Supporting Information

Iodine-catalyzed synthesis of N,N'-diaryl-o-phenylenediamines from

cyclohexanones and anilines using DMSO and O₂ as oxidant

Mingteng Xiong, Zhan Gao, Xiao Liang, Pengfei Cai, Heping Zhu and Yuanjiang Pan*

Department of Chemistry, Zhejiang University, Hangzhou 310027, China. E-mail: panyuanjiang@zju.edu.cn.

Content

1.	1. Experimental section					
	1.1	General information	S1			
	1.2	Optimization of Reaction Conditions	S1			
	1.3	General Procedure for the Synthesis of 3	S4			
	1.4	General Procedure for the Synthesis of 5	S5			
	1.5	The detailed comparison of several methods	S6			
2.	Cha	aracterization Data for Products	S7			
3.	¹ H	NMR and ¹³ C NMR spectra	S19			

1. Experimental section

1.1. General information

All solvents and chemicals used in the experiments were obtained from common commercial suppliers and used without further purification. Unless otherwise noted, all reactions were carried out in the oven-dried Schlenk tube under air condition. Flash column chromatography was performed on 300-400 mesh silica gel. All NMR spectra were recorded Bruker Ascend-400 spectrometry at 400MHz in CDCl₃ for ¹H NMR and ¹³C NMR, respectively. For ¹H NMR, tetramethylsilane (TMS) served as internal standard ($\delta = 0.0$ ppm) and data are recorded as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz) and integration. For ¹³C NMR, CDCl₃ worked as internal standard ($\delta = 77.160$ ppm) and spectra were obtained with complete proton decoupling. Melting points were measured with SGW X-4 apparatus. Accurate mass measurements were performed on IT-TOF (Shimadzu, Japan) equipped with an ESI source in positive ion mode.

	NH ₂ + 1a	0 2a	catalyst; DMSO, additive; solvent; 120°C, 12h, air	NH HN-	
Entry	Catalyst		Oxidant/additive	Solvent	Yeild ^b / %
	(equiv.)		(equiv.)		
1	$I_2(0.2)$		-	DMSO	19
2	$I_2(0.2)$		DMSO (5)	CH ₃ OH	24
3	$I_2(0.2)$		DMSO (5)	DMA	12
4	$I_2(0.2)$		DMSO (5)	1,4-dioxane	10
5	$I_2(0.2)$		DMSO (5)	CH ₃ CN	13
6	$I_2(0.2)$		DMSO (5)	THF	8
7	$I_2(0.2)$		DMSO (5)	HMPA	37
8	$I_2(0.2)$		DMSO (5)	<i>t</i> -Amyl-OH	28
9	$I_2(0.2)$		DMSO (5)	TBME	trace

1.2. Optimization of Reaction Conditions

10	$I_2(0.2)$	DMSO (5)	DCE	trace
11	$I_2(0.2)$	DMSO (5)	CHCl ₃	N.D.
12	$I_2(0.2)$	DMSO (5)	AcOH	trace
13	$I_2(0.2)$	DMSO (5)	EA	8
14	$I_2(0.2)$	DMSO (5)	PhCH ₃	5
15	$I_2(0.2)$	DMSO (5) / Oxone (3)	HMPA	22
16	$I_2(0.2)$	DMSO (5) / BzOOBu-t (3)	HMPA	trace
17	$I_2(0.2)$	DMSO (5)/ K ₂ S ₂ O ₄ (3)	HMPA	11
18	$I_2(0.2)$	DMSO (5) / BzOOBz(3)	HMPA	trace
19	$I_2(0.2)$	DMSO (5) / <i>t</i> -BuOOH (3)	HMPA	19
20	$I_2(0.2)$	DMSO (5) / H2O2 (3)	HMPA	16
21	$I_2(0.2)$	DMSO (5) / t-BzOOBu-t (3)	HMPA	14
22°	$I_2(0.2)$	DMSO (5) / 3Å MS	HMPA	29
23°	$I_2(0.2)$	DMSO (5) / 4Å MS	HMPA	30
24	$I_2(0.2)$	DMSO (5) / MgSO ₄ (3)	HMPA	23
25	$I_2(0.2)$	DMSO (5) / Na ₂ SO ₄ (3)	HMPA	27
26	$I_2(0.2)$	DMSO (5) / TsOH (1)	HMPA	43
27	$I_2(0.2)$	DMSO (5) / TfOH (1)	HMPA	42
28	$I_2(0.2)$	DMSO (5) / AcOH (1)	HMPA	29
29	$I_2(0.2)$	DMSO (5) / HCl (1)	HMPA	51
30	$I_2(0.2)$	DMSO (5) / MsOH (1)	HMPA	54
31	$I_2(0.2)$	DMSO (5) / BF ₃ ·Et ₂ O (1)	HMPA	48
32	$I_2(0.2)$	DMSO (5) / AlCl ₃ (1)	HMPA	40
33	$I_2(0.2)$	DMSO (5) / FeBr ₃ (1)	HMPA	trace
34	$I_2(0.2)$	DMSO (5) / CF ₃ COOH (1)	HMPA	47
35	KI (0.2)	DMSO (5) / MsOH (1)	HMPA	46
36	LiI (0.2)	DMSO (5) / MsOH (1)	HMPA	48
37	HI (0.2)	DMSO (5) / MsOH (1)	HMPA	39
38	<i>n</i> -Bu ₄ NI (0.2)	DMSO (5) / MsOH (1)	HMPA	40
39	NIS (0.2)	DMSO (5) / MsOH (1)	HMPA	49
40	(CH ₃) ₄ NI	DMSO (5) / MsOH (1)	HMPA	52
	(0.2)			
41	$I_2(0.2)$	DMSO (4) / MsOH (1)	HMPA	45
42	I ₂ (0.2)	DMSO (7) / MsOH (1)	HMPA	63
43	$I_2(0.2)$	DMSO (9) / MsOH (1)	HMPA	59
44	$I_2(0.2)$	DMSO (7) / MsOH (0.3)	HMPA	70
45	I ₂ (0.2)	DMSO (7) / MsOH (0.4)	HMPA	73
46	$I_2(0.2)$	DMSO (7) / MsOH (0.6)	HMPA	70

47	$I_2(0.2)$	DMSO (7) / MsOH (0.8)	HMPA	66
48	$I_2(0.1)$	DMSO (7) / MsOH (0.4)	HMPA	61
49	$I_2(0.3)$	DMSO (7) / MsOH (0.4)	HMPA	66
50	$I_2(0.5)$	DMSO (7) / MsOH (0.4)	HMPA	57
51	$I_2(1.0)$	DMSO (7) / MsOH (0.4)	HMPA	48
52 ^d	$I_2(0.2)$	DMSO (7) / MsOH (0.4)	HMPA	51
53 ^e	$I_2(0.2)$	DMSO (7) / MsOH (0.4)	HMPA	60
54 ^f	$I_2(0.2)$	DMSO (7) / MsOH (0.4)	HMPA	74
55 ^g	$I_2(0.2)$	DMSO (7) / MsOH (0.4)	HMPA	71
56 ^h	$I_2(0.2)$	DMSO (7) / MsOH (0.4)	HMPA	23
57 ⁱ	$I_2(0.2)$	DMSO (7)/MsOH (0.4)	HMPA	11
58	$I_2(0.2)$	MsOH (0.4)	HMPA	trace
59	-	DMSO (7) / MsOH (0.4)	HMPA	N.D.

^aReaction conditions: **1a** (4equiv.), **2a** (0.25 mmol), catalyst (20 mol%), DMSO, additive, solvent (1 mL), stirred at 120 °C under air for 12 h. ^bDetermined by ¹H NMR analysis using benzyl ether as an internal standard. ^c100 mg molecular sieve. ^d100 °C. ^e110 °C. ^f130 °C. ^g24 h. ^hUnder nitrogen atmosphere. ⁱUnder oxygen atmosphere.

1.3 General Procedure for the Synthesis of 3

To an oven-dried Schlenk tube with a magnetic bar were added sequentially I₂ (0.05 mmol, 13 mg, 20 mol%), aniline derivatives **1** (1 mmol, 4 equiv.), cyclohexanone derivatives **2** (0.25 mmol), HMPA (1mL), DMSO (1.75 mmol, 126 μ L, 7 equiv.) and MsOH (0.1 mmol, 6.4 μ L, 0.4 equiv.) under air condition. The Schlenk tube was capped with a cap and heated to 120 °C for 12 h. Upon cooling to room temperature, the reaction mixture was added to water (30 mL), extracted with ethyl acetate (3 × 10 mL). The organic layers were combined, dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to afford the residue, which was purified by flash column chromatography on a silica gel using a mixture of petroleum

ether and ethyl acetate to give the products 3.

1.4 General Procedure for the Synthesis of 5

To an oven-dried Schlenk tube with a magnetic bar were added sequentially I₂ (0.05 mmol, 13 mg, 20 mol%), aniline derivatives **2** (0.25 mmol), cyclohexenone derivatives **4** (0.75 mmol, 3 equiv.), HMPA (1mL), DMSO (2 mmol, 142 μ L, 8 equiv.) and 12M HCl (0.125 mmol, 12 μ L, 0.5 equiv.) under air condition. The Schlenk tube was capped with a cap and heated to 110 °C for 20 h. Upon cooling to room temperature, the reaction mixture was added to water (30 mL), extracted with ethyl acetate (3 × 10 mL). The organic layers were combined, dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to afford the residue, which was purified by flash column chromatography on a silica gel using a mixture of petroleum ether and ethyl acetate to give the products **5**.

1.5 The detailed comparison of several methods to synthesize N,N'-diaryl-o-

1) LiHMDS,THF, -78°C 30min I₂ (1.5 equiv.) 0 2) $CF_3CO_2CH_2CF_3$, 4-DMAP K2CO3 PhNH₂, PdCl₂, -78°C 30min HN HN 3) TsN3, EtN3, dioxane, N₂, THF/H₂O, 8h CH₃CN, 1h 60°C PhNH₂, p-TsOH Ph、 Ph OTf OH Ph-NH HN-Ph 1) NaH, TMSCI N TMS Br 2) *n*BuLi, THF,-78°C 1) K₂CO₃, 18-crown-6 2) LAH 3) workup OH 4) nBuLi, then Tf₂O OTf Pd/L NH_{2} PhNH Pd/L 1) Br₂ ŃН NH_2 H_2N 2) PhNH₂

phenylenediamines

2. Characterization Data for Products

Attention: Maybe due to high asymmetry and electrical quadrupole moment, the signal response of some N,N'-diaryl-*o*-phenylenediamines is weak, so it's very hard to eliminate the impure peaks of NMR spectra, especially 3p-3s, because of experimental condition (40-60 mg sample, dissolved in 0.5 mL CD₃Cl, was scanned under NMR equipment for 2-3h). And the best NMR spectra were chose and presented here after many repeated experimented.

N, N'-bis(4-methylphenyl)-1,2-benzenediamine (3a)¹:

Yellow oil (51.3 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.18 (m, 2H), 7.05 (d, J = 8.1 Hz, 4H), 6.94 – 6.89 (m, 2H), 6.85 (d, J = 8.4 Hz, 4H), 5.51 (br, 2H), 2.28 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 141.47, 135.38, 130.32, 129.98, 122.64, 119.61, 118.01, 20.76. HRMS (ESI): m/z calcd. for C₂₀H₂₁N₂ [M+H]⁺: 289.1699, found: 289.1711.

N, N'-diphenyl-1,2-benzenediamine (3b)¹:

Off-white solid (32.5 mg, 50%). Mp=102-104 °C.¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.19 (m, 2H), 7.17 - 7.12 (m, 4H), 6.90 – 6.87 (m, 2H), 6.85 - 6.79 (m, 6H), 5.52 (br, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 144.02, 135.01, 129.46, 123.11, 120.70, 120.33, 117.33; HRMS (ESI): m/z calcd. for C₁₈H₁₇N₂ [M+H]⁺: 261.1386, found: 261.1375.

N, N'-bis(4-tert-butylphenyl)-1,2-benzenediamine (3c)²:

Yellow oil (54.8 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.16 (m, 6H), 6.86 – 6.82 (m, 2H), 6.81 – 6.78 (m, 4H), 5.46 (br, 2H), 1.21 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 143.65, 141.46, 135.29, 126.24, 122.67, 119.80, 117.40, 34.23, 31.62. HRMS (ESI): m/z calcd. for C₂₆H₃₃N₂ [M+H]⁺: 373.2638, found: 373.2614.

N, N'-bis(4-benzylphenyl)-1,2-benzenediamine (3d):

Yellow oil (58.5 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.08 (m, 12H), 6.95 (d, *J* = 8.3 Hz, 4H), 6.86 – 6.81 (m, 2H), 6.75 (d, *J* = 8.3 Hz, 4H), 5.42 (br, 2H), 3.81 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 142.10, 141.67, 135.15, 133.53, 129.88, 128.95, 128.54, 126.08, 122.82, 119.91, 117.75, 41.28. HRMS (ESI): m/z calcd. for C₃₂H₂₉N₂ [M+H]⁺: 441.2325, found: 441.2318.

N, N'-bis(4-methoxyphenyl)-1,2-benzenediamine (3e)²:

Yellow oil (43.7 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 7.12 – 7.07 (m, 2H), 6.94 – 6.90 (m, 4H), 6.89 – 6.87 (m, 2H), 6.86 – 6.82 (m, 4H), 5.43 (br, 2H), 3.79 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 154.71, 137.22, 135.85, 122.21, 120.40, 118.67, 114.86, 55.77. HRMS (ESI): m/z calcd. for C₂₀H₂₁N₂O₂ [M+H]⁺: 321.1598, found: 321.1584.

N, N'-bis(4-chlorophenyl)-1,2-benzenediamine (3f):

Yellow oil (58.5 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.21 (m, 2H), 7.18 (d, *J* = 8.8 Hz, 4H), 7.01 – 6.97 (m, 2H), 6.83 (d, *J* = 8.8 Hz, 4H), 5.58 (br, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.57, 134.70, 129.43, 125.51, 123.67, 120.63, 118.45. HRMS (ESI): m/z calcd. for C₁₈H₁₅Cl₂N₂ [M+H]⁺: 329.0607, found: 329.0588.

N, N'-bis(4-fluorophenyl)-1,2-benzenediamine (3g)¹:

Yellow solid (33.6 mg, 43%). Mp=88-90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.12 (m, 2H), 7.00 – 6.91 (m, 6H), 6.91 – 6.83 (m, 4H), 5.52 (br, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.85 (d, J_{C-F} =238.1 Hz), 139.99, 135.31, 123.05, 119.68, 119.41 (d, J_{C-F} =5.4 Hz), 116.05 (d, J_{C-F} =22.4 Hz). HRMS (ESI): m/z calcd. for C₁₈H₁₅F₂N₂ [M+H]⁺: 297.1198, found: 297.1179.

N, N'-bis(3-methylphenyl)-1,2-benzenediamine (3h):

Yellow oil (45.5 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.18 (m, 2H), 7.07 – 7.03 (m, 2H), 6.91 – 6.87 (m, 2H), 6.67 – 6.65 (m, 5H), 6.63 (s, 1H), 5.48 (br, 2H), 2.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 144.04, 139.35, 135.11, 129.30, 123.01, 121.57, 120.45, 118.02, 114.42, 77.48, 77.16, 76.84, 21.63. HRMS (ESI): m/z calcd. for C₂₀H₂₁N₂ [M+H]⁺: 289.1699, found: 289.1702.

N,N'-bis(3-fluorophenyl)-1,2-benzenediamine (3i):

Yellow oil (33.2 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 2H), 7.21 – 7.11 (m, 2H), 7.08 – 7.00 (m, 2H), 6.68 – 6.62 (m, 3H), 6.61 – 6.53 (m, 3H), 5.67 (br, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.93 (d, *J* = 244.3 Hz), 145.95 (d, *J* = 10.5 Hz), 134.46, 130.64 (d, *J* = 9.9 Hz), 124.07, 121.43, 112.48 (d, *J* = 2.5 Hz), 107.22 (d, *J* = 21.5 Hz), 103.66 (d, *J* = 25.1 Hz). HRMS (ESI): m/z calcd. for C₁₈H₁₅F₂N₂ [M+H]⁺: 297.1198, found: 297.1197.

N, N'-bis(2-ethylphenyl)-1,2-benzenediamine (3j):

Yellow oil (37.9 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, J = 7.2 Hz, 2H), 7.13 – 7.06 (m, 4H), 6.98 – 6.87 (m, 6H), 5.49 (br, 2H), 2.54 (q, J = 7.5 Hz, 4H), 1.17 (t, J = 7.5 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 141.47, 135.31, 132.91, 128.96, 126.90, 122.81, 121.56, 120.35, 117.88, 24.44, 13.81. HRMS (ESI): m/z calcd. for C₂₂H₂₅N₂ [M+H]⁺: 317.2012, found: 317.2000.

N, N'-bis(2,3-dimethylphenyl)-1,2-benzenediamine (3k):

Yellow oil (23.6 mg, 30%).¹H NMR (400 MHz, CDCl₃) δ 6.99 (t, J = 7.7 Hz, 2H), 6.96 – 6.85 (m, 4H), 6.81 (t, J = 5.4 Hz, 4H), 5.41 (br, 2H), 2.29 (s, 6H), 2.10 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ

141.95, 137.68, 135.51, 126.65, 126.14, 123.72, 122.36, 119.79, 116.81, 20.77, 13.52. HRMS (ESI): m/z calcd. for $C_{22}H_{25}N_2$ [M+H]⁺: 317.2012, found: 317.2005.

N, N'-di-1-naphthalenyl-1,2-benzenediamine (31)¹:

Dark red oil (23.4 mg, 26%). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.3 Hz, 2H), 7.82 (d, J = 7.6 Hz, 2H), 7.53 – 7.32 (m, 8H), 7.15 – 7.08 (m, 4H), 7.02 – 6.89 (m,2H), 6.14 (br, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.49, 135.41, 134.72, 128.71, 126.70, 126.26, 126.17, 125.71, 123.10, 122.19, 121.50, 120.65, 113.94. HRMS (ESI): m/z calcd. for C₂₆H₂₁N₂ [M+H]⁺: 361.1699, found: 361.1692.

N, N'-di-2-naphthalenyl -1,2-benzenediamine (3m)¹:

Yellow solid (30.6 mg, 31%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 8.4, 3.9 Hz, 4H), 7.59 (d, J = 8.2 Hz, 2H), 7.43 – 7.34 (m, 4H), 7.30 – 7.20 (m, 4H), 7.13 (dd, J = 8.8, 2.3 Hz, 2H), 7.08 – 7.00 (m, 2H), 5.80 (br, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.66, 135.05, 134.76, 129.35, 129.14, 127.78, 126.60, 126.54, 123.52, 120.85, 119.76, 111.21. HRMS (ESI): m/z calcd. for C₂₆H₂₁N₂ [M+H]⁺: 361.1699, found: 361.1683.

N, N'-bis(4-methylphenyl)-4-methyl-1,2-benzenediamine (3n):

Yellow oil (62.7 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.09 – 6.98 (m, 6H), 6.94 – 6.85 (m, 2H), 6.75 (d, *J* = 8.3 Hz, 2H), 6.69 (d, *J* = 7.8 Hz, 1H), 5.64 (br, 1H), 5.25 (br, 1H), 2.28 (s, 3H), 2.25 (s, 3H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.57, 141.04, 137.04, 133.51, 131.10, 130.56, 129.95, 129.92, 122.35, 121.86, 118.70, 118.57, 117.99, 116.75, 21.24, 20.78, 20.67. HRMS (ESI): m/z calcd. for C₂₁H₂₃N₂ [M+H]⁺: 303.1856, found: 303.1856.

N, N'-bis(4-methylphenyl)-4-ethyl-1,2-benzenediamine (30):

Yellow oil (48.5 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 8.0 Hz, 1H), 7.09 – 6.99 (m, 5H), 6.88 (d, *J* = 8.3 Hz, 2H), 6.81 – 6.70 (m, 3H), 5.63 (br, 1H), 5.30 (br, 1H), 2.55 (q, *J* = 7.5 Hz, 2H), 2.28 (s, 3H), 2.26 (s, 3H), 1.19 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.43, 141.22, 139.82, 136.60, 131.68, 130.38, 129.96, 129.93, 129.54, 121.45, 121.32, 118.37, 117.87, 116.96, 28.64, 20.77, 20.69, 15.88. HRMS (ESI): m/z calcd. for C₂₂H₂₅N₂ [M+H]⁺: 317.2012, found: 317.2014.

N, N'-bis(4-methylphenyl)-4-propyl-1,2-benzenediamine (3p): (40.2 mg, 2 h for ¹³C NMR)

Yellow oil (58.8 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, *J* = 8.0 Hz, 1H), 7.08 – 6.99 (m, 5H), 6.87 (d, *J* = 8.3 Hz, 2H), 6.78 (d, *J* = 8.3 Hz, 2H), 6.71 (dd, 1H), 5.62 (br, 1H), 5.30 (br, 1H), 2.48 (t, 2H), 2.28 (s, 3H), 2.26 (s, 3H), 1.64 – 1.54 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.41, 141.28, 138.22, 136.41, 131.77, 130.32, 129.96, 129.93, 129.55, 122.02, 121.26, 118.53, 118.30, 116.99, 37.85, 24.83, 20.77, 20.69, 14.01. HRMS (ESI): m/z calcd. for C₂₃H₂₇N₂ [M+H]⁺: 331.2169, found: 331.2170.

N,N'-bis(4-methylphenyl)-4-*tert*-butyl-1,2-benzenediamine (3q): (45.8 mg, 2.5 h for ¹³C NMR)

Red oil (68.1 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 2.2 Hz, 1H), 7.07 (d, J = 8.3 Hz, 1H), 6.95 (t, J = 8.3 Hz, 4H), 6.90 – 6.81 (m, 1H), 6.80 – 6.66 (m, 4H), 5.47 (br, 1H), 5.30 (br, 1H), 2.19 (s, 3H), 2.18 (s, 3H), 1.19 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 146.08, 142.00, 141.70, 134.87, 132.56, 129.96, 129.91, 126.18, 119.90, 119.46, 118.25, 117.38, 117.21, 117.03, 31.57, 20.72. HRMS (ESI): m/z caled for C₂₄H₂₉N₂ [M+H]⁺: 345.2325, found: 345.2336.

N, N'-bis(4-methylphenyl)-4-tert-amyl-1,2-benzenediamine (3r): (50.6 mg, 2.5 h for ¹³C NMR)

Red oil (57.4 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.11 (m, 3H), 7.03 (t, *J* = 7.4 Hz, 4H), 6.98 – 6.92 (m, 1H), 6.89 – 6.78 (m, 4H), 5.52 (s, 1H), 5.39 (s, 1H), 2.27 (d, *J* = 3.0 Hz, 6H), 1.61 – 1.54 (m, 2H), 1.22 (s, 6H), 0.70 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.34, 141.99, 141.83, 134.61, 132.65, 129.95, 129.90, 126.85, 120.38, 119.70, 118.23, 117.97, 117.44, 117.17, 37.72, 28.62, 20.72, 9.32. HRMS (ESI): m/z calcd. for C₂₅H₃₁N₂ [M+H]⁺: 359.2482, found: 359.2478.

N, N'-bis(4-methylphenyl)-4-phenyl-1,2-benzenediamine (3s):

Yellow oil (72.3 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.8 Hz, 2H), 7.38 (s, 1H), 7.28 (t, *J* = 7.6 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.13 – 7.03 (m, 1H), 6.98 (dd, *J* = 7.7, 3.3 Hz, 4H), 6.85 – 6.75 (m, 4H), 5.45 (br, 2H), 2.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 141.45, 141.12, 140.94, 135.26, 135.08, 130.43, 130.21, 130.01, 129.97, 128.74, 126.77, 126.68, 121.44, 119.26, 118.50, 118.21, 117.81, 20.74, 20.71. HRMS (ESI): m/z calcd. for C₂₆H₂₅N₂ [M+H]⁺: 365.2012, found: 365.2006.

3,4-bis(p-tolylamino)benzonitrile (3t):

Off-white solid (45.5 mg, 58%). Mp=96-98 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 1.8 Hz, 1H), 7.12 (dd, J = 8.4, 1.9 Hz, 1H), 7.05 (t, J = 9.0 Hz, 3H), 7.00 (d, J = 8.1 Hz, 2H), 6.92 (d, J = 8.3 Hz, 2H), 6.69 (d, J = 8.4 Hz, 2H), 6.14 (br, 1H), 5.13 (br, 1H), 2.25 (s, 3H), 2.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.49, 135.41, 134.72, 128.71, 126.70, 126.26, 126.17, 125.71, 123.10, 122.19, 121.50, 120.65, 113.94. HRMS (ESI): m/z calcd. for C₂₁H₂₀N₃ [M+H]⁺: 314.1652, found: 314.1644.

Ethyl 3, 4-bis(p-tolylamino)benzoate (3u):

Yellow oil (63.6 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 2.0 Hz, 1H), 7.71 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.16 (d, *J* = 8.6 Hz, 1H), 7.11 (d, *J* = 8.1 Hz, 2H), 7.02 (t, *J* = 8.4 Hz, 4H), 6.70 (d, *J* = 8.4 Hz, 2H), 6.32 (br, 1H), 5.20 (br, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.31 (s, 3H), 2.26 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.59, 144.10, 142.49, 138.41, 132.91, 130.08, 130.04, 129.70, 127.37, 125.67, 121.34, 116.19, 113.00, 60.58, 20.91, 20.64, 14.51. HRMS (ESI): m/z calcd. for C₂₃H₂₅N₂O₂ [M+H]⁺: 361.1911, found: 361.1906.

Ethyl 2, 3-bis(p-tolylamino)benzoate (3v)³:

Yellow oil (9.9 mg, 20%). ¹H NMR (400 MHz, CDCl3) δ 7.17 (d, J = 8.0 Hz, 2H), 7.14 – 7.10 (m, 1H), 7.08 (d, J = 8.1 Hz, 2H), 6.92 (d, J = 8.4 Hz, 2H), 6.88 (td, J = 7.3, 1.2 Hz, 1H), 2.30 (s, 3H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.12, 141.07, 130.97, 130.65, 129.97, 127.13, 126.87, 121.22, 118.81, 117.34, 20.80, 18.01. HRMS (ESI): m/z calcd. for C₁₄H₁₆N [M+H]⁺: 198.1277, found: 198.1283.

N-(*p*-tolyl)naphthalen-2-amine (3w):

Yellow solid (39.6 mg, 68%). Mp=95-97 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.6 Hz, 2H), 7.61 (d, *J* = 8.2 Hz, 1H), 7.41 – 7.33 (m, 2H), 7.29 – 7.23 (m, 1H), 7.17 (dd, *J* = 8.8, 2.2 Hz, 1H), 7.11 (q, *J* = 8.4 Hz, 4H), 5.77 (br, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.82, 140.20, 134.83, 131.51, 130.08, 129.26, 128.98, 127.75, 126.53, 126.48, 123.29, 119.70, 119.47, 110.36, 20.89. HRMS (ESI): m/z calcd. for C₁₇H₁₄N [M-H]⁻: 232.1132, found: 232.1137.

N, N'-bis(4-iodophenyl)-1,2-benzenediamine (3x):

Rufous solid (26.8 mg, 21%). Mp=175-177 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.8 Hz, 4H), 7.27 – 7.21 (m, 2H), 7.05 – 6.96 (m, 2H), 6.68 (d, *J* = 8.8 Hz, 4H), 5.59 (br, 2H). ¹³C NMR

 $(101 \text{ MHz}, \text{CDCl}_3) \delta 143.76, 138.24, 134.48, 123.88, 120.93, 119.14, 82.28. HRMS (ESI): m/z calcd. for C₁₈H₁₂I₂N₂ [M-H]⁻: 510.9174, found: 510.9188.$

N,N'-bis(3-bromophenyl)-1,2-benzenediamine (3y):

Yellow oil (40.6 mg, 39%). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.24 (m, 2H), 7.10 – 6.97 (m, 8H), 6.83 – 6.77 (m, 2H), 5.60 (br, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.49, 134.36, 130.80, 124.15, 123.56, 123.30, 121.39, 119.59, 115.49. HRMS (ESI): m/z calcd. for C₁₈H₁₂Br₂N₂ [M-H]⁻: 414.9451, found: 414.9475.

2-(4-Methoxyphenylamino)cyclohex-2-en-1-one (C1)⁴:

Yellow solid (8.14 mg, 15%). Mp=49-51 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.02 – 6.96 (m, 2H), 6.87 – 6.81 (m, 2H), 6.14 (t, *J* = 4.8 Hz, 1H), 6.09 (br, 1H), 3.78 (s, 3H), 2.61 – 2.49 (m, 2H), 2.40 (q, *J* = 11.1, 2H), 2.05 – 1.91 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 195.84, 155.06, 137.90, 135.04, 122.36, 114.67, 114.24, 55.68, 37.93, 24.60, 23.27. HRMS (ESI): m/z calcd. for C₂₀H₂₁N₂O₂ [M+H]⁺: 218.1176, found: 218.1170.

2-((4-Methoxyphenyl)(methyl)amino)cyclohex-2-enone (C2)⁴:

Yellow oil (6.13 mg, 12%). ¹H NMR (400 MHz, CDCl₃) δ 7.18 (dd, J = 8.6, 7.4 Hz, 2H), 6.81 – 6.73 (m, 2H), 6.71 (d, J = 7.9 Hz, 2H), 3.07 (s, 3H), 2.59 – 2.49 (m, 4H), 2.14 – 2.04 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 196.62, 149.14, 144.82, 143.20, 129.01, 118.59, 114.94, 77.48, 77.16, 76.84, 39.62, 39.51, 26.13, 23.07. HRMS (ESI): m/z calcd. for C₁₃H₁₅NNaO [M+Na]⁺: 224.1046, found: 224.1035.

Diphenylamine (5a)⁵:

White solid (32.3 mg, 76%). Mp=47-49 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (dd, J = 8.2, 7.6 Hz, 4H), 7.07 (d, J = 7.6 Hz, 4H), 6.93 (t, J = 7.3 Hz, 2H), 5.74 (br, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.22, 129.49, 121.14, 117.94. HRMS (ESI): m/z calcd. for C₁₂H₁₂N [M+H]⁺: 170.0964, found: 170.0970.

4-methoxy-N-phenylaniline (5b)⁶:

White solid (27.5 mg, 55%). Mp=100-102 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.17 (m, 2H), 7.07 (d, *J* = 8.7 Hz, 2H), 6.90 (d, *J* = 7.8 Hz, 2H), 6.88 – 6.79 (m, 3H), 5.48 (br, 1H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.39, 145.24, 135.80, 129.43, 122.33, 119.71, 115.77, 114.78, 55.70. HRMS (ESI): m/z calcd. for C₁₃H₁₄NO [M+H]⁺: 200.1070, found: 200.1071.

3-nitro-N-phenylaniline (5c)⁷:

Orange solid (33.2 mg, 62%). Mp=84-86 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (t, *J* = 2.2 Hz, 1H), 7.69 (ddd, *J* = 8.0, 2.0, 0.8 Hz, 1H), 7.40 – 7.32 (m, 3H), 7.28 (ddd, *J* = 8.2, 2.2, 0.8 Hz, 1H), 7.15 (dd, *J* = 8.5, 0.9 Hz, 2H), 7.08 (t, *J* = 7.4 Hz, 1H), 5.94 (br, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.49, 145.20, 141.08, 130.15, 129.85, 123.36, 121.97, 120.01, 114.84, 110.40. HRMS (ESI): m/z calcd. for C₁₂H₉N₂O₂ [M-H]⁻: 213.0670, found: 213.0683.

N-phenylnaphthalen-2-amine (5d)8:

White solid (38.0 mg, 69%). Mp=105-107 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.8 Hz, 2H), 7.64 (d, *J* = 8.2 Hz, 1H), 7.44 (d, *J* = 2.1 Hz, 1H), 7.42 – 7.37 (m, 1H), 7.34 – 7.27 (m, 3H), 7.22 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.16 (dd, *J* = 8.5, 1.0 Hz, 2H), 6.98 (t, *J* = 7.3 Hz, 1H), 5.83 (br, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.03, 140.97, 134.74, 129.57, 129.31, 127.78, 126.61, 126.58, 123.62, 121.54, 120.17, 118.39, 111.68. HRMS (ESI): m/z calcd. for C₁₆H₁₄N [M+H]⁺: 220.1121, found: 220.1112.

N-(4-(tert-butyl)phenyl)-3-methylaniline (5e)9:

Yellow oil (50 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.6 Hz, 2H), 7.12 (t, *J* = 7.6 Hz, 1H), 7.01 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 7.8 Hz, 2H), 6.70 (d, *J* = 7.3 Hz, 1H), 5.58 (br, 1H), 2.29 (s, 3H), 1.31 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 144.11, 143.75, 140.53, 139.25, 129.25, 126.21, 121.39, 118.20, 117.89, 114.34, 34.28, 31.60, 21.67. HRMS (ESI): m/z calcd. for C₁₇H₂₂N [M+H]+: 240.1747, found: 240.1730.

N-phenyl-4-(trifluoromethyl)aniline (5f)¹⁰:

Yellow oil (23.6 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.5 Hz, 2H), 7.32 (t, J = 7.9 Hz, 2H), 7.14 (d, J = 8.3 Hz, 2H), 7.08 – 6.99 (m, 3H), 5.91 (br, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.89, 141.27, 129.68, 126.83 (q, J = 3.8 Hz), 124.75 (q, J = 271.8 Hz), 121.75 (q, J = 32.8 Hz), 123.06, 120.15, 115.45. HRMS (ESI): m/z calcd. for C₁₃H₁₁F₃N [M+H]⁺: 238.0838, found: 238.0827.

2-fluoro-N-(*m*-tolyl)aniline (5g):

Yellow oil (40.3 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (td, J = 8.4, 1.5 Hz, 1H), 7.22 – 7.15 (m, 1H), 7.07 (ddd, J = 11.4, 8.1, 1.4 Hz, 1H), 7.01 (t, J = 7.8 Hz, 1H), 6.95 – 6.90 (m, 2H), 6.86 – 6.77 (m, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.07 (d, J = 241.7 Hz), 142.05, 139.45, 131.97 (d, J = 11.0 Hz), 129.34, 124.38 (d, J = 3.6), 122.83, 120.43 (d, J = 7.4 Hz), 119.52, 117.28 (d, J = 2.1 Hz), 115.86, 115.53 (d, J = 19.3 Hz), 21.64. HRMS (ESI): m/z calcd. for C₁₃H₁₃FN [M+H]⁺: 202.1027, found: 202.1025.

3-bromo-N-(*m*-tolyl)aniline (5h):

Yellow oil (54.8 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.11 (m, 2H), 7.06 (t, *J* = 8.0 Hz, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.92 – 6.84 (m, 3H), 6.80 (d, *J* = 7.5 Hz, 1H), 5.59 (br, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.17, 141.91, 139.50, 130.68, 129.39, 123.30, 123.19, 123.11, 119.83, 119.64, 116.15, 115.58, 21.61. HRMS (ESI): m/z calcd. for C₁₃H₁₃BrN [M+H]⁺: 262.0226, found: 262.0220.

di-*m*-tolylamine (5i)¹¹:

Yellow oil (43.4 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.14 (t, *J* = 8.1 Hz, 2H), 6.90 – 6.85 (m, 4H), 6.74 (d, *J* = 7.7 Hz, 2H), 2.30 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.29, 139.31, 129.26, 121.87, 118.66, 115.03, 21.65. HRMS (ESI): m/z calcd. for C₁₄H₁₆N [M+H]⁺: 198.1277, found: 198.1279.

bis(4-(*tert*-butyl)phenyl)amine (5j)¹²:

Red solid (18.0 mg, 64%). Mp=106-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.7 Hz, 4H), 7.00 (d, J = 8.7 Hz, 4H), 5.58 (br, 1H), 1.31 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 143.69, 141.06, 126.21, 117.52, 34.26, 31.63. HRMS (ESI): m/z calcd. for C₂₀H₂₈N [M+H]⁺: 282.2216, found: 282.2212.

N-(p-tolyl)-[1,1'-biphenyl]-4-amine (5k)¹³:

White solid (33.5 mg, 52%). Mp=129-131 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, J = 8.2, 1.0 Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H), 7.39 (t, J = 7.7 Hz, 2H), 7.27 (t, J = 7.4 Hz, 1H), 7.12 – 6.98 (m, 6H), 5.63 (br, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.42, 141.00, 140.05, 133.16, 131.31, 130.03, 128.83, 128.05, 126.58, 119.27, 117.00, 77.48, 77.16, 76.84, 20.84. HRMS (ESI): m/z calcd. for C₁₉H₁₈N [M+H]⁺: 260.1434, found: 260.1439.

N-phenyl-[1,1'-biphenyl]-3-amine (5l)¹⁴:

Off-white solid (49.6 mg, 81%). Mp=89-91 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.2 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.36 – 7.24 (m, 5H), 7.18 – 7.10 (m, 3H), 7.06 (ddd, J = 8.0, 2.2, 0.8 Hz, 1H), 6.95 (t, J = 7.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.65, 143.07, 142.67, 141.27, 129.87, 129.55, 128.85, 127.50, 127.27, 121.35, 120.12, 118.19, 116.74, 116.58. HRMS (ESI): m/z calcd. for C₁₈H₁₆N [M+H]⁺: 246.1277, found: 246.1268.

Reference

1. Wang, H.; Xia, Y.; Lv, S.; Xu, J.; Sun, Z., Facial and practical synthesis of benzimidazole-based Nheterocyclic carbenes. *Tetrahedron Lett.* **2013**, *54*, 2124-2127.

2. Gampe, D. M.; Schramm, S.; Ziemann, S.; Westerhausen, M.; Görls, H.; Naumov, P.; Beckert, R., From Highly Fluorescent Donors to Strongly Absorbing Acceptors: The Tunable Properties of Fluorubines. *J. Org. Chem.* **2017**, *82*, 6153-6162.

3. Zhang, Z.-M.; Gao, Y.-J.; Lu, J.-M., Synthesis of N-heterocyclic carbene-Pd(II) complexes and their catalytic activity in the Buchwald-Hartwig amination of aryl chlorides. *Tetrahedron* **2017**, *73*, 7308-7314.

4. Yi - Jin, L.; Lu, Z.; Na, Y.; Xiang - He, M.; Yu - Long, Z., Acid/Base - Co - catalyzed Direct Oxidative α - Amination of Cyclic Ketones: Using Molecular Oxygen as the Oxidant. *Adv. Synth. Catal.* **2018**, *360*, 455-461.

5. Girard, S. A.; Hu, X.; Knauber, T.; Zhou, F.; Simon, M.-O.; Deng, G.-J.; Li, C.-J., Pd-Catalyzed Synthesis of Aryl Amines via Oxidative Aromatization of Cyclic Ketones and Amines with Molecular

Oxygen. Org. Lett. 2012, 14, 5606-5609.

6. Xie, Y.; Liu, S.; Liu, Y.; Wen, Y.; Deng, G.-J., Palladium-Catalyzed One-Pot Diarylamine Formation from Nitroarenes and Cyclohexanones. *Org. Lett.* **2012**, *14*, 1692-1695.

7. Raghuvanshi, D. S.; Gupta, A. K.; Singh, K. N., Nickel-Mediated N-Arylation with Arylboronic Acids: An Avenue to Chan–Lam Coupling. *Org. Lett.* **2012**, *14*, 4326-4329.

8. Mishra, A. K.; Verma, A.; Biswas, S., Nucleophilic ipso-Substitution of Aryl Methyl Ethers through Aryl C–OMe Bond Cleavage; Access to Functionalized Bisthiophenes. *J. Org. Chem.* **2017**, *82*, 3403-3410.

9. Zhao, Y.; Huang, B.; Yang, C.; Li, B.; Gou, B.; Xia, W., Photocatalytic Cross-Dehydrogenative Amination Reactions between Phenols and Diarylamines. *ACS Catalysis* **2017**, *7*, 2446-2451.

10. Liang, T.; Tan, Z.; Zhao, H.; Chen, X.; Jiang, H.; Zhang, M., Aerobic Copper-Catalyzed Synthesis of Benzimidazoles from Diaryl- and Alkylamines via Tandem Triple C–H Aminations. *ACS Catalysis* **2018**, *8*, 2242-2246.

11. Liu, Y.; Yuan, J.; Wang, Z.-F.; Zeng, S.-H.; Gao, M.-Y.; Ruan, M.-L.; Chen, J.; Yu, G.-A., Application of a 2-aryl indenylphosphine ligand in the Buchwald-Hartwig cross-coupling reactions of aryl and heteroaryl chlorides under the solvent-free and aqueous conditions. *Org. Biomol. Chem.* **2017**, *15*, 5805-5810.

12. Rajca, A.; Vale, M.; Rajca, S., Diarylnitroxide Diradicals: Low-Temperature Oxidation of Diarylamines to Nitroxides. *J. Am. Chem. Soc.* **2008**, *130*, 9099-9105.

13. Hajra, A.; Wei, Y.; Yoshikai, N., Palladium-Catalyzed Aerobic Dehydrogenative Aromatization of Cyclohexanone Imines to Arylamines. *Org. Lett.* **2012**, *14*, 5488-5491.

14. Ilies, L.; Matsubara, T.; Nakamura, E., Nickel-Catalyzed Synthesis of Diarylamines via Oxidatively Induced C–N Bond Formation at Room Temperature. *Org. Lett.* **2012**, *14*, 5570-5573.

3. ¹H NMR and ¹³C NMR spectra

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

 Ó

-2.33

 $\frac{750}{747}$

-3.79

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

143.03 113.75 113.75 113.75 113.75 113.75 112.75 112.75 112.55 112.55 112.65 1116.85 111.68 111.68 111.68

-2.30

