Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Diversity-oriented Synthesis of Imidazo[2,1-a]isoquinolines

Shaoyu Mai,^a Yixin Luo,^b Xianyun Huang,^a Zhenghao Shu,^a Bingnan Li,^a Yu Lan,^b and Qiuling Song^{a,*}

^a Institute of Next Generation Matter Transformation, College of Chemical Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China

^b School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, P.
 R. China

*E-mail: qsong@hqu.edu.cn

Table of Contents:

1. General Information	S2
2. Optimization of the Reaction Conditions	S3
3. General Procedure for Cp*Rh ^{III} -catalyzed [4+2] annulation	S4
4. Synthetic Applications	S6
5. Mechanistic Studies	S11
6. Crystal Structure of Products	S12
7. Characterization of Products	S23
8. References	S51
9. NMR Spectra	S52

1. General Information

Unless specified, all metal complexes, reagents, and starting materials were purchased from commercial sources and used as received. Metal salts were stored in a nitrogen atmosphere dry box. Acetonitrile, methanol, toluene, THF, Et₂O, and CH₂Cl₂ were dried by filtration through alumina according to the procedure of Grubbs.^[S1] Analytical thin layer chromatography was performed on 0.25 mm extra hard silica gel plates with UV254 fluorescent indicator. ¹H NMR and ¹³C NMR spectra were recorded at ambient temperature using Bruker Avance III 500MHz NMR spectrometer. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integrations. High-resolution mass spectra (HRMS) were recorded with a Waters Micromass GCT Premier using an Agilent 1290 with electrospray ionization (ESI) technique.

2. Optimization of the Reaction Conditions

	$\frac{N}{H} + \frac{N_2}{O}$ 1a 2a	COOEt catalysts (additives (solvent, 100	2.5 mol %) (1.2 equiv) 0 °C, 8-16 h	N N 3a
entry	catalysts	additives	solvent	yield (%) ^b
1	[Cp*RhCl ₂] ₂	-	DCE	0
2	[Cp*RhCl ₂] ₂	-	Toluene	0
3	[Cp*RhCl ₂] ₂	-	EtOH	trace
4	[Cp*RhCl ₂] ₂	-	TFE	20
5	[Cp*RhCl ₂] ₂	NaOAc	TFE	46
6	[Cp*RhCl ₂] ₂	CsOAc	TFE	22
7	[Cp*RhCl ₂] ₂	KOAc	TFE	54
8	[Cp*RhCl ₂] ₂	HOAc	TFE	0
9 ^c	[Cp*RhCl ₂] ₂	KOAc	TFE	88
10 ^{c, d}	[Cp*RhCl ₂] ₂	KOAc	TFE	99 (90) ^e
11 ^{c, d}	[Ru(p-cymene)Cl ₂]	KOAc	TFE	55
12 ^{c, d}	[Cp*lrCl ₂] ₂	KOAc	TFE	0
13 ^{c, d}	[Cp*Co(CO)l ₂]	KOAc	TFE	0

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol) in solvent (1.0 mL) at 100 ^oC for 8 h. ^bGC yields use *n*-Dodecane as an internal standard. ^c20 mol% KOAc was used for 16 h (entries 9-13). ^d1.5 mL TFE was used. ^eIsolated yield. TFE = 2,2,2-Trifluoroethanol.

3. General Procedure for Cp*Rh^{III}-Catalyzed [4+2] Annulation

3.1 Synthesis of Imidazo[2,1-a]isoquinolin-6(5H)-ones by [Cp*RhCl₂]₂/KOAc System

A 25 mL round bottom Schlenk flask equipped with a magnetic stirring bar was charged with **1a** (38.8 mg, 0.2 mmol), ethyl 2-diazo-3-oxobutanoate **2a** (37.4 mg, 0.24 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol), KOAc (3.9 mg, 0.04 mmol), and TFE (1.5 mL). The reaction mixture was stirred at 100 °C under nitrogen atmosphere for 16 h. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum ether/EtOAc: 10/1), giving the expected product **3a** (42.1 mg, 90%) as a yellow solid.

3.2 Synthesis of 5,6-Dihydroimidazo[2,1-a]isoquinolin-5-ols by [Cp*RhCl₂]₂/KOAc System

A 25 mL round bottom Schlenk flask equipped with a magnetic stirring bar was charged with 1a (38.8 mg, 0.2 mmol), *tert*-butyl 2-diazo-3-oxobutanoate 2e (44.1 mg, 0.24 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol), KOAc (3.9 mg, 0.04 mmol), and TFE (1.5 mL). The reaction mixture was stirred at 100 °C under nitrogen atmosphere for 16 h. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum ether/EtOAc: 5/1), giving the expected product 4a (36.0 mg, 72%) as a white solid.

3.3 Synthesis of Imidazo[2,1-a]isoquinolines by [Cp*RhCl₂]₂/HOAc System

A 25 mL round bottom Schlenk flask equipped with a magnetic stirring bar was charged with **1a** (38.8 mg, 0.2 mmol), *tert*-butyl 2-diazo-3-oxobutanoate **2e** (44.1 mg, 0.24 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol), HOAc (24 µL, 0.4 mmol), and TFE (1.5 mL). The reaction mixture was stirred at 100 °C under nitrogen atmosphere for 16 h. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum ether/EtOAc: 15/1), giving the expected product **5a** (45.9 mg, 99%) as a yellow solid.

3.4 Synthesis of Isopropyl 5-hydroxy-imidazo[2,1-*a*]isoquinoline-6-carboxylates by [Cp*RhCl₂]₂/KOAc System

A 25 mL round bottom Schlenk flask equipped with a magnetic stirring bar was charged with **1a** (38.8 mg, 0.2 mmol), isopropyl 2-diazo-3-oxobutanoate **2g** (40.8 mg, 0.24 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol), KOAc (3.9 mg, 0.04 mmol), and TFE (1.5 mL). The reaction mixture was stirred at 100 °C under nitrogen atmosphere for 16 h. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum ether/EtOAc: 5/1), giving the expected product **6a** (61.8 mg, 92%) as a white solid.

3.5 Synthesis of Isopropyl imidazo[2,1-*a*]isoquinoline-6-carboxylates by [Cp*RhCl₂]₂/HOAc System

A 25 mL round bottom Schlenk flask equipped with a magnetic stirring bar was charged with **1a** (38.8 mg, 0.2 mmol), isopropyl 2-diazo-3-oxobutanoate **2g** (40.8 mg, 0.24 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol), KOAc (3.9 mg, 0.04 mmol), and TFE (1.5 mL). The reaction mixture was stirred at 100 °C under nitrogen atmosphere for 16 h. After the reaction was completed, the solvent was evaporated and the

organic product purified by column chromatography (petroleum ether/EtOAc: 5/1), giving the expected product **7a** (31.8 mg, 50%) as a yellow solid.

4. Synthetic Applications

A 100 mL round bottom Schlenk flask equipped with a magnetic stirring bar was charged with **8** (252 mg, 1.0 mmol), *tert*-butyl 2-diazo-3-oxobutanoate **2e** (220.5 mg, 1.2 mmol), $[Cp*RhCl_2]_2$ (15.5 mg, 0.025 mmol), HOAc (120 µL, 2 mmol), and TFE (7.5 mL). The reaction mixture was stirred at 100 °C under nitrogen atmosphere for 16 h. After the reaction was completed, 4 M HCl in MeOH (0.5 mL) was added. After further stirring at 100 °C for 1 h, the reaction came to end and solid was precipitated out as the desired product. The precipitate was colleted by filtration and washed by petroleum ether, and then kept in desiccator under vacuum to afford the **6,11-dimethylbenzo[4,5]imidazo[2,1-***a***]isoquinoline-1-carboxylic acid 9** (188.5 mg, 65%) as a gray solid, m. p. = 117–118; ¹H NMR (500 MHz, CF₃COOD) δ 9.11 (d, *J* = 7.5 Hz, 1H), 8.42 (d, *J* = 7.1 Hz, 2H), 8.19 (t, *J* = 7.7 Hz, 1H), 7.78 (d, *J* = 3.5 Hz, 2H), 7.69 (s, 1H), 3.39 (s, 3H), 2.89 (s, 3H); ¹³C NMR (126 MHz, CF₃COOD) δ 174.4, 143.1, 139.5, 139.3, 138.4, 137.0, 134.9, 132.0, 131.9, 130.7, 129.0, 127.4, 127.2, 119.7, 116.9, 115.7, 20.0, 16.7. HRMS (ESI) calcd for C₁₈H₁₅N₂O₂⁺ [M + H]⁺ : 291.1128; Found: 291.1123.

A 50 mL round bottom Schlenk flask equipped with a magnetic stirring bar was charged with **4a** (250 mg, 1 mmol), Sodium borohydride (76 mg, 2 mmol), and THF (10 mL). The reaction mixture was stirred at room temperature for 3 h. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum ether/EtOAc: 1/1), giving the **1-(2-(1***H***-benzo[***d***]imidazol-2-yl)phenyl)propan-2-ol 11** (214 mg, 85%) as a white solid, m. p. = 193–194; ¹H NMR (500 MHz, DMSO) δ 7.77–7.72 (m, 1H), 7.65 (dt, *J* = 6.6, 3.3 Hz, 2H), 7.54–7.46 (m, 2H), 7.46–7.40 (m, 1H), 7.31–7.25 (m, 2H), 3.95–3.85 (m,

1H), 3.07 (ddd, J = 21.0, 13.3, 6.2 Hz, 2H), 1.12 (d, J = 6.2 Hz, 3H); ¹³C NMR (126 MHz, DMSO) δ 153.0, 140.0, 132.6, 131.0, 130.6, 130.4, 127.2, 126.4, 123.2, 116.0, 68.7, 43.0, 25.0; HRMS (ESI) calcd for C₁₆H₁₇N₂O⁺ [M + H]⁺ : 253.1335; Found: 253.1338.

A 25 mL round bottom Schlenk flask equipped with a magnetic stirring bar was charged with 11 (50.4, 0.5 mmol), MsCl (286 mg, 2.5 mmol), Pyridine (198 mg, 5 mmol), DMAP (30.5 mg, 0.25 mmol) and DCM (5 mL). The reaction mixture was stirred at room temperature for 12 h. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum ether/EtOAc: 3/1). giving the 6-methyl-5,6dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline 12 (65.5 mg, 56%) as a white solid, m. p. = 100–101; ¹H NMR (500 MHz, CDCl₃) δ 8.31 (dd, J = 5.7, 3.2 Hz, 1H), 7.88– 7.80 (m, 1H), 7.45–7.36 (m, 3H), 7.34–7.27 (m, 3H), 4.94–4.82 (m, 1H), 3.58 (dd, J =15.7, 6.6 Hz, 1H), 2.98 (d, J = 15.1 Hz, 1H), 1.33 (d, J = 6.7 Hz, 3H); ¹³C NMR (126) **MHz**, **CDCl**₃) δ 147.9, 143.7, 133.6, 132.6, 130.4, 129.0, 127.7, 125.9, 125.6, 122.7, 122.5, 119.7, 109.0, 47.4, 34.7, 19.4; HRMS (ESI) calcd for $C_{16}H_{15}N_2^{\,+}\,[M\,+\,H]^+$: 235.1230; Found: 235.1232.

A 100 mL round bottom Schlenk flask equipped with a magnetic stirring bar was charged with **1a** (194 mg, 1.0 mmol), **13** (290 mg, 1.2 mmol), [Cp*RhCl₂]₂ (15.5 mg, 0.025 mmol), HOAc (120 μ L, 2 mmol), and TFE (7.5 mL). The reaction mixture was stirred at 100 °C under nitrogen atmosphere for 16 h. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum ether/EtOAc: 5/1), giving the **ethyl 6-hydroxy-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline-6-carboxylate 14** (31.8 mg, 94%) as a white solid, m. p. = 120–114; ¹H NMR (500 MHz, DMSO) δ 8.24–8.16 (m, 1H), 8.14 (s, 1H), 7.73 (d, *J* = 5.6 Hz, 2H), 7.52–7.41 (m, 3H), 7.31–7.22 (m, 2H), 4.18–

4.02 (m, 2H), 3.68 (dd, J = 65.7, 16.1 Hz, 2H), 1.03 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, DMSO) δ 170.0, 149.7, 144.6, 134.8, 133.1, 131.3, 129.3, 128.7, 126.2, 125.8, 123.7, 123.3, 120.1, 114.0, 86.6, 62.9, 14.7; HRMS (ESI) calcd for $C_{18}H_{17}N_2O_3^+$ [M + H]⁺: 309.1234; Found: 309.1233.

A 25 mL round bottom Schlenk flask equipped with a magnetic stirring bar was charged with **14** (154 mg, 0.5 mmol), Sodium borohydride (9.5 mg, 0.25 mmol), and THF (4 mL). The reaction mixture was stirred at room temperature for 3 h. After the reaction was completed, the solvent was evaporated and the MsCl (286 mg, 2.5 mmol), Pyridine (198 mg, 5 mmol), DMAP (30.5 mg, 0.25 mmol) and DCM (5 mL) were added. The reaction mixture was stirred at room temperature for 12 h. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum ether/EtOAc: 5/1), giving the **ethyl 5,6-dihydrobenzo[4,5]imidazo[2,1-***a***]isoquinoline-6-carboxylate 15** (52.6 mg, 36%) as slight yellow oil. ¹H NMR (**500 MHz, CDCl**₃) δ 8.31 (d, *J* = 7.2 Hz, 1H), 7.85 (dd, J = 5.4, 2.6 Hz, 1H), 7.47–7.35 (m, 2H), 7.35–7.27 (m, 4H), 5.27 (d, *J* = 5.9 Hz, 1H), 4.02 (q, *J* = 7.1 Hz, 2H), 3.63 (dt, *J* = 36.6, 11.3 Hz, 2H), 1.01 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (**126 MHz, CDCl**₃) δ 169.1, 148.6, 143.6, 134.5, 131.5, 130.4, 128.2, 128.1, 126.1, 125.7, 123.1, 122.9, 119.9, 108.9, 62.0, 53.4, 31.4, 13.9; HRMS (ESI) calcd for C₁₈H₁₇N₂O₂⁺ [M + H]⁺: 293.1285; Found: 293.1287.

A 100 mL round bottom Schlenk flask equipped with a magnetic stirring bar was charged with **17** (254 mg, 1.0 mmol), **2f** (271 mg, 1.2 mmol), $[Cp*RhCl_2]_2$ (15.5 mg, 0.025 mmol), HOAc (120 μ L, 2 mmol), and TFE (7.5 mL). The reaction mixture was stirred at 90 °C under nitrogen atmosphere for 12 h. After the reaction was completed,

the solvent was evaporated and the organic product purified by column chromatography (petroleum ether/EtOAc: 2/1), giving the mixture **18** (232 mg, 66%) as a yellow oil. ¹H **NMR (500 MHz, CDCl₃)** δ 7.85 (d, J = 8.5 Hz, 1H), 7.75 (t, J = 8.4 Hz, 2H), 7.36 (dd, J = 23.6, 5.3 Hz, 6.81 (d, J = 1.5 Hz), 6.70 (td, J = 9.1, 2.1 Hz), 6.57–6.42 (m), 3.76 (s), 3.74 (s), 3.73 (s), 3.64 (s), 3.27 (dd, J = 99.4, 15.6 Hz), 1.28–1.19 (m), 1.18–1.04 (m), 0.73 (t, J = 6.7 Hz); ¹³C **NMR (126 MHz, CDCl₃)** δ 161.0, 160.8, 156.0, 148.6, 148.1, 143.4, 137.4, 135.4, 135.0, 134.1, 127.9, 126.9, 126.7, 118.4, 118.0, 117.7, 114.2, 113.3, 112.7, 112.6, 112.4, 111.5, 99.9, 97.5, 88.9, 82.5, 60.5, 55.8, 55.3, 55.2, 42.1, 39.1, 39.0, 31.6, 26.0, 24.7, 22.6, 13.9; **HRMS (ESI) calcd for** C₂₁H₂₅N₂O₃⁺ [M + H]⁺ : 353.1860; Found: 353.1860.

A 25 mL round bottom Schlenk flask equipped with a magnetic stirring bar was charged with 18 (176 mg, 0.5 mmol), Sodium borohydride (38 mg, 1 mmol), and THF (4 mL). The reaction mixture was stirred at room temperature for 3 h. After the reaction was completed, the solvent was evaporated and the MsCl (286 mg, 2.5 mmol), Pyridine (198 mg, 5 mmol), DMAP (30.5 mg, 0.25 mmol) and DCM (5 mL) were added. The reaction mixture was stirred at room temperature for 12 h. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum ether/EtOAc: 5/1), giving the expected mixture 19 (70.5 mg, 42%, 2:1) as yellow oil. Major isomer was isolated: ¹H NMR (500 MHz, CDCl₃) δ 7.37 (dd, J = 10.4, 4.3 Hz, 2H), 6.96 (s, 1H), 6.83 (dd, J = 8.7, 2.3 Hz, 1H), 6.73 (d, J = 2.5 Hz, 1H), 6.44 (dd, J = 8.5, 2.5 Hz, 1H), 4.07–3.90 (m, 1H), 3.79 (s, 3H), 3.65 (s, 3H), 3.04 (dd, J = 13.7, 9.7 Hz, 1H), 2.77 (dd, J = 13.7, 2.9Hz, 1H), 1.68 (qt, J = 13.4, 6.8 Hz, 2H), 1.59–1.32 (m, 3H), 0.93 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 160.3, 156.2, 151.9, 140.2, 133.2, 131.0, 123.2, 116.6, 115.4, 113.2, 111.9, 111.6, 99.9, 74.1, 55.7, 55.1, 40.1, 38.3, 27.9, 22.9, 14.2; HRMS (ESI) calcd for $C_{21}H_{25}N_2O_2^+$ [M + H]⁺ : 337.1911; Found: 337.1912.

S10

A 25 mL round bottom Schlenk flask equipped with a magnetic stirring bar was charged with **7j** (68.4 mg, 0.2 mmol), NBS (78.3 mg, 0.44 mmol), AIBN (1.6 mg, 0.02 mmol) and Benzene (2.5 mL). The reaction mixture was stirred at 90 °C for 4 h. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum ether/EtOAc: 20/1), giving the **isopropyl 3-bromo-2-**(*tert*-**butyl)-8-fluoro-5-methylimidazo[2,1-***a***]isoquinoline-6-carboxylate 21** (76 mg, 90%) as a yellow solid, m. p. = 150–152;. ¹H NMR (500 MHz, CDCl₃) δ 8.62 (dd, J = 8.9, 5.7 Hz, 1H), 7.31–7.26 (m, 1H), 7.21 (dd, J = 10.1, 2.4 Hz, 1H), 5.41 (dt, J = 12.6, 6.3 Hz, 1H), 3.08 (s, 3H), 1.53 (s, 9H), 1.45 (d, J = 6.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 162.5 (d, J = 248.1 Hz), 152.0, 142.0, 134.0, 127.8 (d, J = 9.6 Hz), 126.0 (d, J = 9.1 Hz), 119.6 (d, J = 2.0 Hz), 118.8 (d, J = 3.6 Hz), 116.5 (d, J = 23.8 Hz), 109.0 (d, J = 23.8 Hz), 70.0, 33.4, 29.4, 21.8, 19.7; HRMS (ESI) calcd for C₂₀H₂₃BrFN₂O₂+ [M + H]⁺: 310.1350; Found: 310.1346.

A 100 mL round bottom Schlenk flask equipped with a magnetic stirring bar was charged with **22** (1.09 g, 5.0 mmol), **23** (936 mg, 6 mmol), [Cp*RhCl₂]₂ (77.5 mg, 0.025 mmol), HOAc (600 µL, 2 mmol), and TFE (37.5 mL). The reaction mixture was stirred at 120 °C under nitrogen atmosphere for 16 h. After the reaction was completed, the solvent was evaporated and the organic product purified by column chromatography (petroleum ether/EtOAc: 20/1), giving the **isopropyl 2-(***tert***-butyl)-8-fluoroimidazo[2,1-***a***]isoquinoline-6-carboxylate 24** (1.44g, 88%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.75 (s, 1H), 8.69–8.60 (m, 2H), 7.35–7.30 (m, 1H), 7.32 (s, 1H), 5.33 (hept, *J* = 6.3 Hz, 1H), 1.43 (d, *J* = 6.3 Hz, 6H), 1.42 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 164.8, 162.7 (d, *J* = 246.6 Hz), 157.1, 143.0, 130.8, 128.8 (d, J = 10.4 Hz), 126.1 (d, *J* = 9.1 Hz), 120.0, 116.5 (d, *J* = 23.9 Hz), 112.4 (d, *J* = 3.7 Hz), 111. 6 (d, *J* = 25.4 Hz), 108.7, 68.9, 32.4, 30.1, 22.0; HRMS (ESI) calcd for C₁₉H₂₂FN₂O₂⁺ [M + H]⁺: 329.1660; Found: 329.1664.

5. Mechanistic Studies

To shed light on the mechanism of the reaction that generates these unexpected products, we conducted a series of control experiments (Scheme S1). Firstly, treatment of **1a** and ethyl diazoacetate **25** under the standard conditions did not lead to any desired products (Scheme S1, a). Furthermore, when the reaction of **1a** with **2a** or **2e** were carried out at room temperature, the direct 1,2-addition products (**26** and **27**) were both isolated in high yields (Scheme S1, b and c). In addition, exposure of **26** or **27** at 100 °C without Rh-catalyst provided the desired products **3a** and **4a** in high yield, which suggested that the Rh-catalyst only play the role in C-H activation process and the different types of ester group are crucial factors for the formation of diverse products (Scheme S1, d).

Scheme S1. Mechanistic Studies

6. Crystal Structure of Products

	80 ٢	NOMOV	VE FORCED Prob = 50 Temp = 295
MeO	(91602) - 1021 - 1021	exp_3552 P -1 R = 0.06	P
Bond precision:	C-C = 0.0042 A	Waveleng	gth=0.71073
Cell: a a Temperature: 2	=7.0483(8) lpha=103.668(9) 95 K	b=12.6910(13) beta=90.921(9)	c=14.4533(15) gamma=102.650(9)
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	Calculated 1222.6(2) P -1 -P 1 C16 H12 N2 O2 C16 H12 N2 O2 264.28 1.436 4 0.097 552.0 552.24 8,15,17 4298	Reporte 1222.60 P -1 -P 1 C16 H12 C16 H12 264.29 1.436 4 0.097 552.3 8,15,17 4294	ed (2) 2 N2 O2 2 N2 O2
Correction metho	od= Not given	Theta $(max) = 25$	000
R(reflections)=	0.0624(2521)	wR2(reflections	s)= 0.1270(4294)
S = 1.054	Npar=	379	

Bond precision:	C-C = 0.0051 A	Wavelength=0.71073
Cell:	a=7.1819(13)	b=12.909(3) c=16.108(3)
	alpha=90	beta=99.316(18) gamma=90
Temperature:	294 K	
	Calculated	Reported
Volume	1473.7(5)	1473.7(5)
Space group	P 21/c	P 1 21/c 1
Hall group	-P 2ybc	-P 2ybc
Moiety formula	C17 H14 N2 O2 S	C17 H14 N2 O2 S
Sum formula	C17 H14 N2 O2 S	C17 H14 N2 O2 S
Mr	310.36	310.38
Dx,g cm-3	1.399	1.399
Z	4	4
Mu (mm-1)	0.228	0.228
F000	648.0	648.8
F000'	648.75	
h,k,lmax	8,15,19	8,15,19
Nref	2601	2600
Tmin, Tmax		
Tmin'		
Correction meth	od= Not given	
Data completene	ss= 1.000	Theta(max) = 25.000
R(reflections) =	0.0643(1572)	wR2(reflections)= 0.1486(2600)
S = 1.002	Npar=	201

N N OH 4a	X 12 1 1 1 1 1 1 1 1 1 1 1 1 1	-1 R = 0.10	E FORCED	Prob = 50 Temp = 291
Bond precision:	C-C = 0.0081 A	Wavele	ength=0.710	173
Cell: a	a=10.711(3)	b=11.136(2)	c=13.5	12(3)
a Temperature: 2	alpha=100.641(16) 291 K	beta=104.19(2	2) gamma=	113.52(2)
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	Calculated 1358.4(7) P -1 -P 1 2(C16 H14 N2 O), C32 H30 N4 O3 518.60 1.268 2 0.083 548.0 548.22 12,13,16 4787	Report 1358. P -1 -P 1 H2 0 2 (C16 C32 F 518.6 1.268 2 0.083 548.2 12,13 4779	ted .4(6) 5 H14 N2 O) 130 N4 O3 52 3 3 3 3 3 3 3 3	, H2 O
Correction method= Not given				
Data completene	ss= 0.998	Theta(max)= 2	24.990	
R(reflections)=	0.0960(2716)	wR2(reflectio	ons)= 0.193	36(4779)
S = 1.111	Npar=	359		

S15

Bond precision:	C-C = 0.0063 A	Waveleng	th=0.71073
Cell:	a=5.7290(15)	b=14.295(5)	c=15.456(4)
	alpha=90	beta=90	gamma=90
Temperature:	294 K		
	Calculated	Reporte	d
Volume	1265.8(6)	1265.9(6)
Space group	P 21 21 21	P 21 21	21
Hall group	P 2ac 2ab	P 2ac 2	ab
Moiety formula	C16 H12 N2, H2 O	C16 H12	N2, H2 O
Sum formula	C16 H14 N2 O	C16 H14	N2 0
Mr	250.29	250.30	
Dx,g cm-3	1.313	1.313	
Z	4	4	
Mu (mm-1)	0.084	0.084	
F000	528.0	528.2	
F000'	528.20		
h,k,lmax	6,17,18	6,16,18	8
Nref	2228[1320]	2039	
Tmin, Tmax			
Tmin'			
Correction meth	od= Not given		
Data completene	ss= 1.54/0.92	Theta(max)= 25.	000
R(reflections)=	0.0744(1289)	wR2(reflections	a)= 0.1071(2039)
S = 1.059	Npar= 1	176	

C-C = 0.0045 A	A Wavel	ength=0.71073
a=7.0181(4)	b=7.9004(5)	c=25.5706(16)
alpha=90	beta=92.661(6)	gamma=90
298 K		
Calculated	Repo	rted
1416.25(15)	1416	.25(15)
P 21/c	P 1	21/c 1
-P 2ybc	-P 2	ybc
C20 H14 N2	C20	H14 N2
C20 H14 N2	C20	H14 N2
282.33	282.	35
1.324	1.32	4
4	4	
0.078	0.07	8
592.0	592.	2
592.20		
8,9,30	8,9,	30
2508	2485	
	0.50	1,1.000
od= # Reported I -SCAN	f Limits: Tmin=0	.501 Tmax=1.000
ss= 0.991	Theta(max) =	25.000
0.0701(1323)	wR2(reflecti	ons)= 0.2151(2485)
Npar	= 200	
	C-C = 0.0045 2 a=7.0181(4) alpha=90 298 K Calculated 1416.25(15) P 21/c -P 2ybc C20 H14 N2 C20 H14 N2 282.33 1.324 4 0.078 592.0 592.20 8,9,30 2508 Od= # Reported 1 -SCAN as= 0.991 0.0701(1323)	C-C = 0.0045 A Wavel a=7.0181(4) b=7.9004(5) alpha=90 beta=92.661(6) 298 K Calculated Repo 1416.25(15) 1416 P 21/c P 1 -P 2ybc -P 2 C20 H14 N2 C20 282.33 282. 1.324 1.32 4 4 0.078 0.07 592.0 592. 592.20 8,9,30 8,9, 2508 2485 0.50 Dd= # Reported T Limits: Tmin=0 -SCAN as= 0.991 Theta(max)= 0.0701(1323) wR2(reflection)

Bond precision: C-C = 0.0033 A Wavelength=0.71073 Cell: a=9.8482(6) b=12.1953(6) c=15.5327(10) beta=106.980(7) alpha=90 gamma=90 298 K Temperature: Calculated Reported Volume 1784.18(19) 1784.18(18) P 21/n Space group P 1 21/n 1 -P 2yn Hall group -P 2ybc (x-Moiety formula C20 H20 N2 O3 C20 H20 N2 O3 C20 H20 N2 O3 Sum formula C20 H20 N2 O3 336.38 336.39 Mr Dx,g cm-3 1.252 1.252 Ζ 4 4 0.085 0.085 Mu (mm-1) F000 712.0 712.4 F000' 712.32 h,k,lmax 11,14,18 11,14,18 3152 Nref 3147 Tmin, Tmax Tmin' Correction method= Not given Theta(max) = 25.000 Data completeness= 0.998 R(reflections) = 0.0445(2422) wR2(reflections) = 0.1153(3147) S = 1.069Npar= 230

Bond precision: C-C = 0.0031 A

Wavelength=0.71073

Cell:	a=11.9347(6)	b=13.0246(5)	c=12.4263(6)
	alpha=90	beta=112.805(5)	gamma=90
Temperature:	295 К		
	Calculated	Reported	1
Volume	1780.61(16)	1780.61	(15)
Space group	P 21/c	P 1 21/c	2 1
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C20 H23 F N2 O2	C20 H23	F N2 O2
Sum formula	C20 H23 F N2 O2	C20 H23	F N2 O2
Mr	342.40	342.42	
Dx,g cm-3	1.277	1.277	
Z	4	4	
Mu (mm-1)	0.090	0.090	
F000	728.0	728.4	
F000'	728.35		
h,k,lmax	14,15,14	14,15,14	1
Nref	3137	3129	
Tmin, Tmax		0.766,1.	.000
Tmin'			
Correction meth	od= # Reported T	Limits: Tmin=0.766	Tmax=1.000
AbsCorr = MULTI	-SCAN		
Data completene	ss= 0.997	Theta(max) = 25.0	000
R(reflections)=	0.0494(2174)	wR2(reflections)	= 0.1239(3129)
S = 1.053	Npar=	231	

HN N N Me OH 11	K B9 (91E0L) - 8102 20:92:90 91 Fow-N01H-1- Z 41 exp_42	NOMOVE FORCED Prob = 50 Temp = 294 CSRP (CRP) (C
Bond precision	: C-C = 0.0040 A	Wavelength=0.71073
Cell:	a=11.1136(8)	b=11.2993(9) c=12.7113(6)
i	alpha=105.175(5)	beta=101.292(5) gamma=114.625(8)
Temperature:	294 K	
	Gelevleted	Deventeral
Volumo	Laiculated	Reported
Space group	1515.2(2) P_=1	I 515.2(2) P =1
Space group	-P 1	-P 1
Mail group	C16 H16 N2 O	CIE HIE N2 O
Sum formula	C16 H16 N2 O	C16 H16 N2 0
Mr	252 31	252 32
Dr a cm=3	1 276	1 276
z.	1.270	4
Mu (mm-1)	0 081	0.081
F000	536.0	536.2
F000'	536.20	550.2
h.k.lmax	13.13.15	13,13,15
Nref	4639	4631
Tmin.Tmax		1031
Tmin'		
Imili		
Correction met	hod= Not given	
Data completen	ess= 0.998	Theta(max) = 25.000
R(reflections):	= 0.0554(3348)	wR2(reflections) = 0.1550(4631)
S = 1.065	Npar=	351

Bond precision: C-C = 0.0051 AWavelength=0.71073 c=15.058(2) b=9.7262(14) Cell: a=6.3592(9) alpha=92.739(11) beta=99.147(11) gamma=106.484(12) Temperature: 298 K Calculated Reported Volume 877.5(2) 877.4(2) P -1 Space group P -1 Hall group -P 1 -P 1 Moiety formula C19 H21 F N2 O2 Sum formula 328.38 328.39 Mr 1.243 1.243 Dx,g cm-3 Ζ 2 2 0.088 0.088 Mu (mm-1) F000 348.0 348.2 F000' 348.17 h,k,lmax 7,11,17 7,11,17 3094 3088 Nref Tmin, Tmax 0.392,1.000 Tmin' Correction method= # Reported T Limits: Tmin=0.392 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 0.998 Theta(max) = 25.000R(reflections) = 0.0664(1559) wR2(reflections) = 0.2011(3088) S = 1.041Npar= 221

Bond precision:	C-C = 0.0027 A	Wavelen	gth=0.71073
Cell:	a=13.1564(5)	b=14.1743(6)	c=20.5373(10)
	alpha=90	beta=93.892(5)	gamma=90
Temperature:	296 K		
	Calculated	Report	ed
Volume	3821.0(3)	3821.0	(3)
Space group	I 2/a	I 1 2/	a 1
Hall group	-I 2ya	-I 2ya	
Moiety formula	C21 H22 N2 O3	C21 H2	2 N2 O3
Sum formula	C21 H22 N2 O3	C21 H2	2 N2 O3
Mr	350.41	350.42	
Dx,g cm-3	1.218	1.218	
Z	8	8	
Mu (mm-1)	0.082	0.082	
F000	1488.0	1488.7	
F000'	1488.66		
h,k,lmax	15,16,24	15,16,	24
Nref	3361	3352	
Tmin, Tmax		0.606,	1.000
Tmin'			
Correction meth AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tmin=0.6	06 Tmax=1.000
Data completene	ss= 0.997	Theta(max)= 24	.990
R(reflections)=	0.0474(2619)	wR2(reflection	s)= 0.1528(3352)
S = 1.067	Npar=	239	

6. Characterization of Products

Benzo[4,5]imidazo[2,1-*a*]isoquinolin-6(5*H*)-one (3a) was obtained as a yellow solid (42 mg, 90%), m.p. = 147–150 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.44–8.37 (m, 1H), 8.29 (dd, J = 6.7, 2.4 Hz, 1H), 7.79 (dd, J = 6.6, 2.2 Hz, 1H), 7.52–7.36 (m, 4H), 7.35–7.27 (m, 1H), 4.19 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 150.6, 143.8, 132.3, 131.3, 131.1, 128.1, 127.7, 126.1, 125.8, 125.6, 123.2, 119.8, 115.4, 37.5; HRMS (ESI) calcd for C₁₅H₁₁N₂O⁺ [M + H]⁺: 235.0866; Found: 235.0864.

3-Methylbenzo[4,5]imidazo[2,1-*a*]isoquinolin-6(5*H*)-one (3b) was obtained as a yellow solid (39 mg, 78%), m.p. = 164–166 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.41–8.26 (m, 2H), 7.86–7.73 (m, 1H), 7.51–7.37 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.17 (s, 1H), 4.20 (s, 2H), 2.45 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 150.8, 143.8, 141.9, 132.3, 131.0, 129.0, 128.1, 125.9, 125.7, 125.3, 120.5, 119.5, 115.3, 37.4, 21.5; HRMS (ESI) calcd for C₁₆H₁₃N₂O⁺ [M + H]⁺: 249.1022; Found: 249.1023.

3-Butylbenzo[4,5]imidazo[2,1-*a*]isoquinolin-6(5*H*)-one (3c) was obtained as a yellow solid (42 mg, 73%), m.p. = 149–151 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.51–8.16 (m, 2H), 7.91–7.63 (m, 1H), 7.43–7.36 (m, 2H), 7.28 (d, *J* = 8.1 Hz, 1H), 7.11 (s, 1H), 4.16 (s, 2H), 2.72–2.58 (m, 2H), 1.63 (dt, *J* = 15.4, 7.6 Hz, 2H), 1.38 (dt, *J* = 14.9, 7.4 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.7 150.9, 147.0, 143.9, 132.4, 131.1, 128.5, 127.5, 126.0, 125.7, 125.3, 120.8, 119.6, 115.4, 37.5, 35.6, 33.2, 22.3, 13.9; HRMS (ESI) calcd for C₁₉H₁₉N₂O⁺ [M + H]⁺: 291.1492; Found: 291.1495.

3-(*tert***-Butyl)benzo[4,5]imidazo[2,1-***a***]isoquinolin-6(5***H***)-one (3d) was obtained as a yellow solid (41 mg, 70%), m.p. = 136–137 °C; ¹H NMR (500 MHz, CDCl₃) \delta 8.37–8.25 (m, 2H), 7.78 (dd, J = 8.0, 1.0 Hz, 1H), 7.51 (dd, J = 8.3, 1.3 Hz, 1H), 7.44–7.35 (m, 2H), 7.32 (s, 1H), 4.20 (s, 2H), 1.37 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) \delta 166.8, 155.2, 150.8, 143.9, 132.2, 131.1, 125.8, 125.7, 125.5, 125.3, 124.5, 120.6, 119.6, 115.4, 37.8, 35.1, 31.1. HRMS (ESI) calcd for C₁₉H₁₉N₂O⁺ [M + H]⁺: 291.1492; Found: 291.1494.**

3-Methoxybenzo[4,5]imidazo[2,1-*a*]isoquinolin-6(5*H*)-one (3e) was obtained as a yellow solid (52 mg, 98%), m.p. = 154–155 °C; ¹H NMR (500 MHz, CDCl₃) 8.32–8.15 (m, 2H), 7.72 (dd, J = 7.0, 0.8 Hz, 1H), 7.44–7.30 (m, 2H), 6.95 (dd, J = 8.7, 2.4 Hz, 1H), 6.76–6.65 (m, 1H), 4.11 (s, 2H), 3.83 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 162.0, 150.7, 143.9, 134.4, 131.0, 127.7, 125.6, 125.0, 119.3, 115.9, 115.2, 114.6, 112.2, 55.5, 37.6; HRMS (ESI) calcd for C₁₆H₁₃N₂O₂⁺ [M + H]⁺: 265.0972; Found: 265.0973.

3-(Dimethylamino)benzo[4,5]imidazo[2,1-*a***]isoquinolin-6(5***H***)-one (3f) was obtained as a mazarine solid (44 mg, 80%), m.p. = 156–158 °C; ¹H NMR (500 MHz, CDCl₃**) δ 8.23 (d, *J* = 7.9 Hz, 1H), 8.16 (d, *J* = 8.9 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.34 (ddd, *J* = 25.9, 11.3, 4.2 Hz, 2H), 6.69 (dd, *J* = 8.9, 2.3 Hz, 1H), 6.33 (d, *J* = 1.3 Hz, 1H), 4.04 (s, 2H), 2.95 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 151.9, 151.8, 144.4, 134.2, 131.1, 127.2, 125.4, 124.3, 118.8, 115.1, 111.7, 110.5, 108.9, 39.9, 37.9; HRMS (ESI) calcd for C₁₇H₁₆N₃O⁺ [M + H]⁺: 278.1288; Found: 278.1290.

3-(Methylthio)benzo[4,5]imidazo[2,1-*a***]isoquinolin-6(5***H***)-one (3g**) was obtained as a mazarine solid (42 mg, 75%), m.p. = 108–110 °C; ¹H NMR (**500 MHz, CDCl₃**) δ 8.36–8.24 (m, 2H), 7.83–7.70 (m, 1H), 7.48–7.35 (m, 2H), 7.29 (dd, J = 8.4, 1.5 Hz, 1H), 7.12 (s, 1H), 4.16 (s, 2H), 2.54 (s, 3H); ¹³C NMR (**126 MHz, CDCl₃**) δ 166.2, 150.5, 143.9, 143.8, 132.6, 131.1, 126.3, 125.8, 125.4, 125.1, 123.9, 119.7, 119.6, 115.4, 37.4, 14.9; **HRMS (ESI) calcd for** C₁₆H₁₃N₂OS⁺ [M + H]⁺: 281.0743; Found: 281.0746.

3-Bromobenzo[4,5]imidazo[2,1-*a*]isoquinolin-6(5*H*)-one (3h) was obtained as a yellow solid (41 mg, 65%), m.p. = 157–160 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.30–8.20 (m, 2H), 7.76 (dd, *J* = 5.9, 2.7 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.47 (s, 1H), 7.45–7.36 (m, 2H), 4.16 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 165.5, 149.7, 143.7, 134.0, 131.5, 131.0, 130.7, 127.4, 126.0, 125.9, 125.8, 122.2, 119.8, 115.4, 37.1; HRMS (ESI) calcd for C₁₅H₁₀BrN₂O⁺ [M + H]⁺: 312.9971; Found: 312.9973.

6-Oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinolin-3-yl acetate (3i) was obtained as a yellow solid (23 mg, 40%), m.p. = 208–210 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.50 (d, *J* = 8.2 Hz, 1H), 8.43–8.27 (m, 1H), 8.12 (d, *J* = 8.2 Hz, 1H), 8.02 (s, 1H), 7.92–7.75 (m, 1H), 7.54–7.38 (m, 2H), 4.28 (s, 2H), 3.97 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 165.9, 149.5, 143.8, 132.32, 132.28, 131.1, 129.1, 129.0, 127.1, 126.24, 126.14, 126.13, 120.2, 115.6, 52.6, 37.4; HRMS (ESI) calcd for C₁₇H₁₃N₂O₃+ [M + H]⁺: 293.0921; Found: 293.0923.

2-Methylbenzo[4,5]imidazo[2,1-*a***]isoquinolin-6(5***H***)-one (3j) was obtained as a yellow solid (37 mg, 75%), m.p. = 142–144 °C; ¹H NMR (500 MHz, CDCl₃) \delta 8.35–8.28 (m, 1H), 8.25 (s, 1H), 7.90–7.74 (m, 1H), 7.48–7.37 (m, 2H), 7.31 (dd,** *J* **= 7.8, 1.1 Hz, 1H), 7.22 (d,** *J* **= 7.9 Hz, 1H), 4.18 (s, 2H), 2.45 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) \delta 166.8, 150.9, 143.8, 138.1, 132.4, 131.1, 129.4, 127.6, 126.2, 125.8, 125.5, 123.0, 119.7, 115.5, 37.2, 21.01; HRMS (ESI) calcd for C₁₆H₁₃N₂O⁺ [M + H]⁺: 249.1022; Found: 249.1024.**

1-Methylbenzo[4,5]imidazo[2,1-*a*]isoquinolin-6(5*H*)-one (3k) was obtained as a yellow solid (26 mg, 53%), m.p. = 155–156 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.37–8.26 (m, 1H), 7.83–7.74 (m, 1H), 7.43–7.34 (m, 2H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.26–7.22 (m, 1H), 7.11 (d, *J* = 7.4 Hz, 1H), 4.14 (s, 2H), 2.97 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 150.8, 143.9, 139.9, 133.2, 131.1, 130.2, 130.0, 125.53, 125.50, 125.42 (s), 121.7, 120.0, 115.3, 38.1 24.0; HRMS (ESI) calcd for C₁₆H₁₃N₂O⁺ [M + H]⁺: 249.1022; Found: 249.1023.

1-Methoxybenzo[4,5]imidazo[2,1-*a*]isoquinolin-6(5*H*)-one (3l) was obtained as a yellow solid (25 mg, 48%), m.p. = 158–159 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.34 (dd, J = 6.2, 2.8 Hz, 1H), 8.14–7.93 (m, 1H), 7.80 (dd, J = 5.9, 2.2 Hz, 1H), 7.52–7.32 (m, 3H), 7.09–6.87 (m, 1H), 4.07 (s, 2H), 3.91 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.8, 156.1, 150.7, 143.8, 131.1, 128.8, 125.8, 125.6, 124.1, 121.3, 119.8, 117.8, 115.5, 112.0, 55.6, 32.9; HRMS (ESI) calcd for C₁₆H₁₃N₂O⁺ [M + H]⁺: 265.0972; Found: 265.0975.

1-(Trifluoromethyl)benzo[4,5]imidazo[2,1-*a***]isoquinolin-6(5***H***)-one (3m) was obtained as a yellow solid (27 mg, 45%), m.p. = 142–144 °C; ¹H NMR (500 MHz, CDCl₃) \delta 8.37–8.28 (m, 1H), 7.95–7.85 (m, 2H), 7.61–7.50 (m, 2H), 7.48–7.41 (m, 2H), 4.27 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) \delta 165.4, 146.6, 143.7, 134.9, 131.8, 130.4, 130.1, 128.4 (d,** *J* **= 33.1 Hz), 127.5 (q,** *J* **= 7.2 Hz), 126.5, 125.9, 123.3 (q,** *J* **= 273.4 Hz), 122.1, 120.9, 115.4, 38.2; HRMS (ESI) calcd for C₁₆H₁₀F₃N₂O⁺ [M + H]⁺: 303.0740; Found: 303.0741.**

Ethyl 2-(2-(1H-benzo[*d*]imidazol-2-yl)furan-3-yl)acetate (3n) was obtained as a mazarine oil (27 mg, 50%); ¹H NMR (500 MHz, CDCl₃) δ 10.40 (s, 1H), 7.63 (s, 2H), 7.45 (d, *J* = 1.6 Hz, 1H), 7.28–7.23 (m, 2H), 6.58 (d, *J* = 1.6 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 4.08 (s, 2H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 143.8, 143.1, 142.2, 123.0, 122.89, 122.85, 118.9, 114.4, 61.4, 31.3, 14.1; HRMS (ESI) calcd for C₁₅H₁₅N₂O₃⁺ [M + H]⁺: 271.1077; Found: 271.1076.

Ethyl 5-methylbenzo[4,5]imidazo[1,2-*a*]thieno[2,3-*c*]pyridine-4-carboxylate (30) was obtained as a yellow solid (40 mg, 64%), m.p. = 127–128 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 5.3 Hz, 1H), 7.61 (d, J = 5.3 Hz, 1H), 7.56–7.49 (m, 1H), 7.39–7.30 (m, 1H), 4.54 (q, J = 7.2 Hz, 2H), 3.25 (s, 3H), 1.50 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 145.2, 145.2, 138.6, 136.6, 131.2, 129.8, 125.4, 125.1, 124.9, 121.7, 119.9, 115.2, 112.8, 61.8, 19.0, 14.4; HRMS (ESI) calcd for C₁₇H₁₅N₂O₂S⁺ [M + H]⁺: 311.0849; Found: 311.0846.

Benzo[g]benzo[4,5]imidazo[2,1-*a***]isoquinolin-6(7***H***)-one (3**p) was obtained as a yellow solid (24 mg, 42%), m.p. = 140–142 °C; ¹H NMR (**500 MHz, CDCl₃**) δ 8.96 (s, 1H), 8.32 (dd, *J* = 7.0, 1.5 Hz, 1H), 7.96 (d, *J* = 7.5 Hz, 1H), 7.89–7.77 (m, 1H), 7.74 (s, 2H), 7.53 (pd, *J* = 6.8, 1.4 Hz, 2H), 7.49–7.33 (m, 2H), 4.36 (s, 2H); ¹³C NMR (**126 MHz, CDCl₃**) δ 166.5, 150.7, 143.9, 134.4, 132.4, 131.3, 128.9, 128.2, 128.1, 127.4, 126.9, 126.7, 126.5, 125.9, 125.6, 120.9, 119.7, 115.5, 37.6; HRMS (**ESI**) calcd for C₁₉H₁₃N₂O⁺ [M + H]⁺: 285.1022; Found: 285.1021.

9,10-Dimethylbenzo[**4,5**]**imidazo**[**2,1**-*a*]**isoquinolin-6**(5*H*)**-one** (**3q**) was obtained as a yellow solid (21 mg, 41%), m.p. = 148–151 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.39 (dd, *J* = 6.1, 2.9 Hz, 1H), 8.07 (s, 1H), 7.54 (s, 1H), 7.51–7.42 (m, 2H), 7.36–7.28 (m, 1H), 4.18 (s, 2H), 2.40 (s, 3H), 2.38 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 149.9, 142.3, 134.9, 134.8, 132.2, 130.9, 129.4, 128.0, 127.7, 125.9, 123.6, 120.0, 115.7, 37.5, 20.5, 20.5; HRMS (ESI) calcd for C₁₇H₁₅N₂O⁺ [M + H]⁺: 263.1179; Found: 263.1176.

6-Methyl-5,6-dihydrobenzo[**4,5**]**imidazo**[**2,1-a**]**isoquinolin-6-ol (4a)** was obtained as a white solid (36 mg, 72%), m.p. = 95–98 °C; ¹H NMR (500 MHz, DMSO) δ 8.25–8.11 (m, 1H), 8.09–7.95 (m, 1H), 7.79–7.65 (m, 1H), 7.50 (m, 2H), 7.49 (s, 1H), 7.36–7.21 (m, 3H), 3.46 (dd, *J* = 85.1, 15.3 Hz, 1H), 1.56 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 149.0, 144.2, 135.2, 134.2, 131.4, 129.7, 128.5, 126.0, 123.6, 123.1, 119.8, 114.6, 87.3, 44.2, 27.2; **HRMS (ESI) calcd for** $C_{16}H_{15}N_2O^+$ [M + H]⁺: 251.1179; Found: 251.1180.

3-Methoxy-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinolin-6-ol (4b) was obtained as a white solid (39 mg, 69%), m.p. = 100–101 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.93–7.76 (m, 2H), 7.54 (dd, J = 6.6, 2.1 Hz, 1H), 7.16–7.05 (m, 2H), 6.66–6.54 (m, 1H), 6.51 (dd, J = 8.6, 2.4 Hz, 1H), 3.76 (s, 3H), 3.27 (dd, J = 108.2, 15.6 Hz, 2H), 1.62 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 148.7, 143.5, 134.9, 133.2, 127.3, 122.5, 122.3, 118.5, 117.7, 113.6, 113.3, 112.9, 86.6, 55.3, 44.8, 26.2; HRMS (ESI) calcd for C₁₇H₁₇N₂O₂⁺ [M + H]⁺: 281.1285; Found: 281.1283.

3-Fluoro-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinolin-6-ol (4c) was obtained as a white solid (35 mg, 65%), m.p. = 121-124 °C; ¹H NMR (500 MHz, **DMSO**) δ 8.21 (dd, J = 8.6, 5.8 Hz, 1H), 8.03–7.93 (m, 1H), 7.74–7.65 (m, 1H), 7.38 (dd, J = 9.4, 2.4 Hz, 1H), 7.35–7.28 (m, 1H), 7.26 (s, 1H), 7.28–7.25 (m, 2H), 3.47 (dd, J = 58.0, 16.0 Hz, 2H), 1.57 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 163.9 (d, J = 247.9 Hz), 148.4, 144.8, 138.0 (d, J = 8.9 Hz), 134.3, 128.3 (d, J = 9.1 Hz), 123.3, 123.0 (d, J = 2.7 Hz), 122.9, 120.0, 116.4 (d, J = 22.4 Hz), 115.7 (d, J = 22.1 Hz), 114.4, 86.9, 44.1, 27.3; HRMS (ESI) calcd for C₁₆H₁₄FN₂O⁺ [M + H]⁺: 269.1085; Found: 269.1087.

3-Chloro-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinolin-6-ol (4d) was obtained as a white solid (45 mg, 79%), m.p. = 130–131 °C; ¹H NMR (500 MHz, **DMSO**) δ 8.16 (d, *J* = 8.3 Hz, 1H), 8.03–7.96 (m, 1H), 7.76–7.68 (m, 1H), 7.60 (d, *J* = 1.6 Hz, 1H), 7.52 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.31–7.24 (m, 3H), 3.46 (dd, *J* = 49.3, 16.0 Hz, 2H), 1.57 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 148.2, 144.8, 137.3, 135.5, 134.4, 129.5, 128.6, 127.6, 125.3, 123.6, 123.1, 120.1, 114.5, 87.0, 43.8, 27.3; HRMS (ESI) calcd for C₁₆H₁₄ClN₂O⁺ [M + H]⁺: 285.0789; Found: 285.0787.

3-Bromo-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinolin-6-ol (4e) was obtained as a white solid (42 mg, 64%), m.p. = 143–145 °C; ¹H NMR (500 MHz, **DMSO**) δ 8.09 (d, J = 8.3 Hz, 1H), 8.05–7.96 (m, 1H), 7.75 (d, J = 0.9 Hz, 1H), 7.74–7.69 (m, 1H), 7.66 (dd, J = 8.3, 1.7 Hz, 1H), 7.34–7.23 (m, 3H), 3.47 (dd, J = 51.4, 16.0 Hz, 2H), 1.57 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 148.3, 144.8, 137.5, 134.3, 132.3, 131.4, 127.8, 125.6, 124.2, 123.6, 123.1, 120.1, 114.5, 87.0, 43.7, 27.3; HRMS (ESI) calcd for C₁₆H₁₄BrN₂O⁺ [M + H]⁺: 329.0284; Found: 329.0288.

6-Hydroxy-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline-3-

carbonitrile (4f) was obtained as a white solid (31 mg, 56%), m.p. = 185–186 °C; ¹H NMR (500 MHz, DMSO) δ 8.31 (d, J = 8.0 Hz, 1H), 8.06–7.96 (m, 2H), 7.92 (dd, J = 8.0, 1.2 Hz, 1H), 7.77 (dd, J = 6.9, 1.8 Hz, 1H), 7.35 (s, 1H), 7.31 (ddd, J = 14.2, 7.1, 1.4 Hz, 2H), 3.51 (q, J = 16.0 Hz, 2H), 1.60 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 147.4, 144.8, 136.1, 134.4, 133.5, 132.2, 130.5, 126.4, 124.3, 123.4, 120.6, 119.5, 114.7, 112.9, 87.0, 43.6, 27.4; HRMS (ESI) calcd for C₁₇H₁₄N₃O⁺ [M + H]⁺: 276.1131; Found: 276.1134.

6-Methyl-3-nitro-5,6-dihydrobenzo[4,5]imidazo[2,1-*a***]isoquinolin-6-ol (4g) was obtained as a white solid (42 mg, 77%), m.p. = 160–162 °C; ¹H NMR (500 MHz, DMSO)** δ 8.45–8.34 (m, 2H), 8.28 (d, J = 8.2 Hz, 1H), 8.04 (d, J = 7.7 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.40 (s, 1H), 7.37–7.23 (m, 2H), 3.62 (q, J = 16.1 Hz, 2H), 1.62 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 148.8, 147.1, 144.9, 136.6, 134.5, 132.2, 127.0, 124.9, 124.5, 123.7, 123.6, 120.7, 114.8, 87.1, 43.7, 27.4; HRMS (ESI) calcd for C₁₆H₁₄N₃O₃⁺ [M + H]⁺: 296.1030; Found: 296.1031.

1-Chloro-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinolin-6-ol (4h) was obtained as a white solid (44 mg, 78%), m.p. = 133–135 °C; ¹H NMR (500 MHz, **DMSO**) δ 8.04 (dd, *J* = 7.2, 1.1 Hz, 1H), 7.78 (dd, *J* = 7.1, 1.3 Hz, 1H), 7.59–7.52 (m, 1H), 7.49–7.43 (m, 2H), 7.34–7.26 (m, 2H), 7.26 (s, 1H), 3.45 (dd, *J* = 61.7, 15.5 Hz, 2H), 1.58 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 146.3, 144.4, 138.3, 133.4, 132.2, 131.6, 131.5, 128.8, 124.0, 122.9, 120.6, 114.5, 86.2, 45.2, 26.9; HRMS (ESI) calcd for C₁₆H₁₄ClN₂O⁺ [M + H]⁺: 285.0789; Found: 285.0787.

2-Bromo-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a***]isoquinolin-6-ol (4i) was obtained as a white solid (36 mg, 55%), m.p. = 148–151 °C; ¹H NMR (500 MHz, DMSO)** δ 8.26 (m, 1H), 8.00 (d, J = 4.1 Hz, 1H), 7.72 (dd, J = 41.8, 19.7 Hz, 2H), 7.45 (d, J = 7.0 Hz, 1H), 7.28 (m, 3H), 3.49–3.32 (m, 2H), 1.57 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 147.6, 144.7, 134.4, 134.3, 133.6, 132.0, 128.4, 128.0, 123.8,

123.2, 121.3, 120.3, 114.6, 87.1, 43.7, 27.3; **HRMS (ESI) calcd for** $C_{16}H_{14}BrN_2O^+$ [M + H]⁺: 329.0284; Found: 329.0282.

6-Methyl-6,7-dihydrobenzo[g]benzo[4,5]imidazo[2,1-*a***]isoquinolin-6-ol (4j) was obtained as a white solid (35 mg, 58%), m.p. = 117–119 °C; ¹H NMR (500 MHz, DMSO)** δ 8.80 (s, 1H), 8.13 (d, *J* = 7.7 Hz, 1H), 8.07–8.01 (m, 1H), 7.99 (s, 1H), 7.97 (d, *J* = 7.8 Hz, 1H), 7.78–7.71 (m, 1H), 7.67–7.55 (m, 1H), 7.31 (s, 1H), 7.29 (dd, *J* = 6.1, 3.2 Hz, 2H), 3.61 (dd, J = 64.5, 15.4 Hz, 2H), 1.59 (s, 3H); ¹³C NMR (126 MHz, **DMSO)** δ 149.0, 145.0, 134.6, 134.5, 133.1, 132.0, 129.5, 128.3, 128.3, 127.9, 127.3, 125.7, 124.6, 123.4, 123.0, 120.0, 114.6, 87.1, 44.7, 27.4; HRMS (ESI) calcd for C₂₀H₁₇N₂O⁺ [M + H]⁺: 301.1335; Found: 301.1334.

5-Methyl-4,5-dihydrobenzo[4,5]imidazo[1,2-*a*]thieno[2,3-*c*]pyridin-5-ol (4k) was obtained as a white solid (16 mg, 32%), m.p. = 128–131 °C; ¹H NMR (500 MHz, **DMSO**) δ 7.95 (dd, *J* = 6.8, 1.9 Hz, 1H), 7.78 (d, *J* = 4.9 Hz, 1H), 7.66–7.58 (m, 1H), 7.27 (s, 1H), 7.27–7.21 (m, 2H), 7.20 (d, J = 4.9 Hz, 1H), 3.46–3.35 (m, 2H), 1.57 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 146.4, 144.9, 139.8, 134.2, 129.9, 128.9, 125.9, 123.4, 122.8, 119.7, 114.0, 88.8, 41.2, 27.2; HRMS (ESI) calcd for C₁₄H₁₃SN₂O⁺ [M + H]⁺: 257.0743; Found: 257.0746.

6-Hydroxy-6,11-dimethyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a***]isoquinoline-1-carboxylic acid (41)** was obtained as a white solid (46 mg, 75%), m.p. = 180–183 °C;

¹**H NMR (500 MHz, DMSO)** δ 8.01 (d, J = 7.5 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.66 (d, J = 7.3 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.40 (s, 1H), 7.33–7.25 (m, 1H), 7.18 (d, J = 7.3 Hz, 1H), 3.54 (dd, J = 59.6, 15.8 Hz, 2H), 2.61 (s, 3H), 1.61 (s, 3H); ¹³**C NMR (126 MHz, DMSO)** δ 168.9, 146.4, 140.4, 136.6, 133.3, 132.6, 132.5, 131.7, 131.2, 128.7, 124.8, 124.1, 122.5, 112.5, 86.8, 44.9, 26.8, 17.2.

6,9,10-Trimethyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a***]isoquinolin-6-ol (4m) was obtained as a white solid (32 mg, 58%), m.p. = 111–112 °C; ¹H NMR (500 MHz, DMSO)** δ 8.16–8.09 (m, 1H), 7.78 (s, 1H), 7.47 (s, 1H), 7.46–7.39 (m, 3H), 7.13 (s, 1H), 3.41 (dd, *J* = 78.6, 15.7 Hz, 2H), 2.38 (s, 3H), 2.35 (s, 3H), 1.53 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 148.3, 143.5, 134.8, 132.9, 131.9, 131.2, 130.7, 129.5, 128.3, 126.6, 125.6, 120.0, 114.5, 86.9, 44.3, 27.2, 21.3, 20.9; HRMS (ESI) calcd for C₁₈H₁₉N₂O⁺ [M + H]⁺: 279.1492; Found: 279.1495.

9,10-Dichloro-6-methyl-5,6-dihydrobenzo[**4,5**]**imidazo**[**2,1**-*a*]**isoquinolin-6-ol (4n)** was obtained as a white solid (45 mg, 70%), m.p. = 119–120 °C; ¹H NMR (500 MHz, **DMSO)** δ 8.17 (s, 1H), 8.17–8.13 (m, 1H), 7.99 (s, 1H), 7.57–7.46 (m, 3H), 7.46 (s, 1H), 3.46 (dd, *J* = 72.5, 15.8 Hz, 2H), 1.54 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 151.5, 144.5, 135.4, 133.7, 132.0, 129.8, 128.7, 126.2, 125.5, 125.5, 121.1, 115.4, 87.7, 43.9, 27.1; HRMS (ESI) calcd for C₁₆H₁₃Cl₂N₂O⁺ [M + H]⁺: 319.0399; Found: 319.0398.

6-Butyl-5,6-dihydrobenzo[**4,5**]**imidazo**[**2,1-***a*]**isoquinolin-6-ol (40)** was obtained as a white solid (46 mg, 78%), m.p. = 111–112 °C; ¹H NMR (500 MHz, CHCl₃) δ 8.02–7.86 (m, 2H), 7.59 (dd, J = 6.2, 2.3 Hz, 1H), 7.22–7.11 (m, 3H), 7.10–6.98 (m, 2H), 3.35 (q, J = 15.7 Hz, 2H), 1.98–1.69 (m, 2H), 1.36–1.22 (m, 2H), 1.14 (ddd, J =14.4, 9.7, 5.0 Hz, 2H), 0.75 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CHCl₃) δ 148.5, 143.4, 133.6, 133.1, 130.1, 127.8, 127.5, 125.5, 125.3, 122.8, 122.4, 118.9, 113.9, 89.1, 42.3, 38.9, 26.0, 22.6, 13.8; HRMS (ESI) calcd for C₁₉H₂₁N₂O⁺ [M + H]⁺: 293.1648; Found: 293.1648.

5-Methyl-5,6-dihydroimidazo[2,1-*a***]isoquinolin-5-ol (4p)** was obtained as a white solid (25 mg, 62%), m.p. = 200–201 °C; ¹H NMR (500 MHz, DMSO) δ 7.95–7.79 (m, 1H), 7.44 (d, *J* = 1.0 Hz, 1H), 7.40–7.26 (m, 3H), 7.06 (d, *J* = 0.8 Hz, 1H), 6.72 (s, 1H), 3.23 (s, 2H), 1.63 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 143.4, 133.0, 129.7, 129.5, 129.1, 128.0, 127.1, 123.6, 116.6, 83.9, 43.1, 28.6; HRMS (ESI) calcd for C₁₂H₁₃N₂O⁺ [M + H]⁺: 201.1022; Found: 201.1024.

tert-Butyl 5,8-dimethyl-7-phenylimidazo[1,2-*a*]pyridine-6-carboxylate (4q) was obtained as a yellow solid (49 mg, 76%), m.p. = 103–106 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.74 (s, 1H), 7.55 (s, 1H), 7.46–7.34 (m, 3H), 7.26 (m, 2H), 2.63 (s, 3H), 2.39 (s, 3H), 1.15 (s, 9H); ¹³C NMR (126 MHz, DMSO) δ 166.8, 145.4, 138.0, 134.1, 129.7, 129.6, 128.1, 127.5, 126.4, 122.9, 121.8, 110.6, 82.2, 27.4, 16.2, 14.3; HRMS (ESI) calcd for C₂₀H₂₃N₂O₂⁺ [M + H]⁺: 323.1754; Found: 323.1756.

6-Methylbenzo[4,5]imidazo[2,1-*a*]isoquinoline (5a) was obtained as a yellow solid (46 mg, 99%), m.p. = 166–168 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.88–8.74 (m, 1H), 8.05 (dd, J = 16.5, 8.3 Hz, 2H), 7.68–7.56 (m, 3H), 7.49 (dd, J = 11.3, 4.0 Hz, 1H), 7.37–7.29 (m, 1H), 6.73 (s, 1H), 2.98 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 148.3, 144.2, 134.7, 131.7, 131.3, 129.9, 127.1, 125.7, 124.9, 124.2, 122.1, 121.6, 119.8, 113.9, 110.8, 21.2; HRMS (ESI) calcd for C₁₆H₁₃N₂⁺ [M + H]⁺: 233.1073; Found: 233.1075.

3,6-Dimethylbenzo[**4,5**]**imidazo**[**2,1-***a*]**isoquinoline (5b)** was obtained as a yellow solid (47 mg, 95%), m.p. = 166–168 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, *J* = 8.2 Hz, 1H), 7.99 (d, *J* = 8.1 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.31–7.22 (m, 2H), 6.52 (s, 1H), 2.85 (s, 3H), 2.46 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.3, 144.1, 140.0, 134.5, 131.7, 131.1, 128.5, 125.4, 124.6, 123.9, 121.2, 119.6, 119.5, 113.7, 110.5, 21.7, 21.1. HRMS (ESI) calcd for C₁₇H₁₅N₂⁺ [M + H]⁺: 247.1230; Found: 247.1231.

3-(*tert***-butyl)-6-Methylbenzo[4,5]imidazo[2,1-a]isoquinoline (5c)** was obtained as a yellow solid (53 mg, 92%), m.p. = 166–168 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.74 (d, *J* = 8.5 Hz, 1H), 8.00 (d, *J* = 8.3 Hz, 2H), 7.69 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.58 (d, *J* = 1.7 Hz, 1H), 7.45 (dd, *J* = 11.3, 4.1 Hz, 1H), 7.33–7.17 (m, 1H), 6.71 (s, 1H), 2.93 (s, 3H), 1.43 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 153.6, 147.9, 143.3, 134.5, 131.8, 130.9, 125.6, 124.8, 124.3, 121.8, 121.6, 119.3, 119.2, 113.9, 111.6, 35.2, 31.3, 21.2. HRMS (ESI) calcd for C₂₀H₂₁N₂⁺ [M + H]⁺: 289.1699; Found: 289.1698.

3-Methoxy-6-methylbenzo[4,5]imidazo[2,1-*a*]isoquinoline (5d) was obtained as a yellow solid (52 mg, 99%), m.p. = 166–168 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, *J* = 8.8 Hz, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.41 (dd, *J* = 11.3, 3.9 Hz, 1H), 7.24–7.17 (m, 1H), 7.10 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.76 (d, *J* = 2.4 Hz, 1H), 6.44 (s, 1H), 3.79 (s, 3H), 2.77 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.8, 148.2, 143.9, 135.0, 133.4, 130.9, 126.5, 124.0, 121.0, 119.1, 116.5, 115.5, 113.6, 110.5, 106.7, 55.2, 21.0. HRMS (ESI) calcd for C₁₇H₁₅N₂O⁺ [M + H]⁺: 263.1179; Found: 263.1178.

3-Fluoro-6-methylbenzo[4,5]imidazo[2,1-*a*]isoquinoline (5e) was obtained as a yellow solid (44 mg, 88%), m.p. = 166–168 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.74 (dd, J = 8.8, 5.6 Hz, 1H), 7.97 (d, J = 8.7 Hz, 2H), 7.47 (t, J = 7.8 Hz, 1H), 7.28 (m, 2H), 7.19 (dd, J = 9.3, 2.4 Hz, 1H), 6.59 (s, 1H), 2.91 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.5 (d, J = 250.0 Hz), 147.7, 144.0, 136.0, 133.5 (d, J = 9.8 Hz), 131.1, 127.5 (d, J = 9.4 Hz), 124.3, 121.7, 119.7, 118.6, 115.7 (d, J = 23.7 Hz), 113.8, 110.6 (d, J = 22.0 Hz), 109.9 (d, J = 3.3 Hz), 21.1. HRMS (ESI) calcd for C₁₇H₁₅N₂F⁺ [M + H]⁺: 251.0979; Found: 251.0977.

3-Chloro-6-methylbenzo[4,5]imidazo[2,1-*a*]isoquinoline (5f) was obtained as a yellow solid (51 mg, 95%), m.p. = 166–168 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, J = 9.2 Hz, 1H), 7.96 (dd, J = 12.6, 8.3 Hz, 2H), 7.52–7.44 (m, 3H), 7.30 (t, J = 7.8 Hz, 1H), 6.52 (s, 1H), 2.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.4, 144.0, 136.0, 135.9, 132.7, 131.0, 127.5, 126.4, 124.9, 124.4, 121.9, 120.2, 119.8, 113.8, 109.5, 21.2. HRMS (ESI) calcd for C₁₇H₁₅N₂Cl⁺ [M + H]⁺: 267.0684; Found: 267.0682.

3-Bromo-6-methylbenzo[**4**,**5**]**imidazo**[**2**,**1**-*a*]**isoquinoline** (**5**g) was obtained as a yellow solid (56 mg, 91%), m.p. = 166–168 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.55 (d, *J* = 8.5 Hz, 1H), 7.94 (dd, *J* = 20.1, 8.3 Hz, 2H), 7.65–7.59 (m, 2H), 7.51–7.43 (m, 1H), 7.32–7.26 (m, 1H), 6.47 (d, *J* = 7.5 Hz, 1H), 2.85 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.3, 143.9, 135.9, 132.8, 130.9, 130.1, 127.9, 126.3, 124.3, 124.2, 121.8, 120.4, 119.7, 113.8, 109.3, 21.1. C₁₇H₁₅N₂Br⁺ [M + H]⁺: 311.0178; Found: 311.0179.

1,6-Dimethylbenzo[4,5]imidazo[2,1-*a***]isoquinoline (5h)** was obtained as a yellow solid (44 mg, 90%), m.p. = 166–168 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.05 (t, *J* = 8.0 Hz, 2H), 7.51–7.42 (m, 2H), 7.43–7.36 (m, 2H), 7.33 (dd, *J* = 11.8, 4.4 Hz, 1H), 6.63 (s, 1H), 3.27 (s, 3H), 2.91 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.8, 144.1, 138.4, 134.2, 132.9, 130.3, 129.6, 128.8, 123.6, 123.6, 121.5, 121.05, 120.11, 113.7, 111.5, 24.5, 21.2. HRMS (ESI) calcd for C₁₇H₁₅N₂O⁺ [M + H]⁺: 247.1230; Found: 247.1233.

1-Chloro-6-methylbenzo[4,5]imidazo[2,1-*a***]isoquinoline (5i)** was obtained as a yellow solid (52 mg, 98%), m.p. = 166–168 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, *J* = 8.2 Hz, 1H), 8.01 (d, *J* = 8.4 Hz, 1H), 7.60 (dd, *J* = 7.0, 1.8 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.45–7.38 (m, 2H), 7.33 (t, *J* = 7.7 Hz, 1H), 6.64 (s, 1H), 2.93 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.9, 143.8, 135.5, 134.1, 132.1, 130.1, 129.8, 129.3,

124.6, 124.1, 122.3, 120.8, 119.5, 113.7, 110.9, 21.3. **HRMS (ESI) calcd for** $C_{16}H_{12}CIN_2^+$ [M + H]⁺: 267.0684; Found: 267.0686.

2,6-Dimethylbenzo[4,5]imidazo[2,1-*a***]isoquinoline (5j)** was obtained as a yellow solid (42 mg, 85%), m.p. = 166–168 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.57 (s, 1H), 7.99 (dd, J = 15.2, 8.3 Hz, 2H), 7.48–7.43 (m, 2H), 7.37 (dd, J = 8.1, 1.3 Hz, 1H), 7.27 (ddd, J = 7.2, 4.5, 1.2 Hz, 1H), 6.59 (s, 1H), 2.87 (s, 3H), 2.53 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.1, 143.9, 137.1, 133.6, 131.4, 131.2, 129.4, 125.5, 124.5, 124.0, 121.8, 121.4, 119.6, 113.8, 110.6, 21.5, 21.0. HRMS (ESI) calcd for C₁₇H₁₅N₂⁺ [M + H]⁺: 247.1230; Found: 247.1235.

8-methylbenzo[*h*]**benzo**[4,5]**imidazo**[2,1-*a*]**isoquinoline (5k)** was obtained as a white solid (42 mg, 75%), m.p. = 166–168 °C; ¹H NMR (500 MHz, CDCl₃) δ 10.91 (d, *J* = 8.5 Hz, 1H), 8.15 (dd, *J* = 16.4, 8.2 Hz, 2H), 8.01–7.87 (m, 3H), 7.68 (ddd, *J* = 8.0, 6.9, 1.1 Hz, 1H), 7.59–7.51 (m, 2H), 7.36 (ddd, *J* = 8.3, 7.1, 1.2 Hz, 1H), 6.84 (s, 1H), 3.03 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.4, 144.6, 135.6, 132.4, 131.9, 131.0, 130.1, 130.0, 128.5, 128.3, 128.1, 126.3, 124.4, 124.3, 121.4, 120.1, 116.8, 114.1, 111.8, 21.4. HRMS (ESI) calcd for C₂₀H₁₅N₂⁺ [M + H]⁺: 283.1230; Found: 283.1228.

6-Methylbenzo[*g*]benzo[4,5]imidazo[2,1-*a*]isoquinoline (5l) was obtained as a yellow solid (30 mg, 54%), m.p. = 166–168 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.29 (s, 1H), 8.07 (dd, J = 6.0, 3.4 Hz, 1H), 8.02 (*d*, J = 8.1 Hz, 1H), 7.97–7.91 (m, 2H), 7.85 (dd, J = 5.9, 3.5 Hz, 1H), 7.54–7.48 (m, 2H), 7.46 (t, J = 7.6 Hz, 1H), 7.34–7.28 (m, 1H), 6.69 (s, 1H), 2.89 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 148.3, 143.8, 133.9, 133.9, 132.0, 131.7, 128.9, 128.7, 127.6, 127.0, 126.0, 124.7, 123.9, 123.8, 122.2, 120.6, 119.8, 113.6, 110.8, 21.2; HRMS (ESI) calcd for C₂₀H₁₅N₂⁺ [M + H]⁺: 283.1230; Found: 283.1235.

5-Methylbenzo[4,5]imidazo[1,2-*a***]thieno[2,3-***c***]pyridinee (5m) was obtained as a yellow solid (39 mg, 81%), m.p. = 166–168 °C; ¹H NMR (500 MHz, CDCl₃) \delta 8.02 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.2 Hz, 1H), 7.59 (d, J = 5.1 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.30–7.20 (m, 2H), 6.84 (s, 1H), 2.95 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) \delta 145.7, 144.5, 139.0, 135.0, 130.7, 129.7, 124.6, 124.3, 123.9, 121.0, 119.3, 114.1, 107.2, 21.2; HRMS (ESI) calcd for C₁₄H₁₁SN₂⁺ [M + H]⁺: 239.0637; Found: 239.0638.**

6,9,10-Trimethylbenzo[**4,5**]**imidazo**[**2,1-***a***]isoquinoline** (**5n**) was obtained as a yellow solid (28 mg, 54%), m.p. = 166–168 °C; ¹H NMR (**500 MHz, CDCl₃**) δ 8.77 (d, J = 3.5 Hz, 1H), 7.74 (d, J = 8.0 Hz, 2H), 7.63–7.48 (m, 3H), 6.64 (s, 1H), 2.91 (s, 3H), 2.42 (s, 3H), 2.39 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 142.7, 134.7, 133.2, 131.5, 130.7, 129.4, 126.9, 125.6, 124.7, 122.2, 119.6, 113.9, 110.2, 21.2, 20.8, 20.4; HRMS (ESI) calcd for C₁₈H₁₇N₂⁺ [M + H]⁺: 261.1386; Found: 261.1389.

6,11-Dimethylbenzo[**4,5**]**imidazo**[**2,1**-*a*]**isoquinoline-1-carbonitrile** (50) was obtained as a yellow solid (54 mg, 99%), m.p. = 166–168 °C; ¹H NMR (500 MHz, **Acetone**) δ 8.14–8.03 (m, 3H), 7.83 (t, J = 7.7 Hz, 1H), 7.42–7.27 (m, 2H), 7.08 (d, J = 0.9 Hz, 1H), 3.12 (s, 3H), 2.81 (s, 3H); ¹³C NMR (126 MHz, Acetone) δ 145.1, 139.3, 136.1, 134.5, 132.2, 131.8, 130.8, 126.0, 124.3, 123.3, 119.8, 113.7, 111.3, 110.3, 21.9, 17.6; HRMS (ESI) calcd for C₁₈H₁₄N₂⁺ [M + H]⁺: 272.1182; Found: 272.1185.

6-Butylbenzo[4,5]imidazo[2,1-*a*]isoquinoline (5p) was obtained as a white solid (43 mg, 79%), m.p. = 166–168 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.87–8.74 (m, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.59 (dd, J = 6.7, 2.4 Hz, 3H), 7.48 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 6.71 (s, 1H), 3.53–2.93 (m, 2H), 1.96–1.76 (m, 2H), 1.64–1.52 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.2, 143.7, 138.9, 131.6, 130.5, 130.0, 127.1, 125.8, 125.0, 124.2, 121.9, 121.8, 119.7, 114.2, 109.7, 33.0, 29.3, 22.3, 13.9. HRMS (ESI) calcd for C₁₉H₁₉N₂⁺ [M + H]⁺: 275.1543; Found: 275.1544.

5-Methylimidazo[2,1-*a***]isoquinoline (5q)** was obtained as a white solid (21 mg, 58%); ¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, J = 7.9 Hz, 1H), 7.64 (dd, J = 8.4, 0.9 Hz, 2H), 7.61–7.51 (m, 3H), 6.87 (s, 1H), 2.60 (s, 3H). ¹³C NMR (126 MHz,

CDCl₃) δ 143.3, 131.5, 131.1, 129.9, 128.2, 127.3, 126.1, 123.2, 122.3, 111.6, 111.4, 18.6. **HRMS (ESI) calcd for** C₁₂H₁₁N₂⁺ [M + H]⁺: 183.0917; Found: 183.0919.

6-(3-Methoxy-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-10-yl)-5-methyl-4,5dihydropyridazin-3(2H)-one and 6-(3-Methoxy-6-(5r) methylbenzo[4,5]imidazo[2,1-a]isoquinolin-9-yl)-5-methyl-4,5-dihydropyridazin-**3(2H)-one (5s) was** Yellow solid (49 mg, 66%); ¹H NMR (500 MHz, CDCl₃) δ [9.06 (s) + 9.01 (s), 1H], 8.76, (t, 1H), [8.55 (s) + 8.29 (s), 1H], 8.03 (dd, J = 29.8, 8.7 Hz)1H), 7.87 (dd, J = 37.6, 8.7 Hz, 1H), 7.27–7.12 (m, 1H), 7.01 (dd, J = 11.0, 2.2 Hz, 1H), 6.76 (d, J = 15.1 Hz, 1H), [3.95 (s) + 3.94 (s), 3H], 3.61–3.45 (m, 1H), [3.03 (s) + 3.02 (s), 3H], 2.82 (ddd, J = 16.8, 6.7, 3.0 Hz, 1H), 2.56 (d, J = 15 Hz, 1H), 1.38– 1.31 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 166.8, 161.6, 161.5, 154.6, 154.1, 149.6, 148.9, 135.2, 135.0, 134.0, 133.8, 131.6, 127.78, 127.0, 122.4, 119.5, 118.8, 117.2, 117.2, 116.8, 114.2, 111.7, 111.6, 111.5, 107.2, 107.0, 55.5, 34.0 28.6, 28.3, 22.6, 21.3, 21.2, 16.5, 14.1. HRMS (ESI) calcd for $C_{22}H_{21}N_4O_2^+$ [M + H]⁺: 373.1659; Found: 373.1658.

Isopropyl 6-hydroxy-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline-**5-carboxylate (6a)** was obtained as a white solid (62 mg, 92%), m. p. = 140–142; ¹H **NMR (500 MHz, CDCl₃)** δ 8.31–8.23 (m, 1H), 8.09–7.96 (m, 1H), 7.78 (dt, *J* = 4.6, 2.8 Hz, 1H), 7.51–7.36 (m, 3H), 7.31–7.23 (m, 2H), 6.13 (s, 1H), 4.88 (hept, *J* = 6.2 Hz, 1H), 4.04 (s, 1H), 1.62 (s, 3H), 1.17 (d, *J* = 6.2 Hz, 3H), 0.91 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.8, 147.7, 144.2, 133.7, 131.0, 130.2, 130.1, 129.1, 128.9, 126.7, 125.9, 125.2, 123.2, 122.6, 119.6, 113.4, 87.2, 70.2, 55.5, 26.6, 21.4, 21.1. HRMS (ESI) calcd for C₂₀H₂₁N₂O₃⁺ [M + H]⁺: 337.1547; Found: 337.1548.

Isopropyl 6-hydroxy-3,6-dimethyl-5,6-dihydrobenzo[4,5]imidazo[2,1*a*]isoquinoline-5-carboxylate (6b) was obtained as white solid (48 mg, 68%), m. p. = 144–145; ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 8.3 Hz, 1H), 8.01 (dd, J = 6.6, 2.3 Hz, 1H), 7.77 (dd, J = 6.5, 2.2 Hz, 1H), 7.31–7.20 (m, 4H), 6.14 (s, 1H), 4.92– 4.80 (m, 1H), 3.98 (s, 1H), 2.42 (s, 3H), 1.59 (s, 3H), 1.16 (d, J = 6.2 Hz, 3H), 0.91 (d, J = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.8, 148.0, 144.1, 140.5, 133.6, 131.0, 130.6, 129.9, 125.8, 122.9, 122.5, 122.4, 119.4, 113.2, 87.1, 70.0, 55.6, 26.6, 21.5, 21.4, 21.1. HRMS (ESI) calcd for C₂₁H₂₃N₂O₃⁺ [M + H]⁺: 351.1703; Found: 351.1709.

Isopropyl 6-hydroxy-3-methoxy-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1*a*]isoquinoline-5-carboxylate (6c) was obtained as white solid (53 mg, 73%), m. p. = 159–162; ¹H NMR (500 MHz, CDCl₃) δ 8.21 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 7.3 Hz, 1H), 7.76 (d, J = 7.3 Hz, 1H), 7.23 (m, J = 13.4, 6.3 Hz, 2H), 7.04–6.93 (m, 2H), 5.94 (s, 1H), 4.96–4.72 (m, 1H), 3.97 (s, 1H), 3.88 (s, 3H), 1.59 (s, 3H), 1.17 (d, J = 6.2 Hz, 3H), 0.94 (d, J = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.6, 161.0, 147.9, 143.9, 133.5, 132.8, 127.8, 122.8, 122.4, 119.1, 117.9, 115.6, 114.5, 113.1, 87.1, 70.1, 55.8, 55.5, 26.5, 21.5, 21.2.. HRMS (ESI) calcd for C₂₁H₂₃N₂O₄⁺ [M + H]⁺: 367.1652; Found: 367.1657.

Isopropyl 6-hydroxy-6-methyl-3-phenyl-5,6-dihydrobenzo[4,5]imidazo[2,1*a*]isoquinoline-5-carboxylate (6d) was obtained as a white solid (73 mg, 88%), m. p. = 150–152; ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, J = 8.6 Hz, 1H), 8.05 (dd, J = 6.2, 2.6 Hz, 1H), 7.81 (dd, J = 6.1, 2.5 Hz, 1H), 7.68 (dd, J = 21.1, 7.1 Hz, 4H), 7.50 (t, J = 7.6 Hz, 2H), 7.42 (t, J = 7.3 Hz, 1H), 7.29 (dd, J = 9.3, 5.7 Hz, 2H), 6.20 (s, 1H), 4.97–4.81 (m, 1H), 4.12 (s, 1H), 1.66 (s, 3H), 1.19 (d, J = 6.2 Hz, 3H), 0.94 (d, J = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.7, 147.6, 144.2, 142.9, 139.7, 133.7, 131.5, 129.0, 128.7, 128.0, 127.8, 127.0, 126.4, 124.0, 123.2, 122.6, 119.5, 113.3, 87.2, 70.2, 55.7, 26.7, 21.5, 21.2. HRMS (ESI) calcd for C₂₆H₂₅N₂O₃⁺ [M + H]⁺: 413.1860; Found: 413.1864.

Isopropyl 3-fluoro-6-hydroxy-6-methyl-5,6-dihydrobenzo[**4**,**5**]**imidazo**[**2**,**1***a*]**isoquinoline-5-carboxylate (6e)** was obtained as a white solid (46 mg, 65%), m. p. = 126–128; ¹H NMR (500 MHz, CDCl₃) δ 8.26 (dd, J = 8.5, 5.6 Hz, 1H), 8.11–7.89 (m, 1H), 7.84–7.72 (m, 1H), 7.32–7.22 (m, 2H), 7.17 (ddd, J = 17.0, 8.6, 2.5 Hz, 2H), 6.22 (s, 1H), 5.00–4.76 (m, 1H), 4.00 (s, 1H), 1.60 (s, 3H), 1.18 (d, J = 6.2 Hz, 3H), 0.94 (d, J = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.2, 163.4 (d, J = 251.6 Hz), 146.9, 144.0, 133.6, 133.4 (d, J = 8.6 Hz), 128.2 (d, J = 8.8 Hz), 123.3, 122.7, 121.7 (d, J = 3.0 Hz), 119.5, 117.1 (d, J = 23.1 Hz), 116.5 (d, J = 22.0 Hz), 113.3, 87.1, 70.5, 55.3, 26.7, 21.4, 21.1. HRMS (ESI) calcd for C₂₀H₂₀N₂FO₃⁺ [M + H]⁺: 355.1452; Found: 355.1456.

Isopropyl 3-chloro-6-hydroxy-6-methyl-5,6-dihydrobenzo[**4**,**5**]imidazo[**2**,1*a*]isoquinoline-5-carboxylate (6f) was obtained as a white solid (55 mg, 74%), m. p. = 111–112; ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.3 Hz, 1H), 8.04–7.97 (m, 1H), 7.81–7.74 (m, 1H), 7.46 (d, J = 1.9 Hz, 1H), 7.43 (dd, J = 8.3, 2.0 Hz, 1H), 7.32– 7.23 (m, 2H), 6.21 (s, 1H), 4.94–4.83 (m, 1H), 3.99 (s, 1H), 1.60 (s, 3H), 1.18 (d, J = 6.2 Hz, 3H), 0.94 (d, J = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.3, 146.8, 144.0, 135.8, 133.6, 132.6, 130.1, 129.4, 127.2, 123.8, 123.5, 122.8, 119.6, 113.4, 87.2, 70.6, 55.1, 26.7, 21.4, 21.1; HRMS (ESI) calcd for C₂₀H₂₀N₂ClO₃⁺ [M + H]⁺: 371.1157; Found: 371.1157.

Isopropyl 3-bromo-6-hydroxy-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1*a*]isoquinoline-5-carboxylate (6g) was obtained as a white solid (46 mg, 56%), m. p. = 108–109; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.3 Hz, 1H), 8.04–7.99 (m, 1H), 7.80–7.73 (m, 1H), 7.62 (d, J = 1.6 Hz, 1H), 7.57 (dd, J = 8.3, 1.8 Hz, 1H), 7.31– 7.23 (m, 2H), 6.25 (s, 1H), 4.93–4.83 (m, 1H), 3.98 (s, 1H), 1.60 (s, 3H), 1.18 (d, J = 6.2 Hz, 3H), 0.94 (d, J = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.2, 146.8, 144.0, 133.6, 133.0, 132.8, 132.3, 127.3, 124.2, 124.0, 123.5, 122.8, 119.6, 113.4, 87.1, 70.5, 55.1, 26.7, 21.4, 21.1. C₂₀H₂₀N₂BrO₃⁺ [M + H]⁺: 415.0652; Found: 415.0658.

Isopropyl 1-fluoro-6-hydroxy-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1*a*]isoquinoline-5-carboxylate (6h) was as a white solid (45 mg, 63%), m. p. = 156– 157; ¹H NMR (500 MHz, CDCl₃) δ 8.03 (dd, J = 5.8, 3.1 Hz, 1H), 7.87 (dd, J = 5.7, 3.1 Hz, 1H), 7.39 (dd, J = 12.8, 7.8 Hz, 1H), 7.31–7.14 (m, 4H), 6.24 (s, 1H), 4.92– 4.77 (m, 1H), 4.03 (s, 1H), 1.60 (s, 3H), 1.13 (d, J = 6.2 Hz, 3H), 0.87 (d, J = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.5, 159.7 (d, J = 260.2 Hz), 144.4, 143.7 (d, J = 7.3 Hz), 133.6, 132.7, 130.9 (d, J = 9.1 Hz), 126.1 (d, J = 3.5 Hz), 123.6, 122.5, 120.3, 117.2 (d, J = 21.6 Hz), 113.9 (d, J = 10.8 Hz), 113.2, 87.0, 70.5, 55.6, 26.6, 21.3, 21.1. **HRMS (ESI) calcd for** $C_{20}H_{20}N_2FO_3^+$ [M + H]⁺: 355.1452; Found: 355.1454.

Isopropyl 1-chloro-6-hydroxy-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1*a*]isoquinoline-5-carboxylate (6i) was obtain as a white solid (52 mg, 70%), m. p. = 263-265; ¹H NMR (500 MHz, CDCl₃) δ 8.07–8.00 (m, 1H), 7.92–7.86 (m, 1H), 7.55 (dd, J = 7.7, 1.4 Hz, 1H), 7.39–7.29 (m, 2H), 7.30–7.26 (m, 2H), 6.28 (s, 1H), 4.89–4.68 (m, 1H), 3.98 (s, 1H), 1.62 (s, 3H), 1.10 (d, J = 6.2 Hz, 3H), 0.84 (d, J = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.6, 144.9, 143.8, 134.1, 132.9, 132.7, 132.3, 129.8, 129.0, 123.8, 123.3, 122.4, 120.5, 113.1, 86.5, 70.6, 56.1, 26.6, 21.3, 21.1; HRMS (ESI) calcd for C₂₀H₂₀N₂ClO₃⁺ [M + H]⁺: 371.1157; Found: 371.1157.

Isopropyl 6-hydroxy-2,6-dimethyl-5,6-dihydrobenzo[4,5]imidazo[2,1*a*]isoquinoline-5-carboxylate (6j) was obtained as a white solid (39 mg, 55%), m. p. = 163–165; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (s, 1H), 8.05–7.98 (m, 1H), 7.83– 7.74 (m, 1H), 7.35 (d, *J* = 7.7 Hz, 1H), 7.31–7.16 (m, 3H), 6.07 (s, 1H), 4.95–4.78 (m, 1H), 4.00 (s, 1H), 2.42 (s, 3H), 1.60 (s, 3H), 1.17 (d, *J* = 6.2 Hz, 3H), 0.92 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.0, 147.9, 144.2, 139.1, 133.7, 131.0, 130.1, 128.0, 126.3, 124.9, 123.1, 122.5, 119.5, 113.3, 87.2, 70.0, 55.1, 26.6, 21.5, 21.17, 21.09; HRMS (ESI) calcd for C₂₁H₂₃N₂O₃⁺ [M + H]⁺: 351.1703; Found: 351.1704.

Isopropyl 2-bromo-6-hydroxy-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1*a*]isoquinoline-5-carboxylate (6k) was obtained as a white solid (52 mg, 63%), m. p. = 166–167; ¹H NMR (500 MHz, CDCl₃) δ 8.46 (s, 1H), 8.08–7.97 (m, 1H), 7.83– 7.74 (m, 1H), 7.54 (d, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.31–7.27 (m, 2H), 6.15 (s, 1H), 5.01–4.73 (m, 1H), 4.00 (s, 1H), 1.60 (s, 3H), 1.18 (d, *J* = 6.1 Hz, 3H), 0.94 (d, *J* = 6.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.4, 146.3, 144.1, 133.7, 132.9, 131.8, 129.8, 128.7, 127.0, 123.7, 123.2, 122.9, 119.8, 113.4, 87.2, 70.5, 54.9, 26.7, 21.5, 21.2; HRMS (ESI) calcd for C₂₀H₂₀N₂BrO₃⁺ [M + H]⁺: 415.0652; Found: 415.0651.

Isopropyl 6-hydroxy-6-methyl-6,7-dihydrobenzo[g]benzo[4,5]imidazo[2,1*a*]isoquinoline-7-carboxylate (6l) was obtained as a yellow solid (31 mg, 40%), m. p. = 118–120; ¹H NMR (500 MHz, CDCl₃) δ 8.84 (s, 1H), 8.06 (dd, J = 7.0, 1.7 Hz, 1H), 8.00–7.94 (m, 1H), 7.93 (s, 1H), 7.89–7.85 (m, 1H), 7.83 (dd, J = 7.0, 1.8 Hz, 1H), 7.60–7.51 (m, 2H), 7.30 (dt, J = 7.5, 5.7 Hz, 2H), 6.15 (s, 1H), 4.91–4.82 (m, 1H), 4.23 (s, 1H), 1.64 (s, 3H), 1.14 (d, J = 6.2 Hz, 3H), 0.84 (d, J = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.1, 147.9, 144.4, 133.9, 133.8, 133.3, 129.5, 128.8, 128.2, 127.6, 127.5, 127.1, 126.1, 123.2, 122.7, 122.6, 119.6, 113.5, 87.3, 70.3, 56.1, 27.0, 21.4, 21.1; HRMS (ESI) calcd for C₂₄H₂₃N₂O₃⁺ [M + H]⁺: 387.1703; Found: 387.1704.

Isopropyl 9,10-dichloro-6-hydroxy-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1*a*]isoquinoline-5-carboxylate (6m) was obtained as a white solid (69 mg, 85%), m. p. = 155–157; ¹H NMR (500 MHz, CDCl₃) δ 8.25–8.17 (m, 1H), 8.14 (s, 1H), 7.82 (s, 1H), 7.52–7.42 (m, 3H), 6.29 (s, 1H), 4.88 (hept, J = 6.2 Hz, 1H), 4.04 (s, 1H), 1.59 (s, 3H), 1.17 (d, J = 6.2 Hz, 3H), 0.90 (d, J = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.7, 149.6, 143.5, 132.7, 131.2, 130.8, 130.4, 129.3, 127.0, 126.7, 126.1, 124.4, 120.4, 114.5, 87.4, 70.5, 55.2, 26.6, 21.4, 21.1. HRMS (ESI) calcd for C₂₀H₁₉N₂Cl₂ O₂⁺ [M + H]⁺: 405.0767; Found: 405.0766.

Isopropyl 6-methylbenzo[4,5]imidazo[2,1-*a*]isoquinoline-5-carboxylate (7a) was obtained as a yellow solid (32 mg, 50%), m. p. = 139–140; ¹H NMR (500 MHz, CDCl₃) δ 8.94–8.79 (m, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 8.04 (d, *J* = 8.1 Hz, 1H), 7.76–7.62 (m, 3H), 7.56–7.49 (m, 1H), 7.38 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 5.48 (hept, *J* = 6.3 Hz, 1H), 3.09 (s, 3H), 1.49 (d, *J* = 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 167.3, 147.6, 144.5, 134.3, 131.6, 130.4, 128.7, 127.7, 125.3, 124.7, 123.9, 122.1, 122.1, 120.2, 116.6, 114.4, 69.9, 21.9, 19.0. HRMS (ESI) calcd for C₂₀H₁₉N₂O₂⁺ [M + H]⁺: 319.1441; Found: 319.1442.

Isopropyl 1-fluoro-6-methylbenzo[4,5]imidazo[2,1-*a*]isoquinoline-5-carboxylate (7b) was obtained as a yellow solid (28 mg, 41%), m. p. = 135–139; ¹H NMR (500 MHz, CDCl₃) δ 8.10 (dd, J = 18.1, 8.3 Hz, 2H), 7.62 (m, 1H), 7.49 (m, 2H), 7.41–

7.31 (m, 2H), 5.55–5.40 (m, 1H), 3.06 (s, 3H), 1.48 (d, J = 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 156.0 (d, J = 260.9 Hz), 144.6, 143.8 (d, J = 8.3 Hz), 135.2, 130.9, 130.8 (d, J = 9.2 Hz), 130.4, 124.8, 122.7, 120.8, 119.6 (d, J = 4.2 Hz), 116.3 (d, J = 2.4 Hz), 114.4 (d, J = 21.0 Hz), 114.2, 111.5 (d, J = 11.0 Hz), 70.1, 21.8, 19.1; HRMS (ESI) calcd for C₂₀H₁₈FN₂O₂⁺ [M + H]⁺: 337.1347; Found: 337.1346.

Isopropyl 5-methylimidazo[2,1-*a*]**isoquinoline-6-carboxylate (7c)** was obtained as a green oil (17 mg, 32%); ¹H NMR (500 MHz, CDCl₃) δ 8.69–8.60 (m, 1H), 7.78– 7.72 (m, 1H), 7.66 (d, J = 1.2 Hz, 1H), 7.64–7.55 (m, 3H), 5.51–5.38 (m, 1H), 2.67 (s, 3H), 1.46 (d, J = 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 143.0, 132.2, 131.0, 128.5, 127.8, 126.7, 124.1, 123.4, 122.4, 117.4, 112.1, 69.8, 21.9, 16.7; HRMS (ESI) calcd for C₁₆H₁₇N₂O₂⁺ [M + H]⁺: 269.1285; Found: 269.1285.

Isopropyl 8-methoxy-5-methylimidazo[2,1-*a*]**isoquinoline-6-carboxylate (7d)** was obtained as a yellow solid (24 mg, 40%), m. p. = 127-1128; ¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, J = 8.9 Hz, 1H), 7.61 (d, J = 1.4 Hz, 1H), 7.52 (d, J = 1.4 Hz, 1H), 7.24 (dd, J = 8.9, 2.4 Hz, 1H), 7.17 (d, J = 2.4 Hz, 1H), 5.45 (hept, J = 6.3 Hz, 1H), 3.90 (s, 3H), 2.66 (s, 3H), 1.46 (d, J = 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 159.8, 143.2, 132.0, 131.9, 128.4, 125.1, 117.4, 116.9, 116.6, 111.5, 105.8, 69.6, 55.3, 21.9, 16.9; HRMS (ESI) calcd for C₁₇H₁₉N₂O₃⁺ [M + H]⁺: 299.1390; Found: 299.1389.

Isopropyl 8-fluoro-5-methylimidazo[2,1-*a*]isoquinoline-6-carboxylate (7e) was obtained as a yellow solid (36 mg, 62%), m. p. = 129–130; ¹H NMR (500 MHz, **CDCl₃**) δ 8.65 (dd, J = 8.9, 5.8 Hz, 1H), 7.64 (d, J = 1.1 Hz, 1H), 7.57 (d, J = 1.2 Hz, 1H), 7.46 (dd, J = 10.5, 2.4 Hz, 1H), 7.35 (td, J = 8.5, 2.4 Hz, 1H), 5.49–5.39 (m, 1H), 2.69 (s, 3H), 1.46 (d, J = 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 162.5 (d, J = 247.6 Hz), 142.7, 132.9, 132.4, 128.5 (d, J = 9.5 Hz), 125.9 (d, J = 9.1 Hz), 119.0 (d, J = 1.8 Hz), 116.7, 116.7 (d, J = 3.6 Hz), 116.5, 112.1, 109.8 (d, J = 24.1 Hz), 70.1, 21.9, 16.9; HRMS (ESI) calcd for C₁₆H₁₆FN₂O₂⁺ [M + H]⁺: 287.1190; Found: 287.1188.

Isopropyl 10-fluoro-5-methylimidazo[2,1-*a*]**isoquinoline-6-carboxylate (7f)** was obtained as a yellow solid (33 mg, 58%), m. p. = 142–143; ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 1.3 Hz, 1H), 7.60 (d, J = 1.0 Hz, 1H), 7.51 (dd, J = 5.6, 3.4 Hz, 2H), 7.38–7.30 (m, 1H), 5.52– 5.31 (m, 1H), 2.66 (s, 3H), 1.44 (d, J = 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 158.8 (d, J = 258.1 Hz), 139.3 (d, J = 7.6 Hz), 133.0 (d, J = 2.4 Hz), 131.9 (s), 129.0 (d, J = 3.1 Hz), 128.7 (d, J = 8.9 Hz), 119.8 (d, J = 4.2 Hz), 117.1 (d, J = 2.6 Hz), 114.1 (d, J = 20.3 Hz), 112.0, 111.9, 70.0, 21.8, 16.9; HRMS (ESI) calcd for C₁₆H₁₆FN₂O₂⁺ [M + H]⁺: 287.1190; Found: 287.1193.

Isopropyl 9-chloro-5-methylimidazo[2,1-*a*]**isoquinoline-6-carboxylate (7f)** was obtained as a yellow solid (18 mg, 30%), m. p. = 139–140; ¹H NMR (500 MHz, **CDCl₃**) δ 8.65 (d, J = 2.2 Hz, 1H), 7.70 (dd, J = 9.4, 5.0 Hz, 2H), 7.60 (d, J = 1.3 Hz, 1H), 7.53 (dd, J = 8.8, 2.2 Hz, 1H), 5.75–5.18 (m, 1H), 2.69 (s, 3H), 1.46 (d, J = 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 141.8, 133.9, 132.5, 131.6, 129.1,

125.9, 125.1, 123.3, 122.9, 117.0, 112.6, 70.1, 21.9, 16.8; **HRMS (ESI) calcd for** $C_{16}H_{16}ClN_2O_2^+$ [M + H]⁺: 303.0895; Found: 303.0896.

Isopropyl 2,5-dimethylimidazo[2,1-*a*]isoquinoline-6-carboxylate (7h) was obtained as a yellow solid (20 mg, 35%), m. p. = 117–118; ¹H NMR (500 MHz, CDCl₃) δ 8.83–8.54 (m, 1H), 7.88–7.70 (m, 1H), 7.66–7.45 (m, 2H), 7.32 (d, *J* = 0.8 Hz, 1H), 5.44 (hept, *J* = 6.3 Hz, 1H), 2.64 (s, 3H), 2.52 (s, 3H), 1.45 (d, J = 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 167.2, 142.5, 142.0, 130.9, 128.3, 127.5, 126.7, 124.1, 123.3, 121.8, 116.7, 109.1, 69.7, 21.9, 16.8, 14.4; HRMS (ESI) calcd for C₁₇H₁₈N₂O₂+ [M + H]+: 283.1441; Found: 283.1443.

Isopropyl 2-(*tert*-butyl)-5-methylimidazo[2,1-*a*]isoquinoline-6-carboxylate (7i) was obtained as a yellow solid (34 mg, 53%), m. p. = 161–163; ¹H NMR (500 MHz, CDCl₃) δ 8.69 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.62–7.50 (m, 2H), 7.29 (s, 1H), 5.49–5.38 (m, 1H), 2.66 (s, 3H), 1.46 (d, J = 6.0 Hz, 6H), 1.45 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 167.4, 156.1, 142.4, 131.2, 128.0, 127.2, 126.6, 124.0, 123.7, 122.2, 116.4, 106.1, 69.6, 32.4, 30.3, 21.9, 16.8; HRMS (ESI) calcd for C₂₀H₂₅N₂O₂+ [M + H]+: 325.1911; Found: 325.1913.

Isopropyl 2-(*tert*-butyl)-8-fluoro-5-methylimidazo[2,1-*a*]isoquinoline-6carboxylate (7j) was obtained as a yellow solid (57 mg, 84%), m. p. = 151-152; ¹H NMR (500 MHz, CDCl₃) δ 8.68 (dd, J = 8.7, 5.9 Hz, 1H), 7.46 (dd, J = 10.6, 1.7 Hz, 1H), 7.30 (dd, J = 8.5, 1.8 Hz, 1H), 7.28 (s, 1H), 5.42 (m, 1H), 2.67 (s, 3H), 1.46 (d, J = 6.3 Hz, 6H), 1.44 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 166.8, 162.3 (d, J = 246.7 Hz), 156.2, 142.1, 133.1, 128.3 (d, J = 9.5 Hz), 126.2 (d, J = 9.2 Hz), 118.8, 116.0 (d, J = 23.8 Hz), 115.6 (d, J = 3.6 Hz), 109.5 (d, J = 24.0 Hz), 106.0, 69.8, 32.4, 30.2, 21.9, 17.0; HRMS (ESI) calcd for C₂₀H₂₄N₂FO₂⁺ [M + H]⁺: 343.1816; Found: 343.1816.

Isopropyl 5-methyl-2-phenylimidazo[2,1-*a*]isoquinoline-6-carboxylate (7k) was obtained as a yellow solid (32 mg, 46%), m. p. = 125–127; ¹H NMR (500 MHz, CDCl₃) δ 8.76 (dd, J = 7.8, 0.9 Hz, 1H), 8.08–7.99 (m, 2H), 7.82 (s, 1H), 7.76 (d, J = 7.7 Hz, 1H), 7.65–7.55 (m, 2H), 7.45 (t, J = 7.7 Hz, 2H), 7.33 (t, J = 7.4 Hz, 1H), 5.53–5.40 (m, 1H), 2.69 (s, 3H), 1.48 (d, J = 6.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 144.7, 143.2, 133.7, 131.0, 128.7, 128.5, 127.8, 127.6, 126.8, 125.9, 124.1, 123.7, 122.2, 117.3, 107.6 69.8, 21.9, 16.8; HRMS (ESI) calcd for C₂₂H₂₁N₂O₂⁺ [M + H]⁺: 345.1598; Found: 345.1599.

Ethyl 6-hydroxy-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline-5carboxylate (26) was obtained as a white solid (62 mg, 97%), m. p. = 150–152; ¹H NMR (500 MHz, CDCl₃) δ 8.33–8.22 (m, 1H), 8.03 (dd, J = 6.1, 3.0 Hz, 1H), 7.84– 7.74 (m, 1H), 7.53–7.38 (m, 3H), 7.31–7.22 (m, 2H), 6.17 (s, 1H), 4.07 (s, 1H), 4.14– 3.94 (m, 2H), 1.61 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 147.7, 144.2, 133.7, 130.9, 1303, 130.2, 129.1, 126.0, 125.3, 123.3, 122.6, 119.6, 113.4, 87.3, 62.2, 55.3, 26.6, 13.7; HRMS (ESI) calcd for C₁₉H₁₉N₂O₃⁺ [M + H]⁺: 323.1390; Found: 323.1394.

tert-Butyl 6-hydroxy-6-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline-5-carboxylate (27) was obtained as a white solid (69 mg, 99%), m. p. = 162–165; ¹H NMR (500 MHz, CDCl₃) δ 8.29 (d, J = 7.6 Hz, 1H), 8.09–7.95 (m, 1H), 7.85–7.72 (m, 1H), 7.51–7.36 (m, 3H), 7.33–7.14 (m, 2H), 6.11 (s, 1H), 3.98 (s, 1H), 1.60 (s, 3H), 1.23 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 170.7, 147.8, 144.2, 133.7, 131.6, 130.2, 130.0, 128.9, 125.9, 125.2, 123.2, 122.5, 119.6, 113.4, 87.3, 83.8, 56.1, 27.6, 26.7; HRMS (ESI) calcd for C₂₁H₂₃N₂O₃⁺ [M + H]⁺: 351.1703; Found: 315.1705.

9. References

[S1] Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.

10. NMR Spectra

S63

S65

S67

S75

S79

S107

S108

S113

S115

S116

S127

