Selective Monoalkylations of *tert*-butylcalix-[4]-arene in a Methyl Carbonate Ionic Liquid

R. E. Whiteside,^{*} H. Q. Nimal Gunaratne, Aline F. V. Muzio and P. Nockemann^{*}

QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG, United Kingdom.

Supplementary Data

- 1. Supporting figures and information
- 2. Experimental Procedures
 - a. General information
 - b. Mono-anion calixarate salts
 - c. Mono-alkylations of mono-anion calixarate salts
- 3. NMR Spectroscopic Data
 - a. tert-Butylcalix-[4]-arene-commerical sample
 - b. Mono-anion calixarate salts
 - c. Mono-alkylations via dialkyl sulfates
 - d. Mono-alkylations via alkyl halides
- 4. Single Crystal Diffraction Data
- 5. Mass spectrometry

Table of Figures

Figure 1. Conformers of TBC (L-R) cone, partial cone, 1, 3-alternate and 1, 2-alternate.	6
Figure 2- ¹ H NMR spectrum of a commercial sample of <i>tert</i> -butylcalix-[4]-arene	12
Figure 3- ¹ H NMR spectrum of Tributylmethylammonium <i>tert</i> -butylcalix-[4]-arate salt	13
Figure 4- ¹ H NMR spectrum of Triethylmethylammonium <i>tert</i> -butylcalix-[4]-arate salt	13
Figure 5- ¹³ C NMR spectrum of Triethylmethylammonium <i>tert</i> -butylcalix-[4]-arate salt	14
Figure 6- ¹ H NMR of methylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dimethyl sulfate	15
Figure 7-HSQC of methylated tert-butylcalix-[4]-arene via dimethyl sulfate	15
Figure 9- ¹³ C NMR of methylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dimethyl sulfate	16
Figure 8- ¹ H NMR of methylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dimethyl sulfate as a function of time. (600 MH	lz
NMR CDCl ₃)	16
Figure 10- ¹ H NMR of methylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dimethyl sulfate with a drop of D ₂ O	17
Figure 11- ¹ H NMR of ethylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> diethyl sulfate	17
Figure 12- ¹³ C NMR ethylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> diethyl sulfate	18
Figure 13-HSQC of ethylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> diethyl sulfate	18
Figure 14- ¹ H NMR of ethylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> diethyl sulfate with a D ₂ O shake	19
Figure 15- ¹ H NMR of propylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dipropyl sulfate	19
Figure 16- ¹ H NMR of propylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dipropyl sulfate with D ₂ O shake	20
Figure 17- ¹³ C NMR of propylated tert-butylcalix-[4]-arene <i>via</i> dipropyl sulfate with D2O shake	20
Figure 18-HSQC of propylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dipropyl sulfate	21
Figure 19- ¹ H NMR of butylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dibutyl sulfate	21
Figure 20- ¹³ C NMR of butylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dibutyl sulfate	22
Figure 21-HSOC of butylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dibutyl sulfate	22
Figure 22- ¹ H NMR of butylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dibutyl sulfate with D_2O shake	23
Figure 23- ¹ H NMR of methylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> methyl iodide	24
Figure 24- ¹³ C NMR of methylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> methyl iodide	24
Figure 25-HSOC of methylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> methyl iodide	25
Figure 26- ¹ H NMR of methylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> methyl iodide with D_2O shake	25
Figure 27- ¹ H NMR of ethylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> ethyl iodide	26
Figure 28- ¹³ C NMR of ethylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> ethyl iodide	26
Figure 29- ¹ H NMR of ethylated tert-butylcalix-[4] arene via ethyl iodide with a D_2O shake	20
Figure 30-HSOC of ethylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> ethyl iodide	2,
Figure 31- ¹ H NMR of ethylated <i>tert</i> -butylcalix [4] arene via ethyl iodide with D-O	2, 28
Figure 32- ¹ H NMR of propulated <i>tert</i> -butylcalix [4]-arene <i>via</i> propuladide with D_2O	20 20
Figure 32 ⁻¹³ C NMP of propulated tert butylcalix [4] arene via propuliedide	20
Figure 35 C NIVIN of propylated <i>tert</i> butylcalix [4] arong <i>via</i> propyl iodide	20
Figure 25-1H NMP of propulated tert butulcalix [4] arong via propul iodide with D.O. shake	20
Figure 26 ¹ H NMR of butylated tert butylcally [4] arong via butyl iodide	50
Figure 37-13C NIMP of butylated test butylcalix-[4]-arene via butyl iodide	50
Figure 37C NVIR OF Dutylated <i>tert</i> -butylcallx-[4]-arene <i>Via</i> butyl louide	16
Figure 38-Structure of triethylmethylammonium <i>tert</i> -butyl calixarene	32
Figure 39-Packing of triethylmethylammonium calixarate, [N ₂₂₂₁][BC]	32
Figure 40: Letrabutyimethyiammonium <i>tert</i> -butyicalix-[4]-arene, $[N_{4441}]$ [LBC]	34
Figure 41-Mass spectrometry report for methylated <i>tert</i> -butylcallx-[4]-arene <i>via</i> methyl lodide	36
Figure 42-Mass spectrometry report for methylated <i>tert</i> -butylcalix-[4]-arene via methyl iodide [M+Na] ⁺	36
Figure 43- wass spectrometry report for methylated tert-butylcalix-[4]-arene <i>via</i> methyl iodide [M+H] ⁺	37
Figure 44- Mass spectrometry report for methylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dimethyl sulfate	37
Figure 45- Mass spectrometry report for methylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dimethyl sulfate [M+NH ₄]	"38
Figure 46- Mass spectrometry report for methylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dimethyl sulfate [M+H] ⁺	38
Figure 47- Mass spectrometry report for ethylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> diethyl sulfate [M+H] ⁺	39

Figure 48- Mass spectrometry report for ethylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> diethyl sulfate [M-H] ⁻ 39
Figure 49- Mass spectrometry report for ethylated tert-butylcalix-[4]-arene via diethyl sulfate [M+Na]+40
Figure 50-Mass spectrometry report for ethylated tert-butylcalix-[4]-arene via ethyl iodide40
Figure 51- Mass spectrometry report for ethylated tert-butylcalix-[4]-arene via ethyl iodide [M+Na] ⁺ and
[M+K] ⁺ 41
Figure 52- Mass spectrometry report for ethylated <i>tert</i> -butylcalix-[4]-arene via ethyl iodide [M+NH ₄] ⁺ and
[M+H] ⁺ 41
Figure 53- Mass spectrometry report for propylated <i>tert</i> -butylcalix-[4]-arene via propyl iodide, [M+Na] ⁺ ,
[M+NH ₄] ⁺ , [M+H] ⁺ 42
Figure 54-Mass spectrometry report for propylated tert-butylcalix-[4]-arene via dipropyl sulfate, [M+Na] ⁺ ,
[M+NH4] ⁺ , [M+H] ⁺ 43
Figure 55-Mass spectrometry report for propylated tert-butylcalix-[4]-arene via dipropyl sulfate44
Figure 56- Mass spectrometry report for butylated tert-butylcalix-[4]-arene via butyl iodide, [M+Na] ⁺ ,
[M+NH4] ⁺ , [M+H] ⁺ 45
Figure 57-Mass spectrometry report for butylated tert-butylcalix-[4]-arene via butyl iodide
Figure 58-Mass spectrometry report for butylated <i>tert</i> -butylcalix-[4]-arene <i>via</i> dibutyl sulfate,[M+K] ⁺ , [M+Na] ⁺
, [M+NH ₄] ⁺ , [M+H] ⁺ 47
Figure 59- Mass spectrometry report for butylated tert-butylcalix-[4]-arene via dibutylsulfate

Table of Tables

Table 1- Yields obtained from mono-alkylations of mono-anion calixarate salts	6
Table 2-Table of Structural data for trethylmethylammonium tert-butylcalixarate	31
Table 3-Table of Structural data for trbutylmethylammonium tert-butylcalixarate	31
Table 4-Mass spectrometry data for alkylated <i>tert</i> -butylcalix-[4]-arene	32

1. Supporting figures and information

Figure 1. Conformers of TBC (L-R) cone, partial cone, 1, 3-alternate and 1, 2-alternate.

Note on the IL obtained as a by-product of the alkylation reactions:

The methyl carbonate ionic liquid acts as a reagent to form a calixarate ionic salt for application to selective mono-alkylations reactions of the TBC motif. As a result of the alkylation reactions a new ionic liquid is obtained, specifically as an iodide or as a dialkyl sulfate anion containing IL depending on the alkylating agent selected. This new IL can be obtained from the reaction mixture (after precipitation and removal of the TBC-R product) as they are water soluble ILs and can be extracted *via* the water washing step of the work up. The new ILs can be purified *via* cyclohexane washes and utilised.

2. Experimental Procedures

(a) General information

p-tert-Butylcalix-[4]-arene was obtained in 99% purity from Alfa Aesar. All solvents used were obtained from Honeywell and were of analytical purity. All alkylating agents were obtained from Sigma Aldrich with a minimum purity of 99%.

p-tert-Butylcalix-[4]-arene: ¹H NMR (400 MHz, CDCl₃) δ 10.34(s, 4H, 4xOH), 7.05 (s, 8H, 8xAr-H), 4.26 (d, *J* = 19.4 Hz, 3.98H, 2xAr-CH₂-Ar), 3.49 (d, *J* = 13.3 Hz, 3.91H, 2xAr-CH₂-Ar), 1.55 (s, 35.64H, 4xt-C(CH₃)₃). Note: *dichloromethane impurities are evident in this commercial sample from the ¹H NMR.

(b) Synthesis of mono-calixarate salts

Triethylmethylammonium calixarate,[N_{2 2 2 1}][**TBC**]: Equimolar amounts of triethylmethylammonium methyl carbonate (2.5 g, 13.07 mmol) and *tert*-butylcalix-[4]-arene (8.48 g, 13.07 mmol) were mixed together in acetonitrile (75 mL) and sonicated for 45 minutes until effervescence had ceased. The solution is concentrated under vacuum to form a white crystalline solid (9.76 g, 12.88 mmol, 98.0 %). This salt was used for other experiments without further purification.

¹H NMR (400 MHz, CD₃CN) δ 12.90 (s, 3H, 3xAr-OH), 6.99 (s, 8H,8xAr-H), 4.34 (d, J = 11.7 Hz, 4H,2x Ar-CH₂-Ar), 3.21 – 3.05 (m, 10 H, 2x Ar-CH₂-Ar and 3xN-CH₂-R), 2.87 (s, 3H,N-CH₃), 1.69 – 1.59 (m, 6.20H, 3xN-CH₂-CH₂-R), 1.40 – 1.31 (m, 6.08H,3xN-CH₂- CH₂-CH₂-R), 1.16 (s, 34.10H,4x t-C(CH₃)₃), 1.00 – 0.93 (m, 9.04H, 3xN-CH₂-CH₂-CH₂-CH₃).

 13 C NMR (101 MHz, CDCl₃) δ 152.50, 140.57, 130.27, 124.95, 116.53, 77.48, 77.36, 77.16, 76.84, 56.08, 47.05, 34.23, 33.89, 31.81, 8.10, 1.47, 0.12.

TributyImethylammonium calixarate, $[N_{4 \ 4 \ 1}]$ [**TBC**]: Equimolar amounts of tributyImethylammonium methyl carbonate, $[N_{4 \ 4 \ 1}]$ [CO₃Me] (0.25 g, 0.908 mmol) and *tert*-Butylcalix[4]arene, TBC (0.589 g, 0.908 mmol) are mixed in acetonitrile(15 ml) at 60 °C for 24 hours. Small amounts of residual TBC are removed *via* filtration through glass wool

and the filtrate is concentrated to ¼ of its initial volume and from which colourless cubic crystals are obtained (0.656 g, 0.774 mmol, 85.23 %).

¹H NMR (400 MHz, CDCl₃) δ (14.34 3xAr-OH), 6.97 (s, 8H, 8xAr-H), 4.41 (d, J = 12.1 Hz, 4H, 2x Ar-CH₂-Ar), 3.55 – 3.41 (m, J = 30.0 Hz, 6.30H, 3xN-CH₂-R), 3.26 (d, J = 12.4 Hz, 3.98H, 2x Ar-CH₂-Ar), 1.90 (s, 2.97H, N-CH₃), 1.40(s, 8.99 H, 3xN-CH₂-CH₃) 1.33 – 1.01 (m, 35.68H, 4x t-C(CH₃)₃).

(c) Mono-alkylations of mono-calixarate salts

General procedure: To a concentrated solution of [cation][TBC] (0.262 mmol) in chloroform (2.5 mL), dialkylsulfate/alkyl iodide (0.2882 mmol) was added and stirred for 72 hours at room temperature. The reaction mixture was washed with water (4x2 mL) and the organic layer was separated. The residual chloroform is removed under vacuum, affording off white solid.

The yields obtained for all alkylations are given in Table 1 below.

		Mass Spectrometry data of isolated product									
Alkylating agent	Calculated mass	Exact Mass	[M+H] ⁺	[M+Na] ⁺	[M+NH ₄] ⁺	[M+K] ⁺					
Me ₂ SO ₄	663.4413	663.4413	663.4413		680.4679						
Et ₂ SO ₄	677.4570	677.4595	677.4595	699.4402							
Pr ₂ SO ₄	691.4726	691.0090	691.4727	713.4546	708.4992						
Bu ₂ SO ₄	705.4883	705.4869	705.4883	727.4702	722.5140	743.4442					
Mel	663.4413	663.4423	664.4454	685.4233							
Etl	677.4570	677.4570	678.4620	699.4389	694.4835	715.4128					
Prl	691.4726	691.4733	691.4727	713.4546	708.4992						
Bul	705.4883	705.4861	705.4883	727.4702	722.5148	743.4442					

Table 1- Yields obtained from mono-alkylations of mono-anion calixarate salts

NMR Spectroscopic data

Methylated via dimethyl sulfate:

¹H NMR (400 MHz, CDCl₃) δ 10.34 (s, 0.52H, Ar-OH), 10.14 (s, 0.76H, Ar-OH), 9.55 (s, 1.47H, Ar-OH), 7.15 – 6.67 (m, *J* = 112.2, 54.2, 51.0 Hz, 8H,8xAr-H), 4.41 – 4.21 (m, *J* = 35.1, 13.3 Hz, 3.99H, 2x Ar-CH₂-Ar), 4.12 -3.94(s, 2.38H+0.62H, Ar-O-CH₃), 3.43 (m, *J* = 13.4 Hz, 4H, 2x Ar-CH₂-Ar), 1.41 – 0.78 (m, 35.94H, 4x t-C(CH₃)₃).

 13 C NMR (101 MHz, CDCl₃) δ 207.25, 150.79, 148.65, 147.01, 143.94, 143.53, 133.74, 128.50, 128.22, 128.03, 126.81, 126.27, 126.11, 126.03, 125.98, 78.84, 77.66, 77.55, 77.35, 77.03, 63.56, 52.16, 34.57, 34.25, 33.33, 32.95, 32.45, 32.04, 31.81, 31.73, 31.58, 31.33, 31.25, 30.63, 11.99, 0.33.

With D₂O shake

¹H NMR (400 MHz, CDCl₃) δ 7.14 – 6.71 (m,8H,8xAr-H), 4.39 – 4.20 (m, 4.12H, 2x Ar-CH₂-Ar), 4.12 -3.94(s, 2.35H+0.64H, Ar-O-CH₃), 3.45-3.28 (m, 4.06H, 2x Ar-CH₂-Ar), 1.41 – 0.78 (m, 35.98H, 4x t-C(CH₃)₃).

Ethylated via diethyl sulfate:

¹H NMR (400 MHz, CDCl₃) δ 10.34 (s, 0.17H, Ar-OH), 10.23 (s, 0.87H, Ar-OH), 9.65 (s, 1.69H, Ar-OH), 7.77 (s, 0.23H, Ar-OH), 7.17 – 6.76 (m, J = 74.7, 38.2, 35.9 Hz, 8H, 8xAr-H), 4.39 – 4.04 (m, 6.21H, 2xAr-CH₂-Ar and Ar-O-CH₂-R), 3.49 – 3.25 (m, 4.02H, 2xAr-CH₂-Ar), 1.69 (dt, J = 54.6, 7.0 Hz, 2.29+0.73H, Ar-O-CH₂-CH₃), 1.39 – 0.96 (m, 35.96H, 4x t-C(CH₃)₃).

 ^{13}C NMR (101 MHz, CDCl₃) δ 149.27, 148.40, 148.13, 147.90, 143.57, 143.14, 133.68, 133.01, 128.27, 128.24, 128.11, 127.88, 126.35, 125.74, 125.71, 125.65, 125.48, 125.08, 77.33, 77.22, 77.02, 76.70, 72.40, 34.24, 33.99, 33.92, 33.04, 32.32, 31.98, 31.69, 31.49, 31.27, 31.10, 30.92, 15.27, 0.00.

With D₂Oshake

¹H NMR (400 MHz, CDCl₃) δ 7.15 – 6.76 (m,8H, 8xAr-H), 4.38 – 4.05 (m, 6.09H, 2xAr-CH₂-Ar and Ar-O-CH₂-R), 3.48 – 3.28 (m, 3.99H, 2xAr-CH₂-Ar), 1.75 -1.62(dt, *J* = 7.1 Hz, , 2.28+0.78H, Ar-O-CH₂-CH₃), 1.34 – 0.98 (m, 36.09H, 4x t-C(CH₃)₃).

Propylated via dipropyl sulfate:

¹H NMR (400 MHz, CDCl₃) δ 10.34 (s, 0.20H, Ar-OH), 10.20 (s, 0.86H, Ar-OH), 9.61 (s, 1.68H, Ar-OH), 7.86 (s, 0.21H, Ar-OH), 7.01 (m, 8H, 8xAr-H), 4.40 – 4.21,4.10 (m, t, *J* = 7.0 Hz, 4.80H+1.71H, 2xAr-CH₂-Ar and Ar-O-CH₂-R), 3.50 – 3.25 (m, 4.01H, 2xAr-CH₂-Ar), 2.36 – 1.62 (m, 3.77H, Ar-O-CH₂-CH₂-R, NB: acetone impurities), 1.31 – 0.98 (m, 40.69H, 4x t-C(CH₃)₃ and Ar-O-R-CH₃).

¹³C NMR (101 MHz, CDCl₃) δ 148.73, 148.46, 143.47, 134.01, 128.60, 128.57, 128.21, 126.68, 126.28, 126.07, 126.04, 125.98, 77.67, 77.55, 77.35, 77.03, 72.73, 34.57, 34.32, 34.25, 33.36, 32.65, 31.81, 31.74, 31.60, 31.25, 15.60, 1.36, 0.33.

With D₂O shake

¹H NMR (400 MHz, CDCl₃) δ 7.13 – 6.79 (m, 8H, 8xAr-H), 4.40 – 4.20,4.10 (m,t, *J* = 31.8, 13.1, 4.9 Hz, 4.74H+1.73H, 2xAr-CH₂-Ar and Ar-O-CH₂-R), 3.50 – 3.25 (m, 3.45H, 2xAr-CH₂-Ar), 2.25 – 1.74 (dq, 3.44H, Ar-O-CH₂-CH₂-R), 1.31 – 0.98 (m, 39.79H, 4x t-C(CH₃)₃ and Ar-O-R-CH₃).

Butylated via dibutylsulfate:

¹H NMR (400 MHz, CDCl₃) δ 10.34 (s, 1.06H, Ar-OH), 10.19 (s, 0.55H, Ar-OH), 9.60 (s, 1.03H, Ar-OH), 7.84 (s, 0.49H, Ar-OH), 7.12 – 6.79 (m, 8H, 8xAr-H), 4.40 – 3.94 (m, 6.44H, 2xAr-CH₂-Ar and Ar-O-CH₂-R), 3.41 (ddd, *J* = 52.0, 34.8, 13.3 Hz, 4.08H, 2xAr-CH₂-Ar), 2.14 – 1.90,1.71 (m, 1.91H, Ar-O-CH₂-CH₂-R), 1.71 (ddd, *J* = 22.5, 15.1, 7.6 Hz, 2.04H, Ar-O-CH₂-CH₂-CH₂-R), 1.45 – 0.76 (m, 39.55H, Ar-O-R-CH₃ and 4x t-C(CH₃)₃).

 ^{13}C NMR (101 MHz, CDCl₃) δ 148.42, 147.98, 146.62, 144.32, 143.03, 133.47, 128.29, 128.11, 127.73, 127.64, 126.34, 125.89, 125.64, 125.57, 125.41, 124.98, 77.27, 77.16, 76.96, 76.64, 34.17, 33.96, 33.86, 32.97, 32.57, 32.20, 31.82, 31.65, 31.44, 31.35, 31.20, 31.03, 19.15, 13.95, 0.97, -0.06.

With D₂O shake

¹H NMR (400 MHz, CDCl₃) δ 7.13 – 6.75 (m, 8H8xAr-H), 4.39 – 3.95 (m, 6.29H, 2xAr-CH₂-Ar and Ar-O-CH₂-R), 3.55 – 3.27 (m, 4.16H, 2xAr-CH₂-Ar), 2.16 – 1.94 (m, 2.07H, Ar-O- CH₂-CH₂-R), 1.71 (ddd, *J* = 22.4, 14.9, 7.5 Hz, 1.98H, Ar-O- CH₂- CH₂-CH₂-R), 1.43 – 0.78 (m, 38.95H, Ar-O-R-CH₃ and 4x t-C(CH₃)₃).

Methylated via methyl iodide:

¹H NMR (400 MHz, CDCl₃) δ [10.34 (s, 0.55H), 10.15 (s, 0.94H), 9.55 (s, 1.50H) 3xAr-OH], 7.14 – 6.69 (m, *J* = 113.1, 54.6, 51.4 Hz, 8H, 8XAr-H), 4.42 – 4.19 (m, 4H, 2xAr-CH₂-Ar), 4.13-3.95 (s, s,2.33H,0.67H, Ar-O-CH₃), 3.38 (dd, *J* = 42.3, 13.3 Hz, 3.99H,2xAr-CH₂-Ar), 1.44 – 0.82 (m, 35.66H, t-C(CH₃)₃).

 ^{13}C NMR (101 MHz, CDCl_3) δ 150.46, 148.33, 147.81, 143.22, 133.43, 132.30, 128.19, 127.91, 126.49, 125.71, 125.66, 125.07, 77.35, 77.03, 76.71, 33.94, 33.01, 32.13, 31.73, 31.49, 31.41, 31.27, 31.02.

With D₂0 shake

¹H NMR (400 MHz, CDCl₃) δ 7.13 – 6.91 (m, 8H, 8X Ar-H), 4.31 (dd, *J* = 35.6, 13.3 Hz, 9H, 2xAr-CH₂-Ar), 4.12-3.65 (M, 2.30H+1.86H, Ar-O-CH₃), 3.43 (d, *J* = 13.6 Hz, 3.98H, 2xAr-CH₂-Ar), 1.28 – 1.12 (m, 36.33H, t-C(CH₃)₃).

Ethylated with ethyl iodide:

¹H NMR (400 MHz, CDCl₃) δ 10.34 (s, 0.54, Ar-OH), 10.14 (s, 0.80H, Ar-OH), 9.55 (s, 1.72H, Ar-OH), 7.16 – 6.65 (m, *J* = 113.1, 54.6, 51.4 Hz, 8H, 8xAr-H), 4.46 – 4.17 (m, 4H, 2xAr-CH₂-Ar), 3.73-3.71(q, 2.04H, Ar-O-CH₂-R) 3.50 – 3.27 (m, 4.02H, 2xAr-CH₂-Ar), 1.31 – 0.91 (m, 39.32H, 4xt-C(CH₃)₃ and Ar-O-R-CH₃).

 13 C NMR (151 MHz, CDCl₃) δ 150.80, 148.67, 148.63, 148.16, 148.07, 147.19, 143.95, 143.55, 141.87, 133.76, 132.63, 128.54, 128.53, 128.24, 126.83, 126.29, 126.13, 126.05, 126.00, 125.89, 125.41, 77.58, 77.37, 77.16, 63.87, 63.59, 58.85, 34.60, 34.35, 34.28, 34.25, 33.35, 32.97, 32.47, 32.07, 31.83, 31.76, 31.60, 31.36, 18.80, 1.38, 0.36.

With D₂O shake

¹H NMR (400 MHz, CDCl₃) δ 7.16 – 6.65 (m, J = 113.1, 54.6, 51.4 Hz, 8H, 8xAr-H), 4.46 – 4.17 (m, 4.09H, 2xAr-CH₂-Ar), 3.73-3.71(q, 2.08H, Ar-O-CH₂-R) 3.50 – 3.27 (m, 4.11H, 2xAr-CH₂-Ar), 1.31 – 0.91 (m, 40.19H, 4xt-C(CH₃)₃ and Ar-O-R-CH₃).

Propylated with propyl iodide:

¹H NMR (400 MHz, CDCl₃) δ 10.34 (s, 0.23H, Ar-OH), 10.22 (s, 0.79H, Ar-OH), 9.62 (s,1.58H, Ar-OH), 7.77 (s, 0.39H, Ar-OH), 7.17 – 6.73 (m, 8H, 8xAr-H), 4.40 – 4.06 (m, 6.08H, 2xAr-CH₂-Ar and Ar-O-CH₂-R), 3.70 (dd, *J* = 16.7, 10.7 Hz, 2H, Ar-O-CH₂-CH₂-R), 3.50 – 3.26 (m, 4H, 2xAr-CH₂-Ar), 1.76 -1.32(dt, *J* = 7.1 Hz, 2H+1.01H, Ar-O-R-CH₃), 1.43 – 0.85 (m, 37.6H, 4x t-C(CH₃)₃).

 13 C NMR (151 MHz, CDCl₃) δ 151.42, 150.57, 150.05, 149.24, 148.38, 148.12, 147.89, 147.78, 143.55, 143.13, 140.52, 133.66, 133.02, 132.07, 128.25, 128.23, 128.10, 127.87, 126.34, 125.94, 125.73, 125.70, 125.64, 125.47, 125.08, 77.22, 77.01, 76.80, 72.40, 71.91, 58.50, 34.23, 33.98, 33.92, 33.81, 33.02, 32.30, 31.98, 31.68, 31.47, 31.40, 31.26, 31.10, 18.44, 15.27, 1.02.

With D₂O shake

¹H NMR (400 MHz, CDCl₃) δ 7.01 (m, *J* = 77.5, 38.7, 36.3 Hz, 8H, 8xAr-H), 4.46 – 4.13 (m, 5.58H, 2xAr-CH₂-Ar + Ar-O-CH₂-R), 4.08-3.62 (m, 1.07H+0.94H, Ar-O-R-CH₂-R), 3.49 – 3.26 (m, 4.01H, 2xAr-CH₂-Ar), 1.75-1.62 (dt, *J* = 7.1 Hz, 2.04H+1.08H), 1.33 – 0.98 (m, 36H, 4x t-C(CH₃)₃).

Butylated with butyl iodide:

¹H NMR (400 MHz, CDCl₃) δ 10.34 (s, 1.06H, Ar-OH), 10.19 (s, 0.55H, Ar-OH), 9.60 (s, 1.14H, Ar-OH), 7.84 (s, 0.49H, Ar-OH), 7.12 – 6.79 (m, 8H, 8xAr-H), 4.39 – 4.21 (m, 3.96H, 2xAr-CH₂-Ar), 4.05 (dt, *J* = 13.0, 6.8 Hz, 2.17H, Ar-O-CH₂-R), 3.41 (ddd, *J* = 52.0, 34.8, 13.3 Hz, 4.26H, 2xAr-CH₂-Ar), 2.15 – 1.95 (m, 2.02H, Ar-O-R-CH₂-R), 1.71 (ddd, *J* = 22.5, 15.1, 7.6 Hz, 2.04H, Ar-O-R-CH₂-R), 1.41 – 0.95 (m, 38.32H, Ar-O-R-CH₃ and 4x t-C(CH₃)₃).

 13 C NMR (151 MHz, CDCl₃) δ 151.42, 150.57, 150.05, 149.24, 148.38, 148.12, 147.89, 147.78, 143.55, 143.13, 140.52, 133.66, 133.02, 132.07, 128.25, 128.23, 128.10, 127.87, 126.34, 125.94, 125.73, 125.70, 125.64, 125.47, 125.08, 77.22, 77.01, 76.80, 72.40, 71.91, 58.50, 34.23, 33.98, 33.92, 33.81, 33.02, 32.30, 31.98, 31.68, 31.47, 31.40, 31.26, 31.10, 18.44, 15.27, 1.02.

1. Nuclear magnetic resonance spectroscopic data

(a) p-tert-Butylcalix-[4]-arene-commerical sample

Figure 2-¹H NMR spectrum of a commercial sample of *tert*-butylcalix-[4]-arene

¹H NMR (400 MHz, CDCl₃) δ 10.34(s, 4H, 4xOH), 7.05 (s, 8H, 8xAr-H), 4.26 (d, *J* = 19.4 Hz, 3.98H, 2xAr-CH₂-Ar), 3.49 (d, *J* = 13.3 Hz, 3.91H, 2xAr-CH₂-Ar), 1.55 (s, 35.64H, 4xt-C(CH₃)₃).

Note: *dichloromethane impurities are evident in this commercial sample from the ¹H NMR.

(b) Mono-anion calixarate salts

Figure 3-¹H NMR spectrum of Tributylmethylammonium *tert*-butylcalix-4-arate salt

Figure 4-¹H NMR spectrum of Triethylmethylammonium *tert*-butylcalix-[4]-arate salt

Figure 5-13C NMR spectrum of Triethylmethylammonium tert-butylcalix-[4]-arate salt

(c) Mono-alkylations via dialkyl sulfates

Figure 6-1H NMR of methylated tert-butylcalix-[4]-arene via dimethyl sulfate

Figure 7-HSQC of methylated tert-butylcalix-[4]-arene via dimethyl sulfate

Figure 9-13C NMR of methylated tert-butylcalix-[4]-arene via dimethyl sulfate

Figure 8-¹H NMR of methylated tert-butylcalix-4-arene via dimethyl sulfate as a function of time. (600 MHz NMR CDCl₃)

Figure 10-¹H NMR of methylated *tert*-butylcalix-[4]-arene via dimethyl sulfate with a drop of D_2O

Figure 11-¹H NMR of ethylated tert-butylcalix-[4]-arene via diethyl sulfate

Figure 12-13 C NMR ethylated tert-butylcalix-[4]-arene via diethyl sulfate

Figure 13-HSQC of ethylated tert-butylcalix-[4]-arene via diethyl sulfate

Figure 14-¹H NMR of ethylated tert-butylcalix-[4]-arene via diethyl sulfate with a D_2O shake

Figure 15-¹H NMR of propylated tert-butylcalix-[4]-arene via dipropyl sulfate

Figure 16-¹H NMR of propylated *tert*-butylcalix-[4]-arene *via* dipropyl sulfate with D₂O shake

Figure 17-¹³C NMR of propylated tert-butylcalix-[4]-arene via dipropyl sulfate with D2O shake

Figure 18-HSQC of propylated tert-butylcalix-[4]-arene via dipropyl sulfate

Figure 19-¹H NMR of butylated tert-butylcalix-[4]-arene via dibutyl sulfate

Figure 20-13C NMR of butylated tert-butylcalix-[4]-arene via dibutyl sulfate

Figure 21-HSQC of butylated tert-butylcalix-[4]-arene via dibutyl sulfate

Figure 22-¹H NMR of butylated tert-butylcalix-[4]-arene via dibutyl sulfate with D_2O shake

(d) Alkylations via alkyl iodides

Figure 23-¹H NMR of methylated tert-butylcalix-[4]-arene via methyl iodide

Figure 24-13C NMR of methylated tert-butylcalix-[4]-arene via methyl iodide

Figure 25-HSQC of methylated tert-butylcalix-[4]-arene via methyl iodide

Figure 26-¹H NMR of methylated *tert*-butylcalix-[4]-arene via methyl iodide with D_2O shake

Figure 27-¹H NMR of ethylated tert-butylcalix-[4]-arene via ethyl iodide

Figure 28-13C NMR of ethylated tert-butylcalix-[4]-arene via ethyl iodide

Figure 29-¹H NMR of ethylated tert-butylcalix-[4]-arene via ethyl iodide with a D_2O shake

Figure 30-HSQC of ethylated tert-butylcalix-[4]-arene via ethyl iodide

Figure 31-¹H NMR of ethylated *tert*-butylcalix-[4]-arene via ethyl iodide with D₂O

Figure 32- ¹H NMR of propylated *tert*-butylcalix-[4]-arene via propyl iodide

Figure 33-13C NMR of propylated tert-butylcalix-[4]-arene via propyl iodide

Figure 34-HSQC of propylated tert-butylcalix-[4]-arene via propyl iodide

Figure 35-¹H NMR of propylated tert-butylcalix-[4]-arene via propyl iodide with D₂O shake

Figure 36-¹H NMR of butylated tert-butylcalix-[4]-arene via butyl iodide

Figure 37-13C NMR of butylated tert-butylcalix-[4]-arene via butyl iodide

2. Single Crystal Diffraction Data

Triethylmethylammonium tert-butylcalix-[4]-arene, $[N_{2221}]$ [TBC]

Figure 38-Structure of triethylmethylammonium tert-butyl calixarene

Figure 39-Packing of triethylmethylammonium calixarate, [N₂₂₂₁][TBC]

Table 2-Table of Structural data for trethylmethylammonium tert-butylcalixarate

Identification code	N2221CALIX
Empirical formula	C ₄₄ H ₅₅ O ₄ N
Formula weight	764.10
Temperature/K	100.01(10)
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å	15.4381(2)
b/Å	15.9969(2)
c/Å	18.31405(18)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	4522.86(9)
Z	20
$\rho_{calc}g/cm^3$	1.264
µ/mm⁻¹	0.651
F(000)	1820.0
Crystal size/mm ³	$0.168 \times 0.085 \times 0.067$
Radiation	CuKα (λ = 1.54184)
20 range for data collection/°	7.338 to 178.274
Index ranges	-20 ≤ h ≤ 20, -19 ≤ k ≤ 19, -16 ≤ l ≤ 18
Reflections collected	40528
Independent reflections	8049 [R _{int} = 0.0404, R _{sigma} = 0.0309]
Data/restraints/parameters	8049/49/525
Goodness-of-fit on F ²	1.093
Final R indexes [I>=2σ (I)]	$R_1 = 0.0608$, $wR_2 = 0.1673$
Final R indexes [all data]	$R_1 = 0.0622, wR_2 = 0.1692$
Largest diff. peak/hole / e Å ⁻³	0.48/-0.40
Flack parameter	0.05(7)

Tetrabutylmethylammonium tert-butylcalix-[4]-arene, [N₄₄₄₁] [TBC]

Figure 40: Tetrabutylmethylammonium tert-butylcalix-[4]-arene, [N₄₄₄₁] [TBC]

Table 3-Table of Structural data for tetrabutylmethylammonium tert-butylcalixarate

RW011720A_100K
$C_{64}H_{100}N_3O_4$
975.47
100.00(18)
monoclinic
P2 ₁ /c
15.3846(2)
15.7251(2)
24.2062(3)
90
105.0730(10)
90
5654.59(13)
4
1.093
0.515
2040.0
6.437 × 0.732 × 0.424
CuKα (λ = 1.54184)
7.564 to 144.524

Index ranges	-19 ≤ h ≤ 18, -19 ≤ k ≤ 19, -28 ≤ l ≤ 29
Reflections collected	54073
Independent reflections	11067 [R _{int} = 0.0387, R _{sigma} = 0.0234]
Data/restraints/parameters	11067/0/681
Goodness-of-fit on F ²	1.083
Final R indexes [I>=2σ (I)]	$R_1 = 0.0840$, $wR_2 = 0.2540$
Final R indexes [all data]	$R_1 = 0.0882$, $wR_2 = 0.2590$
Largest diff. peak/hole / e Å ⁻³	0.70/-1.10

3. Mass Spectrometry Data

Mass spectrometry data is summarised in the table below

Table 4-Mass spectrometry data for alkylated tert-butylcalix-[4]-arene

	Mass Spectrometry data									
Alkylating agent	Exact Mass	[M+H]⁺	[M+Na] ⁺	[M+NH ₄] ⁺	[M+K]+					
Me ₂ SO ₄	662.9550	663.4413		680.4679						
Et ₂ SO ₄	676.4491	677.4595	699.4402							
Pr ₂ SO ₄	691.0090	691.4727	713.4546	708.4992						
Bu ₂ SO ₄	704.4804	705.4883	727.4702	722.5140	743.4442					
Mel	662.9550	663.4413	685.4233							
Etl	676.4491	677.4570	699.4389	694.4835	715.4128					
Prl	691.0090	691.4727	713.4546	708.4992						
Bul	704.4804	705.4883	727.4702	722.5148						

Elemental Composition Report

Single Mass Analysis

Tolerance = 4.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 4

Monoisotopic Mass, Even Electron Ions 173 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-70 H: 0-150 O: 0-10 Na: 0-1 RW081704B asep_03JULY_2017_118 10 (0.468) Cm (9:14)

1: TOF MS ES+ 5.84e+005

677.4592

100									0	111.4392	2				
				663.4	423						678.4	614			
%	654 3499	659.344	1 662	2.4409	664.445 665	4 .4481 667	4468	673.3062	676.4521		68	30.469	9 681.472	0 683.4889	
0	655.0	657.5	660.0	662.5	665.0	667.5	670.0	672.5	675.0	677.5	68	80.0	682.5	685.0	m/z
Mini Maxi	.mum: .mum:			5.0	4.0	-1 50	. 5								
Mass	3	Calc. Mas	S	mDa	PPM	DBI	E	i-FIT	Form	ula					
663.	4423	663.4413 663.4448		1.0 -2.5	1.5 -3.8	16 4.5	.5 5	1166.6 9629.2	C45 C36	H59 H64	04 09	Na			

Figure 41-Mass spectrometry report for methylated tert-butylcalix-[4]-arene via methyl iodide

Figure 42-Mass spectrometry report for methylated tert-butylcalix-[4]-arene via methyl iodide [M+Na]*

Page 1

Figure 43- Mass spectrometry report for methylated tert-butylcalix-[4]-arene via methyl iodide [M+H]⁺

Figure 44- Mass spectrometry report for methylated tert-butylcalix-[4]-arene via dimethyl sulfate

Figure 45- Mass spectrometry report for methylated tert-butylcalix-[4]-arene via dimethyl sulfate [M+NH4]⁺

Figure 46- Mass spectrometry report for methylated tert-butylcalix-[4]-arene via dimethyl sulfate [M+H]⁺

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 3 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 44-48 H: 55-65 O: 2-6 RW081707A ASEP_14AUG17_008 19 (0.397)

1: TOF MS ES+
1.21e+007

Page 1

100	2) 	Record	677	.4595 0/0.	680.466	683.4632	2				
670.0	672.0 67	4.0	676.0	678.0	680.0 68	32.0 684.	.0 686.0	688.0	690.0	692.0	m/z
Minimum:				-1.5							
Max1mum:		5.0	10.0	50.0							
Mass	Calc. Mass	mDa	PPM	DBE	Formula						
677.4595	677.4570	2.5	3.7	16.5	C46 H61	04					

Figure 47- Mass spectrometry report for ethylated tert-butylcalix-[4]-arene via diethyl sulfate [M+H]*

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 3 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 44-48 H: 55-65 O: 2-6 RW081707A ASEP_14AUG17_016 54 (0.539)

RW081707A ASEP_14AUG	17_016 54 (0.539))								1: TOF MS ES-
100		e	575.4429 67	6.4438						4.30e+006
670.0	672.0	674.0	676.0	678.0	680.0	682.0	684.0	686.0	688.0	690.0 m/z
Minimum: Maximum:		5.0	10.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	Formula					
675.4429	675.4413	1.6	2.4	17.5	C46 H59 O4					

Figure 48- Mass spectrometry report for ethylated tert-butylcalix-[4]-arene via diethyl sulfate [M-H]⁻

Figure 49- Mass spectrometry report for ethylated tert-butylcalix-[4]-arene via diethyl sulfate [M+Na]*

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 4

Monoisotopic Mass, Even Electron Ions 59 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-70 H: 0-150 O: 0-6 RW0817-12 asep_03JULY_2017_127 15 (0.676) Cm (8:16)

Figure 50-Mass spectrometry report for ethylated tert-butylcalix-[4]-arene via ethyl iodide

Page 1

Figure 51- Mass spectrometry report for ethylated tert-butylcalix-[4]-arene via ethyl iodide [M+Na]⁺ and [M+K]⁺

Figure 52- Mass spectrometry report for ethylated tert-butylcalix-[4]-arene via ethyl iodide [M+NH₄]⁺ and [M+H]⁺

Figure 53- Mass spectrometry report for propylated tert-butylcalix-[4]-arene via propyl iodide, [M+Na]⁺, [M+NH₄]⁺, [M+H]⁺

Figure 54-Mass spectrometry report for propylated tert-butylcalix-[4]-arene via dipropyl sulfate, [M+Na]⁺, [M+NH4]⁺, [M+H]⁺

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 4

Monoisotopic Mass, Even Electron Ions 61 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-70 H: 0-150 O: 0-6 RW0817-14 asep__03JULY_2017_130 19 (0.856) Cm (14:21)

1: TOF MS ES+ 5.26e+004

100			7	08.4944			7	750 540	n			
%		733 692.4750	709.	709.4965 713.4548 733.5204 714.4579 734.5246				751.5430 756.5054 757.5050 771.4752 79				
0	677.4561	c00	693.4795	710	715.4606	730	735.5259	750	760	770	773.4773	m/z 790
67 Minimum: Maximum:	0 680	690	5.0	5.0	-1.5 50.0	750	140	150	100	,,,,		
Mass	Calc. Mas	s	mDa	PPM	DBE		i-FIT	For	mula			
691.4733	691.4726		0.7	1.0	16.5		10.6	C47	H63 C	04		

Figure 55-Mass spectrometry report for propylated tert-butylcalix-[4]-arene via dipropyl sulfate

Figure 56- Mass spectrometry report for butylated tert-butylcalix-[4]-arene via butyl iodide, [M+Na]*, [M+NH4]*, [M+H]*

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 4

Monoisotopic Mass, Even Electron lons 61 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-70 H: 0-150 O: 0-6 RW0817-1ILS asep_03JULY_2017_129 3 (0.138) Cm (2:8)

asep	03JULY	_2017_	129 3 (0.138) Cm (2	::8)												778	1: TC 8.5756	0F MS 2.98e	ES+ +005
%	689.588	7. 705.4861 706.4918 707.4935 9.5880 700.5569						22.5129 723.5165 727.4715 729.4743			761. 743.4435 751.4544			761.5	.5480 762.5536 763.5555 765.5538		779.5800 783.5349		m/z		
68	5 690	695	700	705	710	715	720	725	730	735	740	745	750	755	760	765	770	775	780	785	
Minim Maxim	um: um:				5.(D	5.0	0	-1 50	.5											
Mass		Calc. Mass			mDa PP			М	DBE		i-FIT		Formula		ula						
705.4	861	705.	4883		-2	. 2	-3	.1	16	.5	14	8.0		C48	Н65	04					

Figure 57-Mass spectrometry report for butylated tert-butylcalix-[4]-arene via butyl iodide

Figure 58-Mass spectrometry report for butylated *tert*-butylcalix-[4]-arene *via* dibutyl sulfate, $[M+K]^+$, $[M+Na]^+$, $[M+H_4]^+$, $[M+H]^+$

Elemental Composition Report

Single Mass Analysis

100

%

0

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 4

Monoisotopic Mass, Even Electron lons 61 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-70 H: 0-150 O: 0-6 RW0817-08 asep_03JULY_2017_128 6 (0.283) Cm (6:8)

705.4869 761.5474 783.5286 799.5037 722.5125 743.4431 800.5055 805.5941 860.6484 834.6324 862.6642 890.6962 668.6215 807.6073 640.5862 840 880 720 740 780 800 860 620 640 660 680 700 760 820

Minimum: Maximum:		5.0	5.0	-1.5 50.0		
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula
705.4869	705.4883	-1.4	-2.0	16.5	6.3	C48 H65 O4

Figure 59- Mass spectrometry report for butylated tert-butylcalix-[4]-arene via dibutylsulfate

1: TOF MS ES+ 6.78e+003

m/z

900