## **Supplementary Materials for**

# Correlating thermochromic and mechanochromic phosphorescence with polymorphs of a complex gold(I) double salt with infinite aurophilicity

Qi Liu,<sup>ab</sup> Mo Xie,<sup>b</sup> Xiaoyong Chang,<sup>b</sup> Qin Gao,<sup>b</sup> Yong Chen\*<sup>a</sup> and Wei Lu\*<sup>b</sup>

<sup>a</sup> Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China. E-mail: chenyong@mail.ipc.ac.cn

<sup>b</sup> Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong 518055, P. R. China. E-mail: luw@sustc.edu.cn

#### **Material and Instrumentation**

Potassium dicyanoaurate(I) was purchased from Newburyport, MA.. Solvents used for synthesis were of analytical grade unless stated otherwise. Solvents used for nanostructure preparations and photophysical measurements were of HPLC grade. The cationic precursor  $[Au(NHC)_2]$  Cl was synthesized according to literature. <sup>1</sup>H NMR spectra were recorded using a Bruker Avance 400 FT-NMR spectrometer. HR-MS (high resolution mass spectra) were obtained on a Thermo Scientific Q Exactive mass spectrometer, operated in heated electrospray ionization (HESI) mode, and coupled with Thermo Scientific Ultimate 3000 system. Samples were dissolved in HPLC grade methanol and a little other solvent like DMF or CH<sub>2</sub>Cl<sub>2</sub>. Steady-state emission spectra and excitation spectra for solid were recorded on Edinburgh spectrometer FLS-980 equipped with a Xe light source, an MCP-PMT detector in a cooled housing (20 °C), which covers a range of 200-870 nm. Solid-state emissions at controlled variable temperature (77-373 K) were recorded with Oxford Instruments liquid nitrogen cryostat accessory. Emission lifetimes were recorded on Hamamatsu compact fluorescence lifetime spectrometer C11367 and the solid samples were excited at 365 nm. Absolute luminescent quantum yields were recorded with Hamamatsu absolute PL quantum yield spectrometer C11347 equipped with an integrating sphere. Fluorescence microscopy images were recorded on Nikon ECLIPSE Ni-U upright microscope using FLS-980 Xe light source through HG fibers. Emission and excitation spectra of single crystals were also measured on microscope using HG fibers. The powder XRD patterns were recorded on a Rigaku Smartlab X-ray diffractometer equipped with 9 kW X-ray generator. The scanning rate was 5 %min in the 20 range from 5 ° to 60 °. The diffraction data were collected at 100 K to 298 K on a Bruker D8 Venture single crystal X-ray diffractometer. The SEM micrographs were taken on a ZEISS Merlin scanning electron microscope operating at 2–5 kV. SEM samples were prepared by drop-casting suspensions onto silicon wafers. The excess solvent was removed by a piece of filter paper. TG and DSC measurement were performed with Netzsch STA 449 F3 and TA DSC25, separately. The rate of

2

temperature ramp was 10 °C per minute.

#### Synthesis of the Double Salt

[Au(NHC)<sub>2</sub>]Cl (0.02 g, 0.038 mmol) dissolved in water (0.5 mL) and potassium dicyanoaurate (0.011 g, 0.038 mmol) dissolved in water (0.5 mL) were mixed and an emissive solid precipitated in a few seconds. The precipitate was filtered after stirring for 10 min and washed thoroughly with water, acetonitrile, and diethyl ether and dried in air to give double salt as a yellow-green solid (22 mg, yield: 78%). Single crystals of double salt for X-ray crystallography were obtained by slow diffusion of ether into a DMF solution and two polymorphs were obtained. <sup>1</sup>H NMR (400 MHz, d<sub>7</sub>-DMF)  $\delta$  (ppm): 8.76 (s, 4H), 4.21 (s, 12H). HR-MS (ESI): Calcd for C<sub>14</sub>H<sub>16</sub>AuN<sub>8</sub> [M]<sup>+</sup>: 493.1163; Found: 493.1165; Calcd for Au(CN)<sub>2</sub> [M]<sup>-</sup>: 248.9732; Found: 248.9729. Elemental Analysis: C 25.89, H 2.17, N 18.87, Found: C 25.44, H 2.07, N 18.99.

Since polymorphs of double salt were observed through single crystals growing, we proposed that powder crystals of an elusive structure in nano- or micro scales could form under some given conditions (Table S1). By changing solvent from water to methanol or acetonitrile, polymorph **A** and polymorph **B** co-precipitated from the solution. When the solvent was water, plate-like polymorph **B** with diameter in micrometers precipitated immediately after cation and anion meeting each other. When methanol or acetonitrile was used as solvent, a mixture of rod-like cyanemitting and plate-like yellow-green-emitting double salt precipitated (Fig. S1). The growing process was also recorded using fluorescence microscope as video format (see video in Supporting Information). Since the micro-crystal powder of polymorph **A** was always precipitated together with polymorph **B**, the long fiber-like micro-crystals polymorph **A** was separated manually from polymorph **B** using tweezers.

**Table S1**. Formation of double salt of different luminescence and morphology under different solvents and concentrations.

| Concentration |                                                | 16 mM           | 5 mM                                           |                 |  |
|---------------|------------------------------------------------|-----------------|------------------------------------------------|-----------------|--|
| Solvent       | Water CH <sub>3</sub> OH or CH <sub>3</sub> CN |                 | Water CH <sub>3</sub> OH or CH <sub>3</sub> CN |                 |  |
| Luminescence  | Luminescence Green                             |                 | Green                                          | Cyan and Green  |  |
| Morphology    | Plate                                          | Fiber and Plate | Plate                                          | Fiber and Plate |  |

**Table S3.** Photophysical data of polymorph A and B and ground powder C at 293 Kand 77 K.

|                      |                     | 293 K  | 77 K   |                     |        |
|----------------------|---------------------|--------|--------|---------------------|--------|
|                      | $\lambda_{em}$ / nm | τ (ns) | QY (%) | $\lambda_{em}$ / nm | τ (ns) |
|                      | 400                 | 70     | 22     | 475                 | <1     |
| Polymorph A          | 490                 | 19     | 23     | 520                 | 409    |
| Delever end <b>D</b> | 549                 | 309    | 51     | 535                 | <1     |
| Polymorph <b>B</b>   | 348                 |        |        | 580                 | 494    |
|                      |                     | 486    | 31     | 535                 | <1     |
| Ground               | 580                 |        |        | 595                 | 567    |
| Powder C             |                     |        |        | 700                 | 1126   |

**Table S2**. X-ray crystallographic data of the single crystals of polymorph **A** at 150 K, polymorph **B** at 100 K, at 150 K, at 200 K, at 225 K, at 250 K and at 298 K.

|                      | Polymorph <b>A</b><br>at 150 K | Polymorph <b>B</b><br>at 100 K | Polymorph <b>B</b><br>at 150 K | Polymorph <b>B</b><br>at 200 K | Polymorph <b>B</b><br>at 225 K | Polymorph <b>B</b><br>at 250 K | Polymorph <b>B</b><br>at 298 K |
|----------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Empirical<br>Formula | $C_{16}H_{16}Au_2N_{10}$       |
| Formula<br>Weight    | 742.32                         | 742.32                         | 742.32                         | 742.32                         | 742.32                         | 742.32                         | 742.32                         |
| Crystal System       | Monoclinic                     | Orthorhombic                   | Orthorhombic                   | Orthorhombic                   | Orthorhombic                   | Orthorhombic                   | Orthorhombic                   |
| Crystal Size         | 0.34 × 0.28 × 0.03             | 0.3×0.06×0.01                  | 0.3×0.06×0.01                  | 0.3×0.06×0.01                  | 0.3×0.06×0.01                  | 0.3×0.06×0.01                  | 0.3×0.06×0.01                  |
| Space Group          | C2/m                           | Pmn2 <sub>1</sub>              | Pmn2 <sub>1</sub>              | Pmn2 <sub>1</sub>              | Pmna                           | Pmna                           | Pmna                           |
| <i>a</i> (Å)         | 13.0911(14)                    | 6.2753(7)                      | 6.2961(6)                      | 6.3306(4)                      | 6.3484(4)                      | 6.3632(4)                      | 6.3929(4)                      |
| <i>b</i> (Å)         | 6.4907(7)                      | 8.0957(10)                     | 8.1146(8)                      | 8.1410(5)                      | 8.1538(6)                      | 8.1603                         | 8.1734(6)                      |
| <i>c</i> (Å)         | 11.9991(14)                    | 18.757(2)                      | 18.7357(17)                    | 18.7077(11)                    | 18.6895(12)                    | 18.6843(12)                    | 18.6898(12)                    |
| α(°)                 | 90.00                          | 90.00                          | 90.00                          | 90.00                          | 90.00                          | 90.00                          | 90.00                          |
| β( )                 | 105.112(4)                     | 90.00                          | 90.00                          | 90.00                          | 90.00                          | 90.00                          | 90.00                          |
| γ( <sup>9</sup>      | 90.00                          | 90.00                          | 90.00                          | 90.00                          | 90.00                          | 90.00                          | 90.00                          |
| $V(\text{\AA}^3)$    | 984.31(19)                     | 952.93(19)                     | 957.21(16)                     | 964.15(10)                     | 967.44(11)                     | 970.19(11)                     | 976.57(11)                     |

| Z Value                                                | 2                     | 2                     | 2                     | 2                     | 2                     | 2                     | 2                     |
|--------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $D_{\rm calc}$ / g cm <sup>-3</sup>                    | 2.505                 | 2.587                 | 2.576                 | 2.557                 | 2.548                 | 2.541                 | 2.524                 |
| Temperature / K                                        | 150                   | 100                   | 150                   | 200                   | 225                   | 250                   | 298                   |
| No. of<br>Reflections                                  | 11074                 | 23319                 | 17919                 | 18339                 | 18600                 | 18401                 | 18575                 |
| Measured                                               | Unique: 894           | Unique: 4134          | Unique: 2582          | Unique: 2603          | Unique: 1306          | Unique: 1312          | Unique: 1321          |
|                                                        | $R_{int} = 0.0710$    | $R_{int} = 0.0587$    | $R_{int} = 0.0519$    | $R_{int} = 0.0543$    | $R_{int} = 0.0590$    | $R_{int} = 0.0590$    | $R_{int} = 0.0653$    |
| Goodness of Fit                                        | 1.052                 | 1.120                 | 1.256                 | 1.222                 | 1.268                 | 1.276                 | 1.078                 |
| Residuals: $R_1$ (I > 2.00 $\sigma$ (I)) / %           | 2.63                  | 3.85                  | 4.16                  | 4.40                  | 7.94                  | 7.18                  | 6.99                  |
| Residuals: wR <sub>2</sub><br>(All reflections)<br>/ % | 7.86                  | 9.20                  | 10.81                 | 11.58                 | 17.21                 | 18.81                 | 19.33                 |
| Maximum peak<br>in Final Diff.<br>Map / Å <sup>3</sup> | 1.246 e⁻              | 2.482 e⁻              | 3.526 e⁻              | 2.279 e⁻              | 3.908 e <sup>-</sup>  | 2.064 e <sup>-</sup>  | 2.263 e⁻              |
| Minimum peak<br>in Final Diff.<br>Map / Å <sup>3</sup> | −1.290 e <sup>-</sup> | −1.660 e <sup>-</sup> | -1.825 e <sup>-</sup> | −2.267 e <sup>-</sup> | −2.488 e <sup>-</sup> | −1.585 e <sup>-</sup> | −1.331 e <sup>-</sup> |



Figure S1. Single crystals of cyan emitting polymorph A and green emittingpolymorph B (under 365 nm UV light) by diffusion of ether into DMF solution at 298K.



**Figure S2**. Variable-temperature excitation spectra of polymorph **A** upon monitored at 488 nm.



**Figure S3**. Variable-temperature excitation spectra of polymorph **B** upon monitored at 541 nm.



**Figure S4**. Variable-temperature excitation spectra of ground powder **C** upon monitored at 580 nm.



**Figure S5**. Excitation spectra of polymorph **A** and polymorph **B** at 77 K monitored at a variety of emission wavelength.



**Figure S6**. Excitation spectra of ground powder **C** at 77 K monitored at a variety of emission wavelength.



**Figure S7**. Variable-temperature (293 K to 373 K) excitation spectra of polymorph **A** upon monitored at 490 nm.



**Figure S8**. Variable-temperature (293 K to 373 K) excitation spectra of polymorph **B** upon monitored at 548 nm.



**Figure S9**. Variable-temperature (293 K to 373 K) emission spectra of ground powder C.



**Figure S10**. Variable-temperature (293 K to 373 K) excitation spectra of ground powder **C** upon monitored at 580 nm.



Figure S11. Luminescence decay curves of polymorph **A**, polymorph **B** and ground powder **C** measured at room temperature.



**Figure S12**. Luminescence decay curves of polymorph **A**, polymorph **B** and ground powder **C** measured at 77 K.



Figure S13. TGA-DSC measurement of polymorph A (left) and B (right) from room temperature to 800  $^{\circ}$ C.



Figure S14. DSC measurement of polymorph **B** from -80 °C to 127 °C.



**Figure S15**. Comparisons between simulated PXRD pattern from single crystal structures of polymorphs **A** at 150 K and that recorded with bulky microcrystals of **A** at 297 K.



**Figure S16.** Comparisons between simulated PXRD pattern from single crystal structures of polymorphs **B** at 298 K and that recorded with bulky microcrystals of **B** at 297 K.



**Figure S19**. SEM image of double salt (polymorph **B**) made in water. Concentration of cation and anion was 5 mM.



**Figure S20.** TD-DFT calculated frontier orbital diagram for tetranuclear and hexanuclear oligomers of [Au(NHC)<sub>2</sub>][Au(CN)<sub>2</sub>].

| D/Å | A/ ° | state      | λ/nm  | f     | assign | HOMO/eV | LUMO/eV | energy gap/eV | total electron energy/a.u. |
|-----|------|------------|-------|-------|--------|---------|---------|---------------|----------------------------|
| 315 | 20   | <b>S</b> 1 | 380.7 | 0.065 | H-L    | -6.427  | -2.655  | 3.772         | -1437.67475                |
| 315 | 25   | <b>S</b> 1 | 382.0 | 0.065 | H-L    | -6.430  | -2.671  | 3.759         | -1437.67539                |
| 315 | 30   | <b>S</b> 1 | 383.2 | 0.064 | H-L    | -6.435  | -2.688  | 3.747         | -1437.67602                |
| 315 | 35   | <b>S</b> 1 | 384.2 | 0.063 | H-L    | -6.443  | -2.705  | 3.738         | -1437.67651                |
| 315 | 40   | <b>S</b> 1 | 385.0 | 0.063 | H-L    | -6.451  | -2.722  | 3.729         | -1437.67697                |
| 315 | 45   | <b>S</b> 1 | 385.8 | 0.062 | H-L    | -6.459  | -2.738  | 3.721         | -1437.67753                |
| 315 | 50   | <b>S</b> 1 | 386.6 | 0.061 | H-L    | -6.466  | -2.753  | 3.713         | -1437.67842                |
| 315 | 55   | <b>S</b> 1 | 387.5 | 0.061 | H-L    | -6.472  | -2.767  | 3.705         | -1437.67966                |
| 315 | 60   | <b>S</b> 1 | 388.7 | 0.061 | H-L    | -6.474  | -2.781  | 3.693         | -1437.68117                |
| 315 | 65   | <b>S</b> 1 | 390.1 | 0.061 | H-L    | -6.474  | -2.793  | 3.681         | -1437.68268                |
| 315 | 70   | <b>S</b> 1 | 391.6 | 0.061 | H-L    | -6.472  | -2.804  | 3.668         | -1437.68400                |
| 315 | 75   | <b>S</b> 1 | 392.8 | 0.061 | H-L    | -6.469  | -2.813  | 3.656         | -1437.68499                |
| 315 | 80   | <b>S</b> 1 | 393.7 | 0.061 | H-L    | -6.467  | -2.818  | 3.649         | -1437.68555                |
| 315 | 85   | <b>S</b> 1 | 394.0 | 0.061 | H-L    | -6.465  | -2.820  | 3.645         | -1437.68569                |
| 320 | 20   | <b>S</b> 1 | 365.0 | 0.070 | H-L    | -6.387  | -2.468  | 3.919         | -1437.36206                |
| 320 | 25   | <b>S</b> 1 | 366.3 | 0.070 | H-L    | -6.388  | -2.484  | 3.904         | -1437.36273                |
| 320 | 30   | <b>S</b> 1 | 367.8 | 0.070 | H-L    | -6.391  | -2.503  | 3.888         | -1437.36351                |
| 320 | 35   | <b>S</b> 1 | 369.4 | 0.070 | H-L    | -6.394  | -2.524  | 3.870         | -1437.36436                |
| 320 | 40   | <b>S</b> 1 | 371.1 | 0.069 | H-L    | -6.397  | -2.545  | 3.852         | -1437.36527                |
| 320 | 44   | <b>S</b> 1 | 371.8 | 0.069 | H-L    | -6.398  | -2.554  | 3.844         | -1437.36568                |
| 320 | 45   | <b>S</b> 1 | 372.9 | 0.068 | H-L    | -6.400  | -2.566  | 3.834         | -1437.36618                |
| 320 | 50   | <b>S</b> 1 | 374.7 | 0.067 | H-L    | -6.401  | -2.586  | 3.815         | -1437.36707                |
| 320 | 55   | <b>S</b> 1 | 376.8 | 0.066 | H-L    | -6.401  | -2.606  | 3.795         | -1437.36792                |
| 320 | 60   | <b>S</b> 1 | 378.8 | 0.065 | H-L    | -6.399  | -2.624  | 3.775         | -1437.36872                |
| 320 | 65   | <b>S</b> 1 | 380.8 | 0.064 | H-L    | -6.397  | -2.641  | 3.756         | -1437.36943                |
| 320 | 70   | <b>S</b> 1 | 382.6 | 0.064 | H-L    | -6.395  | -2.655  | 3.740         | -1437.37001                |
| 320 | 75   | <b>S</b> 1 | 383.9 | 0.064 | H-L    | -6.394  | -2.667  | 3.727         | -1437.37047                |
| 320 | 80   | <b>S</b> 1 | 384.8 | 0.064 | H-L    | -6.395  | -2.675  | 3.720         | -1437.37080                |
| 320 | 85   | <b>S</b> 1 | 385.1 | 0.064 | H-L    | -6.397  | -2.680  | 3.717         | -1437.37102                |
| 325 | 20   | <b>S</b> 1 | 376.7 | 0.037 | H-L    | -6.270  | -2.481  | 3.789         | -1437.43185                |
| 325 | 25   | <b>S</b> 1 | 378.7 | 0.037 | H-L    | -6.270  | -2.500  | 3.770         | -1437.43251                |
| 325 | 30   | <b>S</b> 1 | 381.2 | 0.036 | H-L    | -6.270  | -2.524  | 3.746         | -1437.43339                |
| 325 | 35   | <b>S</b> 1 | 393.9 | 0.035 | H-L    | -6.271  | -2.550  | 3.721         | -1437.43432                |
| 325 | 40   | <b>S</b> 1 | 386.6 | 0.035 | H-L    | -6.272  | -2.575  | 3.697         | -1437.43521                |
| 325 | 45   | <b>S</b> 1 | 389.4 | 0.034 | H-L    | -6.272  | -2.600  | 3.672         | -1437.43599                |
| 325 | 50   | <b>S</b> 1 | 392.1 | 0.034 | H-L    | -6.271  | -2.623  | 3.648         | -1437.43671                |
| 325 | 55   | <b>S</b> 1 | 394.7 | 0.033 | H-L    | -6.271  | -2.644  | 3.627         | -1437.43740                |
| 325 | 60   | <b>S</b> 1 | 397.1 | 0.033 | H-L    | -6.269  | -2.663  | 3.606         | -1437.43798                |
| 325 | 65   | <b>S</b> 1 | 399.3 | 0.033 | H-L    | -6.267  | -2.680  | 3.587         | -1437.43850                |
| 325 | 70   | <b>S</b> 1 | 401.2 | 0.033 | H-L    | -6.265  | -2.693  | 3.572         | -1437.43893                |
| 325 | 75   | <b>S</b> 1 | 402.7 | 0.033 | H-L    | -6.264  | -2.704  | 3.560         | -1437.43925                |
| 325 | 80   | <b>S</b> 1 | 403.8 | 0.033 | H-L    | -6.262  | -2.711  | 3.551         | -1437.43948                |
| 325 | 85   | <b>S</b> 1 | 404.4 | 0.033 | H-L    | -6.261  | -2.715  | 3.546         | -1437.43967                |

**Table S4.** All calculated lowest-lying absorptions with the vertical excitation energies (nm), oscillator strength (f), and corresponding energy levels of HOMO and LUMO.

### **Computational details**

All calculations were performed with Gaussian 09 suite of program<sup>1</sup> employing density functional theory (DFT) and time-dependent density functional theory (TDDFT). The hybrid functional B3LYP<sup>2</sup> with dispersion correction (D3)<sup>3</sup> with double zeta basis set (LanL2DZ<sup>4</sup> for Au and 6-31G(d)<sup>5</sup> for other atoms) was applied here. The initial structural units for computing were all derived from the X-ray crystal structures and partial freeze energy minimization was utilized in geometry optimization of ground state. The main structure of complex was frozen, and degree of freedom was only provided for the hydrogen atoms and the methyl groups. The singlet vertical excitation energy and corresponding electron transition as well as the frontier molecular orbital analysis was based on the ground state geometry. All selected excitations are the lowest-lying absorptions (S<sub>0</sub>-S<sub>1</sub>), which are the most credible results from calculation. In the crystal lattice, the structural changes of the molecules are limited, so we suggest that the singlet absorption has a corresponding relationship with the emission.

The anion-cation interaction energy was defined as below:

$$E_{int} = E_{complex \, salt} - (E_{anion} + E_{cation})$$

The basis set superposition error (BSSE) included in anion-cation interaction energy was achieved by using the counterpoise method. All calculations were done in vacuo.

 M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N.
Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A.
Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B.
Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford
CT, *Gaussian, Inc.Wallingford CT*, 2009.

- 2 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 3 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.*, **2010**, *132*, 154104.
- 4 C. E. Check, T. O. Faust, J. M. Bailey, B. J. Wright, T. M. Gilbert and L. S. Sunderlin, *J. Phys. Chem. A*, **2001**, *105*, 8111.
- 5 P. C. Hariharan and J. A. Pople, *Theoretica Chimica Acta*, **1973**, 28, 213.