Enantioselective Acyl-transfer Catalysis by Fluoride ion
Ryan P. Craig, Mili Litvajova, Sarah A. Cronin and Stephen J. Connon*
Centre for Synthesis and Chemical Biology, Trinity Biomedical Sciences Institute, School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland
Table of Contents
General 2
Catalyst Synthesis 3
General procedure I: 7
General procedure II: 7
General procedure III: 8
General procedure IV: 8
Synthesis of hemiesters 15-and 43-49 9
NMR Spectra 14
Determination of enantiomeric excess by NMR 29
Nucleophilic catalysis: proof of concept 45
Benzoyl fluoride formation: ${ }^{19}$ F NMR spectroscopic analysis 47
Control reactions of different meso-anhydrides in the absence of PTC 51
Varying amounts of KF and MeOH in an attempt to obviate the background reaction 52
References 53

General

Proton Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker DPX 400 MHz and Bruker Avance II 600 MHz spectrometers, using as solvent CDCl_{3}, DMSO- d_{6} or $\mathrm{D}_{2} \mathrm{O}$ and referenced relative to residual $\mathrm{CHCl}_{3}(\delta=7.26 \mathrm{ppm})$ DMSO ($\delta=2.50 \mathrm{ppm}$) or $\mathrm{H}_{2} \mathrm{O}(\delta=4.79$ ppm). Chemical shifts are reported in ppm and coupling constants (J) in Hertz. Carbon NMR spectra were recorded on the same instruments (100.6 MHz and 150.9 MHz respectively) with total proton decoupling. Fluorine NMR spectra were recorded on the Bruker DPX400 machine (376.5 MHz). HSQC and HMBC, NMR experiments were used to aid assignment of NMR peaks when required. All melting points are uncorrected. Infrared spectra were obtained on a Perkin Elmer Spectrum 100 FT-IR spectrometer equipped with a universal ATR sampling accessory. ESI mass spectra were acquired using a Waters Micromass LCTtime of flight mass spectrometer (TOF), interfaced to a Waters 2690 HPLC. The instrument was operated in positive or negative mode as required. EI mass spectra were acquired using a GCT Premier Micromass time of flight mass spectrometer (TOF). The instrument was operated in positive mode. Chemical Ionization (CI) mass spectra were determined using a GCT Premier Micromass mass spectrometer in CI mode utilising methane as the ionisation gas. APCI experiments were carried out on a Bruker microTOF-Q III spectrometer interfaced to a Dionex UltiMate 3000 LC or direct insertion probe. The instrument was operated in positive or negative mode as required. Agilent tuning mix APCI-TOF was used to calibrate the system. Flash chromatography was carried out using silica gel, particle size 0.04-0.063 mm . TLC analysis was performed on precoated $60 \mathrm{~F}_{254}$ slides, and visualized by UV irradiation and KMnO_{4} staining. Optical rotation measurements are quoted in units of 10^{-1} deg cm ${ }^{2} \mathrm{~g}^{-1}$. Anhydrous dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, tetrahydrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were obtained by using Pure Solv MD-4EN Solvent Purification System. Commercially available anhydrous t-butyl methyl ether (MTBE) and methanol (MeOH) were used.

Catalyst Synthesis

(R)-(6-Methoxy-2-phenylquinolin-4-yl)((2S,4S,8R)-8-vinylquinuclidin-2-yl)methanol (SM1)

An oven dried 500 mL round-bottomed flask containing a large stirring bar was charged with quinine ($6.50 \mathrm{~g}, 20.03 \mathrm{mmol}$) fitted with a septum and placed under an argon atmosphere. Anhydrous MTBE (120 mL) was added via syringe and the suspension was cooled to $-10{ }^{\circ} \mathrm{C}$. A solution of phenyl lithium (1.8 M in THF, $34.0 \mathrm{~mL}, 61.20 \mathrm{mmol}$) was added via syringe in two equal portions to the vigorously stirred suspension and the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 30 min then warmed to room temperature and stirred for 2 h . Acetic acid (15 mL) was added dropwise via syringe to the reaction at $0^{\circ} \mathrm{C}$, followed by $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and EtOAc $(50 \mathrm{~mL})$. The reaction was let warm to room temperature, then solid iodine was added in several portions to the vigorously stirred mixture until the appearance of a persistent deep brown coloration. A solution of sodium thiosulfate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, 3.00 \mathrm{~g}\right)$ in water $(50 \mathrm{~mL})$ was added, followed by a concentrated solution of aqueous ammonia ($35 \%, 30 \mathrm{~mL}$) and the mixture was stirred vigorously for 10 min . The organic phase was washed with brine and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$, the combined organic extracts were dried over MgSO_{4}, filtered and the solvent removed in vacuo. The crude oily residue was purified by column chromatography eluting with (8:1:0.5:0.5 $\mathrm{Hex} / \mathrm{EtOAc}^{2} \mathrm{MeOH} / \mathrm{NEt}_{3}$), (TLC is better visualised using 7:1:1.5:0.5 $\mathrm{Hex} / \mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{NEt}_{3}$) which allows for a better separation of the product from the starting alkaloid) to obtain SM1 (4.30 g, 54\%) as a white amorphous solid. M.p $146-150{ }^{\circ} \mathrm{C}\left(\right.$ lit.,$\left.{ }^{1} 145-147{ }^{\circ} \mathrm{C}\right) .[\alpha]_{\mathrm{D}}{ }^{20}=-18.7\left(c 0.25, \mathrm{CHCl}_{3}\right)$. Spectral data for this compound were consistent with those in the literature. ${ }^{1}$

$$
\begin{array}{ll}
\delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 8.08-8.01(3 \mathrm{H}, \mathrm{~m}, \mathrm{H}-15, \mathrm{H}-17), 7.94(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-16), 7.50-7.42(3 \\
& \mathrm{H}, \mathrm{~m}, \mathrm{H}-14, \mathrm{H}-18, \mathrm{H}-19), 7.33(1 \mathrm{H}, \mathrm{dd}, J 9.3,2.5, \mathrm{H}-14), 7.17(1 \\
& \mathrm{H}, \mathrm{~d}, J 2.5, \mathrm{H}-12), 5.74(1 \mathrm{H}, \mathrm{ddd}, J 7.7,10.2,17.6, \mathrm{H}-10), 5.56(1 \\
& \mathrm{H}, \mathrm{~d}, J 3.1, \mathrm{H}-9), 4.99-4.91(2 \mathrm{H}, \mathrm{~m}, \mathrm{H}-11), 3.90(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-13),
\end{array}
$$

(S)-[6-Methoxy-2-phenylquinolin-4-yl][(2S,4S,8R)-8-vinylquinuclidin-2-

 yl]methanamine (SM2)

An oven dried 250 mL round-bottomed flask containing a stirring bar was charged with SM1 $(4.05 \mathrm{~g}, 10.11 \mathrm{mmol}), \mathrm{PPh}_{3}(3.18 \mathrm{~g}, 12.12 \mathrm{mmol})$, and placed under an argon atmosphere. Anhydrous THF (65 mL) was added via syringe and the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$. Diisopropyl azodicarboxylate (DIAD) ($2.4 \mathrm{~mL}, 12.19 \mathrm{mmol}$) and diphenylphosphoryl azide (DPPA) ($2.6 \mathrm{~mL}, 12.11 \mathrm{mmol}$) were added dropwise via syringe with the resulting mixture warmed to room temperature and stirred for 16 h , then heated at reflux temperature for 2 h . The so-formed azido species was reduced in situ via a Staudinger reduction: the reaction mixture was cooled to room temperature, $\mathrm{PPh}_{3}(3.18 \mathrm{~g}, 12.12 \mathrm{mmol})$, was added and the solution was heated at reflux temperature for 5 hours. After cooling the reaction to room temperature, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the reaction was stirred at room temperature for 20 h , followed by concentration in vacuo with the resulting residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. A 2.0 M aqueous solution of HCl $(30 \mathrm{~mL})$ was added, the aqueous phase was separated and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The aqueous layer was then concentrated under reduced pressure to obtain the hydrochloride salt SM2a $(4.12 \mathrm{~g}, 80 \%)$ of the 9 - epi-amine-derivative of the quinine-derived alkaloid as pale yellow salts.

The 9-epi-quinine-derived alkaloids bearing an amino group at C-9 could be generated by dissolving the relative hydrochloride salt in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The basic aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$, the organic extracts were dried over MgSO_{4}, filtered and the solvent removed in vacuo to obtain the relevant
free amine base in quantitative yields. The isolated compound exhibited identical spectroscopic data to those reported in the literature. ${ }^{2}[\alpha]_{\mathrm{D}}{ }^{20}=+26.4\left(c 0.25, \mathrm{CHCl}_{3}\right)$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.17(2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}-17), 8.12(1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{H}-15), 7.98(1 \mathrm{H}, \mathrm{bs}$, H-16), $7.70(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-12)$, 7.51 (2 H , app. t, H-18), $7.47(1 \mathrm{H}, \mathrm{t}$, $J 7.4 \mathrm{H}-19), 7.42$ ($1 \mathrm{H}, \mathrm{dd}, J 2.7,9.4, \mathrm{H}-14$), 5.79 (1 H , ddd, $J 7.8$, 10.1, 17.0, H-10), 5.10-4.87 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$), $4.65(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-9)$, 3.97 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$), 3.38-3.06 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-2 \mathrm{~b}$), 2.912.74 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}$), 2.34-2.24 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 2.08 ($2 \mathrm{H}, \mathrm{bs}$, NH_{2}), 1.69-1.52 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-5 \mathrm{a}, \mathrm{H}-5 \mathrm{~b}$), 1.49-1.34 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 7b), 0.92-0.78 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a}$)

HRMS (m / z-ESI): Found $400.2392\left(M+H\right.$ calculated for $\left.\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}: 400.2389\right)$

1-(3,5-bis(trifluoromethyl)phenyl)-3-((S)-(6-methoxy-2-phenylquinolin-4-yl) ((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)urea (SM3)

A 250 mL round-bottomed flask containing a magnetic stirrer was charged with SM2a (2.00 $\mathrm{g}, 3.93 \mathrm{mmol}$), flushed with argon, then placed under a protective argon atmosphere. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(35 \mathrm{~mL})$ was added via syringe and the reaction mixture was cooled in an ice-bath. NEt_{3} (2.75 $\mathrm{mL}, 19.65 \mathrm{mmol}$) was added dropwise via syringe and the resultant mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$. After 30 min 3,5-bis-(trifluoromethyl)phenyl isocyanate ($815 \mu \mathrm{~L}, 4.71 \mathrm{mmol}$) was added via syringe and the reaction stirred at $0^{\circ} \mathrm{C}$, then warmed to room temperature. After 16 h , the reaction mixture was filtered and the liquids concentrated in vacuo. The crude residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1\right)$, to yield $\mathbf{S M 3}$ as a white solid (1.70 g, $66 \%)$. M.p. $150-152{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{22}=+66.9\left(c 0.2, \mathrm{CHCl}_{3}\right)$.

$\delta_{\text {H }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	8.79 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-23$), 8.19-8.14 (3H, m, H-15, H-17), 7.93 ($1 \mathrm{H}, \mathrm{bs}$, H-21), 7.78-7.75 (3H, m, H-16, H-20), 7.53-7.43 (4H, m, H-14, $\mathrm{H}-18, \mathrm{H}-19), 7.34(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-12), 6.98$ ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-9$), $5.83(1 \mathrm{H}$, bs, H-22), 5.64-5.53 (1H, m, H-10), 4.99-4.96 (2H, m, H-11), 4.00 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$), 3.83-3.64 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-6 \mathrm{~b}$), 3.21 (1 H , app. t, H2b), 2.81-2.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-2 \mathrm{a}$), 2.42 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-3$), 1.84-1.77 (4H, m, H-5a, H-5b, H-4), 1.12 (1H, bs, H-7a)
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	$\begin{aligned} & 158.5(\mathrm{q}), 154.7(\mathrm{q}), 154.6(\mathrm{q}), 145.0(\mathrm{q}), 144.0(\mathrm{q}), 140.7(\mathrm{q}), \\ & 139.3,138.6(\mathrm{q}), 132.3,131.7\left(\mathrm{q}, J_{C-F} 32.6\right), 129.3,128.9, \\ & 127.3,123.2\left(\mathrm{q}, J_{C-F} 272.9\right), 122.5,118.1,116.3,115.4,101.7, \\ & 60.3,55.9,55.0,53.5,50.0,41.4,37.8,29.7,26.8,26.1,25.8 \end{aligned}$
$\delta_{\mathrm{F}}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	-63.1
$v_{\text {max }}\left(\right.$ neat $/$ / cm^{-1} :	$\begin{aligned} & 2988,1670,1632,1550,1473,1386,1348,1272,1223,1172 \text {, } \\ & 1129,1009,876,830 . \end{aligned}$
HRMS (m / z-ESI)	Found $653.2378\left(M-H\right.$: calculated for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~F}_{6}$: 653.2356)

(1S,2S,4S,5R)-2-((S)-(3-(3,5-bis(trifluoromethyl)phenyl)ureido)(6-methoxy-2-

 phenylquinolin-4-yl)methyl)-1-(3-fluoro-4-nitrobenzyl)-5-vinylquinuclidin-1-ium bromide (13)

A 10 mL round-bottomed flask containing a stirring bar was charged with a bifunctional cinchona alkaloid derivative SM3 ($300.0 \mathrm{mg}, 0.458 \mathrm{mmol}$, 1.0 equiv.), 3-fluoro-4-nitrobenzyl bromide ($129.0 \mathrm{mg}, 0.550 \mathrm{mmol}, 1.2$ equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.6 \mathrm{~mL}, 0.1 \mathrm{M})$. The reaction mixture was stirred for 3 days at room temperature. Upon completion of the reaction (TLC),
the solvent was removed in vacuo and the crude residue was purified by column chromatography on silica gel (eluting gradient from $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $97: 3 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$, TLC is better visualised using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1, \mathrm{R}_{\mathrm{f}}=0.4$). Precipitation from $\mathrm{Et}_{2} \mathrm{O}$ afforded 13 (228 mg, 56\%) as an off-white amorphous solid. M.p. $179-182{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $+121.7\left(c=0.2, \mathrm{CHCl}_{3}\right)$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \quad 9.60\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, N \mathrm{H}^{1}\right), 8.33-8.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-18, \mathrm{H}-17, \mathrm{H}-25$ and H-24), 8.10 (d, $1 \mathrm{H}, J 9.2, \mathrm{H}-15$), 8.04-8.01 (m, $3 \mathrm{H}, \mathrm{H}-21$ and H-26), 7.82 (app. dd, $1 \mathrm{H}, \mathrm{H}-14$), $7.65-7.51$ (m, $6 \mathrm{H}, \mathrm{H}-19$, H20, H-12, H-22 and $N \mathrm{H}^{2}$), 6.31-6.26 (m, $\left.1 \mathrm{H}, \mathrm{H}-9\right), 5.90-5.82$ (m, $1 \mathrm{H}, \mathrm{H}-10$), 5.27-5.01 (m, 5 H, H-23a, H-23b, H-11 and H8), 4.38-4.32 (m, 1 H, H-6a), 4.04 (s, $3 \mathrm{H}, \mathrm{H}-13$), 3.79-3.74 (m, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 3.62-3.53 (m, $2 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$ and H-6b), 2.78-2.72 (m, 1 H, H-3), 2.15-1.94 (m, 4 H, H-5a, H-5b, H-7b and H-4), 1.241.21 (m, $1 \mathrm{H}, \mathrm{H}-7 \mathrm{a})$

Note: ${ }^{1} \mathrm{H}$ NMR spectrum was recorded at $60^{\circ} \mathrm{C}$ to yield better defined resonances.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \quad 158.6(\mathrm{C}=\mathrm{O}), 155.5(\mathrm{q}), 154.9(\mathrm{q}), 154.3(\mathrm{q}), 153.8(\mathrm{q}), 144.9$ (q), 144.7 (q), 142.0 (q), 139.0, 138.4 (d, $J_{\text {C-F }} 7.8$) (q), 137.4, 136.8 (d, $J_{\text {C-F }} 8.4$ (q), 132.5, 131.2 (d, $J_{\text {C-F }} 2.3$) (q), 131.1 (q, $J_{\text {C-F }} 32.4$) (q), 130.1, 129.4, 127.6, 127.0, 126.5, 124.1 (d, $J_{\text {C-F }}$ $21.1), 123.6$ (q, $J_{\text {C-F }} 272.6$) (q), 122.8, 118.4, 117.8 (d, $J_{\text {C-F }}$ 14.4), 115.1, 102.5, 66.4, 63.8, 61.2, 56.1, 50.8, 50.3, 37.4, 27.2, 26.2, 24.7
$\delta_{\mathrm{F}}\left(376 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \quad-61.8\left(\mathrm{CF}_{3}\right),-118.7(\mathrm{~F})$
$v_{\max }$ (neat)/ $\mathrm{cm}^{-1}: \quad 3003,1707,1621,1534,1278,1179,1128,1030,882,828,651$
HRMS (m / z - APCI): \quad Found: $808.2734[\mathrm{M}]^{+} \mathrm{C}_{42} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~F}_{7}$ Requires: 808.2728

General procedure I: Desymmetrisation of meso anhydrides - Racemate preparation

An oven-dried 10 mL round-bottomed flask was charged with (100 mg) of the requisite anhydride and tetrabutylammonium fluoride ($10 \mathrm{~mol} \%$, 1.0 M THF). The flask was fitted with a septum, evacuated via Schlenk techniques, then placed under an atmosphere of argon via balloon. THF (0.1 M) was added, followed by dry MeOH (3.04 mmol). The septum was
replaced with a glass stopper under a flow of argon and the reaction was left stirring at room temperature for 48 h . Conversion was determined via ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis.

General procedure II: Desymmetrisation of meso anhydride 14 - catalyst evaluation

 (Table 2)

An oven-dried 5 mL round-bottomed flask was charged with cis norbornene-5,6-endodicarboxylic anhydride (14), (50 mg 0.304 mmol), the requisite catalyst ($0.015 \mathrm{mmol}-5 \mathrm{~mol}$ $\%$) and potassium fluoride (2.65 mg 0.046 mmol). The flask was fitted with a septum, evacuated using Schlenk techniques, and then placed under an atmosphere of argon via balloon. THF (0.1 M) was added to the flask followed by dry $\mathrm{MeOH}(61.5 \mu \mathrm{~L}, 1.52 \mathrm{mmol})$. The septum was replaced with a glass stopper under a flow of argon and the reaction was left stirring at room temperature for 48 h . Conversion was determined via ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. Pyrrolidine (mmol calculated on unreacted starting material) was added to quench any remaining starting material and the resulting mixture was stirred for 1 h . The solvent was removed in vacuo and the crude residue purified via column chromatography eluting from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 19:1 to afford pure compound 15.

General procedure III: Desymmetrisation of meso-anhydrides - Anhydride evaluation (Table 3)

An oven-dried 5 mL round-bottomed flask was charged with the requisite anhydride, (50 mg $0 . \mathrm{X} \mathrm{mmol}$), catalyst $13(0.015 \mathrm{mmol}-5 \mathrm{~mol} \%$) and potassium fluoride (2.65 mg 0.046 $\mathrm{mmol})$. The flask was fitted with a septum, evacuated using Schlenk techniques, and then placed under an atmosphere of argon via balloon. THF ($3 \mathrm{~mL}, 0.1 \mathrm{M}$) was added to the flask followed by dry $\mathrm{MeOH}(61.5 \mu \mathrm{~L}, 1.52 \mathrm{mmol})$. The septum was replaced with a glass stopper under a flow of argon and the reaction stirred at room temperature for 72 h . Conversion was determined via ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. Pyrrolidine (1.0 equiv.) was added and the reaction was let stir for 1 h , then concentrated in vacuo to yield a crude residue purified by column chromatography eluting from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 19: 1$ to furnish the desired hemiester.

The resulting hemiester was further functionalised according to general procedure IX to ascertain product $e e$.

General procedure IV: Determination of the enantiomeric excess of hemiesters from

 Table 3 by derivatisation

The requisite hemiesters 15 and 43-49 (1.0 equiv.) were placed in a 5 mL round bottomedflask with DCC (1.1 equiv.) and DMAP ($10 \mathrm{~mol} \%$). The flask was fitted with a septum, evacuated using Schlenk techniques, and then placed under an atmosphere of argon via balloon. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ was added via syringe followed by the chiral amine SM4 (1.0 equiv.). The reaction was left stirring for 12 h at rt then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, filtered under gravity and purified via preparative TLC eluting from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{EtOAc}(5: 1)$.

Synthesis of hemiesters 15-and 43-49

Bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid monomethyl ester (15)

Prepared according to general procedure III using cis norbornene-5 6-endo-dicarboxylic anhydride (14), (50 mg 0.304 mmol). The desired monomethyl ester $\mathbf{1 5}$ was obtained as a white solid after purification by flash chromatography ($50 \mathrm{mg}, 84 \%$). M.p. $76-78{ }^{\circ} \mathrm{C}$; (lit., ${ }^{3}$ $\left.75-78^{\circ} \mathrm{C}\right) .[\alpha]_{\mathrm{D}}{ }^{20}=+2.34\left(c 0.13, \mathrm{CHCl}_{3}\right) ;$ lit.,,$^{3}[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}=-7.4\left(c 1.53, \mathrm{CCl}_{4}\right)$.

Spectral data for this compound were consistent with those in the literature. ${ }^{3}$
61% ee was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the corresponding amide ester diastereoisomeric mixture prepared as in General procedure IV.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 6.36(1 \mathrm{H}, \mathrm{dd}, J 5.5,3.0, \mathrm{H}-4), 6.24(1 \mathrm{H}, \mathrm{dd}, J 5.5,3.0, \mathrm{H}-5)$, 3.62 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$), 3.37 ($1 \mathrm{H}, \mathrm{dd}, J 10.0,3.0, \mathrm{H}-7$), 3.31 (1 H , dd,

$$
\begin{aligned}
& J \text { 10.0, 3.0, H-2), 3.15-3.28 (2H, m, H-3, H-6), } 1.52(1 \mathrm{H}, \text { app. } \\
& \text { dt, H-8b), } 1.36(1 \mathrm{H}, \text { app. br d, H-8a). }
\end{aligned}
$$

Bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid monomethyl ester (43)

Prepared according to general procedure III using cis norbornene-5 6-exo-dicarboxylic anhydride, (50 mg 0.304 mmol). The desired monomethyl ester $\mathbf{4 3}$ was obtained as a white solid after purification by flash chromatography ($57 \mathrm{mg}, 95 \%$). M.p. $73{ }^{\circ} \mathrm{C}$; (lit., ${ }^{4} 75-78{ }^{\circ} \mathrm{C}$). $[\alpha]_{\mathrm{D}}{ }^{20}=+3.25\left(c 0.25, \mathrm{CHCl}_{3}\right) ;$ lit. ${ }^{4}[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}=+7.7\left(c 1.0, \mathrm{CCl}_{4}\right)$

Spectral data for this compound were consistent with those in the literature. ${ }^{4}$
44% ee was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the corresponding amide ester diastereoisomeric mixture prepared as in general procedure IV.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 6.24-6.21(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-5), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 3.15-3.10(2 \mathrm{H}$, m, H-7, H-2), 2.68-2.63 (2H, m, H-3, H-6), 2.10 ($1 \mathrm{H}, \mathrm{d}, J 9.1$, H-8b), 1.51 (1 H , app. dt, H-8a)

7-oxa-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid monomethyl ester (44)

Prepared according to general procedure III using exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride, (50 mg 0.301 mmol). The desired monomethyl ester 44 was obtained as a white solid after purification by flash chromatography ($42 \mathrm{mg}, 83 \%$). M.p. $111-112{ }^{\circ} \mathrm{C}$; (lit., ${ }^{3} 111$ $\left.{ }^{\circ} \mathrm{C}\right) .[\alpha]_{\mathrm{D}}{ }^{20}=-8.32(c 0.30, \mathrm{MeOH})$; (opposite enantiomer formed to literature citation) lit. ${ }^{3}$ $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}=+8.7(c 1.08, \mathrm{MeOH})$

Spectral data for this compound were consistent with those in the literature. ${ }^{3}$
31% ee was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the corresponding amide ester diastereoisomeric mixture prepared as in general procedure IV.

$$
\begin{array}{ll}
\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad & 6.49-6.45(2 \mathrm{H}, \mathrm{~m}, \mathrm{H}-4, \mathrm{H}-5), 5.31-5.26(2 \mathrm{H}, \mathrm{~m}, \mathrm{H}-3, \mathrm{H}-6), 3.71 \\
& (3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-1), 2.90(1 \mathrm{H}, \mathrm{~d}, J 9.0, \mathrm{H}-7), 2.84(1 \mathrm{H}, \mathrm{~d}, J 9.0, \mathrm{H}-2)
\end{array}
$$

Cyclohex-4-ene-1,2-dicarboxylic acid monomethyl ester (45)

Prepared according to general procedure III using cis-1, 2, 3, 6-tetrahydrophthalic anhydride, (50 mg 0.328 mmol). The desired monomethyl ester $\mathbf{4 5}$ was obtained as a colourless oil after purification by flash chromatography ($53 \mathrm{mg}, 88 \%$). $[\alpha]_{\mathrm{D}}{ }^{20}=+4.68$ (c $0.18, \mathrm{CHCl}_{3}$); (opposite enantiomer formed to literature citation) lit. ${ }^{3}[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}=-4.9\left(c 1.50, \mathrm{CHCl}_{3}\right)$

Spectral data for this compound were consistent with those in the literature. ${ }^{3}$
51% ee was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the corresponding amide ester diastereoisomeric mixture prepared as in general procedure IV.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 5.69(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-4, \mathrm{H}-5), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 3.10-3.04(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 2, H-7), 2.61-2.55 (2H, m, H-6b, H-3b), 2.41-2.33 (2H, m, H6a, H-3a)

Cyclopropane-1, 2-dicarboxylic acid monomethyl ester (46)

Prepared according to general procedure III using 3-oxabicyclo[3.1.0]hexane-2,4-dione, (50 $\mathrm{mg}, 0.446 \mathrm{mmol})$. The desired monomethyl ester 46 was obtained as a colourless oil after purification by flash chromatography ($63 \mathrm{mg}, 98 \%$). $[\alpha]_{\mathrm{D}}{ }^{20}=+4.42$ (c $0.13, \mathrm{CHCl}_{3}$); (opposite enantiomer formed to literature citation) lit. $^{3}[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}=-10.0\left(\right.$ c 1.71, $\left.\mathrm{CHCl}_{3}\right)$

Spectral data for this compound were consistent with those in the literature. ${ }^{3}$

54\% ee was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the corresponding amide ester diastereoisomeric mixture prepared as in general procedure IV.

$$
\begin{array}{ll}
\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 5.65(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 3.72(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-1), 2.16-2.05(2 \mathrm{H}, \mathrm{~m}, \mathrm{H}-2, \mathrm{H}- \\
& 3), 1.71-1.67(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-4 \mathrm{a}), 1.36-1.30(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-4 \mathrm{~b})
\end{array}
$$

2,2-dimethylcyclopropane-1-dicarboxylic acid monomethyl ester (47)

Prepared according to general procedure III using 6,6-dimethyl-3-oxabicyclo[3.1.0]hexane-2,4-dione ($50 \mathrm{mg}, 0.357 \mathrm{mmol}$). The desired monomethyl ester 47 was obtained as a colourless oil after purification by flash chromatography. ($58 \mathrm{mg}, 94 \%$) $[\alpha]_{\mathrm{D}}{ }^{20}=-3.91$ (c $\left.0.17, \mathrm{CHCl}_{3}\right) ;$ lit. $^{4}[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}=-19.0(c 4.08, \mathrm{MeOH})$

Spectral data for this compound were consistent with those in the literature. ${ }^{4}$
39% ee was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the corresponding amide ester diastereoisomeric mixture prepared as in general procedure IV.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 3.71-3.69(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 1.96-1.91(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3), 1.37(3 \mathrm{H}$, s, H-4), 1.25 (3H, s, H-5)

3-methyl-pentanedioic acid monomethyl ester (48)

Prepared according to general procedure III using 3-methylglutaric anhydride, ($50 \mathrm{mg}, 0.390$ $\mathrm{mmol})$. The desired monomethyl ester 48 was obtained as a colourless oil after purification by flash chromatography. ($37 \mathrm{mg}, 88 \%$)

Spectral data for this compound were consistent with those in the literature. ${ }^{3}$
6% ee was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the corresponding amide ester diastereoisomeric mixture prepared as in general procedure IV.

$$
\begin{aligned}
\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 3.67(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-1), 2.51-2.38(3 \mathrm{H}, \mathrm{~m}, \mathrm{H}-3, \mathrm{H}-4 \mathrm{~b}, \mathrm{H}-2 \mathrm{~b}), 2.31- \\
& 2.24(2 \mathrm{H}, \mathrm{~m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-2 \mathrm{a}), 1.05(3 \mathrm{H}, \mathrm{~d}, J 6.5, \mathrm{H}-5)
\end{aligned}
$$

3-phenyl-pentanedioic acid monomethyl ester (49)

Prepared according to general procedure III using 3-phenylglutaric anhydride, ($50 \mathrm{mg}, 0.263$ $\mathrm{mmol})$. The desired monomethyl ester 49 was obtained and as a white solid after purification by flash chromatography. ($55 \mathrm{mg}, 94 \%$). M.p. $93-95^{\circ} \mathrm{C}$; (lit., ${ }^{5} 93-95^{\circ} \mathrm{C}$).

Spectral data for this compound were consistent with those in the literature. ${ }^{3}$
0% ee was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the corresponding amide ester diastereoisomeric mixture prepared as in general procedure IV.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.32-7.21(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7), 3.65-3.59(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-3)$, 2.81-2.62 (4H, m, H-2a, H-2b, H-4a, H-4b)

NMR Spectra

(R)-(6-Methoxy-2-phenylquinolin-4-yl)((2S,4S,8R)-8-vinylquinuclidin-2-yl)methanol (SM1)

1-(3,5-bis(trifluoromethyl)phenyl)-3-((S)-(6-methoxy-2-phenylquinolin-4-yl) ((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)urea (SM3)

(
(1S,2S,4S,5R)-2-((S)-(3-(3,5-bis(trifluoromethyl)phenyl)ureido)(6-methoxy-2-phenylquinolin-4-yl)methyl)-1-(3-fluoro-4-nitrobenzyl)-vinylquinuclidin-1-ium bromide (13)

3-phenyl-pentanedioic acid monomethyl ester (49)

Cyclopropane-1, 2-dicarboxylic acid monomethyl ester (46)
rpc966-char

1

Cyclohex-4-ene-1,2-dicarboxylic acid monomethyl ester (45)

Bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid monomethyl ester (43)

2,2-dimethylcyclopropane-1-dicarboxylic acid monomethyl ester (47)

3-methyl-pentanedioic acid monomethyl ester (48)

7-oxa-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid monomethyl ester (44)

Bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid monomethyl ester (15)

Determination of enantiomeric excess by NMR spectroscopy

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after hemiester derivatisation $\left(\mathrm{CDCl}_{3}\right)$. (Table 3, entry $\left.1,61 \% e e\right)$

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after derivatisation of the racemic hemiester $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after hemiester derivatisation $\left(\mathrm{CDCl}_{3}\right)$. (Table 3, entry $\left.2,44 \% e e\right)$

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after derivatisation of the racemic hemiester $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after hemiester derivatisation $\left(\mathrm{CDCl}_{3}\right)$. (Table 3, entry $\left.4,51 \% e e\right)$

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after derivatisation of the racemic hemiester $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after hemiester derivatisation $\left(\mathrm{CDCl}_{3}\right)$. (Table 3, entry $\left.5,54 \% e e\right)$

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after derivatisation of the racemic hemiester $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after hemiester derivatisation $\left(\mathrm{CDCl}_{3}\right)$. (Table 3, entry $\left.6,39 \% e e\right)$

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after derivatisation of the racemic hemiester $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after hemiester derivatisation $\left(\mathrm{CDCl}_{3}\right)$. (Table 3, entry 7, 6\% ee)

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after derivatisation of the racemic hemiester $\left(\mathrm{CDCl}_{3}\right)$

```
SCR-RPC1045-2
```


${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after hemiester derivatisation $\left(\mathrm{CDCl}_{3}\right)$. (Table 3, entry 3, 33\% ee)

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after derivatisation of the racemic hemiester $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after hemiester derivatisation $\left(\mathrm{CDCl}_{3}\right)$. (Table 3, entry $\left.8,0 \% e e\right)$

${ }^{1} \mathrm{H}$ NMR of the diastereoisomeric mixture after derivatisation of the racemic hemiester $\left(\mathrm{CDCl}_{3}\right)$

Nucleophilic catalysis: proof of concept

We elected to use benzoic anhydride (50) as a model compound. Attack on its acyl centre by fluoride would generate benzoyl fluoride (53, Scheme 1); a known compound, the existence of which in situ could be identified by spectroscopic methods.

Scheme 1 Generation of benzoyl fluoride by nucleophilic attack of fluoride on benzoic anhydride.

To mimic the reaction conditions utilised in Table 2, a catalytic amount of KF would be required in the presence of a chiral bifunctional phase-transfer catalyst (Scheme 2).

Scheme 2 Experiment designed to detect the acyl fluoride intermediate under catalytically relevant conditions.

Figure 1 Observation of benzoyl fluoride in the ${ }^{19} \mathrm{~F}$ NMR spectrum of reactions both with (A) and without (B) methanol.

The reaction was carried out with and without MeOH , and in both instances the characteristic fluorine resonance at $\sim 17.9 \mathrm{ppm}$ was observed albeit at lower levels using five equivalents of

MeOH . This was to be expected as methanol solvates the fluoride anion, thereby decreasing its nucleophilicity (Figure 1) and also destroys the acyl fluoride by methanolysis.

The same reaction, devoid of both phase-transfer catalyst and methanol, failed to produce any acyl fluoride. The reaction was also attempted using TBAB, to ascertain the importance of the hydrogen bond-donating subunit in catalysts such as 13. Acyl fluoride formation was detected, albeit in very small amounts ($<2 \%$), which suggested that the catalyst's hydrogen bond donating moieties may assist in the phase transfer of fluoride ion.

Theoretically, the maximum amount of benzoyl fluoride capable of forming in solution was 15% (as $15 \mathrm{~mol} \%$ of KF was employed). The reaction below was carried out and samples were taken periodically and analysed by ${ }^{19} \mathrm{~F}$ NMR spectroscopic techniques (using one equivalent of fluorobenzene as the internal standard). The results were conclusive: with 15% of benzoyl fluoride formed after 265 min , with no further change after 12 h reaction (Figure).

Figure 2 Formation of benzoyl fluoride over a 12 h period.

Benzoyl fluoride formation: ${ }^{19}$ F NMR spectroscopic analysis ($\mathrm{t}=265 \mathrm{~min}$)

${ }^{19} \mathrm{~F}$ NMR spectroscopic analysis $(\mathrm{t}=70 \mathrm{~min})$

Control reactions of different meso-anhydrides in the absence of PTC
entry

[^0]Varying amounts of KF and MeOH in an attempt to obviate the background reaction.

entry	time (h)	loading (x)	MeOH (y)	conv. (\%) ${ }^{\mathbf{a}}$
1	24	15	1	30
2	24	5	5	71
3	24	5	1	48
4	18	1	1	42
5	18	0	5	24

${ }^{\text {a }}$ Conversion determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

References

1. C. Cornaggia, F. Manoni, E. Torrente, S. Tallon and S. J. Connon, Org. Lett., 2012, 14, 1850-1853.
2. A. Lee, C. M. Reisinger and B. List, Adv. Synth. Catal., 2012, 354, 1701-1706
3. A. Peschiulli, Y. Gunko and S. J. Connon, J. Org. Chem., 2008, 73, 2454-2457
4. C. Bolm, I. Schiffers, C. L. Dinter and A. Gerlach, J. Org. Chem., 2000, 65, 69846991.
5. J. A. K. Peter E. Reed, J. Med. Chem., 1991, 34, 1162-1176.

[^0]: ${ }^{\text {a }}$ Conversion determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{\text {b }} 5 \mathrm{~mol} \%$ of KF used

