51	bend	/	9	19	0		-	108.56464	0.06313
52	bend	14	7	15	0		1	111.11985	0.40475
53	bend	9	8	16	0		1	110.08891	0.65969
54	bend	9	8	17	0		1	110.12598	0.73609
55	bend	8	9	18	0		1	108.37064	0.06313
56	bend	8	9	19	0		- 1	108.05764	0.06313
57	bend	16	Å	17	ñ		- 1	106 28547	0 34354
50	bend	10	9	10	0		-	100 36/0/	0 21204
20	toraite	7 O	2	1	2		-	170 000404	1 1/200
59	COISTOU	20	~	1	3		1	L/0.UZ04U	1.14020
60	corsion	2	1	3	4			05.21902	1.14269
61	torsion	20	2	1	5			61.07542	1.16447
62	torsion	2	1	5	7		-1	170.58921	0.34463
63	torsion	2	1	5	10			72.74386	0.39745
64	torsion	2	1	5	11		-	-43.77789	0.74594
65	torsion	2.0	2	1	6		-	-61.19901	1.16164
66	torsion		1	É.	õ		1	164 13600	- · · · · · · · · · · · · · · · · · · ·
00	torration	2	1	0	10		1	71 57055	0.34403
6/	corsion	2	1	6	12		-	-/1.5/854	0.39/45
68	torsion	2	1	6	13			48.37784	0.40131
69	torsion	4	3	1	5		- 1	L75.60770	1.15445
70	torsion	3	1	5	7			69.27080	0.42656
71	torsion	3	1	5	10		-	-47.39612	0.30227
72	torsion	3	1	5	11		- 1	163.91787	0.46070
72	toreion	Л	2	1	6		-	-54 87103	1 163/0
13	torsi	4	2	т С	0		-	_7/ 10010	1.10342
/4	corsion	3	Ţ	6	8		-	-/4.18812	0.59940
75	corsion	3	1	6	ΤZ			50.09636	0.72909
76	torsion	3	1	6	13		1	170.05273	0.46070
77	torsion	7	5	1	6		-	-50.18984	0.33872
78	torsion	10	5	1	6		-1	166.85677	0.29097
79	torsion	11	.5	1	6			76.62149	0.57780
2 N	torsion	5	1	ĥ	Ř			43 06906	0 45030
00	torsi	J F	1	0	10		-	167 25254	0.40000
81	corsion	5	1	6	12		1	10/.35354	0.55656
82	torsion	5	1	6	13		-	-/2.69009	U.38594

83	torsion	1	5	7	9	56.27199	0.53080
84	torsion	1	5	7	14	174.80191	0.54678
85	torsion	1	5	7	15	-64.11076	0.92336
86	torsion	1	6	8	9	-44.58897	0.62943
87	torsion	1	6	8	16	-167.14678	0.60140
88	torsion	1	6	8	17	77.64457	0.61339
89	torsion	9	7	5	10	175.94335	0.45688
90	torsion	14	7	5	10	-65.52674	0.39745
91	torsion	15	7	5	10	55.56059	0.77670
92	torsion	9	7	5	11	-67.42321	0.65407
93	torsion	14	7	5	11	51.10670	0.27578
94	torsion	15	7	5	11	172.19403	0.46070
95	torsion	5	7	9	8	-56.53645	0.35660
96	torsion	5	7	9	18	-177.34589	0.32611
97	torsion	5	7	9	19	63.75955	0.42536
98	torsion	9	8	6	12	-167.07833	0.64104
99	torsion	16	8	6	12	70.36386	0.39745
100	torsion	17	8	6	12	-44.84479	0.40824
101	torsion	9	8	6	13	74.49219	0.44720
102	torsion	16	8	6	13	-48.06562	0.63239
103	torsion	17	8	6	13	-163.27427	0.46070
104	torsion	6	8	9	7	52.14292	0.25245
105	torsion	6	8	9	18	173.15244	0.24806
106	torsion	6	8	9	19	-68.43862	0.31359
107	torsion	8	9	7	14	-174.62990	0.24313
108	torsion	18	9	7	14	64.56065	0.23374
109	torsion	19	9	7	14	-54.33390	0.31121
110	torsion	8	9	7	15	62.47837	0.40432
111	torsion	18	9	7	15	-58.33108	0.44813
112	torsion	19	9	7	15	-177.22563	0.40093
113	torsion	7	9	8	16	174.02727	0.64489
114	torsion	7	9	8	17	-69.09853	0.44936
115	torsion	18	9	8	16	-64.96320	0.61431
116	torsion	19	9	8	16	53.44573	0.69677
117	torsion	18	9	8	17	51.91100	0.45844
118	torsion	19	9	8	17	170.31994	0.47590

Table 9-8: Full listing of interatomic distances, refined vibrational amplitudes I and corrections of perfluorocyclohexanol (fluorine axial), all is given in Å. The numbers at the Gu column indicate the groups the amplitudes were refined in.

At1	At2	r_a	1	corr	a	Gr	Gu
02	Н20	0.981109	0.069700	-0.014100	0.000000	0	0
03	H4	0.981114	0.069700	-0.014300	0.000000	0	0
C5	F10	1.332973	0.048468	-0.006600	0.000000	0	100
C9	F18	1.336634	0.048680	-0.006500	0.000000	0	100
C7	F15	1.338214	0.048785	-0.006500	0.000000	0	100
C8	F16	1.338945	0.048891	-0.006200	0.000000	0	100
C7	F14	1.339318	0.048891	-0.006100	0.000000	0	100
C8	F17	1.340552	0.048997	-0.006400	0.000000	0	100
C9	F19	1.340575	0.048997	-0.005700	0.000000	0	100
C6	F12	1.347811	0.049949	-0.004900	0.000000	0	100
C6	F13	1.349128	0.050055	-0.006700	0.000000	0	100
C5	F11	1.355148	0.050267	-0.007100	0.000000	0	100
C1	03	1.366012	0.049738	-0.008500	0.000000	0	100
C1	02	1.384516	0.051643	-0.006300	0.000000	0	100
C6	C8	1.549276	0.053294	-0.011100	0.000000	0	101
C5	C7	1.550266	0.053393	-0.010500	0.000000	0	101
07	C9 C0	1.551130	0.053393	-0.010900	0.000000	0	101
C7	09	1.551821	0.053492	-0.010100	0.000000	0	101
CI CI	05	1.558292	0.054088	-0.011300	0.000000	0	101
C1 01	114	1.01000	0.055278	-0.011900	0.000000	0	101
C1	H4 H20	1.912308	0.100500	-0.017700	0.000000	0	0
UI 16	n20 E17	2 140671	0.101/00	-0.01/300	0.000000	0	102
F10	F11	2.140071	0.057499	-0.006800	0.000000	0	102
F18	F19	2.180445	0.057197	-0.005900	0.000000	0	102
F14	F15	2 204919	0.057100	-0.007100	0.000000	0	102
F12	F13	2 212059	0.057877	-0 005900	0.000000	0	102
F11	H20	2 240752	0.05785	0.005500	0.000000	0	102
02	03	2 267427	0.059528	-0.010400	0.000000	Õ	102
C8	F13	2 271388	0 066908	-0.008100	0 000000	0	102
C7	F10	2.275829	0.065646	-0.013100	0.000000	0	102
н4	F12	2 327555	0 227041	-0 098100	0 000000	0	102
03	C.5	2.340445	0.067199	-0.017600	0.000000	0	102
C8	F18	2.344263	0.066034	-0.013400	0.000000	0	102
C8	F19	2.344883	0.067199	-0.014900	0.000000	0	102
C1	F11	2.346023	0.065549	-0.013600	0.000000	0	102
C6	F17	2.346439	0.066811	-0.014200	0.000000	0	102
C5	F15	2.347551	0.067394	-0.010600	0.000000	0	102
C7	F18	2.348805	0.066131	-0.011500	0.000000	0	102
C5	F14	2.350087	0.066131	-0.012600	0.000000	0	102
C7	F19	2.351838	0.067102	-0.013200	0.000000	0	102
C6	F16	2.352007	0.065937	-0.013300	0.000000	0	102
C1	F12	2.357598	0.065160	-0.017900	0.000000	0	102
C1	F10	2.362174	0.065937	-0.013900	0.000000	0	102
С9	F14	2.363296	0.066131	-0.014300	0.000000	0	102
С9	F17	2.369720	0.067297	-0.010400	0.000000	0	102
C9	F16	2.370880	0.066131	-0.013200	0.000000	0	102
C1	F13	2.375487	0.066520	-0.011500	0.000000	0	102
C9	F15	2.379403	0.067005	-0.009800	0.000000	0	102
F13	H20	2.386022	0.241025	-0.076400	0.000000	0	102
C8	F12	2.389809	0.065646	-0.013500	0.000000	0	102
02	C6	2.397488	0.066034	-0.015600	0.000000	0	102
03	C6	2.401317	0.067005	-0.018700	0.000000	0	102
02	C5	2.406086	0.066908	-0.012300	0.000000	0	102
02	F I I	2.425972	0.06/102	-0.013500	0.000000	0	102
02	П4 С9	2.430024	0.100100	-0.022800	0.000000	0	102
UJ 1010	U9 E16	2.509910	0.001033	-0.017700	0.000000	0	103
C5	H20	2.520090	0.104420	-0.011800	0.000000	0	103
U/	п20 Сб	2.551056	0.167003	-0.010300	0.000000	0	103
C5	CG	2.534050	0.107993	-0.000000	0.000000	0	103
C6	C9	2 582239	0.062656	-0 017400	0.000000	0	103
C7	C8	2 593437	0.066520	-0.013200	0.000000	Õ	102
F10	F15	2.593894	0.105976	-0.015200	0.000000	0	103
03	F10	2 597261	0 103331	-0 021100	0 000000	0	103
C6	H20	2.605681	0.179485	-0.054400	0.000000	0	103
02	F11	2.607705	0.098863	-0.012900	0.000000	0	103
C1	C7	2.622281	0.062747	-0.017000	0.000000	0	103
C1	C8	2.629454	0.063385	-0.019900	0.000000	0	103
F12	F17	2.644010	0.104061	-0.022500	0.000000	0	103
F17	F18	2.662135	0.106159	-0.004900	0.000000	0	103
02	F13	2.669830	0.098133	-0.016800	0.000000	0	103
F16	F19	2.677121	0.105703	-0.012200	0.000000	0	103
F11	F19	2.678210	0.157505	-0.022600	0.000000	0	103
03	F12	2.678825	0.099957	-0.030900	0.000000	0	103
F10	F14	2.679161	0.100231	-0.006900	0.000000	0	103
F14	F19	2.684599	0.105429	-0.014400	0.000000	0	103
F13	F19	2.735215	0.198543	-0.012600	0.000000	0	104
F15	F18	2.737621	0.104973	-0.006100	0.000000	0	103
F11	F14	2.738684	0.105064	-0.018400	0.000000	0	103

03	F15	2.751089	0.157049	-0.008400	0.000000	0	103
F14	F18	2.775600	0.101143	-0.015100	0.00000	0	103
F16	F18	2.787205	0.100960	-0.018500	0.00000	0	103
F15	F17	2.815470	0.163889	-0.008800	0.000000	0	103
02	F12	2.851078	0.098771	-0.016600	0.000000	0	103
FIZ	F10	2.853304	0.100413	-0.006900	0.000000	0	103
C5	F19 F12	2.864174	0.122767	-0.023800	0.000000	0	104
F11 02	F10	2.809234	0.109384	0.013600	0.000000	0	102
02	F10	2.891400	0.100595	-0.010900	0.000000	0	103
C9 C0	F13 F11	2.938270	0.123602	-0.006200	0.000000	0	104
C9 C5	CO CO	2.9/03/3	0.124621	-0.015300	0.000000	0	104
C5 C0	C8 E15	2.981832	0.080246	-0.015200	0.000000	0	104
C8	F15 F15	2.986925	0.123384	-0.010000	0.000000	0	104
CE	F10	2.992100	0.124294	-0.009300	0.000000	0	104
03	C7	2.992007	0.121350	-0.023200	0.000000	0	104
C1	C9	3 020476	0.121330	-0.025300	0.000000	0	101
C5	E13	3 027040	0.030404	0.0023300	0.000000	0	104
C6	C7	3 037219	0.120307	-0.012700	0.0000000	0	104
C7	F17	3 040124	0.000240	-0 013800	0.0000000	0	103
CG	F11	3 041570	0 124730	-0 004800	0.000000	0	104
03	F17	3 042331	0.156776	-0.021700	0.000000	0	103
03	н20	3 089861	0.105650	-0.002500	0.000000	0	104
C1	F17	3 129885	0 124403	-0.019100	0.000000	0	104
03	C8	3 137931	0 120914	-0 022700	0 000000	0	104
F10	H20	3.177475	0.280751	0.057300	0.000000	0	104
H4	C5	3.191822	0.109248	-0.010000	0.000000	0	104
H4	F17	3.201350	0.361215	-0.066500	0.000000	0	104
F12	H20	3.232943	0.291872	-0.039300	0.000000	0	104
H4	H20	3.345888	0.230052	0.006900	0.000000	0	104
F13	F17	3.421534	0.072031	-0.012100	0.000000	0	105
H4	C8	3.441130	0.280751	-0.070100	0.000000	0	104
03	F11	3.478421	0.071711	-0.018600	0.000000	0	105
H4	F10	3.489253	0.156654	0.015700	0.000000	0	105
F17	F19	3.495544	0.071391	-0.011700	0.000000	0	105
C1	F19	3.505549	0.129335	-0.034600	0.000000	0	105
C6	F15	3.509843	0.127308	-0.008100	0.000000	0	105
F15	F19	3.511965	0.071391	-0.011100	0.000000	0	105
F11	F15	3.543554	0.071604	-0.013500	0.000000	0	105
03	F13	3.546886	0.071817	-0.018500	0.000000	0	105
H4	F15	3.560525	0.246079	-0.015200	0.000000	0	105
C8	F11	3.570587	0.130189	-0.009600	0.000000	0	105
C5	F17	3.619807	0.128375	-0.017100	0.000000	0	105
C7	F13	3.620360	0.125280	0.000400	0.000000	0	105
С9	F10	3.629434	0.074592	-0.019600	0.00000	0	105
03	С9	3.635306	0.123359	-0.024900	0.00000	0	105
C5	F18	3.676906	0.074699	-0.017800	0.00000	0	105
C6	F18	3.718897	0.074699	-0.018500	0.00000	0	105
С5	F12	3.719019	0.074378	-0.018100	0.000000	0	105
C6	F10	3.719858	0.074912	-0.015500	0.000000	0	105
H4	F13	3.724330	0.175008	-0.059500	0.000000	0	105
C8	F14	3.742642	0.074912	-0.017300	0.00000	0	105
C7	F16	3.747269	0.074912	-0.015500	0.00000	0	105
C9	F12	3.748656	0.075125	-0.019900	0.000000	0	105
C1	F16	3.754907	0.076833	-0.021400	0.00000	0	105
C1	F14	3.756649	0.075872	-0.019700	0.00000	0	105
02	C8	3.783326	0.075872	-0.022400	0.000000	0	105
02	C /	3.800170	0.076299	-0.018500	0.000000	0	105
H4	07	3.8/0//0	0.1//569	-0.028400	0.000000	0	105
C8	H20	3.950345	0.183865	-0.058800	0.000000	0	105
C7	HZU F10	3.964912	0.187600	-0.011200	0.000000	0	105
F10	1120	4.001414	0.12/200	-0.022000	0.000000	0	100
F13	F18	4.112730	0.273934	-0.011500	0.000000	0	106
C5	F16	4 155677	0.091516	-0 015800	0.0000000	0	106
C8	F10	4 165130	0 090726	-0 020200	0 000000	0	106
F11	F18	4.199028	0.127626	-0.019300	0.000000	0	106
н4	F11	4 204771	0 125257	-0.009500	0 000000	0	106
02	C9	4.204979	0.091855	-0.026900	0.000000	0	106
C7	F12	4.207306	0.091403	-0.020400	0.000000	0	106
03	F14	4.210538	0.125482	-0.018300	0.000000	0	106
F15	F16	4.228513	0.129093	-0.013200	0.000000	0	106
C1	F18	4.233168	0.091178	-0.022400	0.000000	0	106
С9	H20	4.234828	0.187885	-0.051500	0.000000	0	106
C6	F14	4.242375	0.090952	-0.016500	0.000000	0	106
F14	F17	4.253245	0.122399	-0.015500	0.000000	0	105
F12	F19	4.253711	0.130786	-0.021600	0.000000	0	106
H4	С9	4.260485	0.248933	-0.056800	0.000000	0	106
F11	F12	4.265434	0.127062	-0.007000	0.000000	0	106
F10	F13	4.265696	0.125708	-0.001200	0.000000	0	106
02	F15	4.276439	0.127288	-0.011700	0.000000	0	106
03	F16	4.360155	0.125031	-0.023900	0.000000	0	106
02	F19	4.375290	0.182355	-0.037100	0.00000	0	106
F12	F15	4.383879	U.179873	-0.018200	0.00000	0	106
02	F17	4.390822	U.126498	-0.022400	0.00000	0	106
F13	F15	4.447354	0.116070	-0.000200	0.000000	U	107
F11	F16	4.462395	U.186079	-0.007100	0.000000	U	106
03	F.T.A	4.4/1309	0.128529	-0.033300	0.000000	U	100
п4 г11	0 L 1 1 7	4.313333	0.303919	-0.001900	0.000000	0	100
г±т	r ± /	7.00112	0.100034	0.013/00	0.000000	J	τUO

F10	F17	4.544365	0.182017	-0.023200	0.000000	0	106
F13	F14	4.570913	0.160587	-0.001200	0.000000	0	107
03	F18	4.600487	0.158555	-0.017700	0.000000	0	107
F10	F18	4.611939	0.087510	-0.018500	0.000000	0	107
F10	F12	4.677880	0.085884	-0.027300	0.000000	0	107
F15	H20	4.693463	0.169430	0.003100	0.000000	0	107
02	F16	4.700849	0.089339	-0.023500	0.000000	0	107
F12	F18	4.706207	0.088425	-0.020700	0.000000	0	107
F16	H20	4.710292	0.224924	-0.072900	0.000000	0	107
F14	F16	4.719436	0.088730	-0.020100	0.000000	0	107
02	F14	4.740655	0.090152	-0.020600	0.000000	0	107
F14	H20	4.748363	0.233258	-0.004200	0.000000	0	107
F17	H20	4.792232	0.173597	-0.045400	0.000000	0	107
H4	F19	5.084550	0.204190	-0.064000	0.000000	0	107
H4	F14	5.109869	0.154082	-0.019200	0.000000	0	107
H4	F18	5.193620	0.275234	-0.052500	0.000000	0	107
F10	F16	5.410758	0.203824	-0.020900	0.000000	0	108
F12	F14	5.481221	0.204090	-0.021900	0.000000	0	108
02	F18	5.496848	0.110453	-0.034100	0.000000	0	109
F18	H20	5.558203	0.240933	-0.047500	0.000000	0	110