Supporting Information

The Open d-Shell Enforces the Active Space in 3d Metal Catalysis: Highly Enantioselective Chromium(II) Pincer Catalysed Hydrosilylation of Ketones

Christian Schiwek,⁺ Vladislav Vasilenko,⁺ Hubert Wadepohl, Lutz H. Gade*

Anorganisch-Chemisches Institut, Universität Heidelberg Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

E-Mail: Lutz H. Gade - lutz.gade@uni-heidelberg.de

Contents

1.	General Remarks	3			
2.	Synthesis of the Precatalysts ^R (PdmBox)Cr(CH ₂ SiMe ₃)	5			
	2.1 Synthesis of the ^R (PdmBox)CrCl Complexes	5			
	2.1.1 $[^{(R)-Ph}(PdmBox)CrCl]$	5			
	2.1.2 $[^{(S)-iPr}(PdmBox)CrCl]$	6			
	2.2 Syntheses of the $^{R}(PdmBox)Cr(CH_{2}SiMe_{3})$ Complexes	6			
	2.2.1 $[^{(R)-Ph}(PdmBox)Cr(CH_2SiMe_3)]$	6			
	2.2.2 $[^{(S)-iPr}(PdmBox)Cr(CH_2SiMe_3)]$	7			
3.	Catalysis	8			
	3.1 Catalytic Enantioselective Reduction	8			
	3.2 Enantioselective Hydrosilylation of Ketones	10			
	3.3 Characterization of Alcohols	10			
4.	Mechanistic Studies	20			
	4.1 Radical Trap Experiments	20			
	4.2 Labelling Experiments	20			
	4.3 Kinetic Isotope Effect	21			
	4.4 Hammett-Correlation	22			
5.	Chromatographic Data	24			
6.	Crystal Structure Data				
7.	7. Literature				

1. General Remarks

Reactions

Unless stated otherwise, all reactions were carried out under inert conditions in heat-gun dried glassware and under an atmosphere of argon using standard Schlenk techniques or inside of a Glovebox (M. Braun Unilab 2000). All chemicals were bought from commercial suppliers (Acros, Sigma-Aldrich, Alfa Aesar or ABCR) and were used without any further purification, unless mentioned otherwise. Dry solvents were taped from a solvent purification system (M. Braun SPS-800) and used immediately. Manual degassing of solvents, if needed, was done by performing three consecutive freeze-pump-thaw cycles. Dry DMF was purchased from Sigma-Aldrich. Deuterated solvents were purchased from Deutero GmbH or Sigma-Aldrich and dried over sodium (C_6D_6), distilled, degassed and stored under an atmosphere of argon. All chromium salts were purchased with a trace metal purity of 99.9 %. The PdmBox-ligands,¹ (tmeda)CrCl₂² and deuterated Silane³ were synthesized according to reported procedures.

Analytics

Nuclear magnetic resonance (NMR) spectra were recorded on Bruker Avance II 400 and Bruker Avance III 600 at room temperature. Chemical shifts are reported in ppm, coupling constants in Hz. Chemical shifts were referenced to residual solvent protons and the ¹³C isotope of deuterated solvents.⁴ Multiplicities are indicated as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Atom numbering is illustrated in the respective figure shown above each procedure.

Mass spectrometry (MS) and high-resolution MS were obtained at the mass spectroscopy department of the University of Heidelberg. Electron spray ionization (ESI) was carried out on a Bruker ApexQe hybrid 9.4 T FT-IVR machine, liquid injection field desorption ionization (LIFDI) was performed on a JEOL JMS- 700 instrument.

Elemental analysis (EA) for C, H, and N was performed at a facility of the Chemistry Department at the University of Heidelberg on a vario MICRO Cube or vario EL Cube.

High Performance Liquid Chromatography (HPLC) measurements were carried out on Agilent Technologies 1260 Infinity HPLC equipped with solvent pump, auto-sampler, membrane solvent degasser and DAD detector.

Silica gel (SiO₂, pore size 60 Å) for flash column chromatography (FCC) was purchased from Sigma-Aldrich. Thin Layer chromatography (TLC) was performed with Polygram® SIL G/UV₂₅₄ purchased from Macherey-Nagel. Components were visualized by fluorescence quenching during irradiation with UV light (254 nm) or were revealed with Hanessian's stain.

X-ray Crystal Structure Determinations

Crystal data and details of the structure determinations are compiled in Table S2. Full shells of intensity data were collected at low temperature with an Agilent Technologies Supernova-E CCD diffractometer (Mo-K α radiation, microfocus X-ray tube, multilayer mirror optics). Detector frames (typically ω -, occasionally φ -scans, scan width 0.4°) were integrated by profile fitting.^{5,6} Data were corrected for air and detector absorption, Lorentz and polarization effects⁶ and scaled essentially by application of appropriate spherical harmonic functions.^{6,7,8}Absorption by the crystal was treated with a semiempirical multiscan method (as part of the scaling process), and augmented by a spherical correction.^{7,8} The structures were solved by the charge flip procedure⁹ and refined by full-matrix least squares methods based on F^2 against all unique reflections.¹⁰ All non-hydrogen atoms were given anisotropic displacement parameters. Hydrogen atoms were input at calculated positions and refined with a riding model.¹¹

CCDC 1850233-1850234 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/data_request/cif.

2. Synthesis of the Precatalysts ^R(PdmBox)Cr(CH₂SiMe₃)

2.1 Synthesis of the ^R(PdmBox)CrCl Complexes

The protioligand ^R(PdmBox)H (2.09 mmol, 1.0 eq.) was dissolved in THF (20 mL) and LiHMDS (2.30 mmol, 1.1 eq.) dissolved in THF (5 mL) was slowly added and the mixture was stirred for 30 min at rt. Subsequently, a suspension of (tmeda)CrCl₂ (2.09 mmol, 1.0 eq.) in THF (10 mL) was added dropwise to the reaction mixture and stirring was continued for 12 h at rt. Afterwards, the reaction was filtered, the solvent was removed, and the residue was redissovled in a mixture of toluene/pentane (1:3) and filtered over celite. The filtrate was evaporated to afford ^R(PdmBox)CrCl complex as dark-violet solid. Single crystals suitable for X-ray diffraction were obtained from a saturated solution of **2b** in *n*-pentane at -40 °C.

2.1.1 [^{(R)-Ph}(PdmBox)CrCl]

Yield: dark-violet solid (582.3 mg, 62 %).

¹**H NMR** (C₆D₆, 600.13 MHz, 295 K, paramagnetic): δ [ppm] = 23.34, 18.53, 5.25, 2.41, -37.81.

Magnetic Susceptibility (Evans, C₆D₆, 295 K)¹²: $\mu_{eff} = 4.75 \ \mu_b$.

EA: calcd. C: 63.69 %, H: 5.72 %, N: 7.96 %; found: C: 63.09 %, H: 5.93 %, N: 7.71 %.

HR-MS (ESI⁺): m/z calcd. for [C₂₈H₃₀ClCrN₃O₂], [M]⁺: 527.1422; found: 527.1421.

Yield: dark-violet solid (497.3. mg, 64 %).

¹H NMR (C₆D₆, 600.13 MHz, 295 K, paramagnetic): δ [ppm] = 32.03, 26.09, 19.23, 3.62, -36.95. **Magnetic Susceptibility** (Evans, C₆D₆, 295 K)¹²: μ_{eff} = 4.70 μ_{B} . **EA:** calcd. C: 57.45 %, H: 7.45 %, N: 9.14 %; found: C: 57.29 %, H: 7.31 %, N: 8.91 %. **HR-MS** (ESI⁺): m/z calcd. for [C₂₂H₃₂ClCrN₃O₂]⁺, [M]⁺: 459.1817; found: 459.1818.

2.2 Syntheses of the ^R(PdmBox)Cr(CH₂SiMe₃) Complexes

^R(PdmBox)CrCl complex (1.09 mmol, 1.00 eq.) was dissolved in toluene (50 mL), a solution of $Mg(CH_2SiMe_3)_2(THF)_2$ (1.10 mmol, 1.01 eq.) in toluene (20 mL) was added and the reaction was stirred for 12 h at rt. The reaction mixture was filtered, the solvent was removed, and the residue was redissolved in a mixture of toluene/pentane (1:10) and filtered over Celite. The filtrate was evaporated to afford ^R(PdmBox)Cr(CH₂SiMe₃) complex as dark-red solid. Single crystals suitable for X-ray diffraction were obtained from a saturated solution of **3b** in *n*-hexane at -40 °C.

2.2.1 [^{(R)-Ph}(PdmBox)Cr(CH₂SiMe₃)]

Yield: dark-red solid (442.7 mg, 70 %).

¹H NMR (C₆D₆, 600.13 MHz, 295 K, paramagnetic): δ [ppm] = 21.97, 20.21, 9.08 4.58, -24.46. Magnetic Susceptibility (Evans, C₆D₆, 295 K)¹²: μ_{eff} = 4.73 μ_{B} . **EA:** calcd. C: 66.29, H: 7.13, N: 7.25; found: C: 64.94, H: 6.90, N: 7.49.¹ **MS** (LIFDI⁺): m/z calcd. for [C₂₉H₃₁CrN₃O₂]⁺, [M-HSiMe₃]⁺: 505.6; found: 505.6.

2.2.2 [^{(S)-iPr}(PdmBox)Cr(CH₂SiMe₃)]

Yield: dark-red solid (409.7 mg, 73 %).

¹**H NMR** (C₆D₆, 600.13 MHz, 295 K, paramagnetic): δ [ppm] = 31.93, 21.99, 14.72, 6.78, 4.39, -25.59.

EA: calcd. C: 61.02 %, H: 8.86 %, N: 8.21 %; found: C: 59.28 %, H: 8.23 %, N: 7.93 %.¹ MS (LIFDI+): m/z calcd. for [C₂₃H₃₅CrN₃O₂]⁺, [M-HSiMe₃]⁺: 437.2; found: 437.2.

¹ Systematical and analytical bias due to the high air and moist sensitivity of the alkyl complexes.

3. Catalysis

3.1 Catalytic Enantioselective Reduction

A solution of the precatalyst ^R(PdmBox)Cr(CH₂SiMe₃) **2a** or **2b** (6.20 μ mol, 5.0 mol%; down to 0.12 μ mol, 0.1 mol%) and acetophenone **3a** (15.0 mg, 0. 12 mmol, 1.0 eq.) in 1 mL solvent was cooled to -40 °C. Neat silane (0.25 mmol, 2.0 eq.) was added in one portion and the mixture was warmed to rt over a period of 2 h. The resulting silyl ether was hydrolyzed by adding a saturated solution of K₂CO₃ in MeOH (2 mL). The mixture was stirred for 1 h and filtered through a pad of silica. The residue was eluted with DCM and analyzed by chiral HPLC.

#	R	Solvent	Silane	Cat. load. [mol%]	Conv. [%] ^a	ee [%] ^a
1	^(R) -Ph	toluene	(EtO) ₂ MeSiH	5.0	> 99	95 <i>(S</i>)
2	^(S) - <i>i</i> Pr	toluene	(EtO) ₂ MeSiH	5.0	> 99	75 <i>(R)</i>
3	(R)-Ph	toluene	(EtO) ₃ SiH	5.0	> 99	83 <i>(S)</i>
4	(R)-Ph	toluene	nBuSiH ₃	5.0	> 99	84 <i>(S)</i>
5	(R)-Ph	toluene	PMHS ^b	5.0	58	84 <i>(S)</i>
6°	(R)-Ph	toluene	PhSiH ₃	5.0	> 99	70 <i>(S)</i>
7°	(R)-Ph	toluene	Ph ₂ SiH ₂	5.0	0	n.d.
8°	(R)-Ph	toluene	Me ₂ PhSiH	5.0	0	n.d.
9	(R)-Ph	<i>n</i> -pentane	(EtO) ₂ MeSiH	5.0	> 99	90 <i>(S)</i>
10	(R)-Ph	<i>n</i> -hexane	(EtO) ₂ MeSiH	5.0	> 99	90 <i>(S)</i>
11	(R)-Ph	Et_2O	(EtO) ₂ MeSiH	5.0	> 99	90 <i>(S)</i>
12	(R)-Ph	THF	(EtO) ₂ MeSiH	5.0	> 99	86 <i>(S)</i>
13	(R)-Ph	tmeda	(EtO) ₂ MeSiH	5.0	> 99	80 <i>(S)</i>
14	(R)-Ph	DCM	(EtO) ₂ MeSiH	5.0	0	n.d.
15	(R)-Ph	MeCN	(EtO) ₂ MeSiH	5.0	0	n.d.
16	(R)-Ph	toluene	(EtO) ₂ MeSiH	2.5	> 99	95 <i>(S)</i>
17	(R)-Ph	toluene	(EtO) ₂ MeSiH	1.0	> 99	95 <i>(S)</i>
18	(R)-Ph	toluene	(EtO) ₂ MeSiH	0.5	> 99	95 <i>(S)</i>
19	(R)-Ph	toluene	(EtO) ₂ MeSiH	0.25	53	95 <i>(S)</i>
20	^(R) -Ph	toluene	(EtO) ₂ MeSiH	0.1	0	n.d.

Table S1 Optimizing the reaction conditions for the hydrosilylation of ketones.

^aDetermined by chiral HPLC. ^bPMHS = Poly(methylhydrosiloxane). ^cWork-up with NaOH in *i*PrOH.

3.2 Enantioselective Hydrosilylation of Ketones

A solution of the precatalyst **2a** (0.72mg, 5.2 μ mol, 1.0 mol%) and the substrate **3** (0.52mmol, 1.0 eq.) in 1 mL toluene was cooled to -40 °C in a cold bath. Neat (EtO)₂MeSiH (168 μ l, 1.04 mmol, 2.0 eq.) was added in one portion and the mixture was allowed to warm to rt in that bath over a period of 2 h. The resulting silyl ether was hydrolyzed by adding a saturated solution of K₂CO₃ in MeOH (2 mL). The mixture was stirred for 1 h and filtered through a pad of silica. The residue was eluted with DCM. The organic layer was brined (5 mL) and the aqueous phase was washed with ethyl acetate (2 × 3 mL). The resulting alcohol **5** was purified by FCC (SiO₂, PE/EA 10:1) and analyzed by NMR spectroscopy and chiral HPLC or chiral GC. The absolute configuration was determined by comparison with reported data and commercially available samples.¹³

3.3 Characterization of Alcohols

4a

1-Phenylethanol

Yield: colorless liquid (56.2 mg, 89 %).

¹**H NMR** (CDCl₃, 600.24 MHz, 295 K): δ [ppm] = 7.36-7.32 (m, 4H), 7.26-7.23 (m, 1H), 4.87 (q, ${}^{3}J_{H,H}$ = 6.5 Hz, 1H), 1.91 (s, 1H), 1.48 (d, ${}^{3}J_{H,H}$ = 6.5 Hz, 1H). ¹³**C NMR** (CDCl₃, 150.93 MHz, 295 K): δ [ppm] = 145.8, 128.5, 127.5, 125.4, 70.4, 25.1.

Chromatography: Chiralcel OD-H (Hexane/*i*PrOH 98:2, 1.0 mL/min, 20 °C, $\lambda = 210$ nm); t_R = 15.2 min (*R*), t_R = 19.9 min (*S*); 95 %ee (*S*).

Yield: colorless liquid (61.8 mg, 87 %).

¹**H NMR** (CDCl₃, 600.24 MHz, 295K): δ [ppm] = 7.50 (d, ${}^{3}J_{H,H}$ = 7.5 Hz, 1H), 7.25-7.22 (m, 1H), 7.19-7.13 (m, 2H), 5.15 (q, ${}^{3}J_{H,H}$ = 6.5 Hz, 1H), 2.35 (s, 3H), 1.66 (s, 1H), 1.47 (d, ${}^{3}J_{H,H}$ = 6.5 Hz, 1H). ¹³**C NMR** (CDCl₃, 150.93 MHz, 295K): δ [ppm] = 143.8, 134.3, 130.4, 127.2, 126.4, 124.5, 66.8, 23.9, 18.9. **Chromatography:** Chiralpak AD-H (Hexane/*i*PrOH 98:2, 1.0 mL/min, 20 °C,

 $\lambda = 210 \text{ nm}$; $t_R = 14.2 \min(R)$, $t_R = 16.4 \min(S)$; 98 %ee (S).

1-(2-Methoxyphenyl)ethanol

4d 1-(4-Tolyl)ethanol

OH

Yield: colorless liquid (63.7 mg, 91 %). ¹H NMR (CDCl₃, 600.24 MHz, 295K): δ [ppm] = 7.24 (d, ³J_{H,H} = 8.0 Hz, 2H), 7.15 (d, ³J_{H,H} = 8.0 Hz, 2H), 4.85 (q, ³J_{H,H} = 6.5 Hz, 1H), 2.32 (s, 3H), 1.75 (s, 1H), 1.46 (d, ³J_{H,H} = 6.5 Hz, 1H).

4c

¹³C NMR (CDCl₃, 150.93 MHz, 295K): δ [ppm] = 142.8, 137.2, 129.2, 125.4, 70.3, 25.1, 21.1.
Chromatography: Chiralcel OD-H (Hexane/*i*PrOH 98:2, 1.0mL/min, 20 °C, 1.0mL/m

 $\lambda = 210 \text{ nm}$; $t_R = 15.1 \text{ min } (S)$, $t_R = 17.8 \text{ min } (R)$; 98 %ee (S).

4e 1-([1,1'-Biphenyl]-4-yl)ethanol

Yield: colorless solid (94.7 mg, 92 %). ¹H NMR (CDCl₃, 600.24 MHz, 295K): δ [ppm] = 7.60-7.58 (m, 4H), 7.46-7.42 (m, 4H), 7.36-7.33 (m, 1H), 4.97 (q, ³J_{H,H} = 6.5 Hz, 1H), 1.75 (s, 1H), 1.55 (d, ³J_{H,H} = 6.5 Hz, 1H). ¹³C NMR (CDCl₃, 150.93 MHz, 295K): δ [ppm] = 144.8, 140.9, 140.5, 128.8, 127.3, 127.1, 125.8, 70.2, 25.2. Characterized by Chiralack AD H (Haracc/iDrOH 05.5, 0.8 mJ /min, 20.8C)

Chromatography: Chiralpak AD-H (Hexane/iPrOH 95:5, 0.8 mL/min, 20 °C,

 $\lambda = 230 \text{ nm}$; $t_R = 16.1 \text{ min } (S)$, $t_R = 17.6 \text{ min } (R)$; 90 %ee (S).

1-(4-Methoxyphenyl)ethanol

4f

4g

Yield: yellow liquid (73.1 mg, 91 %). ¹H NMR (CDCl₃, 600.24 MHz, 295K): δ [ppm] = 7.27 (d, ³J_{H,H} = 8.2 Hz, 2H), 6.89 (d, ³J_{H,H} = 8.0 Hz, 2H), 4.87 (q, ³J_{H,H} = 6.5 Hz, 1H), 3.81 (s, 3H), 1.72 (s, 1H), 1.50 (d, ³J_{H,H} = 6.5 Hz, 1H). ¹³C NMR (CDCl₃, 150.93 MHz, 295K): δ [ppm] = 158.5, 137.7, 126.4, 113.6, 69.8, 55.3, 25.1. Chromatography: Chiralcel OD-H (Hexane/*i*PrOH 98:2, 1.0 mL/min, 10 °C,

 $\lambda = 210 \text{ nm}$; $t_R = 25.1 \text{ min } (R)$, $t_R = 26.8 \text{ min } (S)$; 90 %ee (S).

1-(4-Fluorophenyl)ethanol

OH **Yield:** colorless liquid (64.3 mg, 87 %).

¹H NMR (CDCl₃, 600.24 MHz, 295K): δ [ppm] = 7.36-7.32 (m, 2H), 7.05-7.00 (m, 2H), 4.90 (q, ${}^{3}J_{H,H} = 6.4$ Hz, 1H), 1.82 (s, 1H), 1.48 (d, ${}^{3}J_{H,H} = 6.5$ Hz, 1H). ¹³C NMR (CDCl₃, 150.93 MHz, 295K): δ [ppm] = 162.1 (d, J = 262.0 Hz), 141.4 (d, J = 3.4 Hz), 127.9 (d, J = 9.7 Hz), 115.3 (d, J = 23.7 Hz), 69.8, 25.3. ¹⁹F NMR (CDCl₃, 150.93 MHz, 295K): δ [ppm] = -115.3. Chromatography: Chiraldex BP-M (mode: isothermal, 170 kPa, 120 °C); $t_R = 16.4$ min (S), $t_R = 16.9$ min (R); 90 %ee (S).

1-(4-Chlorophenyl)ethanol

Yield: slightly yellow liquid (71.4 mg, 88 %). ¹**H NMR** (CDCl₃, 600.24 MHz, 295K): δ [ppm] = 7.24-7.20 (m, 4H), 4.79 (q, ³*J*_{H,H} = 6.5 Hz, 1H), 2.07 (s, 1H), 1.40 (d, ³*J*_{H,H} = 6.5 Hz, 1H). ¹³**C NMR** (CDCl₃, 150.93 MHz, 295K): δ [ppm] = 144.3, 133.0, 128.6, 126.8, 69.7, 25.3. **Chromatography:** Chiralcel OD-H (Hexane/*i*PrOH 95:5, 0.7 mL/min, 20 °C, λ = 210 nm); t_R = 11.3 min (*S*), t_R = 12.1 min (*R*); 89 %ee (*S*).

4i

4h

1-(4-Bromophenyl)ethanol

Yield: yellow liquid (97.2 mg, 92 %). ¹H NMR (CDCl₃, 600.24 MHz, 295K): δ [ppm] = 7.47 (d, ³J_{H,H} = 8.0 Hz, 2H),

7.26 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 2H), 4.87 (q, ${}^{3}J_{H,H}$ = 6.5 Hz, 1H), 1.76 (s, 1H), 1.47 (d, ${}^{3}J_{H,H}$ = 6.5 Hz, 1H).

¹³**C NMR** (CDCl₃, 150.93 MHz, 295K): δ [ppm] = 144.7, 131.6, 127.2, 121.2, 69.8, 25.3.

Chromatography: Chiralcel OD-H (Hexane/*i*PrOH 95:5, 1.0 mL/min, 20 °C, $\lambda = 210$ nm); t_R = 8.6 min (S), t_R = 9.2 min (R); 86 %ee (S).

Methyl 4-(1-Hydroxyethyl)benzoate

Yield: colorless liquid (29.1 mg, 31 %). ¹**H NMR** (CDCl₃, 600.24 MHz, 295K): δ [ppm] = 8.02 (d, ³*J*_{H,H} = 8.2 Hz, 2H), 7.45 (d, ³*J*_{H,H} = 8.0 Hz, 2H), 4.96 (q, ³*J*_{H,H} = 6.5 Hz, 1H), 3.91 (s, 3H), 1.82 (s, 1H), 1.50 (d, ³*J*_{H,H} = 6.5 Hz, 1H). ¹³**C NMR** (CDCl₃, 150.93 MHz, 295K): δ [ppm] = 166.9, 150.9, 129.8, 129.3, 125.3, 70.0, 52.1, 25.3. **Chromatography:** Chiralpak AD-H (Hexane/*i*PrOH 95:5, 1.0 mL/min, 20 °C, λ = 215 nm); t_R = 17.2 min (*R*), t_R = 18.4 min (*S*); 50 %ee (*S*).

1-(2,4,6-Trimethylphenyl)ethanol

Yield: colorless solid (72.6 mg, 86 %). ¹H NMR (CDCl₃, 600.24 MHz, 295K): δ [ppm] = 6.82 (s, 2H), 5.36 (q, ${}^{3}J_{H,H}$ = 6.5 Hz, 1H), 2.41 (s, 6H), 2.25 (s, 3H), 1.62 (s, 1H), 1.52 (d, ${}^{3}J_{H,H}$ = 6.5 Hz, 1H). ¹³C NMR (CDCl₃, 150.93 MHz, 295K): δ [ppm] = 137.6, 136.5, 135.7, 130.2, 67.5, 52.1, 21.6, 20.7, 20.5. Chromatography: Chiralcel OD-H (Hexane/*i*PrOH 99:1, 0.8 mL/min, 20 °C, λ = 210 nm); t_R = 21.9 min (S), t_R = 25.5 min (R); 85 %ee (S).

1-(2,3,4,5,6-Pentafluorophenyl)ethanol

41

Yield: no conv.

Chromatography: Chiralpak AD-H (Hexane/iPrOH 99:1, 1.0 mL/min, 20 °C,

 $\lambda = 210 \text{ nm}$; $t_R = 16.7 \min(S)$, $t_R = 20.1 \min(R)$.

4j

4k

1-(Naphthalen-1-yl)ethanol

Yield: colorless solid (80.1 mg, 90 %).

¹**H NMR** (CDCl₃, 600.24 MHz, 295K): δ [ppm] = 8.10 (d, ${}^{3}J_{H,H}$ = 8.2 Hz, 1H), 7.88 (d, ${}^{3}J_{H,H}$ = 8.2 Hz, 1H), 7.78 (d, ${}^{3}J_{H,H}$ = 8.2 Hz, 1H), 7.67 (d, ${}^{3}J_{H,H}$ = 8.2 Hz, 1H), 7.54-7.46 (m, 3H), 5.64 (q, ${}^{3}J_{H,H}$ = 6.5 Hz, 1H), 2.21 (s, 1H), 1.66 (d, ${}^{3}J_{H,H}$ = 6.5 Hz, 3H). ¹³**C NMR** (CDCl₃, 150.93 MHz, 295K): δ [ppm] = 141.4, 133.8, 130.3, 128.9,

127.9, 127.9, 126.0, 125.6, 123.2, 122.0 67.1, 24.3.

Chromatography: Chiralcel OD-H (Hexane/*i*PrOH 90:10, 0.8 mL/min, 20 °C, $\lambda = 210$ nm); t_R = 12.3 min (*R*), t_R = 19.5 min (*S*); 96 %ee (*S*).

1-(Naphthalen-2-yl)ethanol

4n

Yield: colorless solid (79.3 mg, 88 %).

¹**H NMR** (CDCl₃, 600.24 MHz, 295K): δ [ppm] = 7.85-7.81 (m, 4H), 7.52-7.45 (m, 3H), 5.08 (q, ${}^{3}J_{H,H}$ = 6.5 Hz, 1H), 1.88 (s, 1H), 1.59 (d, ${}^{3}J_{H,H}$ = 6.5 Hz, 3H). ¹³**C NMR** (CDCl₃, 150.93 MHz, 295K): δ [ppm] = 143.1, 133.2, 132.9, 128.3, 127.9, 127.7, 126.1, 125.8, 123.8, 70.6, 52.1, 25.2.

Chromatography: Chiralcel OD-H (Hexane/*i*PrOH 95:5, 1.0 mL/min, 20 °C, $\lambda = 210$ nm); t_R = 16.5 min (*R*), t_R = 17.8 min (*S*); 90 %ee (*S*).

9-Methoxy-1-(Naphthalen-2-yl)ethanol

40

Yield: colorless solid (95.8 mg, 90 %).

¹**H NMR** (CDCl₃, 600.24 MHz, 295K): δ [ppm] = 7.74-7.71 (m, 3H), 7.48-7.46 (m, 1H), 7.16-7.12 (m, 2H), 5.04 (q, ³*J*_{H,H} = 6.5 Hz, 1H), 3.91 (s, 3H), 1.89 (s, 1H), 1.57 (d, ³*J*_{H,H} = 6.5 Hz, 3H).

¹³**C NMR** (CDCl₃, 150.93 MHz, 295K): δ [ppm] = 157.6, 140.9, 134.0, 129.4, 128.7, 127.2, 124.4, 123.8, 118.9, 70.5, 55.2, 20.7, 25.1.

Chromatography: Chiralcel OD-H (Hexane/*i*PrOH 95:5, 0.8 mL/min, 20 °C, $\lambda = 210$ nm); t_R = 19.5 min (S), t_R = 28.0 min (R); 92 %ee (S).

4p 1-Phenylheptanol

OH C₆H₁₃ **Yield:** colorless liquid (89.3 mg, 90 %). ¹**H NMR** (CDCl₃, 600.24 MHz, 295 K): δ [ppm] = 7.35-7.26 (m, 5H), 4.66 (dd, ³*J*_{H,H} = 7.0 Hz, 1H), 1.83-1.77 (m, 1H), 1.73-1.66 (m, 1H), 1.58 (s, 1H), 1.43-1.37 (m, 1H), 1.33-1.23 (m, 7H), 0.87 (t, ³*J*_{H,H} = 6.5 Hz, 3H). ¹³**C NMR** (CDCl₃, 150.93 MHz, 295 K): δ [ppm] = 144.9, 128.4, 127.5, 125.9, 74.7, 39.1, 31.7, 29.2, 25.8, 22.6. **Chromatography:** Chiralcel OD-H (Hexane/*i*PrOH 99:1, 0.8 mL/min, 20 °C, $\lambda = 210$ nm); t_R = 18.1 min (*R*), t_R = 22.8 min (*S*); 86 %ee (*S*).

4q 1,2,3,4-Tetrahydronaphthalen-1-ol

Yield: yellow liquid (72.8 mg, 93 %). ¹H NMR (CDCl₃, 600.24 MHz, 295 K): δ [ppm] = 7.46-7.44 (m, 1H), 7.25-7.22 (m, 2H), 7.15-7.12 (m, 1H) 4.82 (t, ${}^{3}J_{H,H}$ = 4.5 Hz, 1H), 2.89-2.73 (m, 2H), 2.06-1.92 (m, 3H), 1.84-1.79 (m, 1H), 1.76 (s, 1H). ¹³C NMR (CDCl₃, 150.93 MHz, 295 K): δ [ppm] = 138.7, 137.1, 129.0, 128.7, 127.6, 126.2, 68.1, 32.3, 29.3, 18.8. Chromatography: Chiralcel OD-H (Hexane/*i*PrOH 99:1, 1.0 mL/min, 20 °C, λ = 215 nm); t_R = 23.9 min (S), t_R = 27.5 min (R); 93 %ee (S).

7-Methoxy-1,2,3,4-tetrahydronaphthalen-1-ol

4r

Yield: yellowish solid (77.2 mg, 91 %). ¹**H NMR** (CDCl₃, 600.24 MHz, 295 K): δ [ppm] = 7.02 (d, ³*J*_{H,H} = 8.3 Hz, 1H), 6.96 (d, ³*J*_{H,H} = 2.4 Hz, 1H), 6.78 (dd, ³J_{H,H} = 8.4 Hz, ³*J*_{H,H} = 2.4 Hz, 1H), 4.74 (t, ³*J*_{H,H} = 5.4 Hz, 1H), 3.79 (s, 3H), 2.77-2.63 (m, 2H), 2.04-1.91 (m, 2H), 1.88-1.84 (m, 1H), 1.78-1.74 (m, 1H), 1.67 (s, 1H).

¹³C NMR (CDCl₃, 150.93 MHz, 295 K): δ [ppm] = 157.6, 139.5; 129.7, 128.9, 114.2, 112.4, 68.5, 55.4, 32.5, 28.6, 19.3.

Chromatography: Chiralcel OD-H (Hexane/*i*PrOH 95:5, 0.7 mL/min, 20 °C, $\lambda = 215$ nm); t_R = 42.8 min (S), t_R = 50.2 min (R); 87 %ee (S).

2,3-Dihydro-1H-inden-1-ol

4s

Yield: slightly yellow liquid (69.4 mg, 89 %). ¹H NMR (CDCl₃, 600.24 MHz, 295 K): δ [ppm] = 7.42 (d, ³J_{H,H} = 6.5 Hz, 1H), 7.28-7.23 (m, 3H), 5.26 (t, ³J_{H,H} = 6.2 Hz, 1H), 3.09-3.01 (m, 1H), 2.85-2.80 (m, 1H), 2.52-2.48 (m, 1H), 1.99-1.92 (m, 1H), 1.64 (s, 1H). ¹³C NMR (CDCl₃, 150.93 MHz, 295 K): δ [ppm] = 144.9, 143.4, 128.4, 126.7, 124.9, 124.2, 76.5, 36.0, 29.8. Chromatography: Chiralcel OD-H (Hexane/*i*PrOH 98:2, 1.0 mL/min, 20 °C,

 $\lambda = 210 \text{ nm}$; $t_R = 17.6 \min(S)$, $t_R = 20.1 \min(R)$; 94 %ee (S).

1-(Furan-2-yl)ethanol

4t

Yield: red liquid (40.7 mg, 67 %). ¹**H** NMR (CDCl₃, 600.24 MHz, 295 K): δ [ppm] = 7.37 (m, 1H), 6.32 (dd, ³*J*_{H,H} = 6.5 Hz, ³*J*_{H,H} = 3.7 Hz , 1H), 6.22 (d, ³*J*_{H,H} = 6.5 Hz, 1H), 4.88 (q, ³*J*_{H,H} = 6.5 Hz, 1H), 2.56 (s, 1H), 1.54 (d, ³*J*_{H,H} = 6.4 Hz, 3H).

¹³**C NMR** (CDCl₃, 150.93 MHz, 295 K): δ [ppm] = 149.3, 126.2, 124.4, 124.0, 123.5, 69.3, 65.3 25.2.

Chromatography: Chiralcel OJ-H (Hexane/*i*PrOH 99:1, 1.0 mL/min, 20 °C, $\lambda = 215$ nm); t_R = 30.3 min (S), t_R = 33.3 min (R); 90 %ee (S).

17

1-(Thiophen-2-yl)ethanol

Yield: yellow liquid (59.3 mg, 90 %).

¹**H NMR** (CDCl₃, 600.24 MHz, 295 K): δ [ppm] = 7.24 (dd, ${}^{3}J_{H,H}$ = 6.5 Hz, ${}^{3}J_{H,H}$ = 3.7 Hz , 1H), 6.99-6.93 (m, 2H), 5.14 (q, ${}^{3}J_{H,H}$ = 6.4 Hz, 1H), 1.99 (s, 1H), 1.61 (d, ${}^{3}J_{H,H}$ = 6.4 Hz, 3H). ¹³**C NMR** (CDCl₃, 150.93 MHz, 295 K): δ [ppm] = 149.6, 126.7, 124.5, 124.0,

123.6, 70.3, 66.3 25.3.

Chromatography: Chiralcel OJ-H (Hexane/*i*PrOH 99:1, 1.0 mL/min, 20 °C, $\lambda = 215$ nm); t_R = 38.7 min (S), t_R = 46.7 min (R); 90 %ee (S).

4-Phenylbutan-2-ol

4v

Yield: colorless liquid (63.2 mg, 84 %).

¹**H NMR** (CDCl₃, 600.24 MHz, 295 K): δ [ppm] = 7.32-7.30 (m, 2H), 7.23-7.20 (m, 3H), 3.86 (sext., ${}^{3}J_{H,H}$ = 6.2 Hz, 1H), 2.81-2.76 (m, 1H), 2.72-2.67 (m, 1H), 1.85-1.75 (m, 2H), 1.59 (s, 1H), 1.26 (d, ${}^{3}J_{H,H}$ = 6.2 Hz, 3H). ¹³**C NMR** (CDCl₃, 150.93 MHz, 295 K): δ [ppm] = 142.1, 128.4, 125.8, 67.5, 40.8, 32.2, 23.6. **Chromatography:** Chiralpak AD-H (Hexane/*i*PrOH 96:4, 0.7 mL/min, 10 °C,

 $\lambda = 215 \text{ nm}$; $t_R = 13.8 \min(R)$, $t_R = 14.6 \min(S)$; 30 %ee (S).

4w

1-(Adamantan-1-yl)ethanol

Yield: colorless liquid (76.3 mg, 81 %).

¹H NMR (CDCl₃, 600.24 MHz, 295 K): δ [ppm] = 3.28 (q, ${}^{3}J_{H,H}$ = 6.5 Hz, 1H), 1.99 (m, 3H), 1.72-1.63 (m, 6H), 1.60-1.57 (m, 3H), 1.49-1.46 (m, 3H), 1.42 (s, 1H), 1.09 (d, ${}^{3}J_{H,H}$ = 6.5 Hz, 3H). ¹³C NMR (CDCl₃, 150.93 MHz, 295 K): δ [ppm] = 75.8, 37.7, 37.2, 36.6, 28.3,

16.5.

Chromatography: Analysis of the benzoic ester, Chiralpak AD-H (Hexane/*i*PrOH 98:2, 1.0 mL/min, 25 °C, $\lambda = 230$ nm); t_R = 5.0 min (*R*), t_R = 5.7 min (*S*); 95 %ee (*S*).

3,3-Dimethylbutan-2-ol

4x

Yield: colorless liquid (32.4 mg, 62 %). ¹H NMR (CDCl₃, 600.24 MHz, 295 K): δ [ppm] = 3.46 (q, ³J_{H,H} = 6.5 Hz, 1H), 1.62 (s, 1H), 1.17 (d, ³J_{H,H} = 6.5 Hz, 3H), 0.89 (m, 9H). ¹³C NMR (CDCl₃, 150.93 MHz, 295 K): δ [ppm] = 75.6, 34.9, 25.5, 17.9. Chromatography: Analysis of the bezoic ester Chiralcel OD-H (Hexane/*i*PrOH 100:0, 0.5 mL/min, 25 °C, λ = 230 nm); t_R = 10.0 min (*R*), t_R = 10.7 min (*S*); 90 %ee (*S*).

4. Mechanistic Studies

4.1 Radical Trap Experiments

The reduction of acetophenone **3a** (15.0 mg, 124 μ mol, 1.0 eq.) was accomplished by the general procedure with a radical trap reagent (triphenylmethane (124 μ mol, 1.0 eq.) or 9,10-dihydroanthracene (124 μ mol, 1.0 eq.)). The obtained product was analyzed by chiral HPLC.

Chromatography: Chiralcel OD-H (Hexane/*i*PrOH 98:2, 1.0 mL/min, 20 °C, $\lambda = 210$ nm); t_R = 15.2 min (*R*), t_R = 19.9 min (*S*); 95 %ee (*S*).

4.2 Labelling Experiments

The reduction of acetophenone **3a** (15.0 mg, 124 μ mol, 1.0 eq.) was carried out analogous to the general procedure with deuterated diethoxymethylsilane (42.0 μ l, 240 μ mol, 2.0 eq., 2% residual H). The obtained product **4a**-*d*₁ was characterized by NMR spectroscopy.

¹**H** NMR (CDCl₃, 600.24 MHz, 295 K): δ [ppm] = 7.36-7.23 (m, 5H), 4.88 (q, ³*J*_{H,H} = 6.5 Hz, 0.037 H), 1.91 (s, 1H), 1.48 (d, ³*J*_{H,H} = 6.5 Hz, 1H).

²**H NMR** (CDCl₃, 92.12 MHz, 295 K): δ [ppm] = 4.87.

¹³**C NMR** (CDCl₃, 150.93 MHz, 295 K): δ [ppm] = 145.8, 128.5, 127.5, 125.4, 68.9 (t, ²*J*_{D,C}= 22 Hz), 25.1.

Figure S1: ¹H NMR spectrum of the deuterated acetophenone $4a-d_1$ with zoom at the quartet region at 4.88 ppm.

4.3 Kinetic Isotope Effect

The reduction of acetophenone **3a** (15.0 mg, 124 μ mol, 1.0 eq.) was carried out analogous to the general procedure with a mixture of equal amounts of diethoxymethylsilane (20.0 μ l, 124 μ mol, 1.0 eq.) and deuterated diethoxymethylsilane (20.0 μ l, 124 μ mol, 1.0 eq.). The ratio of deuterated to normal product was determined by ¹H NMR spectroscopy. The KIE was calculated using the following equation.

Figure S2: Extract of the ¹H NMR spectrum of the partially deuterated 1-phenylethanol (CD_2Cl_2 , 600.24 MHz, 295 K).

KIEs of *p*-Br and *p*-OMe derivatives were calculated in analogy to the protocol outlined above.

Figure S3: Extract of the ¹H NMR spectrum of the partially deuterated 1-(4-bromophenyl)ethanol $(CD_2Cl_2, 600.24 \text{ MHz}, 295 \text{ K}).$

Figure S4: Extract of the ¹H NMR spectrum of the partially deuterated 1-(4-methoxyphenyl)ethanol (CD₂Cl₂, 600.24 MHz, 295 K).

4.4 Hammett-Correlation

The precatalyst (0.72 mg, 2.6 μ mol, 1.0 mol%), acetophenone 12 (15.0 mg, 124 μ mol, 1.0 eq.) and one of each para substituted ketone (20mg – 35 mg each, 140 μ mol – 180 μ mol each, 1.0 eq. each) were dissolved in benzene- d_6 (0.5 mL). Diethoxymethylsilane (20.0 μ l, 124 μ mol) was added and the reaction was stirred for 2 h at rt. Afterwards, three drops of a tetrabutylammonium fluoride solution (1.0 M in THF) were added to each sample. Subsequently, all samples were analyzed by ¹³C NMR spectroscopy (D₁-time = 5 s). The relative rate constants were determined from the NMR integral ratio of the product peaks using the following equation. The σ -values were taken from literature.¹⁴

$$\frac{k_R}{k_H} = \frac{\ln \left(\frac{c_{R,t}}{c_{R,t=0}}\right)}{\ln \left(\frac{c_{H,t}}{c_{H,t=0}}\right)}$$

Chromatographic Data 5.

4a

4j

4s

(177)							Signa	al I: DAI	DI B,	Sig=215,	4 ReI=300,	100
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]
1 2	36.456 45.864	VB BB	1.4150 1.1162	1.76906e5 9646.81250	1768.56421 132.05803	94.8289 5.1711	 1 2	39.151 49.775	BB BB	1.1827 1.6273	3.80335e4 3.78050e4	511.95123 376.56360
Tota	ls :			1.86553e5	1900.62224		Tota.	ls :			7.58385e4	888.51483

Area

[mAU] %

511.95123 50.1507

376.56360 49.8493

6. Crystal Structure Data

	1b	2b			
formula	C ₂₂ H ₃₄ ClCrN ₃ O ₂	$C_{26}H_{45}CrN_3O_2Si$			
crystal system	orthorhombic	orthorhombic			
space group	$P 2_1 2_1 2_1$	$P 2_1 2_1 2_1$			
<i>a</i> /Å	9.01882(13)	11.7996(7)			
b /Å	13.64803(16)	14.2516(10)			
<i>c</i> /Å	19.2371(2)	17.9837(12)			
$V/Å^3$	2367.88(5)	3024.2(3)			
Ζ	4	4			
$M_{ m r}$	459.97	511.74			
F_{000}	976	1104			
$\delta_{ m c}$ /Mg·m ⁻³	1.290	1.124			
m / mm^{-1}	0.618	0.442			
max., min. transmission factors	1.116, 0.911	1.000, 0.411			
X-radiation, λ /Å	Μο-Κ _α , 0.71073				
data collect. temperat. /K	120(1)	220(1)			
θ range /°	2.1 to 32.4	2.2 to 25.2 °			
index ranges <i>h</i> , <i>k</i> , <i>l</i>	-13 13, -20 20, -28 28	-14 14, -17 17, -21 21			
reflections measured	193770	38247			
unique [R _{int}]	8348 [0.0691]	5422 [0.1452]			
observed $[l \ge 2\sigma(l)]$	7583	3677			
data / restraints /parameters	8348 / 0 / 270	5422 / 0 / 309			
GooF on F^2	1.041	1.056			
R indices $[F>4\sigma(F)]$ R(F), wR(F ²)	0.0378, 0.0912	0.0645, 0.1553			
R indices (all data) $R(F)$, $wR(F^2)$	0.0449, 0.0946	0.1000, 0.1794			
absolute structure parameter	-0.019(5)	0.02(3)			
largest residual peaks /e·Å-3	0.502, -0.232	0.577, -0.452			
CCDC deposition number	1850233	1850234			

 Table S2. Details of the crystal structure determinations of 1b and 2b.

7. Literature

- 1. J. Wenz, A. Kochan, H. Wadepohl and L. H. Gade, *Inorg. Chem.*, 2017, 56, 3631-3643.
- 2. A. Alzamly, S. Gambarotta and I. Korobkov, *Organometallics*, 2014, **33**, 1602-1607.
- 3. T. Bleith and L. H. Gade, J. Am. Chem. Soc., 2016, 138, 4972-4983.
- G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, 29, 2176-2179.
- K. Kabsch, M. G. Rossmann, E. Arnold "International Tables for Crystallography" Vol. F, Ch. 11.3, Kluwer Academic Publishers, Dordrecht, 2001.
- a) CrysAlisPro, Agilent Technologies UK Ltd., Oxford, UK 2011-2014; b) Rigaku Oxford Diffraction, Rigaku Polska Sp.z o.o., Wrocław, Poland 2015-2018.
- 7. R. Blessing, Acta Cryst., 1995, **51**, 33-37.
- a) SCALE3 ABSPACK, CrysAlisPro, Agilent Technologies UK Ltd., Oxford, UK 2011-2014; b) Rigaku Oxford Diffraction, Rigaku Polska Sp.z o.o., Wrocław, Poland 2015-2018.
- 9. a) L. Palatinus, SUPERFLIP, EPF Lausanne, Switzerland and Fyzikální ústav AV ČR, v. v.
 i., Prague, Czech Republic, 2007-2014; b) L. Palatinus, G. Chapuis, *J. Appl. Cryst.*, 2007, 40, 786.
- a) SHELXL-20xx, University of Göttingen and Bruker AXS GmbH, Karlsruhe, Germany 2012-2018; b) G. M. Sheldrick, *Acta Cryst.*, 2008, 64, 112-122; c) G. M. Sheldrick, *Acta Cryst.*, 2015, 71, 3-8.
- P. Müller, R. Herbst-Irmer, A. L. Spek, T. R.Schneider, M. R. Sawaya in: P. Müller (ed.)
 "Crystal Structure Refinement", Ch. 5, Oxford University Press, Oxford, 2006.
- 12. D. F. Evans, J. Chem. Soc., 1959, 0, 2003-2005.
- a) T. Bleith, H. Wadepohl and L. H. Gade, *J. Am. Chem. Soc.*, 2015, 137, 2456-2459; b) V. Vasilenko, C. K. Blasius, H. Wadepohl and L. H. Gade, *Angew. Chem. Int. Ed.*, 2017, 56, 8393-8397 c) T. Inagaki, A. Ito, J.I. Ito and H. Nishiyama, *Angew. Chem. Int. Ed.*, 2010, 49, 9384-9387.
- 14. C. Hansch, A. Leo and R. W. Taft, *Chem. Rev.*, 1991, **91**, 165-195.