Dramatic Improvement of Stability by In-Situ Linker Cyclization of a Metal-Organic Framework

Yun-Long Hou[†], Mu-Qing Li^{†‡§}, Shengxian Cheng[†], Yingxue Diao^{†§}, Filipe Vilela[∥], Yonghe He[⊥], Jun He[⊥] and Zhengtao Xu *[†]

Supporting Information

* Corresponding author.

[†] Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.

[‡] Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China

[§]Department of Material Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.

^I School of Engineering and Physical Sciences, Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, UK

¹School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

E-mail: zhengtao@cityu.edu.hk

Table of contents

General procedures	S 1
The synthetic procedures for the molecule H_2L1 , crystallization and activation of ZrL1, solvent-	S1-6
induced "shrinking and breathing" of ZrL1 crystals, thermocyclization of ZrL1 crystals.	
Figure S1 . The synthetic steps for H_2L1 .	S 7
Figure S2. A reaction scheme for the crystallization of ZrL1, with a photograph of the crystals.	S 8
Figure S3. Solution ¹ H-NMR spectra of H ₂ L1 and ZrL1	S9
Figure S4. Photographs of as-made samples and crystals of ZrL1 after heating.	S10
Figure S5. Kubelka-Munk transformed reflectance spectrum and the corresponding Tauc plot of	S10
ZrL1-320.	
Figure S6. CO_2 gas sorption isotherms of ZrL1 and ZrL1-320.	S11
Figure S7. Solution ¹ H NMR spectra of molecules emitted from the thermal treatment.	S12
Figure S8. A proposed reaction pathway during thermal treatment.	S13
Figure S9. Elemental profiles as found by EDX measurements on the as-made ZrL1 sample and	S14
ZrL1-320.	
Figure S10. A solid state ¹³ C NMR of ZrL1-320.	S15
Figure S11. The thermogravimetric analysis (TGA) plots of an as-made sample of ZrL1.	S 16
Figure S12. X-ray diffraction pattern of ZrL1-320 soaked in DMF.	S17
Refinement details of PXRD of as-made ZrL1, ZrL1-ac, ZrL1-DMFrg and ZrL1-320	S18-23
before/after treated with H ₃ PO ₄ and NaF aqueous solutions.	

Experimental details

General procedure. Starting materials, reagents, and solvents were purchased from commercial sources (Aldrich and J&K) and used without further purification. 4-Trimethylsilylethynyl-1-methylthiobenzene was prepared according to the reported procedure (*CrystEngComm*, 2004, 6, 184). Bis(triphenylphosphine)palladium(II) chloride and trimethylsilylacetylene were purchased from Meryer and used without further purification. Solution nuclear magnetic resonance (NMR) spectra were recorded at 298 K on Mercury VX-300 spectrometers, with working frequencies of 300 and 400 MHz for ¹H and 75 and 100 MHz for ¹³C nuclei. Chemical shifts are reported in ppm relative to the signals corresponding to the residual non-deuterated solvents, with tetramethylsilane (TMS) as the internal standard. Solid state ¹³C NMR CP-MAS measurements were carried out using a Bruker Advance 400 spectrometer operating at 100.6 MHz for ¹³C using a Bruker 4 mm double resonance probe-head operating at a spinning rate of 10-12.5 kHz.

Powder X-ray diffraction data were collected in the reflection mode at room temperature on a Bruker D2 Phaser X-ray diffractometer with Cu K α radiation ($\lambda = 0.15418$ nm) operating at 30 kV and 10 mA, respectively. The X-ray tube operated at a voltage of 30 kV and a current of 30 mA. Elemental analysis was performed with a Vario Micro CUBE CHN elemental analyzer. FT-IR spectra were obtained using a Nicolet Avatar 360 FT-IR spectrophotometer. Thermogravimetric analyses (TG) were carried out in a nitrogen stream using PerkinElmer Thermal analysis equipment (STA 6000) with heating program described in the respective TGA figure captions (e.g., 2 °C/min). Diffuse reflection spectrum was collected in the UV-Visable Near Infra-red Spectrophotometer with Integrating Sphere (PE Lamda 750).

The structural models of Zr-L1 and ZrL1-320 (from which Figures 1 and 2 were prepared), including cell parameters and atomic positions, was generated using Materials Studio (v6.1.0)

suit of programs by Accelrys. For ZrL1, a crude structure model was obtained by lowering the symmetry of Lin's MOF (*Chem. - Eur. J.* 2014, 20, 14965) to P1 and substituting the ligand with L1 while maintaining a geometrical arrangement of organic linkers and zirconium clusters, followed by Geometry Optimization of Forcite Calculation in Materials Studio by Accelrys. For ZrL1-320, a crude structure model was obtained by substituting the ligand of ZrL1 with L1-320 while maintaining a geometrical arrangement of organic linkers and zirconium clusters, followed by Geometry Optimization of Forcite Calculation in Materials Studio by Accelrys. For zrL1-320, a crude structure model was obtained by substituting the ligand of ZrL1 with L1-320 while maintaining a geometrical arrangement of organic linkers and zirconium clusters, followed by Geometry Optimization of Forcite Calculation in Materials Studio by Accelrys. The lattice parameters were then modified with the PXRD pattern indexing results, and the structures were subjected to geometry optimization under the constraint of fixed lattice geometry. No refinement of atomic positions against the PXRD data was applied.

Synthesis of SM1. Methyl 4-amino-3,5-dibromobenzoate (SM1) was prepared based on a modified literature method (Eur. Pat. Appl., 1986, 188351). Methyl 4-aminobenzoate (10.0 g, 66.2 mmol) was added to a round-bottom flask charged with a magnetic stirring bar and dissolved in acetic acid (30 mL). A mixture of acetic acid (30 mL) and bromine (23 g, 146 mmol) was added dropwise into the flask. After stirring at room temperature for 12 hours, the reaction mixture was poured into deionized water (500 mL). The precipitate was filtrated and re-dissolved in dichloromethane (DCM) and dried over anhydrous MgSO4. After removal of the solvent, the residue was purified by column chromatography (silica gel, 1:1 *n*-hexane/DCM as the eluent) to provide SM1 as a white powder (18.0 g, yield 90% based on methyl 4-aminobenzoate). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.07 (s, 2H, CHAr), 5.00 (s, 2H, NH₂), 3.86 (s, 3H, CH₃).

Synthesis of SM2. To a stirred mixture of methyl 4-amino-3,5-dibromobenzoate (8.0 g, 26 mmol), 98% H₂SO₄ (10 mL) and glacial acetic acid (50 mL) was added dropwise a solution of NaNO₂ (2.0 g, 29 mmol) in water (25 mL) over 1 h below 5 $^{\circ}$ C in an ice-salt bath. Then a

solution of KI (43 g, 260 mmol) in water (30 mL) was added, and the mixture was stirred at room temperature for an additional 30 min. After neutralization with saturated aqueous NaOH, the organic mixture was extracted with CH_2Cl_2 (×3), and the organic phase was washed with Na₂SO₃ aqueous solution and dried over MgSO4. After removal of the solvent on a rotary evaporator, 9.6 g of pure orange solid were obtained (88% yield based on **SM1**). ¹H NMR (400 MHz, CDCl₃):): $\delta = 8.16$ (s, 2H, CHAr), 3.93 (s, 3H, CH₃).

Synthesis of SM3. A mixture of SM2 (4.0 g, 9.8 mmol), bis(triphenylphosphine)palladium(II) chloride (330 mg, 0.44 mmol), triphenylphosphine (250 mg, 0.93 mmol) and copper(I) iodide (180 mg, 0.90 mmol) were added to a 50-mL Schlenk tube and the tube was connected to a nitrogen manifold. Diisopropylamine (12.0 mL) and THF (12.0 mL), each previously purged by bubbling nitrogen gas for 5 minutes, were then transferred into the tube via a cannula. After trimethylsilylacetylene (2.7 mL, 19.6 mmol) was injected, the tube was screw-capped and stirred at 85 °C in an oil bath under nitrogen protection for 12 hours. After cooling to room temperature, the solvents were removed by a rotary evaporator and the resulting residue was purified by column chromatography (eluent: hexanes/EA, 2:1) to yield SM3 as an orange solid (3.0 g, 80% yield based on SM2). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.18$ (s, 2H, CHAr), 3.92 (s, 3H, CH₃).

Synthesis of SM4. A mixture of **SM3** (500 mg, 1.3 mmol), bis(triphenylphosphine)palladium(II) chloride (38.0 mg, 0.05 mmol), triphenylphosphine (30.0 mg, 0.11 mmol) and copper(I) iodide (16.0 mg, 0.08 mmol) were added to a 20 mL Schlenk tube and the tube was connected to a nitrogen manifold. Diisopropylamine (3.0 mL) and THF (3.0 mL), each previously purged by bubbling nitrogen gas for 5 minutes, were then transferred into the tube via a cannula. After 4-trimethylsilylethynyl-1-methylthiobenzene (800 mg, 5.4 mmol) was added, the tube was screw-

capped and stirred at 85 °C in an oil bath under nitrogen protection for 12 hours. After cooling to room temperature, the solvents were removed by a rotary evaporator and the residue was purified by column chromatography (eluent: hexanes/DCM, 3:1) to yield **SM4** as an orange solid (565 mg, 89% yield based on **SM3**). ¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.18$ (s, 2H, CHAr), 7.47-7.49 (d, J = 8.5 Hz, 4H, CHAr), 7.21-7.24 (d, J = 8.5 Hz, 4H, CHAr), 3.95 (s, 3H, COOCH₃), 2.52 (s, 6H, SCH₃), 0.31 (s, 9H, SiCH₃). ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 165.52$, 140.19, 132.07, 131.72, 129.43, 126.98, 125.73, 119.00, 106.58, 101.60, 94.41, 87.37, 52.55, 15.28.

Synthesis of SM5. A mixture of SM4 (280.0 mg, 0.53 mmol) and anhydrous potassium carbonate (0.380 g, 2.80 mmol) in a solution of DCM (2.0 mL) and methanol (2.0 mL) was stirred at room temperature for 1 hours. After removal of the solvent, the product was extracted with DCM (3×30 mL), filtered, and the resulting organic filtrate was washed by distilled water (3×30 mL) and dried over anhydrous MgSO₄. After removal of the solvent, an orange solid thus obtained was used directly in the next step (216.0 mg, 90% based on SM4).

Synthesis of Me₂L1. A round-bottom flask charged with compound SM5 (216 mg, 0.48 mmol), copper(II) acetate monohydrate (270 mg, 0.48 mmol) and acetonitrile (7.0 mL) was stirred at 70 $^{\circ}$ C in an oil bath for 5 hours. Afterward, the solvents were removed by a rotary evaporator and distilled water (50 mL) was added. The resulting mixture was extracted with ethyl acetate (3 × 30 mL) and the combined organic layers were washed by distilled water (3 × 30 mL) and dried over anhydrous MgSO₄. After removal of the solvent, the residue was purified by column chromatography (eluent: hexanes/DCM, 1:1; DCM being dichloromethane) to provide Me₂L1 as a light yellow powder (190 mg, 85% based on SM5). ¹H NMR (300 MHz, CDCl₃): δ = 8.14 (s, 4H, CHAr), 7.39-7.41 (d, *J* = 7.6 Hz, 8H, CHAr), 6.98-6.99 (d, *J* = 7.6 Hz, 8H, CHAr), 3.98 (s,

6H, COOCH₃), 2.39 (s, 12H, SCH₃). ¹³C NMR (75 MHz, CDCl₃): δ = 165.40, 140.35, 132.12, 131.32, 130.28, 128.12, 125.61, 118.22, 95.86, 86.91, 83.96, 82.49, 52.69, 15.15.

Synthesis of H₂L1. Compound Me₂L1 (190.0 mg, 0.21 mmol) was added to a two-neck roundbottom flask charged with a magnetic stirring bar and connected to a nitrogen manifold. An aqueous solution mixture of KOH (0.4 M, 12 mL in THF/H₂O, 2:1, v:v) was bubbled by N₂ for 5 minutes and then transferred to the flask via cannula under N₂ protection. The mixture was stirred at 60 °C for 12 hours. After cooling to room temperature, THF was removed by a rotary evaporator and distilled water (50 mL) was added, the resulting mixture was acidified with 10% HCl to attain a pH value lower than 2. An orange precipitate was formed, collected by filtration, and washed extensively with distilled water, yielding H₂L1 as a yellow solid (175 mg, 95% based on Me₂L). ¹H NMR (300 MHz, DMSO-*d*₆): δ = 8.06 (s, 4H, CHAr), 7.42-7.44 (d, *J* = 7.9 Hz, 8H, CHAr), 7.08-7.09 (d, *J* = 7.8 Hz, 8H, CHAr), 2.41 (s, 12H, SCH₃). ¹³C NMR (75 MHz, DMSO-*d*₆): δ = 166.02, 140.99, 132.23, 132.14, 127.01, 126.01, 125.85, 117.77, 95.10, 87.62, 82.61, 82.16, 14.58.

Crystallization and activation of ZrL1. Molecule H₂**L1** (20 mg, 0.023 mmol) and a *N*,*N*-diethylformamide (DEF, 0.56 mL) solution of ZrCl₄ (5.2 mg, 0.022 mmol) and acetic acid (256 mg, 4.3 mmol, about 195 molar equivalents to ZrCl₄) were added in a Pyrex glass tube (soda lime, 10 mm OD, 6 mm ID). The tube was flame-sealed and heated at 120 °C in an oven for 48 hours, followed by programmed cooling to room temperature over 18 hours to afford orange truncated octahedron-shaped crystals (0.1-0.2 mm). For elemental analysis, the crystals were washed by DMF (3 × 2 mL) and soaked in acetonitrile (3 × 3 mL, replaced by fresh acetonitrile every hour). The resulting crystals were further washed by acetone (3 × 2 mL), filtered and then evacuated at 70 °C for 8 hours. Elemental analysis found [C (60.14%), H (3.67%), N (0.08%)]; a

fitting formula can be determined to be $Zr_6O_4(OH)_8(H_2O)_4(C_{54}H_{32}O_4S_4)_4$ ·H₂O (mw 4330), which gives a calculated profile as [C (59.92%), H (3.40%)]. The ZrL1 solid sample was also characterized by TGA (see Figure S8).

Solvent-induced "shrinking and breathing" of ZrL1 crystals. As-made crystals 30 mg were washed by DMF (3×2 mL) and soaked in acetonitrile (3×3 mL, replaced by fresh acetonitrile after 12 hours each time). The resulting crystals were filtered and then evacuated at 70 °C for 8 hours. Then the solvent 0.5mL (water, methanol, hexane, acetonitrile, benzonitrile and DMF) was added into the above sample 5mg in a glass vial, respectively. The crystal solution allowed to stand at room temperature for 24 hours, followed by the PXRD measurement of the wet crystal sample (the crystals were covered by a thin layer of the solvent during the scanning period).

Thermocyclization of ZrL1 crystals. As-made crystals 100 mg were washed by DMF (3×2 mL) and soaked in acetonitrile (3×3 mL, replaced by fresh acetonitrile after 12 hours each time). The resulting crystals were filtered and then evacuated at 70 °C for 8 hours. Then the crystal sample was heated in oven at an argon atmosphere at 320°C for 3 hours. Heating rate: 3 °C /minutes.

Trapping and characterization of emitted molecules. To further characterize the emitted molecules from the thermal treatment, a sample of ZrL1-ac (18 mg) was flame-sealed under vacuum in a glass tube (ID, 6 mm; OD, 10 mm; length, ~10 cm), and heated at 320 \degree for 3 hours before cooling back down to room temperature. The tube was then opened, and CDCl₃ (0.5 ml) was immediately added and the tube quickly sealed by parafilm. The tube was then tilted a few times to spread the liquid along the tube (to facilitate the liquid-gas contact). After about 10

minutes, the solid product was filtered off, and the CDCl₃ solution was collected for ¹H NMR measurement.

Figure S2. A reaction scheme for the crystallization of ZrL1, with a photograph of the crystals on the right.

Figure S3. Solution ¹H-NMR spectra of the ligand H₂L1 in DMSO- d_6 (a) and the activated sample of ZrL1 (preparation of the solution: the activated ZrL1 crystals were shaken with a mixture of saturated K₃PO₄/D₂O and DMSO- d_6 (1:1, v:v) for 0.5 hours, and the top layer (i.e., the DMSO layer) organic phase was isolated and used for NMR analysis (b).

Figure S4. Photographs of an as-made bulk sample of ZrL1 (panel a) and a sample of ZrL1-320 (panel b)—i.e., ZrL1 after heating at 320 ℃.

Figure S5. A Kubelka-Munk-transformed reflectance spectrum (top) and the corresponding Tauc plot (bottom; as direct bandgap semiconductor) for a solid sample of ZrL1-320 (the 320 °C-treated sample). The optical band gap was estimated to be below ca 1.0 eV.

Figure S6. CO_2 sorption isotherms at 273 K for an activated sample of ZrL1 (panel a) and ZrL1-320 (panel b). The ZrL1 samples were first solvent-exchanged with acetonitrile and then evacuating at 120 °C for activation. Insets: Langmuir plot of ZrL1 and ZrL1-320.

More specifically, the samples were solvent-exchanged with acetonitrile and degassed in vacuo at 120 °C for 10 hours. CO₂ sorption experiments at 273 K (pressure range: from 8×10^{-3} to 780 mmHg) on ZrL1 and ZrL1-320 crystals revealed a typical type-I gas adsorption isotherm (CO₂ gas, 273 K) with a Langmuir surface area of 140 m²/g and 343 m²/g.

Figure S7. Solution ¹H NMR spectra (in CDCl₃) for characterizing the molecules emitted from the thermal treatment (to convert ZrL1-ac into ZrL1-320): a) the spectrum of the solution obtained by adding CDCl₃ to a reaction tube for collecting the emitted molecules (see above the detailed procedure); b) an amplified portion of (a) for the chemical shift δ range 0.5-2.5; c) the same portion of the spectrum of a CDCl₃ solution containing the standard samples of CH₃SH and CH₃SCH₃. The assignment of the signals are also presented, i.e., the doublet (δ , 2.08 and 2.06) and quadruplet (δ , 1.20, 1.22, 1.24 and 1.26) from CH₃SH, and the singlet (δ , 2.17) from CH₃SCH₃. The singlet at 0.82 observed in (a) and (b) appears to be from CH₃CH₃, which could arise from demethylation of the MeS- groups (further study on the origin of this NMR peak is however needed).

Figure S8. A proposed reaction pathway, featuring the elimination of CH₃SCH₃ and CH₃SH molecules as observed by NMR characterization of the trapped small-molecule products. The inset at lower right represents an alternative motif of crosslink in the product, but further characterization of the sulfur bonding features is still needed. For a cyclization reaction that also eliminates the methythio (-CH3S-) group, see Figure 20 of: Woodward, R. B. (1973). "The total synthesis of vitamin B12". *Pure Appl. Chem.* **33** (1), 145–178. doi:10.1351/pac197333010145

As-made	320 °C
Elem Wt % At %	Elem Wt % At %
СК 54.39 71.86	CK 52.06 69.32
OK 18.49 18.34	OK 22.54 22.53
ZrL 11.26 1.96	ZrL 14.00 2.45
SK 15.86 7.85	SK 11.41 5.69
Total 100.00 100.00	Total 100.00 100.00
	Elem Wt % At %
Elem Wt % At %	
	CK 52.93 69.58
CK 55.21 72.72	OK 23.07 22.77
OK 17.92 17.72	ZrL 13.05 2.26
ZrL 11.57 2.01	SK 10.95 5.39
SK 15.30 7.55	Total 100.00 100.00
Total 100.00 100.00	

S/Zr = 3.85/1 S/Zr = 2.38/1

Figure S9. Elemental profiles as found by EDX measurements on the as-made ZrL1 sample and ZrL1-320 (two parallel measurements for each sample). The elemental analysis results from EDX measurements are semi-quantitative, but serve to indicate smaller sulfur content in the thermally treated sample of ZrL1-320, i.e., to result in a S/Zr ratio of 3.85/1, as compared with S/Zr = 2.38/1 found for as-made ZrL1.

Figure S10. A solid state ¹³C NMR (100.6 MHz) spectrum of a solid sample of ZrL1-320 (the 320 °C-treated sample).

Figure S11. Two thermogravimetric analysis (TGA) plots of ZrL1 (as-made sample washed with DMF and CH₃CN three times each, then air-dried at room temperature overnight). Temperature programs: a) 30 min at 50 °C, then heat to 900 °C at 2 °C/min; b) 30 min at 50 °C, then heat to 320 °C at 2 °C/min and stay at 320 °C for 3 hours, then heat to 900 °C at 2 °C/min. The initial weight loss (e.g., up to 180 °C) of about 5.0% can be ascribed to the departure of the guest molecules (e.g., water and DMF). In (b), the weight loss from 191 to 320 °C (3hrs) involves the departure of the small molecules from the cyclization and crosslinking processes outlined in Figure S8.

The residual readings (plot a: 34%; and plot b: 43%) at 900 $\$ substantially outweighs the value (16.8%) calculated for the formation of ZrO₂, pointing to carbon-containing residue (with EDX indicating, semi-quantitatively, the presence of about 40% w/w of carbon and 9.5% w/w of sulfur in the residue). The residual weight of 43% in (b) is greater than the 34% of (a): apparently, the extra 3 hours maintained at 320 $\$ for sample (b) allows for the cyclization and crosslinking to occur more extensively and therefore results in less fragmentation in the higher temperature regime.

Figure S12. X-ray diffraction pattern (collected on an Inel Equinox 1000 X-ray diffractometer equipped with a CPS 180 detector using monochromated Cu-K α 1 radiation, $\lambda = 1.5418$ Å) of ZrL₁-320 soaked in DMF at r.t. for 24 hr. The inset is an amplification of higher angle region

Refinement details of the PXRD patterns of Figure 3.

- (a) Pattern a is calculated from a model structure; no indexing is needed.
- (b) As-made ZrL1 (Fig. 3, pattern b):

CELREF Version 3. 11/2/2017 7:45:22 PM

asmade-wet.dif

Initial values			: (Refine	ement key	vs on 2n	d line)			
Zero 0.000 0	Laml 1.54	- bda 180	: 24.3000 1	b 24.3000 0	c 32.500 1	alpha 0 90.00 0	beta 90.00 0	gamma 90.00 0	volume 19190.92
Н	K	L	2Th(obs)	2Th_obs	s-shift	2Th(Calc)	dif	f.	
0 1 0 1 1 1 0 2 0 1 2 1	1 1 2 1 2 0 2 2 1 3 3 2	1 0 2 0 2 1 3 2 0 4 2 1 4	4.5270 5.1540 5.4380 7.2780 7.4800 8.5730 8.8960 9.0380 10.2910 11.4450 12.6980 13.3660 13.5480	4. 5. 7. 7. 8. 8. 9. 10. 11. 12. 13.	5270 1540 4380 2780 4800 5730 8960 0380 2910 4450 6980 3660 5480	4.5403 5.1429 5.4383 7.2756 7.4876 8.5793 8.9370 9.0878 10.2961 11.4833 12.7427 13.4169 13.6072	$\begin{array}{c} -0.0\\ 0.0\\ -0.0\\ $	133 111 003 024 076 063 410 498 051 383 447 509 592	
Sqrt(Sum Sqrt(Sum	(2Th ((2Th (0-C)* 0-C)*	*2)/(Nrei *2)/Nref	E-Npar)))	: 0.035 : 0.033	9 0			
Final val	lues		: (Standa	ard error	s on 2n	d line)			
Zero 0.000 0.0000	Laml 1.54 0.00	bda 180 000	a 24.3417 0.0592	b 24.3417 0.0000	c 32.645 0.007	alpha 1 90.00 3 0.000	beta 90.00 0.000	gamma 90.00 0.000	volume 19342.75 47.252
Н	K	L	2Th(obs)	2Th_obs	s-shift	2Th(Calc)	dif	f.	
0 1 0	1 1 0	1 0 2	4.5270 5.1540 5.4380	4. 5. 5.	5270 1540 4380	4.5281 5.1341 5.4141	-0.0 0.0 0.0	011 199 239	

0	2	0	7.2780	7.2780	7.2631	0.0149
1	1	2	7.4800	7.4800	7.4639	0.0161
1	2	1	8.5730	8.5730	8.5622	0.0108
1	0	3	8.8960	8.8960	8.9013	-0.0053
0	2	2	9.0380	9.0380	9.0633	-0.0253
2	2	0	10.2910	10.2910	10.2785	0.0125
0	1	4	11.4450	11.4450	11.4353	0.0097
1	3	2	12.6980	12.6980	12.7145	-0.0165
2	3	1	13.3660	13.3660	13.3923	-0.0263
1	2	4	13.5480	13.5480	13.5599	-0.0119

Sqrt(Sum(2Th O-C)**2)/(Nref-Npar)) : 0.0181 Sqrt(Sum(2Th O-C)**2)/Nref) : 0.0166

(c) ZrL1-ac (Fig. 3, pattern c):

CELREF Version 3. 11/2/2017 1:37:23 PM

asmade-70.dif

Initial	value	es	: (Refinement keys on 2nd line)						
Zero 0.000 0	Zero Lambda 0.000 1.54180 0 0		: 28.6000 1	b 28.6000 0	c 36.0000 1	alpha 90.00 0	beta 90.00 0	gamma 90.00 0	volume 29446.56
Н	K	L	2Th(obs)) 2Th_obs	-shift 2	Th(Calc)	dif	f.	
1 0 0 2 0 1 0 Sqrt(Sum Sqrt(Sum	1 1 2 3 3 0 (2Th (2Th	1 2 0 3 0 1 1 5 0-C) 0-C)	5.0530 5.7610 6.2260 7.9860 8.7140 9.5230 10.0690 12.3140 **2)/(Nre: **2)/Nref	5. 5. 6. 7. 8. 9. 10. 12. £-Npar))	0530 7610 2260 9860 7140 5230 0690 3140 : 0.0456 : 0.0395	5.0118 5.8013 6.1805 7.9898 8.7448 9.5969 10.0841 12.2928	0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 0.0	412 403 455 038 308 739 151 212	
Final va	lues		: (Standa	ard error	s on 2nd	line)			
Zero 0.000 0.0000	Lam 1.54 0.00	nbda 180 0000	a 28.6483 0.2513	b 28.6483 0.0000	c 35.9841 0.0224	alpha 90.00 0.000	beta 90.00 0.000	gamma 90.00 0.000	volume 29533.12 259.743
Н	K	L	2Th(obs)) 2Th_obs	-shift 2	Th(Calc)	dif	f.	
1 0	1 1	1 2	5.0530 5.7610	5. 5.	0530 7610	5.0059 5.8003	0.0 -0.0	471 393	

0	2	0	6.2260	6.2260	6.1701	0.0559
0	1	3	7.9860	7.9860	7.9907	-0.0047
2	2	0	8.7140	8.7140	8.7300	-0.0160
0	3	1	9.5230	9.5230	9.5820	-0.0590
1	3	1	10.0690	10.0690	10.0683	0.0007
0	0	5	12.3140	12.3140	12.2983	0.0157

Sqrt(Sum(2Th O-C)**2)/(Nref-Npar)) : 0.0426 Sqrt(Sum(2Th O-C)**2)/Nref) : 0.0369

(d) ZrL1-DMFrg (Fig. 3, pattern d):

CELREF Version 3. 2017/11/3 22:31:00

Initial v	value	es	: (Refine	ement key	s on 2nd	line)			
Zero 0.000 0	Lan 1.54 0	nbda 1180	: a 33.8132 1	b 33.8132 0	c 34.2775 1	alpha 90.00 0	beta 90.00 0	gamma 90.00 0	volume 39190.58
Н	K	L	2Th(obs)	2Th_obs	-shift 2'	Th(Calc)	dif	f.	
1 0 2 1 2 1	1 0 2 3 2 5	1 2 0 1 2 1	4.5070 5.1490 7.3790 8.6530 9.0170 13.6280	4. 5. 7. 8. 9. 13.	5070 1490 3790 6530 0170 6280	4.5059 5.1561 7.3945 8.6625 9.0188 13.6003	0.0 -0.0 -0.0 -0.0 -0.0	011 071 155 095 018 277	
Sqrt(Sum Sqrt(Sum	(2Th (2Th	0-C) 0-C)	**2)/(Nrei **2)/Nref	E-Npar)))	: 0.0170 : 0.0138				
Final val	lues		: (Standa	ard error	s on 2nd	line)			
Zero 0.000 0.0000	Lan 1.54 0.00	nbda 1180)000	a 33.8043 0.1180	b 33.8043 0.0000	c 34.2763 0.0577	alpha 90.00 0.000	beta 90.00 0.000	gamma 90.00 0.000	volume 39168.63 151.802
Н	K	L	2Th(obs)	2Th_obs	-shift 2'	Th(Calc)	dif	f.	
1 0 2 1 2 1	1 0 2 3 2 5	1 2 0 1 2 1	4.5070 5.1490 7.3790 8.6530 9.0170 13.6280	4. 5. 7. 8. 9. 13.	5070 1490 3790 6530 0170 6280	4.5067 5.1562 7.3965 8.6646 9.0205 13.6038	0.00 -0.00 -0.00 -0.00 -0.00	003 072 175 116 035 242	

Sqrt(Sum(2Th O-C)**2)/(Nref-Npar)) : 0.0165

(e) ZrL1-320 (Fig. 3, pattern e):

CELREF Version 3. 11/2/2017 8:58:19 PM

320.dif

Initial v	value	S	: (Refine	ement key	s on 2r	nd 1:	ine)			
Zero 0.000 0	Lam 1.54 0	- bda 180	a 21.4000 1	b 21.4000 0	c 29.300 1	00	alpha 90.00 0	beta 90.00 0	gamma 90.00 0	volume 13418.23
Н	K	L	2Th(obs)	2Th_obs	-shift	2Th	(Calc)	dif	f.	
0 0 1 0	1 0 2 0 2	1 2 0 3 2	5.1140 6.0040 8.2690 9.9280 10.2310	5. 6. 8. 9. 10.	1140 0040 2690 9280 2310	5 6 9 10	.1135 .0327 .2631 .9549 .2372	0.00 -0.02 0.00 -0.02 -0.00	005 287 059 269 062	
Sqrt(Sum Sqrt(Sum	(2Th (2Th	0-C)* 0-C)*	*2)/(Nref *2)/Nref	E-Npar)))	: 0.023 : 0.018	32 30				
Final val	lues		: (Standa	ard error	s on 2r	nd li	ine)			
Zero 0.000 0.0000	Lam 1.54 0.00	bda 180 000	a 21.3530 0.1711	b 21.3530 0.0000	c 29.409 0.020)2)2	alpha 90.00 0.000	beta 90.00 0.000	gamma 90.00 0.000	volume 13409.10 107.862
Н	K	L	2Th(obs)	2Th_obs	-shift	2Th	(Calc)	dif	f.	
0 0 1 0	1 0 2 0 2	1 2 0 3 2	5.1140 6.0040 8.2690 9.9280 10.2310	5. 6. 8. 9. 10.	1140 0040 2690 9280 2310	5 6 9 10	.1142 .0103 .2813 .9280 .2387	-0.00 -0.00 -0.00 -0.00	002 063 123 000 077	
Sqrt(Sum Sqrt(Sum	(2Th (2Th	0-C)* 0-C)*	*2)/(Nref *2)/Nref	-Npar)))	: 0.009 : 0.007	92 71				

(f) sample (e) immersed in a saturated (4% w/w) NaF solution (Fig. 3, pattern f):

CELREF Version 3. 12/14/2017 5:13:03 PM _____ 320-NaF.dif Initial values : (Refinement keys on 2nd line) _____ : Zero С Lambda а b alpha beta gamma volume 0.000 1.54180 21.1000 21.1000 31.4000 90.00 90.00 90.00 13979.59 0 1 0 1 0 0 0 0 H K L 2Th(obs) 2Th obs-shift 2Th(Calc) diff. 1 1 5.0530 0 5.0530 5.0457 0.0073 1 1 0 5.9230 5.9230 5.9235 -0.0005 1 2 8.1680 8.1680 8.1749 -0.0069 1 10.0890 2 2 0 10.0890 10.1013 -0.0123 Sqrt(Sum(2Th O-C)**2)/(Nref-Npar)) : 0.0112 Sqrt(Sum(2Th O-C)**2)/Nref) : 0.0079 Final values : (Standard errors on 2nd line) _____ ZeroLambdaabcalphabetagammavolume0.0001.5418021.099721.099731.462990.0090.0090.0014007.18 Zero 0.0000 0.00000 0.0545 0.0000 0.0441 0.000 0.000 0.000 41.183 K L 2Th(obs) 2Th obs-shift 2Th(Calc) diff. Η 5.0530 5.0530 5.0427 0 1 1 0.0103 105.92305.92305.9236128.16808.16808.16722210.089010.089010.0951 5.9236 -0.0006 1 1 8.1672 0.0008 0 -0.0061 Sqrt(Sum(2Th O-C)**2)/(Nref-Npar)) : 0.0085 Sqrt(Sum(2Th O-C)**2)/Nref) : 0.0060

(g) sample (e) immersed in H_3PO_4 (10% w/w) for 24 hours (Fig. 3, pattern g):

CELREF Version 3. 12/14/2017 5:19:48 PM

320-H3PO4.dif

Initial values : (Refinement keys on 2nd line) _____ : Zero Lambda b С alpha beta gamma volume а 0.000 1.54180 21.4000 21.4000 30.1000 90.00 90.00 90.00 13784.60 0 1 0 1 0 0 0 0 2Th(obs) 2Th obs-shift 2Th(Calc) diff. Η K L 0.0064 5.0730 0 1 1 5.0730 5.0666 0 1 1 5.8420 5.8420 5.8404 0.0016 0 2 2 10.1300 10.1300 10.1431 -0.0131 Sqrt(Sum(2Th O-C)**2)/(Nref-Npar)) : 0.0147 Sqrt(Sum(2Th O-C)**2)/Nref) : 0.0085 : (Standard errors on 2nd line) Final values _____ С Zero Lambda а b alpha beta gamma volume 0.000 1.54180 21.3940 21.3940 30.1868 90.00 90.00 90.00 13816.67 0.0000 0.00000 0.0848 0.0000 0.0922 0.000 0.000 0.000 69.131 2Th(obs) 2Th obs-shift 2Th(Calc) Η Κ L diff. 0.0104 5.0730 5.0730 5.0626 0 1 1 1 0 5.8420 5.8420 5.8420 0.0000 1 10.1300 10.1300 10.1352 -0.0052 0 2 2 Sqrt(Sum(2Th O-C)**2)/(Nref-Npar)) : 0.0116

Sqrt(Sum(2Th O-C)**2)/Nref) : 0.0067