The impact of sulfur functionalisation on nitrogen-based ionic liquid cations

Supplementary Information

Ana R. Santos, Magnus W. D. Hanson-Heine, Nicholas A. Besley and Peter Licence*

*GSK Carbon Neutral Laboratories, School of Chemistry, The University of Nottingham, Nottingham, NG7 2TU, UK.

To whom correspondence should be addressed:

peter.licence@nottingham.ac.uk

Tel: +44 115 8466176

Supplementary Information

Ionic liquids

Structure	Name	Abbreviation
	1-Methyl-3-methylimidazolium	$[C_1C_1Im]^+$
	1,2,3-Trimethylimidazolium	$[C_1C_1C_1Im]^+$
	Hexamethylguanidinium	$[(C_1C_1)_2 dmg]^+$
	Pentamethylthiuronium	[(C ₁) ₅ TU] ⁺
N N N N N N N N N N N N N N N N N N N	1-Methyl-3-alkyl-2-methylthioimidazolium	$[C1(C_1)_2$ ThioIm] ⁺
s s s	3-Methyl-2-(methylthio)thiazolium	$[(C_1)_2 Thio]^+$
S S S S S S S S S S S S S S S S S S S	3-Methyl-2-methylsulfanyl-4,5-dihydro-1,3- thiazolium	$[(C_1)_2 Thiz]^+$
$\begin{array}{c} & \Theta \\ F \\ F \\ F \\ F \\ F \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ F \\ F \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ F \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ F \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ F \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ F \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ F \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ F \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ F \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ F \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ F \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ F \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ F \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\	Bis(trifluoromethanesulfonyl)imide	[NTf ₂] ⁻

 Table 1. Structures and abbreviations of cations and anion investigated in this study.

Model proposed for nitrogen-based ionic liquids¹ and corresponding nomenclature regarding this work:

XP spectra of Ionic Liquids

All experiments were carried out on a Kratos Axis Ultra Spectrometer. Survey and fitted high resolution spectra for all ionic liquids studied are presented. Spectra are charge corrected by indirect charge referencing as all the ionic liquids have short alkyl chains (n < 8). This was achieved by setting the F 1s component to 688.8 eV as all ionic liquids studied share the [NTf₂]⁻ anion. This agrees with the F 1s literature binding energy attributed to the [NTf₂]⁻ anion for various ionic liquid families.¹⁻³

C 1s high-resolution spectra were fitted according to the models described.^{1, 4} S 2p high-resolution spectra was fitted taking into account spin-orbit coupling, whereby the area ratio of $2p_{1/2}$: $2p_{3/2}$ components is set to 1 : 2. The O 1s and S 2p high-resolution spectra for ionic liquids containing the $[NTf_2]^-$ anion are affected by shake up/off phenomena and a 4% intensity loss (per oxygen/sulfur atom involved in double bonding) was taken into account when calculating atomic percentages for these elements. This was also applied to the sulfur in the cation when involved in double bonding. Likewise, the C_{core} 1s and N_{cation} 1s high-resolution spectra of all cations are affected by shake up/off phenomena and a 20% and 12%, respectively, intensity loss (per carbon/nitrogen atom involved in double bonding) was taken into account when calculating atomic percentages for these elements.⁵

Binding energies, full width at half maximum and composition tables for all guanidinium-, imidazolium- and sulfur-based ionic liquids investigated can be found on this ESI.

IL 1 [C₁C₁Im][NTf₂] survey and high-resolution scans

IL 2 [C₁C₁C₁Im][NTf₂] survey and high-resolution scans

IL 3 [(C₁C₁)₂dmg][NTf₂] survey and high-resolution scans

IL 4 [(C₁)₅TU][NTf₂] survey and high-resolution scans

IL 5 [C₁(C₁)₂ThioIm][NTf₂] survey and high-resolution scans

IL 6 [(C₁)₂Thio][NTf₂] survey and high-resolution scans

IL 7 [(C₁)₂Thiz][NTf₂] survey and high-resolution scans

Figure 1 Individual VB spectrum for IL 3 (red), IL 4 (blue) and IL 5 (green) (bottom), and normalised VB spectra of all 3 overlapped, showing minimal impact of cationic structure upon the VB region (top).

¹³C NMR of Ionic Liquids

All compounds were dried *in vacuo* ($p \le 10^{-3}$ mbar) at 50 °C and stored under argon before being characterised by ¹H, ¹³C, and ¹⁹F-{¹H} recorded at room temperature on a Bruker AV3400HD spectrometer; Chemical shifts (δ) are reported in parts per million (ppm) with reference to residual traces of protonated solvents in commercial NMR solvent, protonated dimethyl sulfoxide (δ_{H} 2.50) and DMSO- d_{6} (δ_{C} 39.5); Coupling constants (J) are given in Hz.

IL 1 [C₁C₁Im][NTf₂] ¹³C NMR spectrum

IL 3 [(C₁C₁)₂dmg][NTf₂] ¹³C NMR spectrum

IL 5 [C₁(C₁)₂ThioIm][NTf₂] ¹³C NMR spectrum

IL 7 [(C₁)₂Thiz][NTf₂]¹³C NMR spectrum

Synthesis of Ionic Liquids

¹H NMR and ¹⁹F NMR chemical shifts are represented together in the compound structure on the left. ¹³C NMR chemical shifts are represented separately on the right. ESI-MS measured on a Brücker MicroTOF 62 spectrometer.

IL 1: 1,3-Dimethylimidazolium bis(trifluoromethylsulfonyl)imide, [C₁C₁Im][NTf₂]⁶

1,3-Dimethylimidazolium methyl sulphate (1.10 g, 5.30 mmol) was transferred to a round bottom flask followed by the addition of water (10 mL). LiNTf₂ (1.83 g, 6.36 mmol) in water (10 mL) was added and the mixture stirred at 0 °C and gradually allowed to warm up to room temperature for 24 h. Dichloromethane (20 mL) was added to recover the ionic liquid and washed with cold water (5 x 5 mL). The organic layer was collected, the solvent removed and dried *in vacuo* overnight at 50 °C. The salt (1.98 g, 99.1%) was obtained as colourless liquid.

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 9.09 (br. s, 1 H), 7.76 (t, *J* = 1.8 Hz, 1 H), 7.69 (t, *J* = 1.8 Hz, 1 H), 4.19 (s, 3 H), 3.84 (s, 3 H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ 137.0, 123.4, 119.9 (q, ¹*J*_{C-F} = 322 Hz, 1 C), 35.6;

¹⁹**F NMR** (376 MHz, DMSO-*d*₆): δ -78.8 (s, 6 F).

ESI-MS (+ve) [C₅H₉N₂]⁺: calcd 97.0760, found 97.0777.

ESI-MS (-ve) [C₂F₆NO₄S₂]⁻: calcd 279.9173, found 279.9185.

Data in agreement with literature values.⁶

IL 2: 1,2,3-Trimethylimidazolium bis(trifluoromethylsulfonyl)imide, [C1C1C1Im][NTf2]

1,2,3-Trimethylimidazolium iodide (0.610 g, 2.56 mmol) was transferred to a round bottom flask followed by the addition of water (5 mL). $LiNTf_2$ (0.880 g, 3.07 mmol) in water (5 mL) was added and the mixture stirred at 0 °C and gradually allowed to warm up to room temperature for 24 h. Dichloromethane (10 mL) was added to recover the ionic liquid and washed with cold water (5 x 5 mL). The organic layer was collected, the solvent removed and dried *in vacuo* overnight at 50 °C. The salt (0.990 g, 98.7%) was obtained as white powder.

¹H NMR (400 MHz, DMSO-*d*₆): δ 7.57 (s, 2 H), 3.74 (s, 6 H), 2.54 (s, 3 H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ 144.7, 121.9, 119.9 (q, ¹*J*_{C-F} = 322 Hz, 1 C), 34.6, 9.1;

¹⁹**F NMR** (376 MHz, DMSO-*d*₆): δ -78.7 (s, 6 F).

ESI-MS (+ve) $[C_6H_{11}N_2]^+$: calcd 111.0917, found 111.0929.

ESI-MS (-ve) [C₂F₆NO₄S₂]⁻: calcd 279.9173, found 279.9181.

CHN Analysis: Calc. for [C₁C₁C₁Im][NTf₂], (C₈H₁₁F₆N₃O₄S₂): N 10.74, C 24.56, H 2.83. Found: N 10.51, C 24.78, H 2.64.

IL 3: Hexamethylguanidinium bis(trifluoromethanesulfonyl)imide, $[(C_1C_1)_2 dmg][NTf_2]$

Hexamethylguanidinium chloride (0.50 g, 2.78 mmol) was transferred to a round bottom flask followed by the addition of water (5 mL). Lithium bis(trifluoromethanesulfonyl)imide (0.960 g, 3.34 mmol) in water (5 mL) was added and the mixture stirred at 0 °C and gradually allowed to warm up to room temperature for 24 h. Dichloromethane (10 mL) was added to extract the ionic liquid and washed with cold water (5 x 5 mL). The organic layer was collected, the solvent removed and stirred *in vacuo* overnight at 50 °C. The salt $[(C_1C_1)_2 dmg][NTf_2]$ (1.11 g, 94.0%) was obtained as a white powder.

¹H NMR (400 MHz, DMSO-*d*₆): δ 2.87 (s, 18 H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ 162.4, 119.9 (q, ¹*J*_{C-F} = 322 Hz, 1 C), 39.4;

¹⁹**F NMR** (376 MHz, DMSO-*d*₆): δ -78.7 (s, 6 F).

ESI-MS (+ve) [C₇H₁₈N₃]⁺: calcd 144.1495, found 144.1484.

ESI-MS (-ve) [C₂F₆NO₄S₂]⁻: calcd 279.9178, found 279.9175.

CHN Analysis: Calc. for [(C₁C₁)₂dmg][NTf₂], (C₉H₁₈F₆N₄O₄S₂): N 13.20, C 25.47, H 4.28. Found: N 13.00, C 25.51, H 4.07.

IL 4: Pentamethylthiouronium bis(trifluoromethanesulfonyl)imide, [(C1)5TU][NTf2]

Pentamethylthiouronium iodide (1.92 g, 7.02 mmol) was transferred to a round bottom flask followed by the addition of water (15 mL). Lithium bis(trifluoromethanesulfonyl)imide (2.42 g, 8.42 mmol) in water (15 mL) was added and the mixture stirred at 0 °C and gradually allowed to warm up to room temperature for 24 h. Dichloromethane (20 mL) was added to recover the ionic liquid and washed with cold water (5 x 5 mL). The organic layer was collected, the solvent removed and stirred *in vacuo* overnight at 50 °C. The salt (2.81 g, 93.6%) was obtained as a white powder.

¹H NMR (400 MHz, DMSO-*d*₆): δ 3.21 (s, 12 H), 2.54 (s, 3 H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ 175.8, 119.9 (q, ¹*J*_{C-F} = 322 Hz, 1 C), 43.3, 16.3;

¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -78.7 (s, 6 F).

ESI-MS (+ve) [C₆H₁₅N₂S]⁺: calcd 147.0950, found 147.0941.

ESI-MS (-ve) [C₂F₆NO₄S₂]⁻: calcd 279.9173, found 279.9193.

CHN Analysis: Calc. for [(C₁)₅TU][NTf₂], (C₈H₁₅F₆N₃O₄S₃): N 9.83, C 22.48, H 3.54. Found: N 9.43, C 22.43, H 3.25.

IL 5: 1,3-Dimethyl-2-methylthioimidazolium bis(trifluoromethanesulfonyl)imide, $[C_1(C_1)_2$ ThioIm][NTf₂]⁷

1,3-Dimethyl-2-methylthioimidazolium iodide (0.770 g, 2.83 mmol) was transferred to a round bottom flask followed by the addition of water (5 mL). Lithium bis(trifluoromethanesulfonyl)imide (0.980 g, 3.40 mmol) in water (5 mL) was added and the mixture stirred at 0 °C and gradually allowed to warm up to room temperature for 24 h. Dichloromethane (10 mL) was added to recover the ionic liquid and washed with cold water (5 x 5 mL). The organic layer was collected, the solvent removed and stirred *in vacuo* overnight at 50 °C. The salt (1.19 g, 99.6%) was obtained as a colourless viscous liquid.

¹H NMR (400 MHz, DMSO-*d*₆): δ 7.88 (br.s, 2 H), 3.90 (s, 6 H), 2.52 (s, 3 H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ 140.8, 124.8, 119.9 (q, ¹*J*_{C-F} = 322 Hz, 1 C), 36.1, 16.9;

¹⁹**F NMR** (376 MHz, DMSO-*d*₆): δ -78.7 (s, 6 F).

ESI-MS (+ve) $[C_6H_{11}N_2S]^+$: calcd 143.0637, found 143.0890.

ESI-MS (-ve) $[C_2F_6NO_4S_2]^-$: calcd 279.9173, found 279.9171.

CHN Analysis: Calc. for [C₁(C₁)₂ThioIm][NTf₂], (C₈H₁₁F₆N₃O₄S₃): N 9.93, C 22.70, H 2.62. Found: N 9.84, C 22.72, H 2.34.

Data in agreement with literature values.⁷

IL 6: 3-Methyl-2-(methylthio)thiazolium bis(trifluoromethylsulfonyl)imide, [(C₁)₂Thio][NTf₂]

3-Methyl-2-(methylthio)thiazolium iodide (1.28 g, 4.69 mmol) was transferred to a round bottom flask followed by the addition of water (10 mL). LiNTf₂ (1.62 g, 5.63 mmol) in water (10 mL) was added and the mixture stirred at 0 °C and gradually allowed to warm up to room temperature for 24 h. Dichloromethane (20 mL) was added to recover the ionic liquid and washed with cold water (5 x 5 mL). The organic layer was collected, the solvent removed and dried *in vacuo* overnight at 50 °C. The salt (1.90 g, 95.2%) was obtained as a white powder.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.31 (d, *J* = 4.1 Hz, 1 H), 8.07 (d, *J* = 4.1 Hz, 1 H), 3.93 (s, 3 H), 2.99 (s, 3 H);

¹³C NMR (100 MHz, DMSO-*d₆*): δ 175.5, 138.7, 121.5, 119.9 (q, ¹*J*_{C-F} = 322 Hz, 1 C), 39.2, 18.3;
¹⁹F NMR (376 MHz, DMSO-*d₆*): δ -78.7 (s, 6 F).

ESI-MS (+ve) [C₅H₈NS₂]⁺: calcd 146.0093, found 146.0090.

ESI-MS (-ve) $[C_2F_6NO_4S_2]^-$: calcd 279.9173, found 279.9196.

CHN Analysis: Calc. for [(C₁)₂Thio][NTf₂], (C₇H₈F₆N₂O₄S₃): N 6.57, C 19.72, H 1.89. Found: N 6.77, C 19.83, H 1.90.

IL 7: 3-Methyl-2-methylsulfanyl-4,5-dihydro-1,3-thiazolium bis(trifluoromethylsulfonyl)imide, $[(C_1)_2 Thiz][NTf_2]$

3-Methyl-2-methylsulfanyl-4,5-dihydro-1,3-thiazolium iodide (1.28 g, 4.67 mmol) was transferred to a round bottom flask followed by the addition of water (10 mL). LiNTf₂ (1.61 g, 5.60 mmol) in water (10 mL) was added and the mixture stirred at 0 °C and gradually allowed to warm up to room temperature for 24 h. Dichloromethane (20 mL) was added to recover the ionic liquid and washed with cold water (5 x 10 mL). The organic layer was collected, the solvent removed and dried *in vacuo* overnight at 50 °C. The salt (1.86 g, 93.1%) was obtained as a white powder.

¹**H NMR** (400 MHz, DMSO-*d*₆): δ 4.44 (t, *J* = 8.8 Hz, 2 H), 3.73 (t, *J* = 8.8 Hz, 2 H), 3.32 (s, 3 H), 2.88 (s, 3 H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ 191.3, 119.9 (q, ¹*J*_{*C*-*F*} = 322 Hz, 1 C), 62.2, 38.0, 30.7, 18.2;

¹⁹**F NMR** (376 MHz, DMSO-*d*₆): δ -78.7 (s, 6 F).

ESI-MS (+ve) [C₅H₁₀NS₂]⁺: calcd 148.0249, found 148.0247.

ESI-MS (-ve) [C₂F₆NO₄S₂]⁻: calcd 279.9173, found 279.9175.

CHN Analysis: Calc. for [(C₁)₂Thiz][NTf₂], (C₇H₁₀F₆N₂O₄S₃): N 6.54, C 19.63, H 2.35. Found: N 6.62, C 19.78, H 2.52.

	Composition (%)			
Compound	C 1s	N 1s	O 1s	F 1s	S 2p
^a RSF ^{5,8}	0.278	0.477	0.780	1.000	0.668
$\textbf{IL 1} [C_1C_1\text{Im}][\text{NTf}_2]$	35.3 (31.8)	14.3 (13.6)	16.0 (18.2)	25.9 (27.3)	8.5 (9.1)
$\textbf{IL 2} [C_1C_1C_1\text{Im}][\text{NTf}_2]$	38.2 (34.8)	14.6 (13.0)	15.8 (17.4)	23.4 (26.1)	8.1 (8.7)
IL 3 [$(C_1C_1)_2$ dmg][NTf ₂]	39.9 (36.0)	16.7 (16.0)	14.4 (16.0)	22.6 (24.0)	6.4 (8.0)
IL 4 [(C ₁) ₅ TU][NTf ₂]	37.8 (33.3)	11.5 (12.5)	14.2 (16.7)	23.3 (25.0)	13.3 (12.5)
IL 5 $[C_1(C_1)_2$ ThioIm][NTf ₂]	36.6 (33.3)	11.7 (12.5)	14.2 (16.7)	24.4 (25.0)	13.1 (12.5)
IL 6 [(C ₁) ₂ Thio][NTf ₂]	32.3 (30.4)	9.1 (8.7)	16.4 (17.4)	27.2 (26.1)	15.0 (17.4)
IL 7 [(C ₁) ₂ Thiz][NTf ₂]	33.8 (30.4)	9.1 (8.7)	16.2 (17.4)	25.0 (26.1)	15.8 (17.4)

Table 2. XPS measured experimental and nominal (in brackets) stoichiometries for guanidinium, sulfur and imidazolium based ionic liquids studied in this work. Associated experimental error is ± 10 - 20%.

^a Relative sensitivity factors (RSF) taken from the Kratos Library. *N.B.* Hydrogen is undetectable by XPS due its low photoionisation cross-section; consequently, reported stoichiometries are determined without consideration of hydrogen content.⁹

		Binding	Energy / eV										
Compound		Cation							Anion				
Cation	Anion	C _{core} 1s	C _{hetero} 1s	C _{inter} 1s	C _{Cs/MethylC2} 1s	N_{cation} 1s	$S_{exocyclic} 2p_{3/2}$	$S_{cyclic} 2p_{3/2}$	C _{CF3} 1s	N _{anion} 1s	O 1s	F 1s	$S_{anion} \ 2p_{3/2}$
IL 1 $[C_1C_1 Im]^+$	[NTf ₂] ⁻	287.6	286.9	286.5	-	402.1	-	-	292.9	399.4	532.6	688.8	168.9
IL 2 [C ₁ C ₁ C ₁ Im] ⁺	[NTf ₂] ⁻	287.9	286.9	286.4	286.1	401.8	-	-	292.9	399.4	532.6	688.8	168.9
IL 3 [(C ₁ C ₁) ₂ dmg] ⁺	[NTf ₂]-	288.9	286.5	-	-	400.8	-	-	292.9	399.4	532.6	688.8	169.0
IL 4 [(C ₁) ₅ TU] ⁺	$[NTf_2]^-$	288.6	286.6	-	286.2	401.1	164.7	-	292.9	399.4	532.6	688.8	169.0
IL 5 [C ₁ (C ₁) ₂ ThioIm] ⁺	$[NTf_2]^-$	288.0	286.9	286.6	285.8	402.0	164.8	-	292.9	399.4	532.6	688.8	168.9
IL 6 [(C ₁) ₂ Thio]+	[NTf ₂]-	288.1	286.9	286.6	285.9	402.2	164.9	165.9	292.9	399.4	532.6	688.8	168.9
IL 7 [(C ₁) ₂ Thiz] ⁺	$[NTf_2]^-$	288.4	286.9	286.7	286.1	401.5	165.1	-	292.9	399.4	532.6	688.8	169.0

Table 3. Experimental binding energies in eV for guanidinium, sulfur-based and imidazolium ionic liquids studied in this work. The associated experimental error is 0.1 eV. All compounds charge corrected by setting F 1s to 688.8 eV of the corresponding [NTf₂]⁻ anion.

 Table 4. FWHM in eV for guanidinium, sulfur-based and imidazolium ionic liquids studied in this work.

		FWHM /	∕eV										
Compound		Cation							Anion				
Cation	Anion	C _{core} 1s	C _{hetero} 1s	C _{inter} 1s	C _{Cs/MethylC2} 1s	N_{cation} 1s	$S_{exocyclic} 2p_{3/_2}$	$S_{cyclic} 2p_{3/2}$	C _{CF3} 1s	N _{anion} 1s	O 1s	F 1s	$S_{anion} \ 2p_{3/_2}$
IL 1 [C ₁ C ₁ Im] ⁺	[NTf ₂]-	1.0	1.1	0.9	-	1.0	-	-	1.0	1.0	1.2	1.6	0.9
IL 2 [C ₁ C ₁ C ₁ Im] ⁺	[NTf ₂] ⁻	1.0	1.2	1.0	1.2	1.1	-	-	1.1	1.2	1.2	1.7	1.0
IL 3 [(C ₁ C ₁) ₂ dmg] ⁺	$[NTf_2]^-$	1.0	1.1	-	-	1.1	-	-	1.1	1.2	1.2	1.7	1.0
IL 4 [(C ₁) ₅ TU] ⁺	[NTf ₂] ⁻	0.8	1.2	-	1.2	1.1	1.0	-	1.0	1.0	1.2	1.6	1.0
IL 5 [C ₁ (C ₁) ₂ ThioIm] ⁺	$[NTf_2]^-$	0.9	1.2	0.9	1.0	1.0	0.9	-	1.0	1.0	1.2	1.6	0.9
IL 6 [(C ₁) ₂ Thio]+	[NTf ₂] ⁻	0.8	1.2	0.9	0.9	1.0	1.1	1.0	0.9	1.0	1.1	1.6	0.9
IL 7 [(C ₁) ₂ Thiz] ⁺	[NTf ₂] ⁻	0.8	1.1	1.1	1.0	1.1	0.9	-	1.0	1.0	1.1	1.6	0.9

Computational Details

Density functional theory (DFT) calculations were performed using the Q-Chem software package.¹⁰ The cation-anion complexes were optimized to minimum energy structures using the PBEO functional and 6-31+G(d) basis set.¹¹ Core electron binding energies (CEBEs) and ¹³C NMR chemical shifts were then calculated at the resulting geometries using the individual gauge for localized orbitals double- ζ basis set (IGLO-II) and a polarized continuum model (C-PCM) with a dielectric constant of 15.0 to represent the bulk effects of the ionic liquid. CEBEs have been computed from the difference between the energy of the ground state and the energy with a core electron removed with the maximum overlap method (MOM) used to prevent variational collapse during the SCF calculation of the core-ionized states,¹² and NMR chemical shifts have been calculated using the gauge invariant atomic orbital (GIAO) approach.

[(C ₁ C ₁)Im]	+	
Shift	Assignment	
10.41	N-CH ₃	
19.51	N-CH ₃	
101.05	N-C=C	
105.82	N-C=C	
143.93	N-CH-N	

Table 5. Calculated NMR shifts in ppm and assignments for the ${}^{13}C$ NMR spectrum of IL 1 [(C₁C₁)Im]⁺.

Table 6. Calculated NMR shifts in pp	n and assignments for the ¹³ C NMF	<pre>spectrum of IL 2 [(C1C1C1)Im]*.</pre>
--------------------------------------	---	--

[(C ₁ C ₁ C ₁)]	n]+	
Shift	Assignment	
-14.04	C- <mark>C</mark> H₃	
14.43	N-CH ₃	
18.17	N-CH ₃	
109.22	N-C=C	
113.00	N-C=C	
144.53	C-CH₃	

Table 7. Calculated NMR shifts in ppm and assignments for the ${}^{13}C$ NMR spectrum of IL 3 [(C_1C_1)₂dmg]⁺.

[(C ₁ C ₁) ₂ dr	ng]+	
Shift	Assignment	
16.99	N-CH₃	
17.34	N-CH ₃	
25.40	N-CH₃	
26.97	N-CH₃	
34.52	N-CH₃	
34.59	N-CH₃	
169.83	CN3	

Table 8. Calculated NMR shifts	in ppm and assignments for the ¹	¹³ C NMR spectrum of IL 4	↓ [(C1)5TU]+
--------------------------------	---	---	--------------

[(C ₁) ₅ TU] ⁺		
Shift	Assignment	
0.51	S-CH₃	
21.51	N-CH₃	
28.45	N-CH ₃	
37.44	N-CH ₃	
39.01	N-CH ₃	
181.11	SCN ₂	

Table 9. Calculated NMR shifts in ppm and assignments for the ${}^{13}C$ NMR spectrum of IL 5 [$C_1(C_1)_2$ ThioIm]⁺.

[C ₁ (C ₁) ₂ Th	iolm]+	
Shift	Assignment	
12.82	S <mark>-C</mark> H₃	
18.14	N-CH ₃	
19.01	N-CH₃	
115.77	N-C=C	
118.89	N-C=C	
138.59	SCN ₂	

Table 10. Calculated NMR shifts in ppm and assignments for the ${}^{13}C$ NMR spectrum of IL 6 [(C₁)₂Thio]⁺.

[(C ₁) ₂ Thio]	[(C ₁) ₂ Thio]+					
Shift	Assignment					
-0.05	S-CH₃					
24.15	N-CH ₃					
105.57	S-C=C					
135.48	S-C=C					
176.24	S ₂ CN					

Table 11. Calculated NMR shifts in ppm and assignments for the ${}^{13}C$ NMR spectrum of IL 7 [(C₁)₂Thiz]⁺.

[(C ₁) ₂ Thiz] ⁺			
Shift	Assignment		
4.71	S-CH ₃		
5.89	S-C-C-N		
16.59	N-CH ₃		
43.57	S-C-C-N		
204.79	S ₂ CN		

Table 12. Calculated CEBEs in eV and orbital assignments for IL 1 $[(C_1C_1)Im]^+$.

Table 13. Calculated CEBEs in eV and orbital assignments for IL 2 $[(C_1C_1C_1)Im]^+$.

$[(C_1C_1C_1)Im]^+$		
CEBE	Orbital	
288.46		
289.03		
289.04		
289.24		
289.24		
290.48		

 $[(C_1C_1)_2dmg]^+$ CEBE Orbital 288.66 288.71 288.75 288.78 288.81 288.82 291.52

Table 14. Calculated CEBEs in eV and orbital assignments for IL 3 $[(C_1C_1)_2 dmg]^+$.

Table 15. Calculated CEBEs in eV and orbital assignments for IL 4 $[(C_1)_5TU]^+$.

[(C ₁) ₅ TU]+	
CEBE	Orbital
288.59	
288.87	
288.90	
288.97	
288.97	
291.45	

$[C_1(C_1)_2$ ThioIm] ⁺		
CEBE	Orbital	
288.29		
289.19		
289.20		
289.24		
289.25		
290.78		

Table 16. Calculated CEBEs in eV and orbital assignments for IL 5 $[C_1(C_1)_2$ ThioIm]⁺.

Table 17. Calculated CEBEs in eV and orbital assignments for IL 6 $[(C_1)_2 Thio]^+$.

*When calculating the CEBE for orbital 20 of $[(C_1)_2$ Thio]⁺ (at 289.53 eV) it was necessary to use Hartree-Fock ground state orbitals as a starting guess in order to converge on the correct core-ionized state using the PBEO functional.

Table 18. Calculated CEBEs in eV and orbital assignments for IL 7 $[(C_1)_2 Thiz]^+$.

[(C ₁) ₂ Thiz]	+
CEBE	Orbital
288.74	
289.18	
289.22	
289.62	
291.33	

	XPS, $^{13}\text{C}\text{-}\text{NMR}$ and DFT calculations for C_{core}			
Compound	XPS (eV)	CEBE – DFT	¹³ C-NMR (nnm)	¹³ C-NMR – DFT (ppm)
		(CV)	(ppiii)	(ppiii)
IL 1 $[C_1C_1Im][NTf_2]$	287.6	290.27	137.0	143.93
IL 2 $[C_1C_1C_1Im][NTf_2]$	287.9	290.48	144.7	144.53
IL 3 $[(C_1C_1)_2 dmg][NTf_2]$	288.9	291.52	162.4	169.83
IL 4 [(C ₁) ₅ TU][NTf ₂]	288.6	291.45	175.8	181.11
IL 5 [C ₁ (C ₁) ₂ ThioIm][NTf ₂]	288.0	290.78	140.8	138.59
IL 6 [(C ₁) ₂ Thio][NTf ₂]	288.1	290.97	175.5	176.24
IL 7 [(C ₁) ₂ Thiz][NTf ₂]	288.4	291.33	191.3	204.79

Table 19. XPS, ¹³C-NMR and DFT calculations for the C_{core} for guanidinium, sulfur and imidazolium based ionic liquids studied in this work.

Trend between XPS experimental data and DFT calculations

Figure 2 General trend between C_{core} 1s XPS experimental data (blue) and DFT calculations (orange).

Trend between ¹³C NMR experimental data and DFT calculations

Figure 3 General trend between C_{core}¹³C NMR experimental data (blue) and DFT calculations (orange).

С	-1.7824349865	-1.8157964721	-0.5359162558
N	-3.0758190486	-1.5994738632	-0.2920366799
С	-3.4976368613	-2.4832881591	0.6738948625
С	-2.4205887476	-3.2454304952	1.0090281321
Ν	-1.3653775005	-2.8153734614	0.2395719349
Н	-4.5142511649	-2.4947267566	1.0365266066
Н	-2.3145264318	-4.0451690196	1.7261434984
С	-3.8908557059	-0.5840092307	-0.9472011202
Н	-4.4246797411	-0.0115558890	-0.1862336575
Н	-4.6020018148	-1.0635077072	-1.6245303551
Н	-3.2268786873	0.0846325523	-1.4972223313
С	0.0115477755	-3.2938625706	0.3247810168
Н	0.4575629852	-3.2758025164	-0.6702469198
Н	-0.0040732496	-4.3200021598	0.6953948923
Н	0.5911176507	-2.6451009133	0.9880382700
Ν	0.5393970817	0.1159233404	-0.1322761155
S	-0.0742721795	1.3862519380	-0.8995261453
S	1.9417896256	0.1240951243	0.6759219759

Table 20. Cartesian coordinates in Å for the DFT structure of IL 1

0	0.8470113436	2.3902580090	-1.3956483819
0	-1.1062998406	0.8420625666	-1.7974246402
0	2.4184791500	1.4196084333	1.1252999182
0	1.8939637035	-1.0055032645	1.6031219964
С	3.1555135042	-0.4349316946	-0.6268523928
С	-1.0915249689	2.2482422803	0.4083521269
F	4.3659414121	-0.5517265362	-0.0863361421
F	3.2089952810	0.4269293566	-1.6340219540
F	2.7903814348	-1.6321951868	-1.1100732159
F	-2.0234171453	1.4066963176	0.8915622924
F	-1.7191757965	3.2909623726	-0.1336968059
F	-0.3404435618	2.6652518757	1.4155957860
Н	-1.1719871086	-1.2234820646	-1.2067744514

 Table 21. Cartesian coordinates in Å for the DFT structure of IL 2

С	2.1328821393	-1.8064039700	0.5035516172
Ν	2.9566346157	-0.9091815889	-0.0551047137
С	2.8386195403	-0.9794706520	-1.4239173920
С	1.9319460463	-1.9523331915	-1.6946486336
Ν	1.5183476382	-2.4634231659	-0.4883016810
Н	3.3848512577	-0.3181867916	-2.0781916096
Н	1.5145686662	-2.2941876309	-2.6283914857
С	3.7982241201	0.0192288292	0.6843960986
Н	4.3090955075	0.6607114658	-0.0334639737
Н	4.5414926047	-0.5314747736	1.2678204074
Н	3.1717723116	0.6336086829	1.3358079245
С	0.5309835952	-3.5180925324	-0.3195100980
Н	-0.2643808036	-3.1781307955	0.3430165487
Н	1.0082822288	-4.4193571783	0.0757752429
Н	0.0886326262	-3.7266105996	-1.2922626498
Ν	-0.2504309517	0.0668045287	0.0895094916
S	-0.0436467873	1.4317862044	0.9162400712
S	-1.5357168452	-0.2394660803	-0.8403566284
0	-1.2431238624	2.1172653711	1.3641223594
0	1.0399855648	1.1669524417	1.8705890081

0	-2.1939175008	0.9118467457	-1.4332018004
0	-1.1721276380	-1.3860523206	-1.6738064763
С	-2.7945321616	-0.9636550798	0.3372428945
С	0.7571337725	2.6151398366	-0.2902477158
F	-3.8502211727	-1.3804362071	-0.3595908164
F	-3.1907517880	-0.0819851063	1.2419569897
F	-2.2738167017	-2.0248856770	0.9797680941
F	1.9192171214	2.1090254322	-0.7451245779
F	1.0267247334	3.7567207900	0.3404638344
F	-0.0214182874	2.8654381515	-1.3311116868
С	1.9311330262	-1.9908155983	1.9562430309
Н	1.4381566151	-1.0983480519	2.3621579167
Н	2.8875854883	-2.1262268061	2.4727877779
Н	1.3057250472	-2.8625907177	2.1544787211

Table 22. Cartesian coordinates in Å for the DFT structure of IL 3

С	2.8496824422	0.7253720458	-0.1250802501
Ν	2.1873564999	1.8783531435	-0.2834552892
С	1.3683842553	2.4450592037	0.7790008547
Н	1.8074374959	3.3748810004	1.1623901475
Н	1.2489896299	1.7182182339	1.5811642346
Н	0.3772314339	2.6505221402	0.3673817861
С	2.1043336184	2.5639357395	-1.5625219345
Н	2.2760791601	3.6325419179	-1.3903170325
Н	1.1150509916	2.4336052278	-2.0136384507
Н	2.8752954634	2.1923439989	-2.2392792401
Ν	3.4112514651	0.4291936332	1.0664380796
Ν	3.0102432508	-0.1220352002	-1.1577073061
С	3.9293920080	1.4531755169	1.9521719617
Н	4.0483803754	2.3931173211	1.4106210871
Н	4.9117191844	1.1349830107	2.3207165755
Н	3.2746450957	1.6172545274	2.8171467932
С	3.4035153754	-0.9241023857	1.5986356680
Н	2.9664485945	-0.9054879821	2.6029756553
Н	4.4194788514	-1.3346240481	1.6608759039

Н	2.7711919708	-1.5610210139	0.9819150852
С	1.9636854138	-0.3544316369	-2.1440466141
Н	2.2658780087	0.0141956270	-3.1319493977
Н	1.0332087155	0.1189574205	-1.8299475409
Н	1.7875324187	-1.4333542998	-2.2116126711
С	4.1981460088	-0.9424448805	-1.2970068936
Н	4.9902871007	-0.5769555902	-0.6411907715
Н	4.5456302124	-0.8824850525	-2.3348433956
Н	3.9946516976	-1.9951924967	-1.0646805988
N	-2.1003419437	-0.5572366402	0.2526026535
S	-2.1171688040	0.5461993270	-0.9035655420
S	-0.8392875205	-1.1840029571	0.9849393744
0	-0.8175147332	1.1280840883	-1.2655447141
0	-3.0270311028	0.1658730024	-1.9699607927
0	0.4593425273	-0.5537584610	0.7097806577
0	-1.1630116097	-1.5102337303	2.3638553580
С	-0.6887918566	-2.8343951272	0.1350083693
С	-2.9788520942	1.9313329688	-0.0054251371
F	0.3859355504	-3.4799735841	0.6120919959
F	-0.5162675707	-2.6653587725	-1.1814818550
F	-1.7600120813	-3.5886596515	0.3331351524
F	-4.1893825683	1.5706825538	0.3973500975
F	-3.0904514091	2.9826655057	-0.8220479768
F	-2.2621298446	2.3060972763	1.0616997980

Table 23. Cartesian coordinates in Å for the DFT structure of IL 4 $\,$

С	-2.6592743473	-0.7422043816	-0.2009988685
N	-2.7403536920	-0.3600173010	-1.4812188505
С	-1.6083797362	-0.4640301194	-2.4029694495
Н	-1.8198419755	-1.1874755546	-3.1980908998
Н	-0.6959971871	-0.7381176228	-1.8775348175
Н	-1.4557984874	0.5214419679	-2.8541489897
С	-3.8596294250	0.4081185082	-2.0128363126
Н	-4.7754263254	0.1987667794	-1.4605071163
Н	-3.9963627855	0.1177020740	-3.0588006336

Н	-3.6489371387	1.4832280424	-1.9725054031
Ν	-1.8951747831	-1.7623386146	0.1812984455
С	-1.2806161000	-1.8427006873	1.5035288332
Н	-1.7834377325	-2.6008053684	2.1154580160
Н	-1.2854173284	-0.8646258550	1.9861405928
Н	-0.2356541935	-2.1261699651	1.3642941453
С	-1.5254667595	-2.8487876824	-0.7209352829
Н	-2.2093654100	-2.8801249093	-1.5702216841
Н	-1.6154390887	-3.7845237754	-0.1594477661
Н	-0.4932039836	-2.7389963465	-1.0709608252
S	-3.6089947604	0.1762996405	0.9500190593
С	-4.1879315888	-1.0737520868	2.1296840795
Н	-4.3307991898	-2.0375649506	1.6363821643
Н	-5.1557640765	-0.7143655250	2.4890805651
Н	-3.5074160751	-1.1760911851	2.9765611835
Ν	0.7919368234	0.0167921369	0.0367072831
S	0.8025825784	1.3620251758	0.9259710931
S	2.0395623962	-0.5275193875	-0.8243270775
0	-0.2788752520	1.2300279777	1.9016284550
0	2.1013177111	1.8631756622	1.3398591404
0	1.4780091292	-1.5033033633	-1.7641545118
0	3.0025267159	0.4540131947	-1.2910125728
С	2.9718078982	-1.6004679391	0.3858615292
С	0.1417707073	2.6465805544	-0.2574451364
F	3.9993722942	-2.1789419251	-0.2305240415
F	2.1663658890	-2.5668954357	0.8578703862
F	3.4223217696	-0.8932855814	1.4137842159
F	0.9314491815	2.7887703302	-1.3155904464
F	0.0321220702	3.8171481691	0.3650717842
F	-1.0822723017	2.2932663133	-0.6966551398

Table 24. Cartesian coordinates in Å for the DFT structure of IL 5

С	2.7955459861	-0.0463952727	-0.1004157254
Ν	2.6072682839	1.2427404617	-0.4435687990
С	2.1364342581	1.2991727658	-1.7266196256

С	2.0494450057	0.0198147075	-2.1823478363
Ν	2.4697674547	-0.7973092297	-1.1711596844
Н	1.8704541378	2.2336511015	-2.1957562018
Н	1.6760294406	-0.3751303439	-3.1140517331
С	2.7840586040	2.3948984811	0.4289954372
Н	3.0905682143	3.2458399383	-0.1814487393
Н	3.5606347954	2.1669482918	1.1600128378
Н	1.8396906314	2.6034281729	0.9381082867
С	2.5152083321	-2.2484536580	-1.2599604328
Н	1.5197230125	-2.6039335516	-1.5327175242
Н	2.8104669996	-2.6481349279	-0.2900930529
Н	3.2499183562	-2.5416276770	-2.0142398322
Ν	-0.5107228278	0.0118503482	-0.1203314545
S	-1.1593863910	1.1146429340	0.8578323351
S	-1.3788809116	-1.0714878843	-0.9428043608
0	-2.4244505940	0.7738684660	1.4843364686
0	-0.0599635815	1.6321816264	1.6805034889
0	-2.7518100621	-0.7118236738	-1.2502555195
0	-0.5071371440	-1.5873432420	-2.0013811883
С	-1.4991247932	-2.5242116869	0.2255012930
С	-1.5410756226	2.5652758063	-0.2569194777
F	-2.1174246517	-3.5310954303	-0.3865487563
F	-2.1578456164	-2.2163797353	1.3333946213
F	-0.2662562976	-2.9407425538	0.5706425197
F	-0.4090332856	3.0226897907	-0.8234698212
F	-2.0647532995	3.5499457002	0.4686804577
F	-2.3869742235	2.2375747012	-1.2224943037
S	3.4750276290	-0.6186451942	1.3978168482
С	1.9851858757	-0.8218191585	2.4359979613
Н	1.3996318121	0.0991215784	2.4639761935
Н		1 0570001000	
	2.3693309199	-1.05/6091203	3.4325554463

Table 25. Cartesian coordinates in Å for the DFT structure of IL 6

С	-2.6235112128	0.7116920347	0.4055724597
S	-2.8584537101	1.2534981032	-1.1982598423
С	-1.8666367817	2.6327616444	-0.9060924140
С	-1.3900318085	2.6238259846	0.3559960597
Ν	-1.8305739206	1.5418763695	1.0886717941
Н	-1.6371547311	3.3328886912	-1.6968510433
Н	-0.6817425551	3.3061683800	0.8043525886
С	-1.3874547874	1.2618896218	2.4506476266
Н	-0.5862782454	1.9557203235	2.6988695703
Н	-0.9857600613	0.2463543696	2.4835079346
Н	-2.2260826340	1.3682691831	3.1453179756
S	-3.3208321097	-0.6856360296	1.1316148077
С	-3.9533769912	-1.5489334062	-0.3260578192
Н	-4.7509339469	-0.9799843386	-0.8119323217
Н	-4.3681632640	-2.4862912601	0.0528777986
Н	-3.1230756582	-1.7656091710	-1.0039347056
Ν	0.5115223121	0.1030487950	-0.0721569769
S	1.8527840520	0.9089384048	0.3130827849
S	0.4822272177	-1.3474216747	-0.7755670338
0	1.4348703523	1.9662689325	1.2395879055
0	3.0274375734	0.1087301736	0.6138321437
0	-0.9006057354	-1.5515347198	-1.2168033659
0	1.5786915282	-1.6620001896	-1.6750134921
С	0.6469696853	-2.5620203628	0.6373097035
С	2.3004425934	1.8656952230	-1.2289048964
F	0.3605955461	-3.7851591276	0.1904994163
F	-0.2227881382	-2.2609335480	1.6149748833
F	1.8690758440	-2.5611115305	1.1462136050
F	2.5375867120	1.0614002407	-2.2550844262
F	3.3871115124	2.5951115219	-0.9842009500
F	1.3038527033	2.7004240202	-1.5659399698

Table 26. Cartesian coordinates in Å for the DFT structure of IL 7

C -2.4957053741 -0.9770994774 0.0285494963

S	-2.6530953382	-0.2777766883	-1.5404820187
С	-3.6077527516	1.1182338566	-0.8442605432
С	-3.2367846427	1.1604535493	0.6312037898
Ν	-2.9313029540	-0.2196594185	1.0174626219
С	-2.7133861572	-0.5397590432	2.4193461198
Н	-3.3796792273	0.0789291945	3.0229873748
Н	-1.6701950045	-0.3316684455	2.6828268566
Н	-2.9503557205	-1.5915184576	2.6013549954
S	-1.8380096235	-2.5304893162	0.3285895957
С	-1.5019580880	-3.1445742855	-1.3392823726
Н	-2.4166962508	-3.1901571512	-1.9349565813
Н	-1.1150136280	-4.1562286912	-1.1919951930
Н	-0.7279840088	-2.5268812375	-1.8021905419
Н	-4.6729471247	0.9278312477	-1.0033487060
Н	-4.0636635437	1.5302648223	1.2442560691
Н	-2.3387454645	1.7608462264	0.8143403416
Н	-3.3167189274	2.0338033649	-1.3626215821
Ν	2.1423213392	0.7518565197	0.0888980586
S	1.0108460643	1.5209971803	0.9044266006
S	1.9197895921	-0.5442538965	-0.8245587162
0	-0.2623646736	0.8084339102	1.0938957738
0	1.5977636032	2.1932328458	2.0500691110
0	0.5388140011	-0.8056265421	-1.2441183610
0	2.9783866222	-0.6204278105	-1.8144757963
С	2.2939786775	-1.9333163830	0.3649129821
С	0.5421162954	2.9079343684	-0.2512316024
F	2.0132808180	-3.1046089548	-0.2257477827
F	1.5396084602	-1.8348200304	1.4638480061
F	3.5707567107	-1.9336915492	0.7230134411
F	1.5621413905	3.7211669094	-0.4809807878
F	-0.4563391756	3.6180287811	0.3030711489
F	0.0982298177	2.4290345109	-1.4183038540

References

- 1. I. J. Villar-Garcia, E. F. Smith, A. W. Taylor, F. Qiu, K. R. J. Lovelock, R. G. Jones and P. Licence, *Phys. Chem. Chem. Phys.*, 2011, **13**, 2797-2808.
- 2. R. K. Blundell and P. Licence, *Phys. Chem. Chem. Phys.*, 2014, **16**, 15278-15288.
- 3. S. Men, K. R. J. Lovelock and P. Licence, *Phys. Chem. Chem. Phys.*, 2011, **13**, 15244-15255.
- 4. A. R. Santos, R. K. Blundell and P. Licence, *Phy. Chem. Chem. Phys.*, 2015, **17**, 11839-11847.
- 5. E. F. Smith, F. J. M. Rutten, I. J. Villar-Garcia, D. Briggs and P. Licence, *Langmuir*, 2006, **22**, 9386-9392.
- 6. P. Bonhôte, A. P. Dias, M. Armand, N. Papageorgiou, K. Kalyanasundaram and M. Grätzel, *Inorg. Chem.*, 1996, **35**, 1168-1178.
- 7. R. Guterman, H. Miao and M. Antonietti, J. Org. Chem., 2018, 83, 684-689.
- 8. C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. H. Raymond and L. H. Gale, *Surf. Interface Anal.*, 1981, **3**, 211-225.
- 9. N. Stojilovic, J. Chem. Educ., 2012, **89**, 1331-1332.
- 10. Y. H. Shao, Z. T. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. T. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kus, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C. M. Chang, Y. Q. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio, H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T. C. Jagau, H. J. Ji, B. Kaduk, K. Khistyaev, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S. P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, E. Neuscamman, C. M. Oana, R. Olivares-Amaya, D. P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein, D. Stuck, Y. C. Su, A. J. W. Thom, T. Tsuchimochi, V. Vanovschi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z. Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J. D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C. P. Hsu, Y. S. Jung, J. Kong, D. S. Lambrecht, W. Z. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill and M. Head-Gordon, Mol. Phys., 2015, 113, 184-215.
- 11. C. Adamo and V. Barone, J. Chem. Phys., 1999, **110**, 6158-6170.
- 12. A. T. B. Gilbert, N. A. Besley and P. M. W. Gill, J. Phys. Chem. A, 2008, **112**, 13164-13171.