Supplementary Information

Oximinotrifluoromethylation of Unactivated Alkenes under Ambient Conditions

Na Wang, ${ }^{\text {a, }}{ }^{\mathrm{b}} \ddagger$ Jian Wang, ${ }^{\mathrm{b}} \ddagger$ Yu-Long Guo, ${ }^{\mathrm{b}}$ Lei Li, ${ }^{\mathrm{b}}$ Yan Sun, ${ }^{\mathrm{b}}$ Zhuang Li, ${ }^{\text {b }}$ Hong-Xia Zhang, ${ }^{\text {a }}$ Zhen Guo, ${ }^{\text {a }}$ Zhong-Liang Li, ${ }^{* c}$ and Xin-Yuan Liu* ${ }^{* b}$

${ }^{a}$ College of Materials Science \& Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, China
${ }^{b}$ Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.
${ }^{c}$ Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China.
Email: lizl@sustc.edu.cn; liuxy3@sustc.edu.cn

Table of Contents

General information. 2
Scheme S1 and Scheme S2 3
Experimental procedure for synthesis of substrates. 4
General procedure for 1,2-trifluoromethyl-oximation of alkene $\mathbf{1}$ 16
General Procedure for synthesis of fluoroalkylated oximes. 24
General procedure for ring expansion strategy for synthesis of medium-sized rings 26
Synthetic transformations 29
Large-scale synthesis 30
Control experiment with TEMPO as radical scavenger 31
NMR Spectra 32

General information.

All reactions were carried out under argon using Schlenk techniques. Reagents were purchased at the commercial quality and used without further purification. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size $0.040-0.063 \mathrm{~mm}$). Visualization on TLC was achieved by use of UV light (254 nm), KMnO_{4} or iodine stain. NMR spectra were recorded on a Bruker DPX 400 spectrometer at $400 / 500 \mathrm{MHz}$ for ${ }^{1} \mathrm{H}$ NMR, $100 / 125 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ NMR and 376 MHz for ${ }^{19} \mathrm{~F}$ NMR in CDCl_{3} with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz . Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (ppm), multiplicity (s , singlet; d , doublet; t , triplet; q , quarter; m , multiplet), coupling constant (Hz), integration. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm). ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer $\left(\mathrm{CFCl}_{3}\right.$ as an external reference (0 ppm)). Mass spectrometric data were obtained using Bruker Apex IV RTMS.

Scheme S1 and Scheme S2

Scheme S1 Large-scale synthesis.

Scheme S2 Control experiment.

Experimental procedure for synthesis of substrates Procedure for synthesis of linear substrates

To a solution of N, O-dimethylhydroxylamine hydrochloride ($5.9 \mathrm{~g}, 60 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(16.8 \mathrm{~mL}, 120 \mathrm{mmol})$ and benzoyl chloride $(7.0 \mathrm{~mL}, 30 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 1 h and quenched with saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. Dichloromethane $(3 \times 60 \mathrm{~mL})$ was added to extract the product from the aqueous layer. The combined organic layer was washed with $\mathrm{HCl}(1 \mathrm{M}, 30 \mathrm{~mL})$ and brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product $(9.7 \mathrm{~g})$. The crude product was dissolved in THF $(15 \mathrm{~mL})$ and added to a solution of prepared Grignard reagent $(1 \mathrm{M}, 90 \mathrm{~mL})$ in THF at $0{ }^{\circ} \mathrm{C}$ dropwisely. The reaction mixture was stirred at that temperature for 30 min and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. Diethyl ether was used to extract the product from the aqueous layer ($3 \times 60 \mathrm{~mL}$). The combined organic layer was washed with brine $(30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product $\mathbf{S 1}(7.9 \mathrm{~g}, 80 \%)$, which was applied to the next step without further purification.

A solution of S1 ($7.9 \mathrm{~g}, 49 \mathrm{mmol})$, TMSCN $(6.8 \mathrm{~mL}, 52 \mathrm{mmol})$ and $\mathrm{ZnI}_{2}(0.80 \mathrm{~g}, 2.5$ $\mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were heated to reflux for 12 h and cooled down to room temperature. The solvent was removed to afford the crude product, which was purified by flash column chromatography to afford the product $\mathbf{S} 2$ as a colorless oil $(9.5 \mathrm{~g}$, 76%). The product $\mathbf{S 2}$ was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. To this solution was added diisobutylaluminium hydride (DIBALH) (1M/hexane, $60 \mathrm{~mL}, 60 \mathrm{mmol}$) at $-45^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h and quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and potassium
sodium tartrate ($1 \mathrm{M}, 40 \mathrm{~mL}$) with vigorously stirring. Dichloromethane was used to extract the product from the aqueous layer $(3 \times 50 \mathrm{~mL})$. The combined organic layer was washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product ($5.8 \mathrm{~g}, 78 \%$), which was dissolved in THF (50 mL). To this solution was added $\mathrm{HCl}(3 \mathrm{M}, 10 \mathrm{~mL}, 50 \mathrm{mmol})$ at room temperature and the reaction mixture was stirred for 1 h and quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. EtOAc was used to extract the product from the aqueous layer $(3 \times 40 \mathrm{~mL})$. The combined organic layer was washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was purified by flash column chromatography to afford the product S3 ($4.0 \mathrm{~g}, 75 \%$ yield) as a colorless oil.

A solution of $\mathbf{S 3}(0.95 \mathrm{~g}, 5.0 \mathrm{mmol})$ and O-benzylhydroxylamine ($1.2 \mathrm{~g}, 10 \mathrm{mmol}$) in pyridine (5 mL) was heated at $80^{\circ} \mathrm{C}$ for 2 h and then cooled down to room temperature. The solvent was evaporated under reduced pressure. EtOAc (30 mL) was added to dissolve the crude product, which was washed with $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ sequentially. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was purified by flash column chromatography to afford the product $\mathbf{1 A}(1.2 \mathrm{~g}, 80 \%$ yield, 36% overall yield) as a colorless oil.

The procedure for synthesis of $\mathbf{1 B} \mathbf{- 1 0}$ is similar to that reported for synthesis of $\mathbf{1 A}$.

(E)-2-hydroxy-2-phenylhex-5-enal O-benzyl oxime (1A)

1A: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.03(\mathrm{~m}, 10 \mathrm{H}), 5.72-5.56(\mathrm{~m}$, $1 \mathrm{H}), 5.02-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.87-4.71(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 1 \mathrm{H}), 2.04-1.78(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,143.3,138.7,137.9,128.5,128.4,128.2,128.0,127.5$,
126.2, 114.8, 78.0, 76.3, 36.7, 27.8. HRMS (ESI) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 296.1645, found 296.1641.

(E)-2-hydroxy-2-(p-tolyl)hex-5-enal O-benzyl oxime (1B)

1B: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2H), $5.83-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.11-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.98-4.82(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}$, 3H), $2.15-1.83(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,140.3,138.3,137.2$, 137.0, 129.2, 128.5, 128.4, 128.1, 125.2, 114.8, 76.3, 75.5, 40.0, 27.7, 21.0. HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 310.1802$, found 310.1798.

(E)-2-hydroxy-2-(4-methoxyphenyl)hex-5-enal O-benzyl oxime (1C)

1C: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 7 \mathrm{H}), 6.91-6.83(\mathrm{~m}, 2 \mathrm{H})$, $5.87-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.02-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, 2.12 - $1.94(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.9,153.8,138.4,137.2,135.3$, 128.6, 128.5, 128.2, 126.6, 114.8, 113.9, 76.5, 75.3, 55.4, 40.0, 27.8. HRMS (ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 326.1751$, found 326.1746 .
(E)-2-(4-fluorophenyl)-2-hydroxyhex-5-enal O-benzyl oxime (1D)

1D: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.02(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 5.83-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.00-4.90(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}), 2.12-$ $1.91(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.1(\mathrm{~d}, J=245.8 \mathrm{~Hz}), 153.4,139.01(\mathrm{~d}, J$ $=3.0 \mathrm{~Hz}$), 138.2, 137.1, 128.6, 128.5, 128.3, 127.13 (d, $J=8.1 \mathrm{~Hz}$), 115.5, 115.16 (d, $J=$ 22.7 Hz), 76.6, 75.4, 40.2, 27.7. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-115.4. HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{NF}[\mathrm{M}+\mathrm{H}]^{+} 314.1551$, found 314.1548 .

(E)-2-(4-chlorophenyl)-2-hydroxyhex-5-enal O-benzyl oxime (1E)

1E: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 9 \mathrm{H}), 5.88-5.64(\mathrm{~m}, 1 \mathrm{H})$, $5.18-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.02-4.87(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 1 \mathrm{H}), 2.26-1.91(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.1,141.8,138.1,137.0,133.3,128.7,128.6,128.5,128.2,126.8$, 115.1, 76.6, 75.4, 40.1, 27.6. HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{NCl}[\mathrm{M}+\mathrm{H}]^{+} 330.1255$, found 330.1251 .
(E)-2-(4-bromophenyl)-2-hydroxyhex-5-enal O-benzyl oxime (1F)

1F: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.24(\mathrm{~m}, 9 \mathrm{H}), 5.83-5.67(\mathrm{~m}, 1 \mathrm{H})$, $5.17-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.00-4.87(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H}), 2.15-1.91(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1,142.3,138.0,137.0,131.6,128.5(4), 128.5(2), 128.2,127.2$, 121.5, 115.0, 76.5, 75.4, 40.0, 27.6. HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{NBr}[\mathrm{M}+\mathrm{H}]^{+}$ 374.0750, found 374.0746.
(E)-2-(3-chlorophenyl)-2-hydroxyhex-5-enal O-benzyl oxime (1G)

1G: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H})$, $7.29-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.86-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.01-4.89(\mathrm{~m}, 2 \mathrm{H}), 3.45$ (s, 1H), $2.18-1.87(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.9,145.5,138.0,137.0$, 134.7, 129.9, 128.6, 128.5, 128.3, 127.7, 125.7, 123.5, 115.1, 76.7, 75.4, 40.1, 27.6. HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{NCl}[\mathrm{M}+\mathrm{H}]^{+} 330.1255$, found 330.1251 .

(E)-2-(2-chlorophenyl)-2-hydroxyhex-5-enal O-benzyl oxime (1H)

1H: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.25$ $(\mathrm{m}, 7 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.86-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.02(\mathrm{~m}, 2 \mathrm{H}), 5.01-4.86(\mathrm{~m}$, $2 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 2.44-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.83(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.9,140.8,138.3,137.3,131.2,130.9,129.2,128.6,128.6$, $128.3,127.3,115.0,76.6,75.8,37.7,28.0$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{NCl}$ $[\mathrm{M}+\mathrm{H}]^{+} 330.1255$, found 330.1253 .
(E)-2-hydroxy-2-(naphthalen-1-yl)hex-5-enal O-benzyl oxime (1I)

1I: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42-8.26(\mathrm{~m}, 1 \mathrm{H}), 7.94-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.27(\mathrm{~m}, 8 \mathrm{H}), 5.86-$ $5.66(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.06(\mathrm{~m}, 2 \mathrm{H}), 5.00-4.78(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{brs}, 1 \mathrm{H}), 2.58-2.45(\mathrm{~m}$, $1 \mathrm{H}), 2.40-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.20-1.94(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3$, $138.4,138.2,137.5,134.8,130.5,129.3(3)$, 129.3(0), 128.6, 128.5, 128.1, 125.9, 125.8, $125.4,125.0,124.0,114.9,76.6,76.5,38.8,28.1$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+} 346.1801$, found 346.1796 .

(E)-2-(furan-2-yl)-2-hydroxyhex-5-enal O-benzyl oxime (1J)

1J

1J: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.23(\mathrm{~m}, 6 \mathrm{H}), 6.41-6.15(\mathrm{~m}, 2 \mathrm{H})$, $5.90-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 5.03-4.88(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 1 \mathrm{H}), 2.26-1.89(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4,151.0,142.5,138.0,137.0,128.5,128.5,128.2$, $115.0,110.4,106.4,76.6,72.8,37.5,27.5$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+}$286.1438, found 286.1437.

(E)-2-hydroxy-2-(thiophen-2-yl)hex-5-enal O-benzyl oxime (1K)

1K: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.28(\mathrm{dd}, J=5.1$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=3.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.74(\mathrm{~m}$, $1 \mathrm{H}), 5.21-5.10(\mathrm{~m}, 2 \mathrm{H}), 5.08-4.94(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 1 \mathrm{H}), 2.27-1.99(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.4,148.6,138.0,137.0,128.6,128.5,128.2,127.2,125.0$, 123.3, 115.1, 76.7, 74.7, 40.8, 27.8. HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{NNaS}[\mathrm{M}+\mathrm{Na}]^{+}$ 324.1029, found 324.1024.

(E)-2-hydroxy-2-phenethylhex-5-enal O-benzyl oxime (1L)

1L: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}$, 2H), 7.21 - 7.17 (m, 1H), 7.16 - 7.11 (m, 2H), $5.85-5.72$ (m, 1H), 5.12 (s, 2H), 5.02 $4.90(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 1 \mathrm{H}), 2.77-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 1 \mathrm{H})$, $2.05-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.7,142.1,138.4,137.3,128.6(3), 128.6(0), 128.5,128.2,126.0,115.0,75.7$, 74.3, 41.7, 39.1, 29.8, 27.8. HRMS (ESI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O} 2 \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 324.1958$, found 324.1951.
(E)-3-hydroxy-3-phenylhept-6-en-2-one O-benzyl oxime (1M)

1M

1M: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, 2H), $5.83-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.11-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.98-4.82(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}$, 3H), 2.15 - 1.83 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,143.3,138.7,137.9$, 128.5, 128.4, 128.2, 128.0, 127.5, 126.2, 114.8, 78.0, 76.3, 36.7, 27.9, 11.7. HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 310.1802$, found 310.1799.

(E)-3-hydroxy-3-methylhept-6-en-2-one O-benzyl oxime (1N)

1N
$\mathbf{1 N}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.83-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H})$, $5.00-4.86(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.57(\mathrm{~m}, 3 \mathrm{H})$, $1.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.2,138.5,137.8,128.4,128.1,127.9$, $114.5,76.1,74.4,39.1,27.9,27.0,11.0$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 248.1645 , found 248.1643 .

(E)-2-hydroxy-2-phenylhex-5-enal O-(4-methoxybenzyl) oxime (1O)

1O: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H})$, $7.27-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.87-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.82-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.97$ - $4.83(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 1 \mathrm{H}), 2.11-1.93(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.5,153.4,143.2,130.2,129.1,128.4,127.3,125.2,114.7,113.8,76.1,75.5$, 55.2, 40.0, 27.6. HRMS (ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 326.1750$, found 326.1750 .
(E)-2-hydroxy-2-phenylhept-6-enal O-benzyl oxime (1P)

1P: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.15(\mathrm{~m}, 8 \mathrm{H})$, $5.80-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.99-4.85(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 2.05-1.82$ $(\mathrm{m}, 4 \mathrm{H}), 1.37(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.7,143.4,138.4,137.1,128.4$, 128.4, 128.3, 128.0, 127.2, 125.2, 114.8, 76.3, 75.6, 40.3, 33.7, 22.4. HRMS (ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 310.1801$, found 310.1798 .

Procedure for synthesis of benzyl-protected cyclic oximes 9A and 9D

To a solution of S4 ($2.7 \mathrm{~g}, 15 \mathrm{mmol}$) in anhydrous THF (20 mL) was added $n-\operatorname{BuLi}(2.2$ $\mathrm{M} /$ hexane, $7.0 \mathrm{~mL}, 15 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The reaction solution was stirred for 1 h , followed by addition of $\mathbf{S 5}(0.75 \mathrm{~g}, 7.5 \mathrm{mmol})$. The reaction solution was warmed up to room temperature and stirred for 12 h and quenched with water (20 mL). EtOAc was used to extract the product from the aqueous layer $(3 \times 40 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was purified by flash column chromatography to afford the product $\mathbf{S 6}(0.38 \mathrm{~g}, 25 \%)$ as a colorless oil.

A solution of $\mathbf{S 6}(0.38 \mathrm{~g}, 1.9 \mathrm{mmol})$ and O-benzylhydroxylamine $(0.46 \mathrm{~g}, 3.8 \mathrm{mmol})$ in pyridine (3 mL) was heated at $80^{\circ} \mathrm{C}$ for 2 h and then cooled down to room temperature. The solvent was evaporated under reduced pressure. EtOAc (20 mL) was added to dissolve the crude product, which was washed with $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ sequentially. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was purified by flash column chromatography to afford the product $\mathbf{9 A}(0.29 \mathrm{~g}, 50 \%$ yield $)$ as a colorless oil.

The procedure for synthesis of $\mathbf{9 D}$ is similar to that of $\mathbf{9 A}$.

Procedure for synthesis of benzyl-protected cyclic oximes 9B and 9C

To a solution of S4 (1.9 g, 10 mmol) in anhydrous THF (20 mL) was added n-BuLi (2.2 $\mathrm{M} /$ hexane, $4.5 \mathrm{~mL}, 10 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The reaction solution was stirred for 1 h , followed by addition of $\mathbf{S 7}(1.8 \mathrm{~g}, 10 \mathrm{mmol})$. The reaction solution was warmed up to
room temperature and stirred for 2 h and quenched with water (20 mL). EtOAc was used to extract the product from the aqueous layer $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL}) .3 \mathrm{M} \mathrm{HCl}(4 \mathrm{~mL})$ was added to the reaction mixture. The mixture was stirred for 10 min and diluted with water $(15 \mathrm{~mL})$. Dichloromethane was used to extract the product from the aqueous layer $(3 \times 30$ $\mathrm{mL})$. The combined organic layer was washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was purified by flash column chromatography to afford the product $\mathbf{S 8}(0.95 \mathrm{~g}, 44 \%)$ as a colorless oil.

A solution of $\mathbf{S 8}(0.95 \mathrm{~g}, 4.4 \mathrm{mmol})$ and O-benzylhydroxylamine $(1.2 \mathrm{~g}, 10 \mathrm{mmol})$ in pyridine (5 mL) was heated at $80^{\circ} \mathrm{C}$ for 2 h and then cooled down to room temperature. The solvent was evaporated under reduced pressure. EtOAc (30 mL) was added to dissolve the crude product, which was washed with $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ sequentially. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was purified by flash column chromatography to afford the product $\mathbf{9 B}(0.65 \mathrm{~g}, 45 \%$ yield $)$ as a colorless oil.

The procedure for synthesis of $\mathbf{9 C}$ is similar to that of $\mathbf{9 B}$.
(E)-2-hydroxy-2-(2-vinylphenyl)cyclopentan-1-one O-benzyl oxime (9A)

9A
9A: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.10(\mathrm{~m}, 9 \mathrm{H}), 5.52(\mathrm{~d}, \mathrm{~J}=$ $17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 2.91-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.44(\mathrm{~m}$, $1 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.49(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.0,140.8,138.1,137.1(4)$, 137.1(2), 128.4, 128.3, 127.9, 127.9, 127.7, 127.2, 126.8, 115.4, 82.4, 76.3, 41.1, 27.5, 20.6. HRMS (ESI) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 308.1645$, found 308.1640.
(E)-2-hydroxy-2-(2-vinylphenyl)cyclohexan-1-one O-benzyl oxime (9B)

9B
9B: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.34$ (m, 2H), 7.32 - 7.07 (m, 8H), 5.35 (dd, J $=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.97(\mathrm{dd}, J=10.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 3.01-$ $2.87(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{ddd}, J=14.5,9.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.55(\mathrm{~m}$, $3 \mathrm{H}), 1.54-1.34(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.9,139.4,138.4,137.9$, 137.7, 128.4, 128.3, 128.2, 127.7, 127.2, 126.7, 114.9, 76.5, 75.9, 41.1, 25.5, 24.2, 22.2. HRMS (ESI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 322.1802$, found 322.1799.
(E)-2-hydroxy-2-(2-vinylphenyl)cycloheptan-1-one O-benzyl oxime (9C)

9C
9C: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-$ $7.36(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (dd, $J=17.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=11.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.34$ $-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{dd}, \mathrm{J}$ $=23.7,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,142.3$, 138.7, 138.2, 137.8, 128.9, 128.4, 128.2, 127.9, 127.6, 127.0, 126.1, 114.9, 80.3, 76.3, 40.7, 30.2, 28.2, 26.1, 23.4. HRMS (ESI) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 336.1958$, found 336.1953.
(E)-2-(2-allylphenyl)-2-hydroxycyclopentan-1-one O-benzyl oxime (9D)

9D

9D: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.15(\mathrm{~m}, 8 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.03-5.86$ $(\mathrm{m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 5.06-4.93(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.63$ $-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.68-$ $1.50(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3,141.8,138.5,138.1,138.1,131.6$, 128.5, 128.3, 127.9, 127.7, 127.0, 125.6, 115.8, 82.6, 76.3, 41.4, 37.9, 27.5, 20.6. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}[M+\mathrm{H}]^{+} 322.1802$, found 322.1800.

General procedure for 1,2-trifluoromethyl-oximation of alkene 1

In an oven-dried 10 mL Schlenk tube were added $\mathbf{1}(0.20 \mathrm{mmol}), \mathrm{CuI}(4 \mathrm{mg}, 0.02 \mathrm{mmol})$ and Togni's reagent $\mathbf{2}(75 \mathrm{mg}, 0.24 \mathrm{mmol})$. The tube was vacuumed and back-filled with argon three times and then added with 1,4 -dioxane $(2 \mathrm{~mL})$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h . The solvent was removed under reduced pressure to afford the crude product, which was purified by flash column chromatography to afford the product 3.
(E)-5-oxo-5-phenyl-2-(2,2,2-trifluoroethyl)pentanal O-benzyl oxime (3A)

3A: (81% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (t, $J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44$ (t, J = 7.5 Hz, 2H), $7.35-7.22$ (m, 6H), $5.06-5.01$ (m, 2H), $3.00-2.85$ (m, 2H), 2.79-2.68(m, 1H), 2.46-2.19(m, 2H), 2.08-1.97(m, 1H), $1.97-1.83(m$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.4,151.3,137.7,136.7,133.3,128.7,128.4$, 128.2, 128.1, 127.9, 126.3 ($q, J=277.3 \mathrm{~Hz}$), $75.8,37.0(\mathrm{q}, ~ J=28.1 \mathrm{~Hz}), 35.3,34.0(\mathrm{q}, J$ $=2.4 \mathrm{~Hz}$), 26.5. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.5$. HRMS (ESI) m/z calcd. For $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 364.1519$, found 364.1516.
(E)-5-oxo-5-(p-tolyl)-2-(2,2,2-trifluoroethyl)pentanal O-benzyl oxime (3B)

3B: $\left(60 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.21$ (m, $7 \mathrm{H}), 5.06-5.04(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.40-$ $2.20(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 198.7, 151.4, 144.1, 137.6, 134.3, 129.4, 128.5, 128.2(4), 128.2(3), 127.9, 126.3 (q, $J=$ $277.3 \mathrm{~Hz}), 75.9,37.1(\mathrm{q}, J=28.1 \mathrm{~Hz}), 35.2,34.1(\mathrm{q}, J=2.4 \mathrm{~Hz}), 29.8,26.6,21.8 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.6. HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]+$ 378.1675, found 378.1672.
(E)-5-(4-methoxyphenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanal O-benzyl oxime (3C)

3C: (63% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.37-7.19$ (m, $6 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.06-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.79$ $-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.5,163.6,151.4,137.7,126.3(\mathrm{q}, J=275.4 \mathrm{~Hz}$), 130.4, 129.9, $128.5,128.2,127.9,113.8,75.9,55.6,37.1(\mathrm{q}, J=28.1 \mathrm{~Hz}), 34.9(\mathrm{q}, J=2.4 \mathrm{~Hz}), 26.8$. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.5$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 394.1624, found 394.1620.
(E)-5-(4-fluorophenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanal O-benzyl oxime (3D)

3D: (70% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 6 \mathrm{H})$, $7.14(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.10-5.01(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.70(\mathrm{~m}, 1 \mathrm{H})$, $2.49-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.4,165.9(\mathrm{~d}, J=254.8 \mathrm{~Hz}), 151.3,137.7$, $133.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}), 128.5,128.2,128.0,126.3(\mathrm{q}, J=277.4 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 75.9,37.2$ $(\mathrm{q}, J=28.0 \mathrm{~Hz}), 35.3,34.1(\mathrm{q}, J=2.6 \mathrm{~Hz}), 26.5 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.6$, 105.1. HRMS (ESI) m/z calcd. For $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{NF}_{4}[\mathrm{M}+\mathrm{H}]^{+} 382.1424$, found 382.1423 .
(E)-5-(4-chlorophenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanal O-benzyl oxime (3E)

3E

3E: (71\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.24$ (m, 6H), $5.08-4.99(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.44$ $-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.7, 151.2, 139.7, 137.7, 135.1, 129.5, 129.0, 128.5, 128.2, 127.9, 126.3 (q, $J=274.6$ $\mathrm{Hz}), 75.9,37.1(\mathrm{q}, ~ J=28.3 \mathrm{~Hz}), 35.3,34.0(\mathrm{q}, J=2.5 \mathrm{~Hz}), 26.4 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-63.5$. HRMS (ESI) m/z calcd. For $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{NClF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 398.1129$, found 398.1129.
(E)-5-(4-bromophenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanal O-benzyl oxime (3F)

3F: (70% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 1 H), 7.45 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.36 (dd, $J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.33-7.24$ (m, 5H), $5.07-$ $4.99(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.00$ $(\mathrm{m}, 1 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.0,151.2,137.7,135.5$, $132.0,129.6,128.5,128.5,128.3,128.0,126.3$ (q, $J=275.6 \mathrm{~Hz}$), 75.9, 37.2 (q, $J=28.2$ Hz), 35.3, $34.1\left(\mathrm{q}, J=2.3 \mathrm{~Hz}\right.$), 26.4. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.6. HRMS (ESI) m / z calcd. For $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{NBrF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 442.0624$, found 442.0626 .
(E)-5-(3-chlorophenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanal O-benzyl oxime (3G)

3G: $\left(84 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.55 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.36-7.21$ (m, 6H), $5.10-4.98$ (m, 2H), 2.96-2.81 (m, 2H), 2.79-2.66(m, 1H), 2.46-2.18(m, 2H), 2.09-1.97 (m, 1H), $1.96-1.83(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.7, 151.2, 138.3, 137.6, 135.1, $133.2,130.1,128.5,128.3,128.2,128.0,126.3(\mathrm{q}, J=277.3 \mathrm{~Hz}), 126.2,75.9,37.2(\mathrm{q}, J=$ $28.3 \mathrm{~Hz}), 35.4,34.0\left(\mathrm{q}, ~ J=2.5 \mathrm{~Hz}\right.$), 26.3. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.6$. HRMS (ESI) m/z calcd. For $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{NClF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 398.1129$, found 398.1130.
(E)-5-(2-chlorophenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanal O-benzyl oxime (3H)

3H: (71% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.19(\mathrm{~m}, 7 \mathrm{H})$, $5.09-4.99$ (m, 2H), $2.91(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.17(\mathrm{~m}, 2 \mathrm{H})$, $2.08-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.78(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.1,151.1$, $139.2,137.5,131.9,131.0,130.7,129.0,128.5,128.3,128.0,127.1,126.3$ (q, $J=277.1$ $\mathrm{Hz}), 76.0,39.7,37.0(\mathrm{q}, ~ J=28.3 \mathrm{~Hz}), 33.9(\mathrm{q}, J=2.4 \mathrm{~Hz}), 26.6 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-63.5$. HRMS (ESI) m/z calcd. For $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{NClF}_{3}[\mathrm{M}+\mathrm{H}]+398.1129$, found 398.1127.

(E)-5-(naphthalen-1-yl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanal O-benzyl oxime (3I)

31

3I: (71% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.89-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.72$ (dd, $J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.46$ (dd, $J=8.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.06-4.97(\mathrm{~m}$, 2 H), 3.01 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.84-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.04$ (m, $1 \mathrm{H}), 2.01-1.84(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.1,151.3,137.6,135.7$, 134.0, 132.9, 130.1, 128.5(4), 128.5(1), 128.2, 128.1, 127.9, 127.7, 126.6, 126.3 (q, $J=$ $277.3 \mathrm{~Hz}), 125.8,124.5,75.9,38.7,37.1(\mathrm{q}, ~ J=28.1 \mathrm{~Hz}), 34.1(\mathrm{q}, ~ J=2.4 \mathrm{~Hz}), 26.9 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.5$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 414.1675, found 414.1673.
(E)-5-(furan-2-yl)-5-oxo-2-(2,2,2-trifluoroethyl)pentanal O-benzyl oxime (3J)

3J: (70% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.23(\mathrm{~m}$, $6 \mathrm{H}), 7.09(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.99(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.88$ (ddd, $J=16.6,10.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.2,152.5,151.2,146.5$, $137.6,128.5,128.3,128.0,126.3(\mathrm{q}, J=279.9 \mathrm{~Hz}), 117.3,112.38,76.0,36.9(\mathrm{q}, J=28.3$ $\mathrm{Hz}), 35.1,34.0(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 26.4 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.6. HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 354.1311$, found 354.1309.

(E)-5-oxo-5-(thiophen-2-yl)-2-(2,2,2-trifluoroethyl)pentanal O-benzyl oxime (3K)

3K: (69% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{dd}, J=4.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}$, $J=3.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.10(\mathrm{dd}, J=4.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.98(\mathrm{~m}$, $2 \mathrm{H}), 2.94-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 1 \mathrm{H})$, $1.96-1.83(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.9,151.2,144.0,137.7,133.8$, 132.1, 128.5, 128.3, 128.2, 128.0, $126.3(\mathrm{q}, J=277.2 \mathrm{~Hz}), 75.9,37.0(\mathrm{q}, J=28.2 \mathrm{~Hz})$, 36.0, $34.1\left(\mathrm{q}, J=2.5 \mathrm{~Hz}\right.$), 26.7. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.5$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{NF}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 370.1083$, found 370.1080.
(E)-5-oxo-7-phenyl-2-(2,2,2-trifluoroethyl)heptanal O-benzyl oxime (3L)

3L

3L: (40% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.48-3.33(\mathrm{~m}, 1 \mathrm{H})$, $2.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.63-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.13(\mathrm{~m}, 2 \mathrm{H})$, $1.93-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 208.7,152.1$, $141.0,137.7,128.6(4), 128.6(3), 128.4,128.2,128.1,126.3,126.2(\mathrm{q}, J=277.5 \mathrm{~Hz}), 76.3$, $44.4,40.0,37.1(\mathrm{q}, ~ J=28.2 \mathrm{~Hz}), 29.8,29.7(\mathrm{q}, J=2.9 \mathrm{~Hz}), 26.0 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}) δ-63.6. HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$392.1832, found 392.1828.

(E)-4-(1-((benzyloxy)imino)ethyl)-6,6,6-trifluoro-1-phenylhexan-1-one (3M)

3M: (79\% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.85-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.08-4.90(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.77(\mathrm{~m}$, $2 \mathrm{H}), 2.76-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 2 \mathrm{H})$, $1.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.1,157.2,138.4,136.8,133.2,128.7$, $128.4,128.1,127.9,127.7,126.4(\mathrm{q}, J=277.1 \mathrm{~Hz}), 75.6,38.9(\mathrm{q}, J=2.3 \mathrm{~Hz}), 36.4(\mathrm{q}, J$ $=28.1 \mathrm{~Hz}$), 35.3, 26.2, 11.9. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.2$. HRMS (ESI) m/z calcd. For $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 378.1675$, found 378.1674 .

(E)-5-(1-((benzyloxy)imino)ethyl)-7,7,7-trifluoroheptan-2-one (3N)

3N

3N: $\left(25 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.11-4.98(\mathrm{~m}, 2 \mathrm{H})$, $3.63-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.01$ $(\mathrm{s}, 3 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.5$, $157.2,137.9,128.4,128.2,127.9,126.3(\mathrm{q}, J=277.1 \mathrm{~Hz}), 75.8,40.5,36.1(\mathrm{q}, J=28.3$ Hz), 31.7 ($\mathrm{q}, ~ J=2.4 \mathrm{~Hz}$), 29.9, 25.3, 16.3. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-64.7. HRMS (ESI) m / z calcd. For $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ONF}_{2}[\mathrm{M}+\mathrm{H}]^{+} 316.1507$, found 316.1517 .
(E)-5-oxo-5-phenyl-2-(2,2,2-trifluoroethyl)pentanal O-(4-methoxybenzyl) oxime (3O)

30: (80% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91$ (dd, $J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.60(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 3.77$ (s, 3H), 2.97 (td, $J=7.5,7.0,2.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.83-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{ddt}, J=14.7,7.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-$ $1.85(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.9,159.4,151.0,136.7,133.2,129.9$, 129.6, 128.6, 128.0, ,126.3(q, $J=277.4 \mathrm{~Hz}), 113.8,75.5,55.2,37.0(\mathrm{q}, J=28.1 \mathrm{~Hz}), 35.2$, $34.0(\mathrm{q}, J=2.4 \mathrm{~Hz}), 26.5 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.5$. HRMS (ESI) m / z calcd. For $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 394.1625$, found 394.1623.
(E)-6-oxo-6-phenyl-2-(2,2,2-trifluoroethyl)hexanal O-benzyl oxime (3P)

3P: (69% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 3.05$ $-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.1(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.53$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.6,151.6,137.6,136.9,133.2,128.8,128.5$, 128.3, 128.1, 128.0, 127.6 ($\mathrm{q}, ~ J=278.9 \mathrm{~Hz}$), 76.0, $37.9,36.5(\mathrm{q}, ~ J=28.1 \mathrm{~Hz}$), $34.3,32.2$ $(\mathrm{q}, J=2.7 \mathrm{~Hz}), 21.0 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.5$. HRMS (ESI) m/z calcd. For $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 378.1675$, found 378.1673.

General Procedure for synthesis of fluoroalkylated oximes.

1A

3A, $82 \%^{a}$

5, $\mathrm{Rf}=\mathrm{CF}_{2} \mathrm{H}, 72 \%^{a}$
6, $\mathbf{R f}=\mathrm{C}_{4} \mathrm{~F}_{9}, 58 \%^{\mathrm{a}}$

3A, 5, 6, and 8

In an oven-dried 10 mL tube were added $\mathbf{1 A}(44 \mathrm{mg}, 0.2 \mathrm{mmol})$, sulfonyl chloride ($\mathbf{4}, 0.3$ $\mathrm{mmol}), \mathrm{Na}_{2} \mathrm{HPO}_{4}(144 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $[\operatorname{Ir}($ dtbbpy $)(\mathrm{ppy}) 2] \mathrm{PF}_{6}(1.6 \mathrm{mg}, 0.002 \mathrm{mmol})$ sequentially. The tube was vacuumed and back-filled with argon three times and then added with 1,4-dioxane (2 mL). The reaction mixture was irradiated with blue LED for 5 h at $25^{\circ} \mathrm{C}$. EtOAc (30 mL) was added and the organic layer was washed with water (5 mL) and brine (5 mL) sequentially, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was purified by flash column chromatography to afford the product $\mathbf{3 A}$ (82% yield), 5 , and 6 .

The procedure for synthesis of 8 is similar to that reported for synthesis of 3A.
(E)-2-(2,2-difluoroethyl)-5-oxo-5-phenylpentanal O-benzyl oxime (5)

5: (72% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.23$ (m, 6H), 5.84 (tdd, $J=56.5,5.5,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08-4.99(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.17-1.83(\mathrm{~m}$, 4H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.5,152.1,137.7,136.8,133.3,128.7,128.5$, $128.3,128.1,128.0,116.1(\mathrm{t}, J=239.2 \mathrm{~Hz}), 75.9,37.2(\mathrm{t}, J=21.4 \mathrm{~Hz}), 35.5,34.4(\mathrm{q}, J=$ $4.5 \mathrm{~Hz}), 26.8 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.2(\mathrm{q}, J=284.5 \mathrm{~Hz}$). HRMS (ESI) m/z calcd. For $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{NF}_{2}[\mathrm{M}+\mathrm{H}]^{+} 346.1613$, found 346.1610.
(E)-7,7,7,7,7,7,7,7,7-nonafluoro-2-(3-oxo-3-phenylpropyl)-7l12-hepta-4,6-diynal Obenzyl oxime (6)

6: (58% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 1 H), 7.45 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.36 (dd, $J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.33-7.24$ (m, 5H), $5.07-$ $4.99(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.00$ $(\mathrm{m}, 1 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.0,151.5,137.7,136.8$, 133.3, 128.7, 128.5, 128.3, 128.1, 128.0, 120.1 - 104.0 (m), 75.9, 35.4, 33.8 (t, $J=21.2$ $\mathrm{Hz}), 32.9,27.2 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-81.0--81.1(\mathrm{~m}),-111.4--113.8(\mathrm{~m}),-$ $122.5--131.0(m)$. HRMS (ESI) m/z calcd. For $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{NF}_{9}[\mathrm{M}+\mathrm{H}]^{+} 514.1423$, found 514.1422.
methyl (E)-4-(((benzyloxy)imino)methyl)-2,2-difluoro-7-oxo-7-phenylheptanoate (8)

8: (71% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 6 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.04-2.86$ $(\mathrm{m}, 2 \mathrm{H}), 2.78-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.85(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.1,164.4(\mathrm{t}, J=32.7 \mathrm{~Hz}), 151.9,137.7,136.8$, 133.2, 128.7, 128.5, 128.3, 128.1, 127.9, 119.7 - 112.1 (m), 75.8, 53.6, 37.7 (t, $J=22.9$ $\mathrm{Hz}), 35.4,33.8(\mathrm{t}, J=3.4 \mathrm{~Hz}), 27.1 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-103.4(\mathrm{dd}, J=631.2$, 264.3 Hz). HRMS (ESI) m/z calcd. For $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{NF}_{2}[\mathrm{M}+\mathrm{H}]^{+} 404.1667$, found 404.1664 .

General procedure for ring expansion strategy for synthesis of medium-sized rings.

In an oven-dried 10 mL Schlenk tube were added 9 (0.20 mmol), $\mathrm{CuCN}(1.6 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ and Togni's reagent $2(75 \mathrm{mg}, 0.24 \mathrm{mmol})$. The tube was vacuumed and backfilled with argon three times and then added with 1,4-dioxane (2 mL). The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h . The solvent was removed under reduced pressure to afford the crude product, which was purified by flash column chromatography to afford the product 10-13.

10 (82% overall yield). (major isomer). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.26(\mathrm{~m}$, $8 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{q}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.16$ $(\mathrm{m}, 2 \mathrm{H}), 2.80-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.62(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.8,156.7,140.6,137.6,136.0,130.1,128.6$, 128.4, 128.3, 127.9, 127.8, 127.0 (q, $J=277.2 \mathrm{~Hz}$), 125.8, 76.4, 43.9, 42.9 (q, $J=2.7 \mathrm{~Hz}$), $37.0(\mathrm{q}, J=27.6 \mathrm{~Hz}), 27.0,20.9 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.6$. HRMS (ESI) m / z calcd. For $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 376.1519$, found 376.1518.

10 (minor isomer). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.12-7.01(\mathrm{~m}$, $2 \mathrm{H}), 4.95(\mathrm{q}, ~ J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{dd}, J=9.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.00-$ $2.89(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.05$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.2,157.9,140.5,137.2,135.4,130.8,128.3$, $128.2,127.9,127.8,127.6,127.4,126.4(\mathrm{q}, J=277.7 \mathrm{~Hz}), 76.2,43.3,38.8(\mathrm{q}, J=2.8 \mathrm{~Hz})$, $35.7(q, J=28.3 \mathrm{~Hz}), 33.67,24.7 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-64.6. HRMS (ESI) m / z calcd. For $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 376.1519$, found 376.1517.

11: (76% yield, major isomer). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.13-$ $7.07(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{q}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.16(\mathrm{~m}, 1 \mathrm{H})$, $2.80-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.64$ $-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.33(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.6,157.9,140.9$, 138.0, 136.1, 130.4, 129.8, 128.4, 128.3, 127.9, 127.4, 127.0 (q, $J=277.2 H z), 124.8$,
$76.5,45.1,44.4(\mathrm{q}, ~ J=2.7 \mathrm{~Hz}), 37.4(\mathrm{q}, J=27.6 \mathrm{~Hz}), 30.5,24.8,24.5 .{ }^{19} \mathrm{~F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-63.6$. HRMS (ESI) m / z calcd. For $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$390.1675, found 390.1672.

12: (77% yield, major isomer). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.36-7.22(\mathrm{~m}, 8 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{dd}, J=8.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.09(\mathrm{~m}, 2 \mathrm{H})$, $2.74-2.48(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.30(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 209.8,160.1,141.1,138.1,137.5,130.9,128.4,128.2,128.0,127.8,127.0$, $126.7(\mathrm{q}, J=278.0 \mathrm{~Hz}), 126.2,75.9,44.0,36.3(\mathrm{q}, ~ J=2.5 \mathrm{~Hz}), 34.8(\mathrm{q}, J=28.3 \mathrm{~Hz})$, 27.7, 23.3, 22.1, 22.0. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl} 3$) δ-63.7. HRMS (ESI) m/z calcd. For $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 404.1832$, found 404.1830.

13: (67% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H})$, $5.05-4.83(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.47(\mathrm{~m}, 5 \mathrm{H}), 2.44-2.11(\mathrm{~m}, 3 \mathrm{H}), 2.07$ $-1.72(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.8,158.4,141.0,137.4,136.5,131.4$, 129.6, 128.4, 128.1, 127.8, 126.6, 126.4 (q, $J=276.0 \mathrm{~Hz}$), 124.2, 76.1, 43.3, 36.2 (q, $J=$ $27.0 \mathrm{~Hz}), 35.5,29.8\left(\mathrm{q}, J=2.7 \mathrm{~Hz}, 27.2,22.8 .{ }^{19} \mathrm{~F}\right.$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.7$. HRMS (ESI) m/z calcd. For $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 390.1675$, found 390.1673 .

Synthetic transformations

Removal of PMB group of 30

To a solution of $30(158 \mathrm{mg}, 0.4 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ were added anisole ($172 \mathrm{mg}, 1.6 \mathrm{mmol}$) and $\mathrm{AlCl}_{3}(210 \mathrm{mg}, 1.6 \mathrm{mmol})$ sequentially at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at that temperature for 30 min and quenched with ice water $(10 \mathrm{~mL})$. Dichloromethane was used to extract the product from the aqueous layer (3×10 mL). The combined organic layer was washed with brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was purified by flash column chromatography to afford the product $\mathbf{1 4}(62 \mathrm{mg}, 57 \%)$ as a colorless oil.

14: (57% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96$ (dd, $J=8.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.71 (brs, $1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-2.97$ (m, 2H), 2.85-2.73(m, 1H), 2.50-2.26(m, 2H), 2.14-2.03(m, 1H), 2.02-1.90(m, 1H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.1,152.4,136.8,133.4,128.8,128.1,126.3$ (q, J $=277.1 \mathrm{~Hz}), 37.1(\mathrm{q}, J=28.3 \mathrm{~Hz}), 35.4,34.0(\mathrm{q}, J=2.5 \mathrm{~Hz}), 26.7 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\mathrm{CDCl} 3) \delta$-63.6. HRMS (ESI) m/z calcd. For $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$274.1049, found 274.1049 .

Transformation of medium-sized oxime 11 to lactam 15

To a solution of $\mathbf{1 1}(39 \mathrm{mg}, 0.10 \mathrm{mmol})$ in methanol $(2 \mathrm{~mL})$ was added $\mathrm{NaOMe}(23 \mathrm{mg}$, 0.40 mmol) at room temperature. The reaction mixture was heated up to $60^{\circ} \mathrm{C}$ for 2 h , cooled down to room temperature and quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. EtOAc $(10 \mathrm{~mL})$ was added and the organic layer was washed with brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford the crude product, which was purified by flash column chromatography to afford the product 15 ($12 \mathrm{mg}, 40 \%$).

10-(2,2,2-trifluoroethyl)-2,3,4,10-tetrahydrobenzo[e]cyclopenta[b]azepin-5(1H)-one

 (15)

15

15: (40% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03$ (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.91 (brs, $1 \mathrm{H}), 7.49(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.59 (dd, $J=8.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.32(\mathrm{~m}, 6 \mathrm{H}), 2.01-1.88(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9,142.5,132.9,132.5,131.7,131.5,127.8,127.4,124.7,39.2(\mathrm{q}, J=$ 2.8 Hz), $36.2\left(\mathrm{q}, J=27.1 \mathrm{~Hz}\right.$), 34.9, 33.9, 21.3. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.54$.

HRMS (ESI) m/z calcd. For $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ONF}_{3}[\mathrm{M}+\mathrm{H}]^{+} 282.1100$, found 282.1100.

Large-scale synthesis

The procedure for large-scale synthesis is similar to that for synthesis of 3A.

Control experiment with TEMPO as radical scavenger

In an oven-dried 10 mL Schlenk tube were added $\mathbf{1 A}(0.20 \mathrm{mmol}), \mathrm{CuI}(4 \mathrm{mg}, 0.02$ mmol), Togni's reagent $2(75 \mathrm{mg}, 0.24 \mathrm{mmol})$ and TEMPO ($60 \mathrm{mg}, 0.4 \mathrm{mmol}$). The tube was vacuumed and back-filled with argon three times and then added with 1,4-dioxane (2 mL). The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h . NMR showed most of $\mathbf{1 A}$ existed and trace amount of $\mathbf{3 A}$ was detected.

NMR Spectra

-198.939

3A

3C

3D
3D

N
N
ÓBn

		${ }_{\sim}^{\infty}$	

3E

WN-8-10-Q-1-NEW 2. fid

WN-8-10-Q-1-NEW. 3. fid
∞
ω
\vdots
0
1

3F

\qquad

3G

3H

3L

3L

[^0]
3M

30 OPMB

	$\xrightarrow{\text { d }}$	人 o o	$\underset{\substack{\pi \\ i}}{\substack{i}}$	

3P

5

WN-4-2-2.fid

8

	$\stackrel{\circ}{6}$		$\begin{gathered} \text { O} \\ \text { No } \\ \stackrel{1}{\circ} \end{gathered}$	

\qquad

[^1]
\qquad

${ }_{210}^{10}$	200	190	180	170	160	150		${ }_{130}$	120	110	$\begin{gathered} 100 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	90	80	${ }_{70}$	60	50	${ }_{40}$	30	20	10	1	-10

q-8-35-p2. 2. fid
0
0
0
i

14

\qquad

				$\begin{aligned} & \text { T' } \\ & \text { à } \\ & \text { og } \end{aligned}$	T								$\begin{aligned} & \text { TO } \\ & \hline- \end{aligned}$		$\frac{1}{6}$	$$					
5.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	${ }_{61}^{4}$ (ppm)	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

COSY of compound 15

HSQC of compound 15

HMBC of compound 15

HMBC of compound 15

HMBC of compound 15

[^0]:

[^1]:

