Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Domino Reaction of 2-Isocyanophenyloxyacrylate and Aryne to Synthesize Arenes with Vicinal Olefin and Benzoxazole

Shikuan Su, † Jianxiong Li, † Mingming Sun, † Hongbin Zhao, † Yali Chen, *,†,‡ and Jian Li*,†,‡

E-mail: ylchen@staff.shu.edu.cn; lijian@shu.edu.cn

Supporting Information

Table of Contents

1	General Information	S2
2	Preparation of Substrates 1 and the Analytical Data	S2
3	General Procedure	S8
4	Characterization Data	S 9
	Spectroscopic Data of All Compounds	S 9
5	¹ H NMR and ¹³ C NMR Spectra of All Compounds	S 18

[†] School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China

[‡] Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China

1 General Information

The NMR spectra were recorded on Bruker AC – 500 spectrometer (500 MHz for 1 H NMR and 125 MHz for 13 C NMR) with CDCl₃ as the solvent and TMS as internal reference. 1 H NMR spectral data were reported as follows: chemical shift (δ , ppm), multiplicity, integration, and coupling constant (Hz). 13 C NMR spectral data were reported in terms of the chemical shift. The following abbreviations were used to indicate multiplicities: s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet. Low-resolution mass spectra were obtained on a Shimadzu LCMS-2010EV spectrometer in ESI mode and reported as m/z. High-resolution mass spectra (HRMS) were recorded on a Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS instrument. Melting points were obtained on a X-4 digital melting point apparatus without correction. Chemical yields referred to pure isolated product. Purification of products was accomplished by column chromatography packed with silica gel. Unless otherwise stated, all reagents were commercially purchased and used without further purification. Aryne precursors 1 were prepared following published procedures. 1,2

2 Representative procedure for the preparation of substrates 1

$$\begin{array}{c|c} & & & & & \\ \hline & & & & & \\ \hline & & & & \\ \hline & & & \\ NHCHO & & & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline$$

Setp 1: In a 100 mL round-bottom flask, a mixture of 2-aminophenol (20 mmol, 1 equiv) propiolate (24 mmol, 1.2 equiv) was dissolved in acetonitrile (60 mL) and was cooled to 0 $^{\circ}$ C. Then N-methylmorpholine (1.2 mmol, 0.06 equiv) was added into the reaction mixture. The reaction mixture was allowed to warmed to room temperature and stirred for 12 h. After the solvent was removed, the crude product was purified by column chromatography to afford (*E*)-methyl 3-(2-aminophenoxy)acrylate (3.32 g, 86%) as a yellow liquid.³

Step 2: Acetyl formyl anhydride (prepared by stirring 2.0 equiv of acetic anhydride and 2.0 equiv of formic acid for 2 h at 55 °C) was added dropwise to a solution of (*E*)-methyl 3-(2-aminophenoxy) acrylate (3.32 g, 17.2 mmol, 1.0 equiv) in Et₂O at 0 °C, and the mixture was stirred for 0.5h at 0 °C, and then filtered to give (*E*)-methyl 3-(2-formamidophenoxy)acrylate (3.42 g, 90%) as a white solid.

Step 3: A solution of (*E*)-methyl 3-(2-formamidophenoxy)acrylate (3.42 g, 15.48 mmol, 1.0 equiv) and NEt₃ (69.66 mmol, 4.5 equiv) in THF (100 mL) was cooled at 0 $^{\circ}$ C, then POCl₃ (23.22 mmol, 1.5 equiv) was added dropwise. After the reaction was completed, a saturated Na₂CO₃ aqueous solution was added at 0 $^{\circ}$ C and the mixture was extracted with EA (3 ×100 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was subjected to column chromatography on neutral Al₂O₃ to give (*E*)-methyl 3-(2-isocyanophenoxy)acrylate (**1a**, 2.60 g, 83%) as a white solid.^{4,5}

Representative procedure for the preparation of 1-(allyloxy)-2-isocyanobenzene

To a solution of phenols N-(2-hydroxyphenyl)formamide (10 mmol, 1.0 equiv) and potassium carbonate (20 mmol, 2.0 equiv) in acetone (30 ml) was added allyl bromide (24 mmol, 1.2 equiv). The resulting mixture was then stirred at 50 °C for 12 hours. After filtration through celite and washed with ethyl acetate, the solvent was removed under reduced pressure and the residue was chromatographed on silica gel to afford the product N-(2-(allyloxy)phenyl)-formamide (1.51g, 85%) as yellow oil.^{6,7}

A solution of N-(2-(allyloxy)phenyl)formamide (1.51 g, 8.5 mmol, 1.0 equiv) and NEt₃ (38.25 mmol, 4.5 equiv) in DCM (50 mL) was cooled at 0 $^{\circ}$ C, then POCl₃ (12.75 mmol, 1.5 equiv) was added dropwise. After the reaction was completed, a saturated Na₂CO₃ aqueous solution was added at 0 $^{\circ}$ C and the mixture was extracted with EA (3 \times 50 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was subjected to column chromatography on neutral Al₂O₃ to give 1-(allyloxy)-2-isocyanobenzene (0.95 g, 70%) as a yellow liquid.

Analytical Data of Substrate 1

(1a): 2.60 g, 64% yield, white solid: m.p. 62-63°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.75 (d, J = 12.0 Hz, 1H), 7.45-7.41 (m, 2H), 7.22 (dd, J = 8.0, 1.5 Hz, 1H), 7.17-7.15 (m, 1H), 5.63 (d, J = 12.0 Hz, 1H), 3.74 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 170.0, 167.0, 157.5, 150.8, 130.9, 128.4, 125.6, 118.8, 118.4, 103.9, 51.65. HRMS (ESI): calcd. for $C_{11}H_{10}NO_3$ [M+H]⁺ 204.0661, Found: 204.0670.

(1b): 0.91g, 41% yield, white solid: m.p. 117-118°C. ¹H NMR (500 MHz, FOO₂Me CDCl₃): δ (ppm) = 7.70 (d, J = 12.0 Hz, 1H), 7.45-7.42 (m, 1H), 6.95-6.90 (m, 2H), 5.72 (d, J = 12.0 Hz, 1H), 3.75 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 170.1, 166.6, 162.7 (d, ${}^{1}J_{\text{C-F}}$ = 252.5 Hz), 156.3, 151.9 (d, ${}^{3}J_{\text{C-F}}$ = 10.0 Hz), 129.5 (d, ${}^{3}J_{\text{C-F}}$ = 10.0 Hz), 114.6, 112.6 (d, ${}^{2}J_{\text{C-F}}$ = 47.5 Hz), 106.5 (d, ${}^{2}J_{\text{C-F}}$ = 52.5 Hz), 105.2, 51.8. HRMS (ESI): calcd. for C₂₂H₁₇F₂N₂O₆ [2M+H]⁺ 443.1055, Found: 443.1050.

CI (1c): 1.19 g, 50% yield, white solid: m.p. 92-93°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.70 (d, J = 12.0 Hz, 1H), 7.38 (d, J = 8.5 Hz, 1H), 7.20-7.17 (m, 2H), 5.71 (d, J = 12.0 Hz, 1H), 3.75 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 171.3, 166.6, 156.4, 151.2, 136.5, 129.0, 125.7, 119.0, 116.8, 105.1, 51.8. HRMS (ESI): calcd. for $C_{22}H_{17}Cl_2N_2O_6$ [2M+H]⁺ 475.0464, Found: 475.0450.

(1d): 1.28 g, 49% yield, white solid: m.p. 95-96°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.88 (d, J = 8.0 Hz, 1H), 7.82 (s, 1H), 7.77 (d, J = 12.5 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 5.72 (d, J = 12.0 Hz, 1H), 3.94 (s, 3H), 3.75 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 172.8, 166.7, 164.8, 156.5, 150.7, 132.6, 128.4, 126.4, 121.4, 119.1, 105.0, 53.0, 51.8. HRMS (ESI): calcd. for C₁₃H₁₂NO₅ [M+H]⁺ 262.0715, Found: 262.0712.

(1e): 1.22 g, 56% yield, white solid: m.p. 75-76°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.73 (d, J = 12.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.00 (d, J = 8.5 Hz, 1H), 6.95 (s, 1H), 3.74 (s, 3H), 2.38 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 169.1, 167.1, 157.7, 150.5, 142.0, 127.9, 126.2, 119.3, 103.6, 51.6, 21.6. HRMS (ESI): calcd. for C₁₂H₁₂NO₃ [M+H]⁺ 218.0817, Found: 218.0825.

OCO₂Me (1f): 1.52 g, 54% yield, red solid: m.p. 89-90°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.69 (d, J = 12.0 Hz, 1H), 7.58 (d, J = 2.0 Hz, 1H), 7.54 (dd, J = 9.0, 2.5 Hz, 1H), 7.05 (d, J = 9.0 Hz, 1H), 5.66 (d, J = 12.0 Hz, 1H), 3.74 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 171.8, 166.7, 156.8, 150.0, 134.0, 131.1, 120.0, 119.3, 117.6, 104.6, 51.8. HRMS (ESI): calcd. for C₁₁H₉BrNO₃ [M+H]⁺ 281.9766, Found: 281.9760.

(1g): 1.23g, 52% yield, white solid: m.p. 86-87°C. ¹H NMR (500 MHz, CO₂Me CDCl₃): δ (ppm) = 7.70 (d, J = 12.0 Hz, 1H), 7.43 (d, J = 2.5 Hz, 1H), 7.40 (dd, J = 9.0, 2.5 Hz, 1H), 7.11 (d, J = 8.5 Hz, 1H), 5.65 (d, J = 12.0 Hz, 1H), 3.74 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 171.8, 166.7, 157.0, 149.5, 131.0, 130.7 128.2, 119.8, 119.0, 104.5, 51.7. HRMS (ESI): calcd. for C₁₁H₉ClNO₃ [M+H]⁺ 238.0271, Found: 238.0280.

(1h): 1.44 g, 59% yield, yellow solid: m.p. 76-78°C. 1 H NMR (500 MHz, CDCl₃): δ (ppm) = 7.84 (d, J = 7.5 Hz, 1H), 7.70 (d, J = 12.5 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.40-7.37 (m, 1H), 5.28 (d, J = 12.5 Hz, 1H), 3.71 (s, 3H), 2.58 (s, 3H). 13 C NMR (125 MHz, CDCl₃): δ (ppm) = 195.8, 172.1, 166.4, 159.2, 148.8, 133.2, 131.8, 131.4, 127.1, 121.1, 102.5, 51.7, 30.8. HRMS (ESI): calcd. for $C_{26}H_{23}N_2O_8$ [2M+H]⁺ 491.1454, Found: 491.1449.

(1i): 0.87g, 40% yield, yellow solid: m.p. 50-51°C. 1 H NMR (500 MHz, CDCl₃): δ (ppm) = 7.73 (d, J = 12.5 Hz, 1H), 7.29 (d, J = 7.0 Hz, 2H), 7.18 (t, J = 7.5 Hz,

1H), 5.11 (d, J = 12.5 Hz, 1H), 3.70 (s, 3H), 2.24 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 169.8, 167.0, 159.4, 147.9, 132.6, 132.5, 126.6, 125.8, 120.2, 100.5, 51.5, 16.0. HRMS (ESI): calcd. for $C_{24}H_{23}N_2O_6$ [2M+H]⁺ 435.1556, Found: 435.1552.

(1j): 1.57g, 62% yield, white solid: m.p. 90-91°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.93 (s, 1H), 7.87 (d, J = 12.5 Hz, 1H), 7.80 (t, J = 8.5 Hz, 1H), 7.59 (t, J = 7.0 Hz, 1H), 7.54 (t, J = 7.0 Hz, 1H), 7.50 (s, 1H), 5.74 (d, J = 12.0 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 169.8, 167.1, 157.6, 147.5, 133.3, 129.8, 128.9, 128.2, 127.9, 127.5, 127.1, 117.3, 115.0, 104.3, 51.7. HRMS (ESI): calcd. for C₁₅H₁₂NO₃ [M+H]⁺ 254.0817, Found: 254.0813.

OCO₂Et (1k): 1.32 g, 61% yield, yellow solid: m.p. 59-60°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.74 (d, J = 12.0 Hz, 1H), 7.44-7.41 (m, 1H), 7.21 (td, J = 7.5, 1.0 Hz, 1H), 7.17 (dd, J = 9.0, 1.0 Hz, 1H), 5.61 (d, J = 12.0 Hz, 1H), 4.20 (q, J = 7.5 Hz, 2H), 1.28 (t, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 169.9, 166.6, 157.4, 150.8, 130.9, 128.4, 125.6, 118.9, 118.4, 104.2, 60.5, 14.4. HRMS (ESI): calcd. for C₂₄H₂₃N₂O₆ [2M+H]⁺ 435.1556, Found: 435.1552.

(11): 1.03 g, 55% yield, brown solid: m.p. 66-67°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.68 (d, J = 12.0 Hz, 1H), 7.45-7.41 (m, 2H), 7.23 (td, J = 8.0, 1.5 Hz, 1H), 7.16 (dd, J = 8.5 Hz, 1.0 Hz, 1H), 5.94 (d, J = 12.5 Hz, 1H), 2.24 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 196.9, 170.0, 157.2, 150.6, 130.9, 128.4, 125.8, 119.0, 118.5, 112.9, 28.8. HRMS (ESI): calcd. for $C_{22}H_{19}N_2O_4$ [2M+H]⁺ 375.1345, Found: 375.1337.

Ph (**1m**): 0.50 g, 20% yield, yellow solid: m.p. 65-66°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.95-7.90 (m, 3H), 7.58 (tt, J = 7.0, 1.5 Hz, 1H), 7.50-7.44 (m, 4H), 7.25-7.21 (m, 2H), 6.87 (d, J = 11.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 190.0, 170.0,

158.0, 151.2, 138.0, 133.1, 131.0, 128.8, 128.4, 128.3, 125.5, 118.2, 108.7. HRMS (ESI): calcd. For $C_{16}H_{12}NO_2 [M+H]^+ 250.0868$, Found: 250.0875.

(1n): 0.30 g, 10% yield, brown solid: m.p. 72-73°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.02 (d, J = 8.5 Hz, 1H), 7.43-7.39 (m, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.21 (td, J = 7.5, 1.0 Hz, 1H), 7.08 (dd, J = 8.5, 1.0 Hz, 1H), 6.76 (d, J = 6.5 Hz, 1H), 6.02 (d, J = 6.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 170.7, 151.3, 149.3, 144.7, 138.9, 131.0, 130.0, 128.6, 128.0, 125.8, 118.1, 115.6, 21.8. HRMS (ESI): calcd. For C₁₆H₁₄NO₃S [M+H]⁺ 300.0694, Found: 300.0688.

(10): 0.93 g, 38% yield, white solid: m.p. $118-119^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.74 (d, J = 12.0 Hz, 1H), 7.58 (d, J = 7.5 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 5.68 (d, J = 12.0 Hz, 1H), 3.74 (s, 3H), 2.71 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 196.3, 176.4, 166.8, 157.0, 151.9, 137.3, 130.4, 125.4, 121.6, 116.0, 104.6, 51.8, 29.9. HRMS (ESI): calcd. for C₁₃H₁₂NO₄ [M+H]⁺ 246.0766, Found: 246.0762.

O₂N (1**p**): 0.92 g, 37% yield, yellow solid: m.p. 145-147°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.34 (m, 1H), 7.78 (d, J = 12.0 Hz, 1H), 7.33 (d, J = 8.5 Hz, 1H), 5.93 (d, J = 12.5 Hz, 1H), 3.78 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 173.5, 168.2, 155.2, 154.4, 143.7, 126.3, 124.2, 117.1, 107.6, 52.0. HRMS (ESI): calcd. for C₁₁H₉N₂O₅ [M+H]⁺ 249.0511, Found: 249.0517.

O (1q): 0.95 g, 60% yield, yellow liquid. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.35-NC 7.26 (m, 2H), 6.95-6.91 (m, 2H), 6.09-6.02 (m, 1H), 5.49 (dq, J = 17.0, 1.5 Hz, 1H), 5.33 (dq, J = 10.5, 1.5 Hz, 1H), 4.64 (dt, J = 5.0, 1.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) =

167.6, 154.1, 132.2, 130.4, 127.8, 120.8, 118.2, 116.7, 113.3, 69.6. HRMS (ESI): calcd. for $C_{10}H_{10}NO$ $[M+H]^+$ 160.0762, Found: 160.0766.

3 General procedure

3.1 General Procedure for the Formation of Product 3 or 4.

To a Schlenk tube containing isocyanide 1 (0.5 mmol), CsF (2.0 mol) in was added CH₃CN (5.0 mL) and the reaction mixture was stirred for 5 minutes at room temperature, followed by the addition of benzyne precusor 2 (0.75 mmol) at the same temperature. The Schlenk tube was then placed in a preheated (80°C) oil bath. The progress of the reaction was monitored by TLC. After completion of the reaction, CH₃CN was evaporated on a rotary evaporator. The crude products obtained were purified by flash silica gel column chromatography using a gradient of ethyl acetate:petroleum ether to afford the corresponding products 3 or 4.

3.2 General Procedure for the Formation of Product 6

Into a flame-dried 25 mL Schlenk tube were added 3 (0.2 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (3 mg, 2.5 mol %), NaOAc (16 mg,1equiv), and Cu(OAc)₂ (64 mg, 2.0 equiv) under nitrogen flow, the tube was sealed with rubber, evacuated, and refilled with nitrogen three times, and then DCE (2 mL) and alkenes were added via syringe. The tube was sealed with a glass stopper, evacuated, and refilled with nitrogen three times and heated at 90 °C for the duration of the reaction. After being cooled to room temperature, the reaction mixture was quenched with 10 mL of saturated ammonium chloride solution and extracted with ethyl acetate (3 \times 10 mL), the organic phase was combined, washed with brine (2 \times 10 mL), dried under anhydrous MgSO₄, and concentrated under reduced pressure, and the residue mixture was purified by flash column chromatography. ^{8,9}

3.3 Genor the Formation of Product 8

Under N₂ atmosphereral Procedure fe, AlMe₃ (0.3 mL, 1M in hexane) was added to the solution of **3a** (55.8 mg, 0.2 mmol) and 4-methoxyaniline (73.8 mg, 0.6 mmol) in toluene (2 mL). The resulting

solution was heated under reflux for 24 h. After completion of the reaction, a saturated NH₄Cl aqueous solution was added, and the mixture was extracted with EA (3 \times 10 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (eluant: petroleum ether/ethyl acetate = 1:1) to give the desired product **10** (56mg, 70%) as a white solid.

References:

- 1. Y. Himeshima, T. Sonoda, H. Kobayashi, Chem. Lett., 1983, 1211.
- 2. D. Peña, A. Cobas, D. Pérez, E. Guitián, Synthesis, 2002, 1454.
- 3. E. Ciganek, Synthesis, 1995, 1311.
- 4. M. Tobisu, H. Fujihara, K. Koh, N. Chatani, J. Org. Chem. 2010, 75, 4841.
- 5. Z. Hu, H. Yuan, Y. Men, Q. Liu, J. Zhang, X. Xu, Angew. Chem. Int. Ed. 2016, 55, 7077.
- 6. J. F. M. Hewitt, L. Williams, P. Aggarwal, C. D. Smith, D. J. France, Chem. Sci. 2013, 4, 3538.
- 7. W. Chen, X.-D. Yang, Y. Li, L.-J. Yang, X.-Q. Wang, G.-L. Zhang, H.-B. Zhang, *Org. Biomol. Chem.* **2011**, *9*, 4250.
- 8. Y. Matsuura, M. Tamura, T. Kochi, M. Sato, N. Chatani and F. Kakiuchi, *J. Am. Chem. Soc.*, **2007**, 129, 9858.
- 9. Q. Zhou, J.-F. Zhang, H. Cao, R. Zhong and X.-F. Hou, J. Org. Chem., 2016, 81, 12169.

4 Characterization Data

MeO₂C

(3a): 99 mg, 71% yield, white solid: m.p. 90-91°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.83 (d, J = 16.0 Hz, 1H), 8.21-8.20 (m, 1H), 7.86-7.84 (m, 1H), 7.75-7.73 (m, 1H), 7.62-7.60 (m, 1H), 7.54-7.52 (m, 2H), 7.40-7.36 (m, 2H), 6.48 (d, J = 16.0 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 167.3,

161.9, 150.6, 143.9, 142.2, 135.1, 131.3, 130.4, 129.9, 128.1, 126.6, 125.6, 124.8, 120.9, 120.8, 110.7, 51.92. HRMS (ESI): calcd. for C₁₇H₁₄NO₃ [M+H]⁺ 280.0974, Found: 280.0960.

MeO₂C

(**3b**): 98 mg, 66% yield, white solid: m.p. 95-97°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.80 (d, J = 16.0 Hz, 1H), 8.19-8.15 (m, 1H), 7.78-7.76 (m, 1H), 7.74-7.72 (m, 1H), 7.56-7.51(m, 2H), 7.33 (dd, J = 8.0, 2.5 Hz, 1H), 7.15-7.11 (m,

1H), 6.47 (d, J = 16.0 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 167.3, 162.5 (d, ${}^{4}J_{C-}$ $_{\rm F} = 3.8 \, {\rm Hz}$), 161.0 (d, $^{1}J_{\rm C-F} = 243.8 \, {\rm Hz}$), 150.6 (d, $^{3}J_{\rm C-F} = 15.0 \, {\rm Hz}$), 143.8, 138.5 (d, $^{5}J_{\rm C-F} = 1.3 \, {\rm Hz}$), 135.0, 131.4, 130.1 (d, ${}^{2}J_{\text{C-F}} = 28.8 \text{ Hz}$), 128.1, 126.2, 121.1 (d, ${}^{3}J_{\text{C-F}} = 11.3 \text{ Hz}$), 121.0, 112.9 (d, ${}^{4}J_{\text{C-F}} = 5.0 \text{ Hz}$), 98.8 (d, ${}^{2}J_{C-F} = 27.5$ Hz), 51.96. HRMS (ESI): calcd. for $C_{17}H_{13}FNO_{3}$ [M+H]⁺ 298.0879, Found: 298.0874.

MeO₂C

(3c): 100 mg, 64% yield, white solid: m.p. 112-113°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.80 (d, J = 16.0 Hz, 1H), 8.19-8.17 (m, 1H), 7.78-7.76 (m, 1H), 7.75-7.72 (m, 2H), 7.61 (d, J = 2.0 Hz, 1H), 7.57-7.51 (m, 2H), 7.35 (dd, J= 8.5, 2.0 Hz, 1H), 7.15-7.11 (m, 1H), 6.47 (d, J = 16.0 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (125 MHz,

CDCl₃): δ (ppm) = 167.2, 162.5, 150.8, 143.7, 141.0, 135.2, 131.6, 131.3, 130.3, 130.0, 128.2, 126.00, 125.5, 121.2, 121.1, 111.4, 52.0. HRMS (ESI): calcd. for $C_{17}H_{13}CINO_3$ [M+H]⁺ 314.0584, Found: 314.0573.

MeO₂C (3d): 135 mg, 80% yield, white solid: m.p. 148-149°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.82 (d, J = 16.0 Hz, 1H), 8.28 (d, J = 1.0 Hz, 1H), 8.24-8.22 (m, 1H), 8.10 (dd, J = 8.5, 2.0 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 167.2, 166.7, 164.4, 150.2, 146.0, 143.7, 135.5, 131.9, 130.6, 130.0, 128.3, 127.6, 126.5, 125.8, 121.2, 120.3, 112.5, 52.5, 52.0. HRMS (ESI): calcd. for C₁₉H₁₆NO₅

[M+H]⁺ 338.1028, Found: 338.1023.

MeO₂C (3e): 69 mg, 47% yield, white solid: m.p. 115-117°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.82 (d, J = 16.0 Hz, 1H), 8.19-8.16 (m, 1H), 7.73-7.69 (m, 2H), 7.53-7.49 (m, 2H), 7.40 (s, 1H), 7.18 (dd, J = 7.5, 1.0 Hz, 1H), 6.47 (d, J = 16.0 Hz, 1H), 3.84 (s, 3H), 2.50 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 167.3, 161.4, 150.9, 144.0, 140.0, 136.1, 134.9, 131.1, 130.2, 129.9, 128.00, 126.7, 126.0, 120.7, 120.0, 110.9, 51.9, 21.9. HRMS (ESI): calcd. for C₁₈H₁₆NO₃ [M+H]⁺ 294.1130, Found: 294.1126.

(3f): 120 mg, 67% yield, white solid: m.p. 118-120°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.78 (d, J = 16.0 Hz, 1H), 8.20-8.18 (m, 1H), 7.99-7.98 (m, 1H), 7.74 (dd, J = 7.0, 2.0 Hz, 1H), 7.58-7.52 (m, 2H), 7.51-7.47 (m, 2H), 6.47 (d, J = 16.0 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 167.2, 163.1, 149.6, 143.8, 143.7, 135.3, 131.7, 130.4, 130.0, 128.7, 128.2, 126.0, 123.7, 121.1, 117.5, 112.00, 52.0. HRMS (ESI): calcd. for C₁₇H₁₃BrNO₃ [M+H]⁺ 358.0079, Found: 358.0072.

MeO₂C (3g): 108 mg, 69% yield, white solid: m.p. 122-124°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.79 (d, J = 16.0 Hz, 1H), 8.20-8.18 (m, 1H), 7.83 (d, J = 2.0 Hz, 1H), 7.74 (dd, J = 7.0, 2.0 Hz, 1H), 7.58-7.51 (m, 3H), 7.36 (dd, J = 9.0, 2.0 Hz, 1H), 6.47 (d, J = 16.0 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (125 MHz, CDCl₃):

 δ (ppm) = 167.2, 163.3, 149.2, 143.7, 143.3, 135.3, 131.7, 130.4, 130.3, 130.0, 128.2, 126.0, 126.0, 121.2, 120.7, 111.5, 52.0. HRMS (ESI): calcd. for $C_{17}H_{13}CINO_3[M+H]^+$ 314.0584, Found: 314.0573.

MeO₂C (3h): 136 mg, 85% yield, white solid: m.p. 138-140°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.77 (d, J = 16.0 Hz, 1H), 8.27-8.26 (m, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.98 (dd, J = 7.5, 0.5 Hz, 1H), 7.75-7.73 (m, 1H), 7.59-7.54 (m, 1H), 7.46 (t, J = 8.0 Hz, 2H), 6.48 (d, J = 16.0 Hz, 1H), 3.83 (s, 3H), 2.88 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 194.7, 167.0, 162.5, 149.3, 143.5, 143.3, 135.1, 131.8, 130.6, 130.1, 128.3, 126.1, 125.7, 125.7, 124.8, 121.9, 121.3, 51.92, 30.54. HRMS (ESI): calcd. for C₁₉H₁₆NO₄ [M+H]⁺ 322.1079, Found: 322.1007.

MeO₂C (3i): 76 mg, 52% yield, white solid: m.p. 95-96°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.83 (d, J = 16.0 Hz, 1H), 8.27-8.25 (m, 1H), 7.74-7.72 (m, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.55-7.53 (m, 2H), 7.28 (d, J = 8.0 Hz, 1H), 7.18 (d, J = 7.0 Hz, 1H), 6.47 (d, J = 16.0 Hz, 1H), 3.84 (s, 3H), 2.60 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 167.3, 161.8, 150.0, 144.0, 141.6, 135.0, 131.3, 130.4, 129.9, 128.1, 126.7, 126.6, 124.8, 121.4, 120.9, 118.0, 51.9, 15.3. HRMS (ESI): calcd. for C₁₈H₁₆NO₃ [M+H]⁺ 294.1130, Found: 294.1121.

MeO₂C (3j): 118 mg, 72% yield, white solid: m.p. 171-172°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.93 (d, J = 16.0 Hz, 1H), 8.29-8.27 (m, 1H), 8.00 (d, J = 7.5 Hz, 1H), 7.94 (d, J = 7.5 Hz, 1H), 7.75-7.73 (m, 1H), 7.57-7.52 (m, 2H), 7.51-7.46 (m, 2H), 6.49 (d, J = 16.0 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 167.3, 163.8, 149.3, 143.9, 142.0, 135.6, 132.0, 131.7, 131.6, 130.6, 129.9, 128.7, 128.2, 128.0, 126.2, 125.7, 124.8, 121.0, 118.2, 106.5, 51.9. HRMS (ESI): calcd. for C₂₁H₁₆NO₃ [M+H]⁺ 330.1130, Found: 330.1127.

EtO₂C (3k): 98 mg, 67% yield, yellow viscous liquid. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.84 (d, J = 16.0 Hz, 1H), 8.23-8.20 (m, 1H), 7.86-7.83 (m, 1H), 7.77-7.74 (m, 1H), 7.63-7.60 (m, 1H), 7.57-7.52 (m, 2H), 7.41-7.36 (m, 2H), 6.48 (d, J = 16.0 Hz, 1H), 4.30 (q, J = 7.0 Hz, 2H), 1.36 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 166.9, 162.0, 150.7, 143.6, 142.2, 135.2, 131.3, 130.4, 129.9, 128.1, 126.6, 125.6, 124.8, 121.4, 120.8, 110.8, 60.7, 14.5. HRMS (ESI): calcd. for C₁₈H₁₆NO₃ [M+H]⁺ 294.1130, Found: 294.1123.

(3I): 95 mg, 72% yield, white solid: m.p. $103-105^{\circ}$ C. 1 H NMR (500 MHz, CDCl₃): δ (ppm) = 8.83 (d, J = 16.0 Hz, 1H), 8.25-8.22 (m, 1H), 7.83-7.80 (m, 1H), 7.77-7.73 (m, 1H), 7.63-7.59 (m, 1H), 7.56-7.53 (m, 2H), 7.42-7.37 (m, 2H), 6.67 (d, J = 16.0 Hz, 1H), 2.49 (s, 3H). 13 C NMR (125 MHz, CDCl₃): δ (ppm) = 199.3, 161.9, 150.5,

143.2, 142.2, 135.2, 131.4, 130.4, 130.3, 130.1, 128.0, 126.4, 125.8, 124.9, 120.6, 110.7, 27.0. HRMS (ESI): calcd. for $C_{17}H_{14}NO_2$ [M+H]⁺ 264.1025, Found: 264.1018.

(3**m**): 102 mg, 63% yield, yellow solid: m.p. 86-87°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.85 (d, J = 15.5 Hz, 1H), 8.26-8.24 (m, 1H), 8.12-8.09 (m, 2H), 7.87-7.83 (m, 2H), 7.62-7.57 (m, 4H), 7.54-7.51 (m, 2H), 7.42-7.38 (m, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 191.9, 162.0, 150.7, 144.4, 142.3, 138.2, 135.8,

132.8, 131.4, 130.4, 130.1, 129.1, 128.7, 128.2, 126.9, 126.1, 125.7, 124.8, 120.7, 110.8. HRMS (ESI): calcd. for $C_{22}H_{16}NO_2\left[M+H\right]^+$ 326.1181, Found: 326.1175.

(3n): 154 mg, 82% yield, white solid: m.p. 134-135°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.11 (dd, J = 7.5, 1.0 Hz, 1H), 7.82 (d, J = 11.5 Hz, 1H), 7.71-7.68 (m, 1H), 7.63 (d, J = 7.5 Hz, 1H), 7.55-7.47 (m, 3H), 7.39-7.33 (m, 4H), 6.87 (d, J = 8.0 Hz, 2H), 6.74 (d, J = 11.5 Hz, 1H), ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 161.5, 150.2, 144.0, 142.6, 142.0, 137.7, 133.1, 132.1, 131.9, 130.6, 139.3, 129.1, 128.7,

127.6, 125.5, 124.7, 124.5, 120.4, 110.5. HRMS (ESI): calcd. for $C_{22}H_{18}NO_3S$ [M+H]⁺ 376.1007, Found: 376.1010.

MeO₂C

(**4a**): 114 mg, 74% yield, white solid: m.p. 176-178°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.80 (d, J = 16.0 Hz, 1H), 7.96 (s, 1H), 7.84-7.80 (m, 1H), 7.60-7.57 (m, 1H), 7.49 (s, 1H), 7.37-7.34 (m, 2H), 6.44 (d, J = 16.0 Hz, 1H), 2.35 (s, 3H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 167.5, 162.3,

150.5, 143.8, 142.2, 140.5, 139.2, 132.4, 131.3, 129.0, 125.3, 124.6, 124.0, 120.5, 119.7, 110.6, 51.8, 20.0, 19.7. HRMS (ESI): calcd. for C₁₉H₁₈NO₃ [M+H]⁺ 308.1287, Found:308.1285.

MeO₂C

(**4b**): 119 mg, 70% yield, white solid: m.p. 157-159°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.76 (d, J = 16.0 Hz, 1H), 7.90 (s, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.56 (d, J = 1.5 Hz, 1H), 7.47 (s, 1H), 7.32 (dd, J = 8.5, 1.5 Hz, 1H), 6.42 (d, J = 16.0 Hz, 1H), 3.83 (s, 3H), 2.33 (s, 3H), 2.32 (s, 3H). ¹³C NMR

(125 MHz, CDCl₃): δ (ppm) = 167.4, 162.9, 150.6, 143.6, 141.0, 140.9, 139.2, 132.5, 131.2, 130.9, 129.1, 125.3, 123.4, 120.9, 119.9, 111.2, 51.8, 20.0, 19.7. HRMS (ESI): calcd. for $C_{19}H_{17}CINO_3$ [M+H]⁺ 342.0897, Found: 342.0891.

0= 0-N (**4c**): 82 mg, 56 % yield, white solid: m.p. $102-104^{\circ}$ C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.79 (d, J = 16.0 Hz, 1H), 7.97 (s, 1H), 7.80-7.76 (m, 1H), 7.59-7.55 (m, 1H), 7.49 (s, 1H), 7.38-7.34 (m, 2H), 6.63 (d, J = 16.0 Hz, 1H), 2.47 (s, 3H), 2.35 (s, 3H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) =

199.4, 162.2, 150.3, 143.2, 142.1, 140.7, 139.4, 132.5, 131.2, 129.4, 129.0, 125.4, 124.7, 123.9, 120.3, 110.6, 26.8, 20.0, 19.8. HRMS (ESI): calcd. for $C_{19}H_{18}NO_2$ [M+H]⁺ 292.1338, Found: 292.1334.

(4d): 122 mg, 72% yield, white solid: m.p. 155-156°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.85 (d, J = 16.0 Hz, 1H), 7.84-7.81 (m, 1H), 7.68 (s, 1H), 7.62-7.58 (m, 1H), 7.39-7.35 (m, 2H), 7.18 (s, 1H), 6.41 (d, J = 16.0 Hz, 1H), 4.03 (s, 3H), 3.99 (s, 3H), 3.84 (s, 3H). 13 C NMR (125 MHz, CDCl₃): δ

(ppm) = 167.4, 161.9, 151.2, 150.5, 150.4, 143.4, 142.1, 128.4, 125.3, 124.7, 120.4, 119.8, 119.1, 112.2,110.6, 109.6, 56.3, 56.1, 51.8. HRMS (ESI): calcd. for $C_{19}H_{18}NO_5$ [M+H]⁺ 340.1185, Found: 340.1179.

$$\begin{array}{c|c} \text{MeO}_2\text{C} \\ \hline \\ \text{CI} \\ \hline \\ \text{O} \\ \hline \\ \text{OMe} \\ \end{array}$$

(4e): 132 mg, 71% yield, white solid: m.p. 200-201°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.82 (d, J = 16.0 Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.63 (s, 1H), 7.60 (d, J = 2.0 Hz, 1H), 7.34 (dd, J = 8.5, 1.5 Hz, 2H), 7.17 (s, 1H), 6.40 (d, J = 16.0 Hz, 1H), 4.02 (s, 3H), 3.99 (s, 3H), 3.84 (s,

3H). 13 C NMR (125 MHz, CDCl₃): δ (ppm) = 167.4, 162.6, 151.6, 150.7, 150.5, 143.4, 141.0, 130.9, 128.7, 125.5, 120.9, 119.4, 119.3, 112.2, 111.3, 109.8, 56.4, 56.2, 52.0. HRMS (ESI): calcd. for $C_{19}H_{17}CINO_5 [M+H]^+ 374.0795$, Found: 374.0795.

(4f): 118 mg, 73% yield, white solid: m.p. 134-136°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.87 (d, J = 16.0 Hz, 1H), 7.81-7.78 (m, 1H), 7.70 (s, 1H), 7.62-7.58 (m, 1H), 7.40-7.36 (m, 2H), 7.20 (s, 1H), 6.62 (d, J = 16.0 Hz, 1H), 4.04 (s, 3H), 3.99 (s, 3H), 2.49 (s, 3H). 13 C NMR (125 MHz, CDCl₃): δ (ppm) = 199.4, 161.9, 151.4, 150.6, 150.3, 143.0, 142.1, 129.0, 128.6, 125.5, 124.8, 120.3, 119.7, 112.7,

(4g+4g'): 135 mg, 76% yield, white solid: m.p. 153-155°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.70 (d, J = 2.0 Hz, 1H), 8.39 (d, J = 16.0 Hz, 1H), 8.33 (dd, J = 9.0, 2.0 Hz, 1H), 7.72 (dd, J =

110.6, 109.5, 56.4, 56.2, 26.7. HRMS (ESI): calcd. for $C_{19}H_{18}NO_4$ [M+H]⁺ 324.1236, Found: 324.1228.

8.0, 2.0 Hz, 1H), 7.68 (d, J = 9.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.18 (d, J = 8.5 Hz, 1H), 6.75 (d, J = 16.0 Hz, 1H), 3.96 (s, 3H), 3.81 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 168.1, 165.3, 159.3, 154.1, 145.5, 142.4, 138.5, 130.4, 127.5, 124.5, 123.9, 123.1, 121.6, 117.0, 114.7, 111.0, 56.1, 51.9. HRMS (ESI): calcd. for $C_{18}H_{15}N_2O_6$ [M+H]⁺ 355.0930, Found: 355.0921.

(**4h**+**4h**'): 94 mg, 64% yield, white solid: m.p. 130-132°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.81 (t, J = 16.0 Hz, 1H), 8.11 (d, J = 8.0 Hz, 0.26H), 8.03 (s, 0.79 H), 7.85-7.84 (m, 1H), 7.65 (d, J = 8.0 Hz, 0.88H), 7.62-

7.59 (m, 1H), 7.54 (s, 0.25H), 7.39-7.34 (m, 3H), 6.49-6.44 (m, 1H), 3.84 (s, 0.91H), 3.83 (s, 2H), 2.47 (s, 2H), 2.46 (s, 0.89 H). 13 C NMR (125 MHz, CDCl₃): δ (ppm) = 167.5, 167.4, 162.2, 150.7, 150.6, 144.0, 143.7, 142.3, 142.2, 141.8, 140.4, 134.9, 132.26, 132.25, 130.9, 130.9, 130.4, 128.7, 128.0, 126.5, 125.6, 125.4, 124.8, 124.7, 123.9, 120.7, 120.7, 120.6, 120.0, 110.8, 110.7, 51.9, 21.4. HRMS (ESI): calcd. for $C_{18}H_{16}NO_{3}[M+H]^{+}$ 294.1130, Found: 294.1125 .

(**6a**): 44 mg, 61% yield, white solid: m.p. 126-128°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.90-7.88 (m, 1H), 7.77 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 16.0 Hz, 2H), 7.65-7.62 (m, 1H), 7.60 (t, J = 8.0 Hz, 1H), 7.46-7.42 (m, 2H), 6.42 (d, J = 16.0 Hz, 1H), 3.73 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 166.7, 159.8, 151.2, 141.9, 141.5, 136.5, 131.2, 128.4, 128.1, 126.1, 125.1, 121.7, 121.0, 111.1, 52.0.

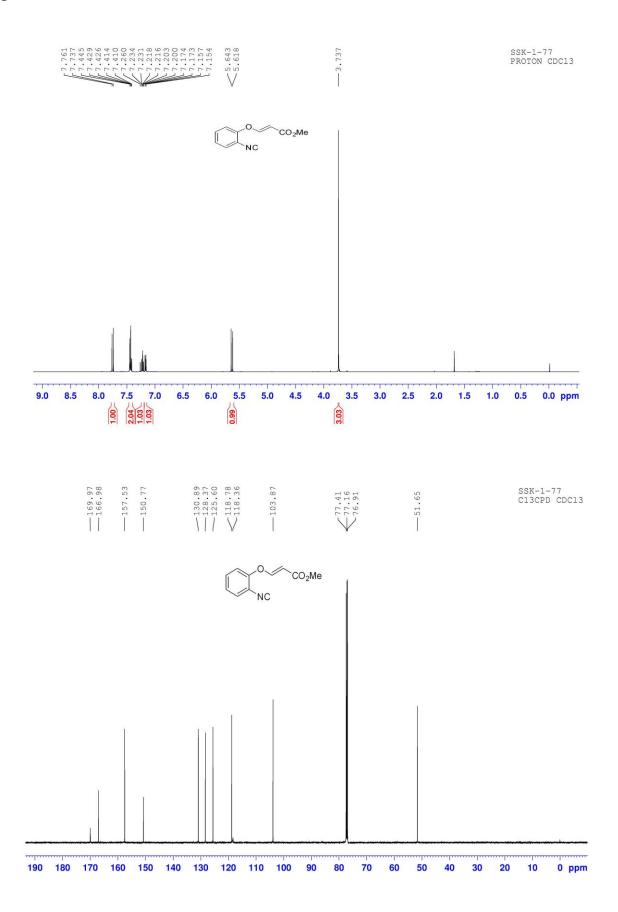
HRMS (ESI): calcd. For $C_{21}H_{18}NO_5 [M+H]^+$ 364.1185, Found: 364.1180.

(**6b**): 49 mg, 65% yield, viscous liquid. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.90-7.87 (m, 1H), 7.78 (dd, J = 7.5, 2.5 Hz, 1H), 7.73 (d, J = 16.0, 8.0 Hz, 1H), 7.64-7.62 (m, 1H), 7.60 (t, J = 8.0 Hz, 1H), 7.46-7.42 (m, 2H), 6.42 (dd, J = 15.5, 3.5 Hz, 1H), 4.19 (q, J = 7.0 Hz, 2H), 3.73 (s, 1H), 1.25 (t, J = 7.5 Hz, 3H). ¹³C

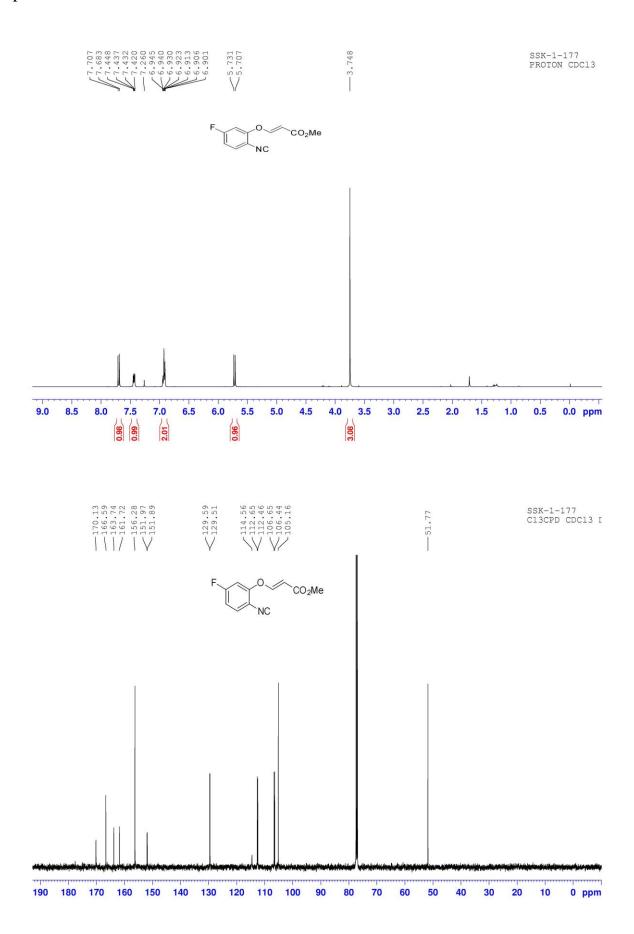
NMR (125 MHz, CDCl₃): δ (ppm) = 166.7, 166.3, 159.8, 151.1, 141.9, 141.6, 141.5, 136.6, 136.4, 131.2, 128.4, 128.1, 126.1, 125.1, 122.1, 121.7, 121.0, 111.1, 60.8, 52.0, 14.3. HRMS (ESI): calcd. For $C_{22}H_{20}NO_5[M+H]^+$ 378.1341, Found: 378.1335.

124.9, 121.1, 120.9, 111.1, 51.9. HRMS (ESI): calcd. For C₂₅H₂₀NO₃ [M+H]⁺ 382.1443, Found: 382.1437.

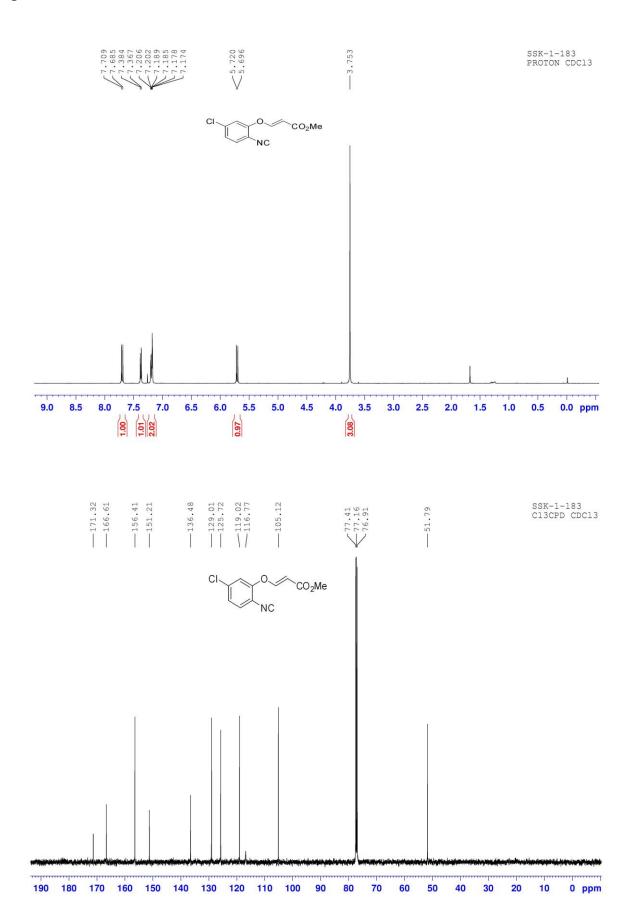
MeO₂C

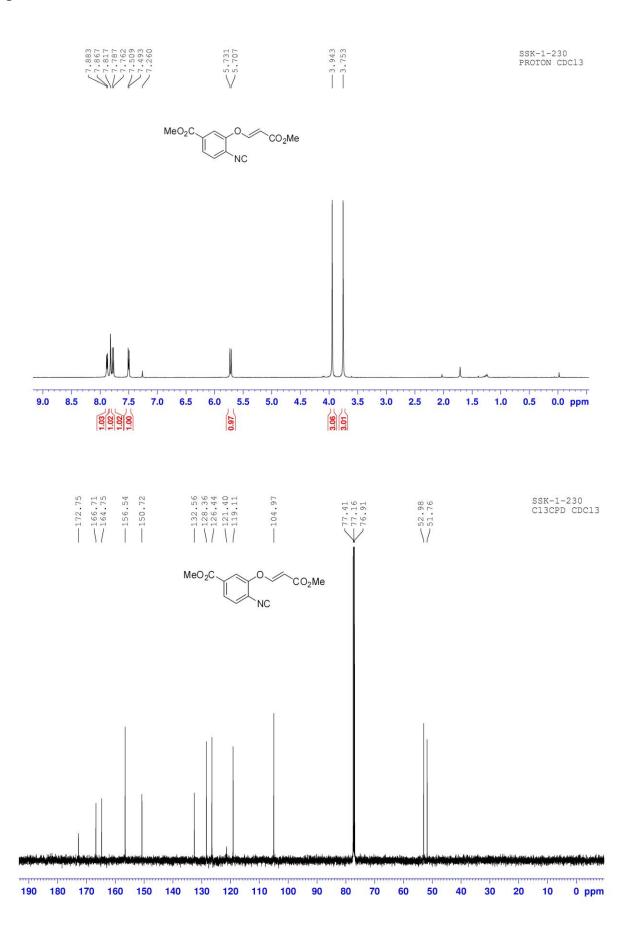

(6c): 34 mg, 45% yield, viscous liquid. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.92-7.89 (m, 1H), 7.86 (d, J = 7.0 Hz, 1H), 7.71-7.67 (m, 2H), 7.50-7.62 (m, 1H), 7.58 (t, J = 8.0 Hz, 1H), 7.46-7.43 (m, 2H), 7.36-7.34 (m, 2H), 7.28 (t, J = 7.0 Hz, 1H), 7.23 (tt, J = 6.5, 1.5 Hz, 1H), 7.10 (d, J = 1.5 Hz, 1H), 6.42 (d, J = 15.5 Hz, 1H), 3.73 (s, 2H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 166.9, 160.9, 151.1, 142.3, 141.6, 139.4, 136.9, 136.1, 132.6, 131.1, 128.8, 128.3, 127.5, 127.0, 126.9, 126.0, 125.8, 125.6,

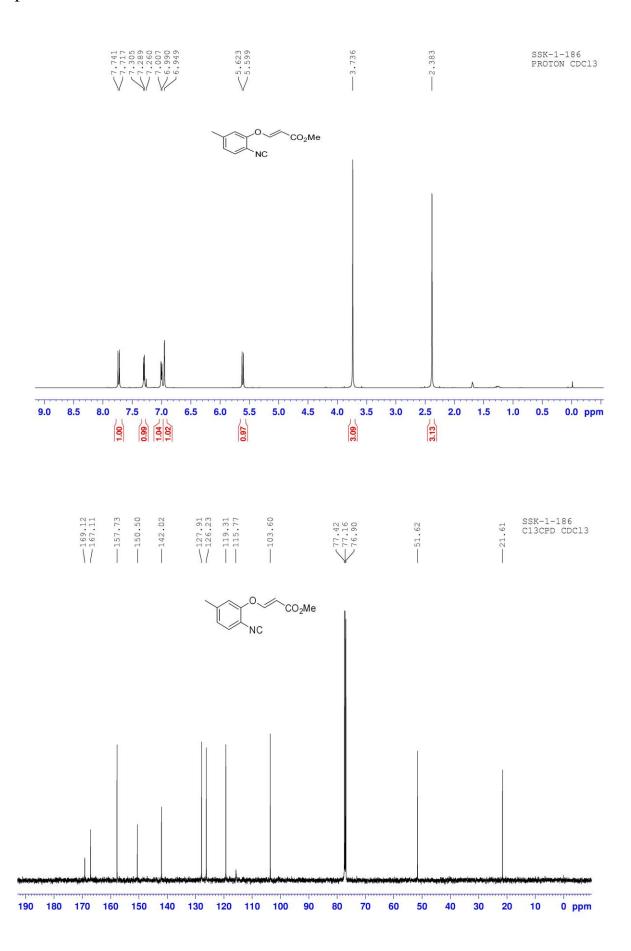
MeO

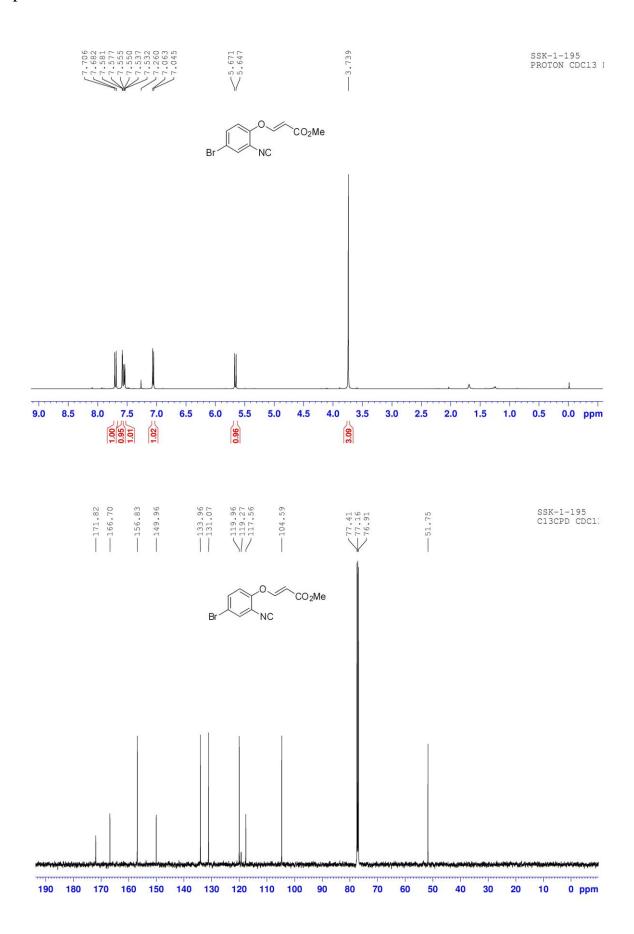

(8): 56 mg, 76% yield, white solid: m.p. 257-258°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 10.2 (s, 1H), 8.57 (d, J = 15.5 Hz, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.90-7.88(m, 2H), 7.83 (d, J = 7.5 Hz, 1H), 7.71 (t, J = 7.0 Hz, 1H), 7.66-7.63 (m, 3H), 7.50-7.44 (m, 2H), 6.93 (d, J = 9.0 Hz, 2H), 6.85 (d, J = 15.5 Hz, 1H), 3.74 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 162.9, 161.5, 155.4, 149.9, 141.5, 138.0, 135.1, 132.4, 131.8, 130.3, 129.7, 127.6, 125.9, 125.53, 125.47, 125.0, 120.7, 120.1, 114.0, 111.0, 55.2. HRMS (ESI): calcd. For $C_{23}H_{19}N_2O_3$ $[M+H]^+$ 371.1396, Found: 371.1399.

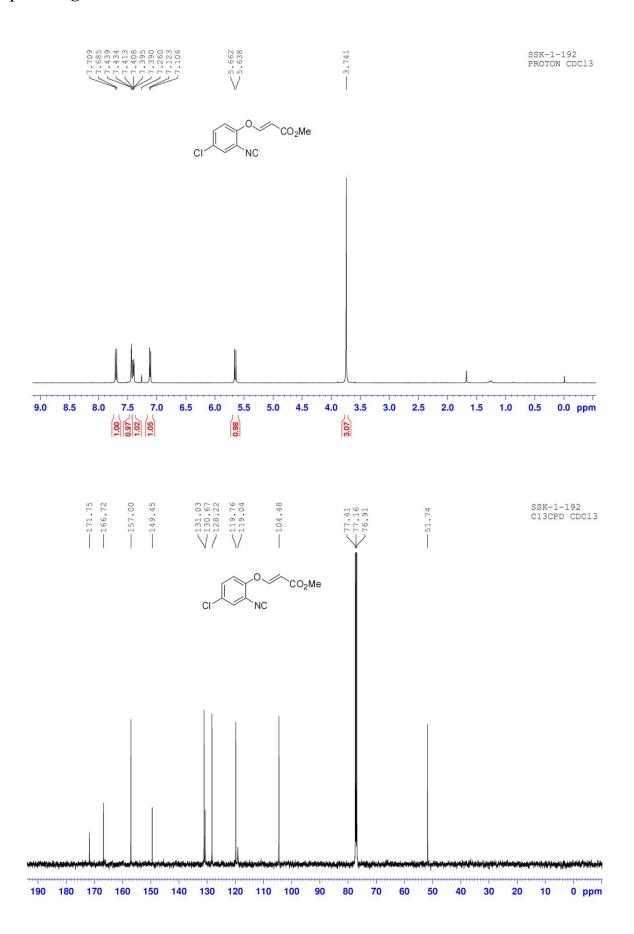
1 H NMR and 13 C NMR Spectra of All Compounds

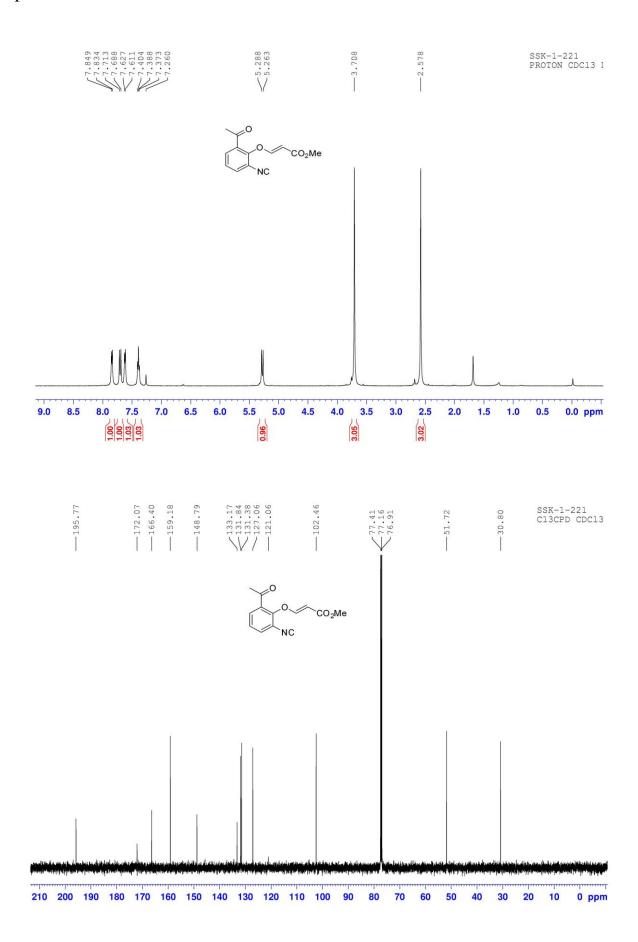

Compound 1a

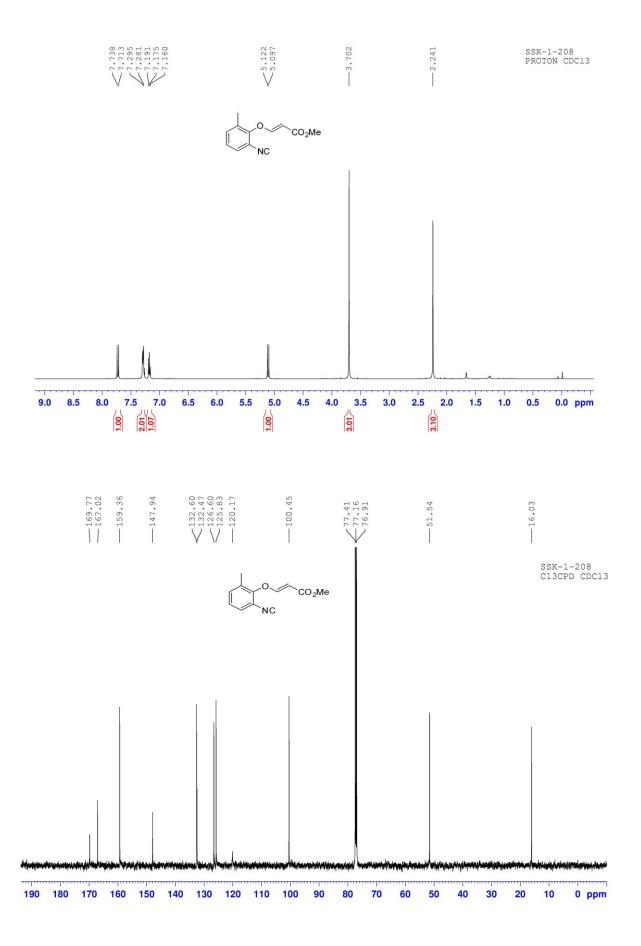

Compound 1b

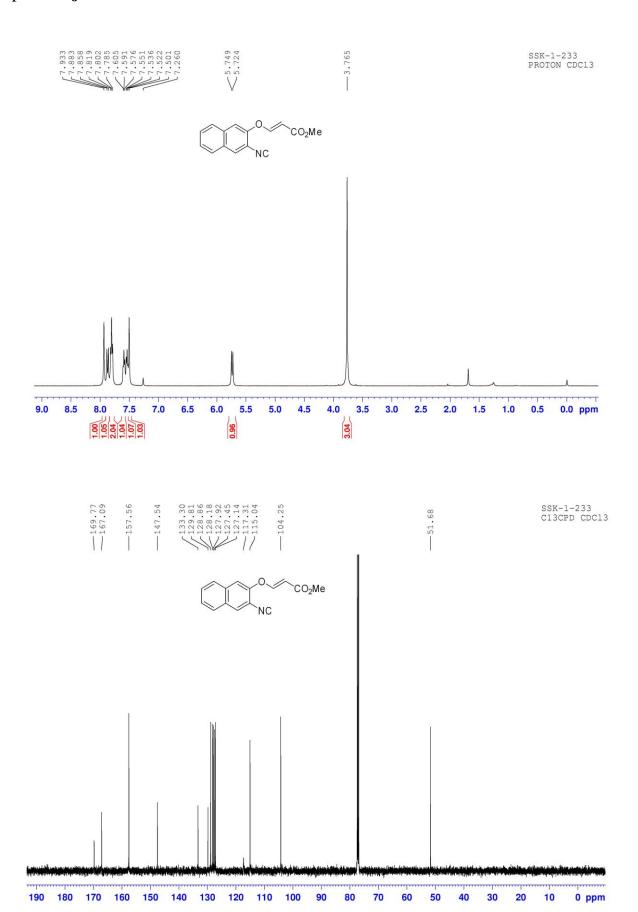

Compound 1c

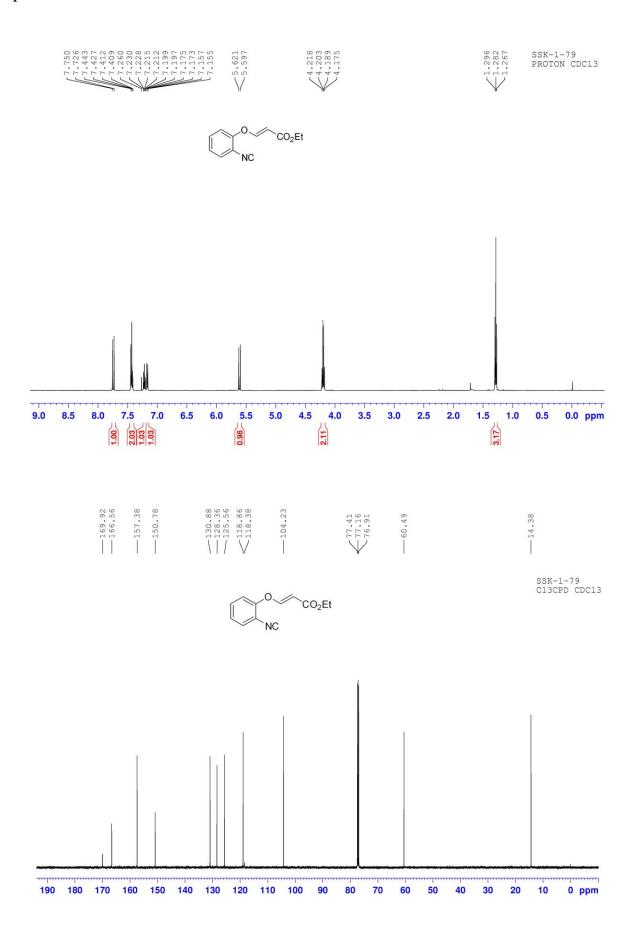

Compound 1d

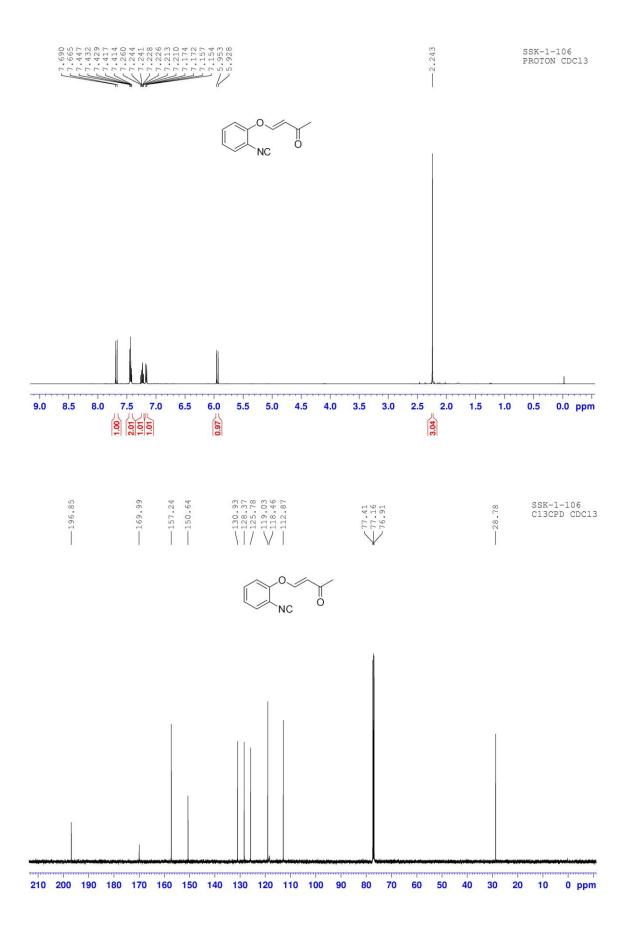

Compound 1e

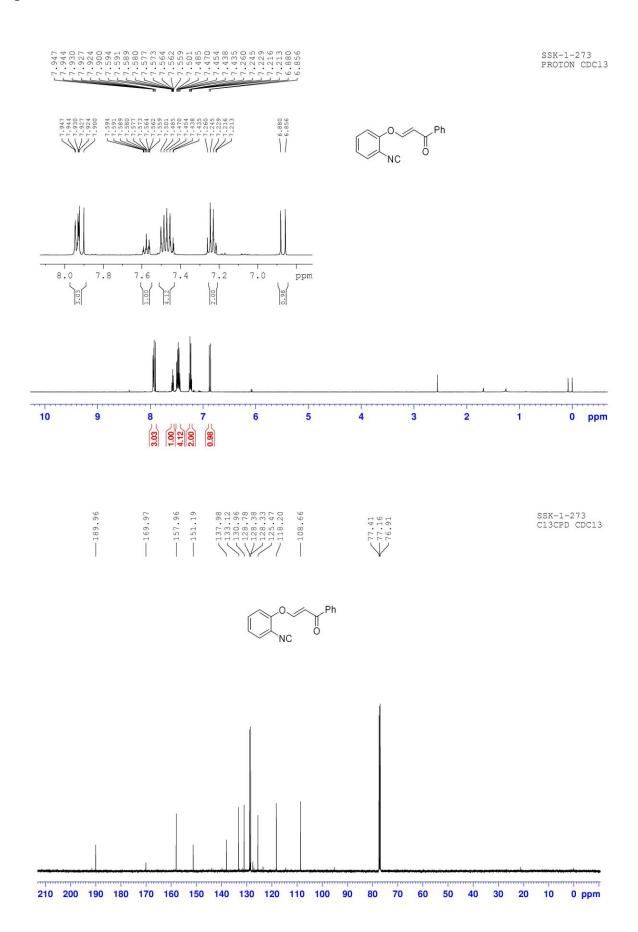

Compound 1f

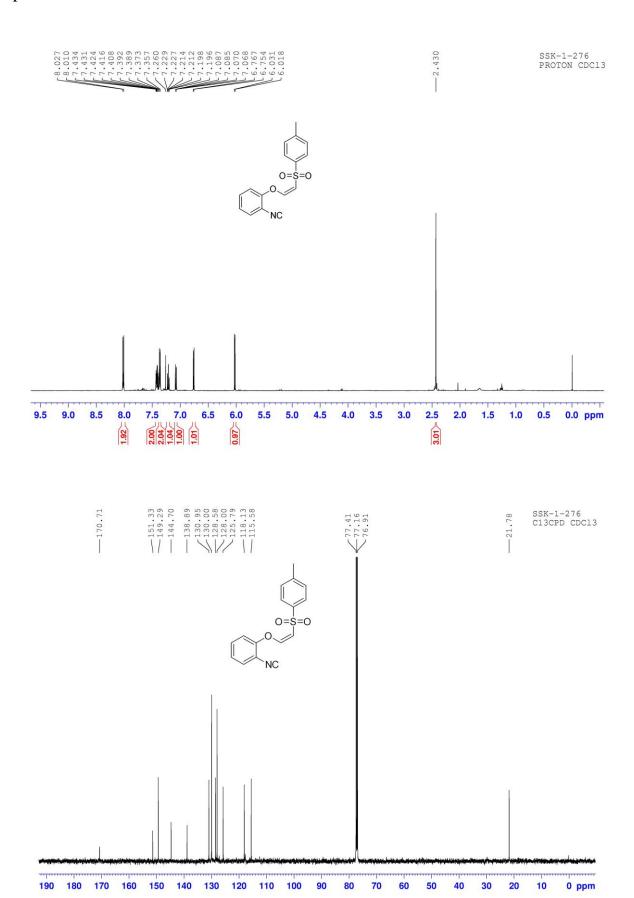

Compound 1g

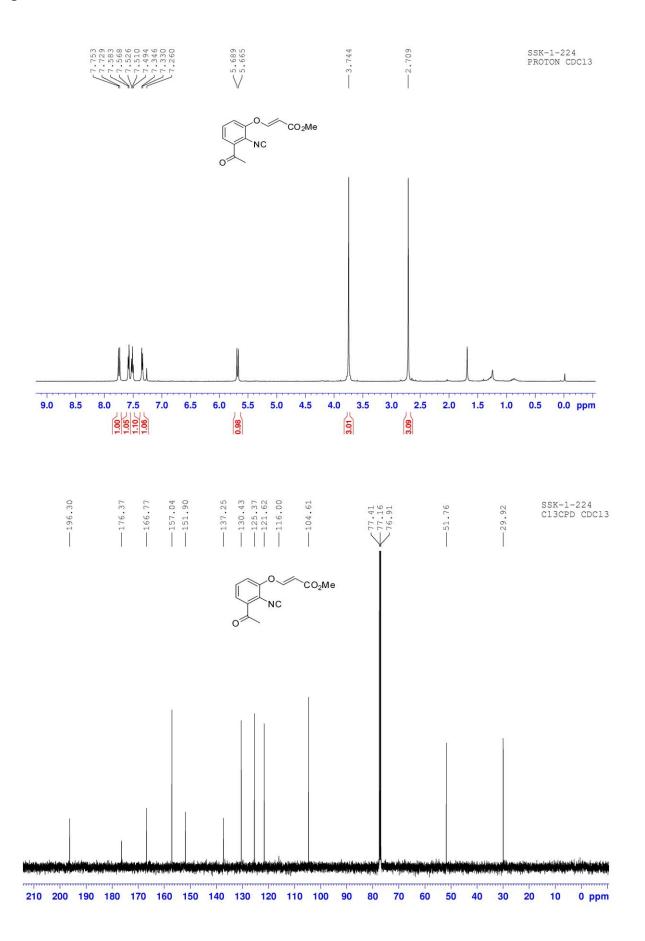

Compound 1h

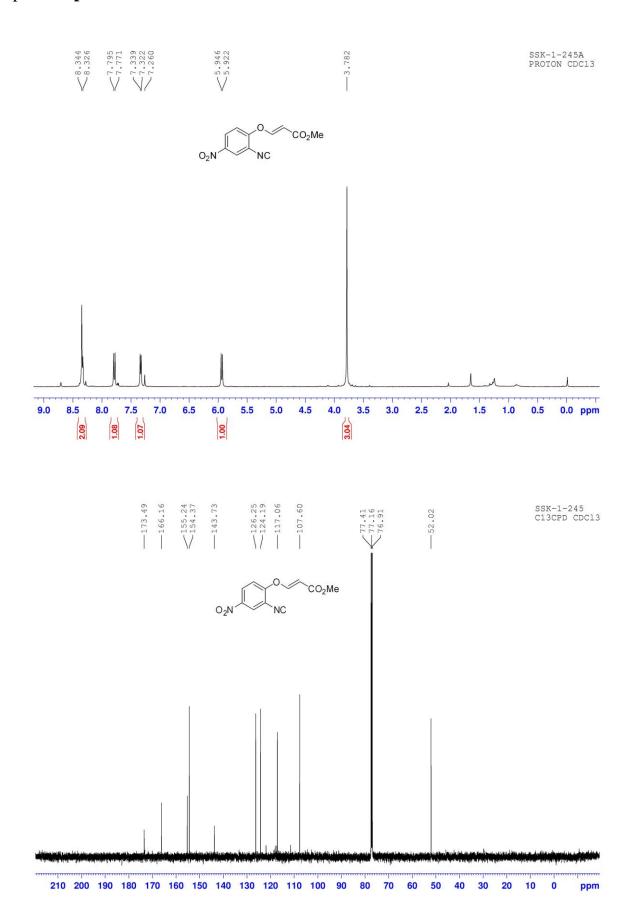

Compound 1i

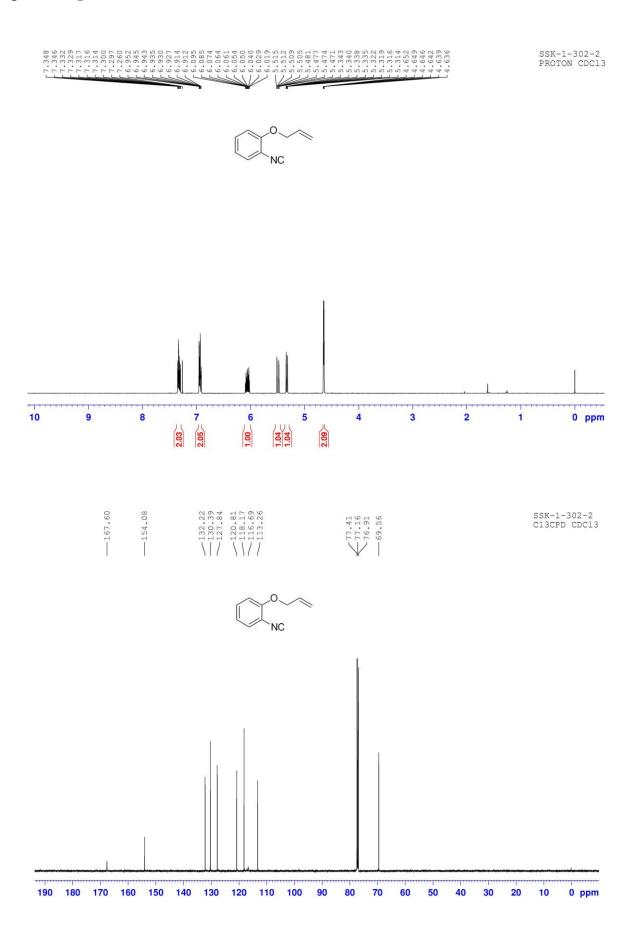

Compound 1j

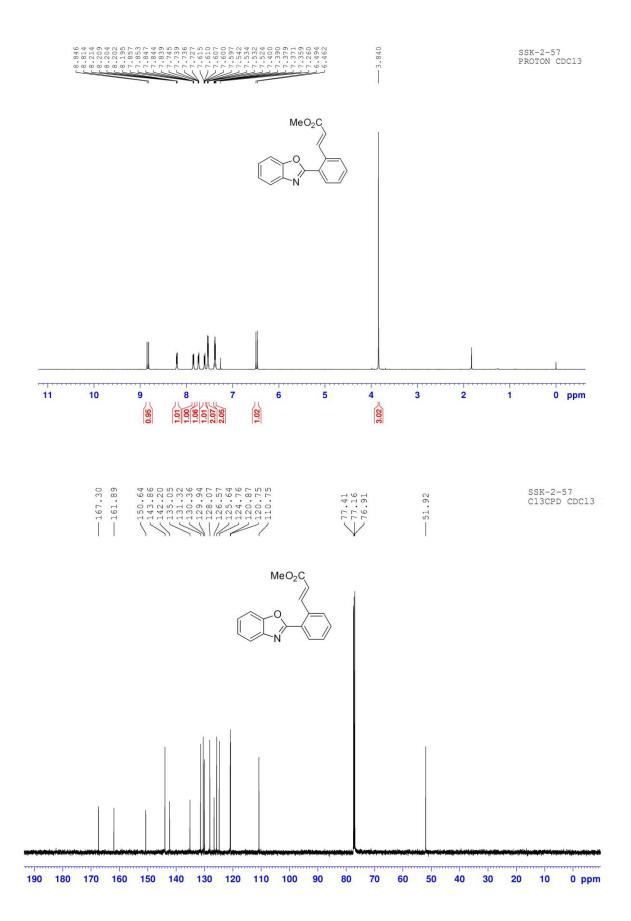

Compound 1k

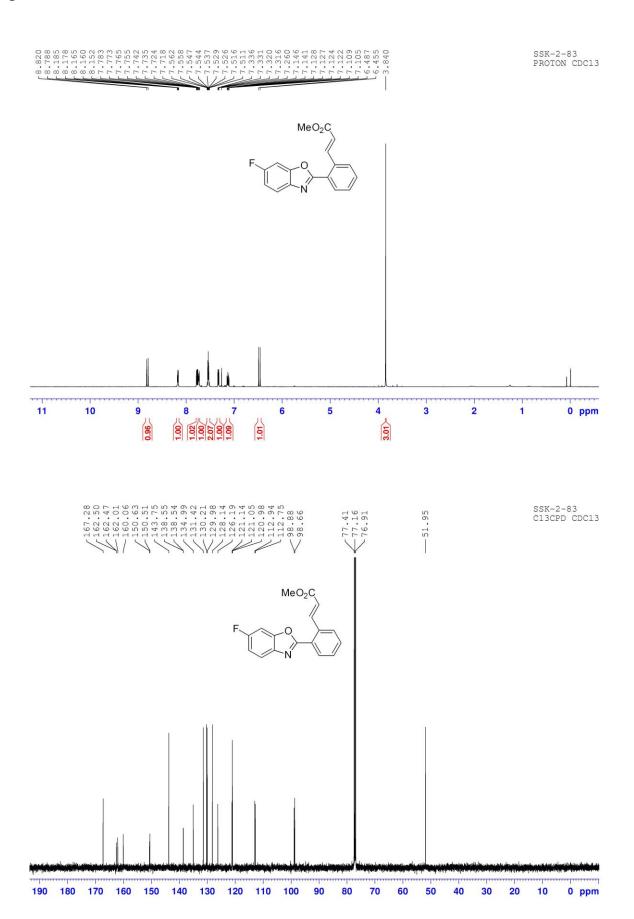

Compound 11

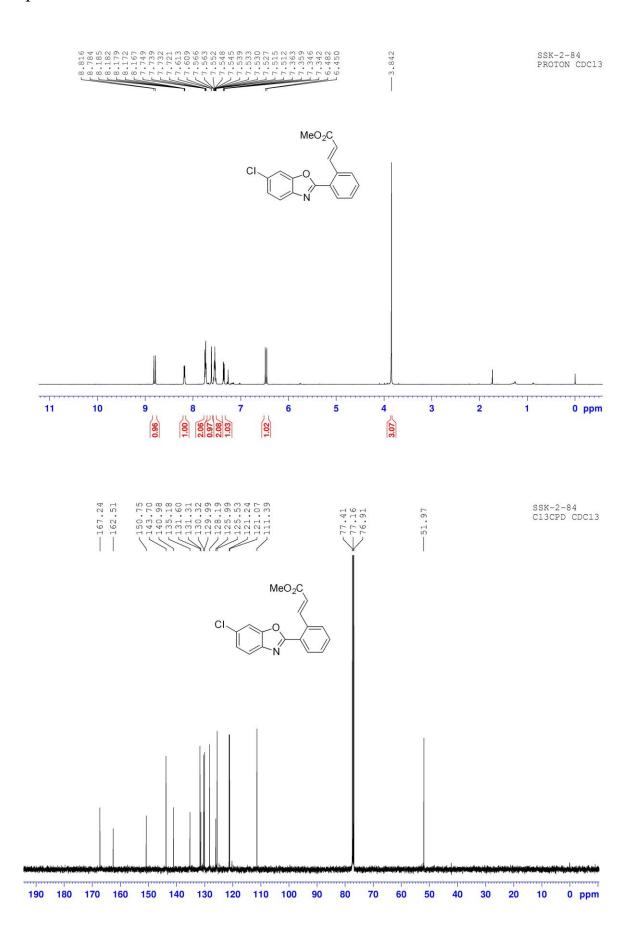

Compound 1m

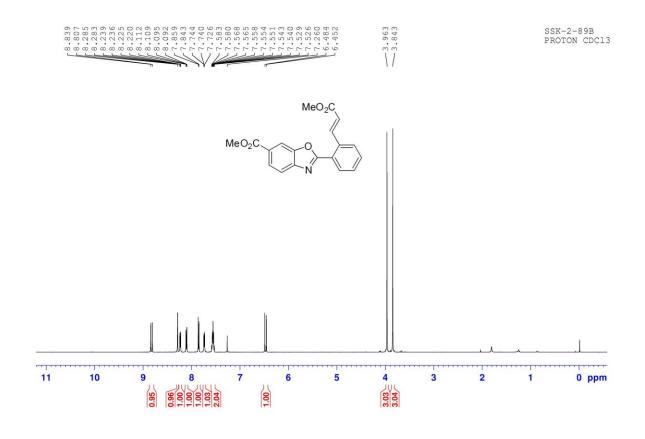

Compound 1n

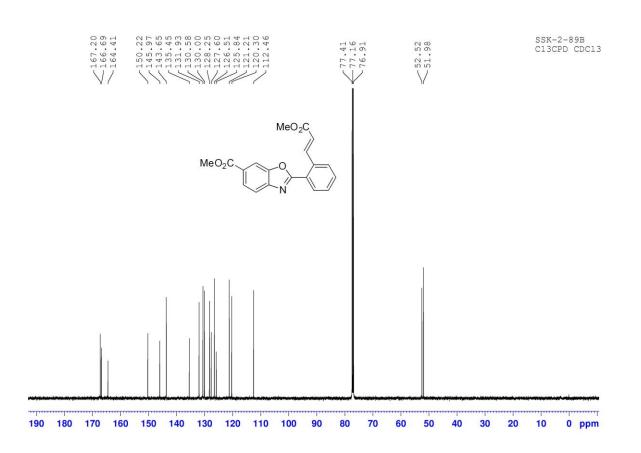

Compound 10


Compound 1p

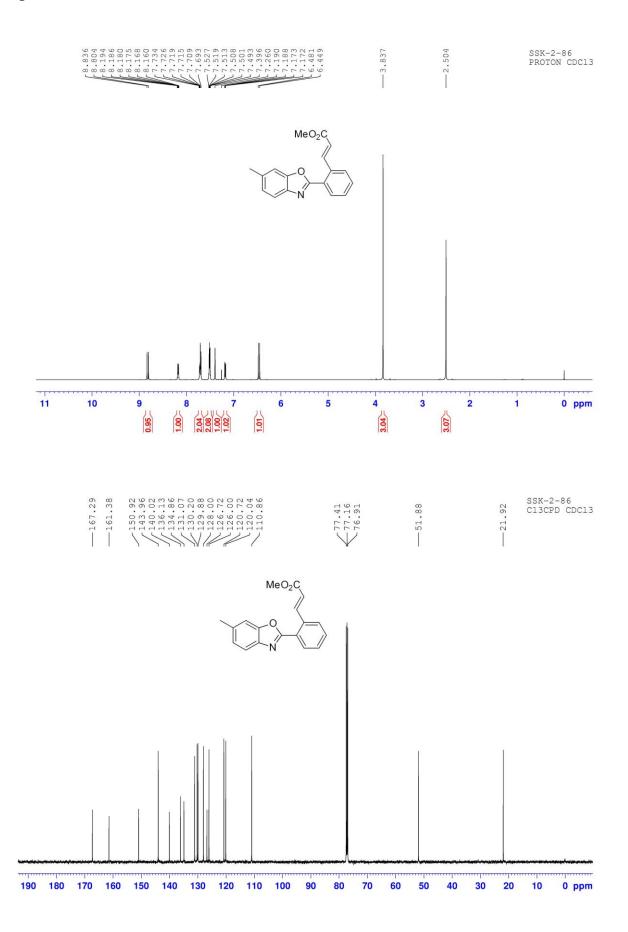

Compound 1q


Compound 3a

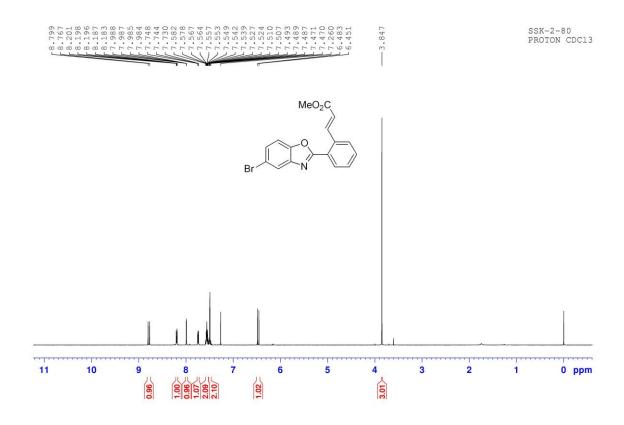

Compound 3b

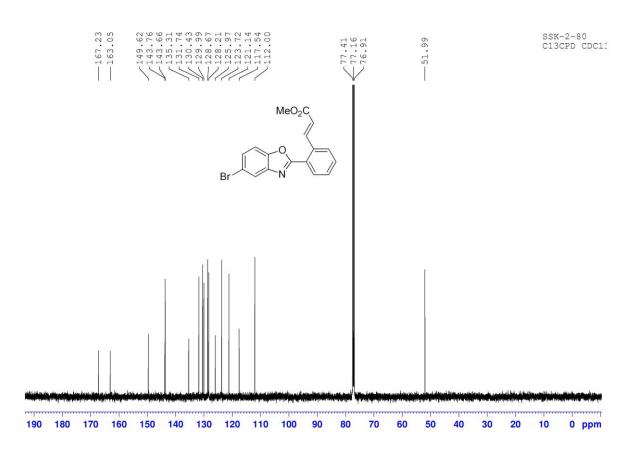


Compound 3c

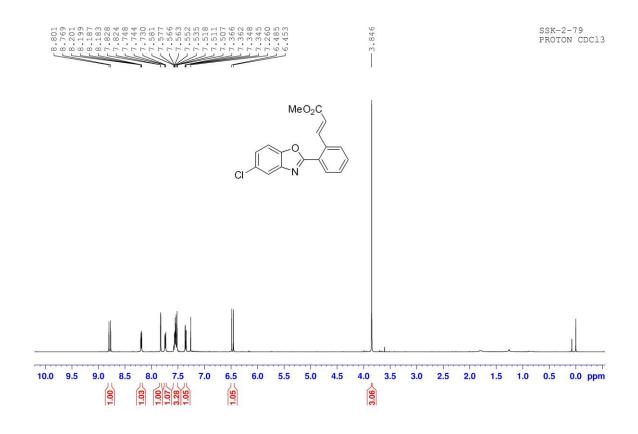


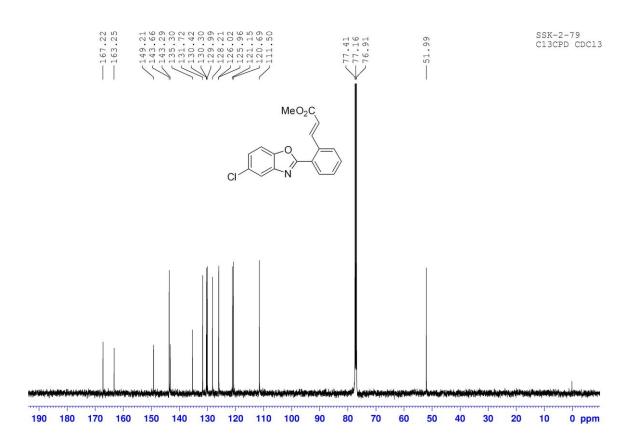
Compound 3d

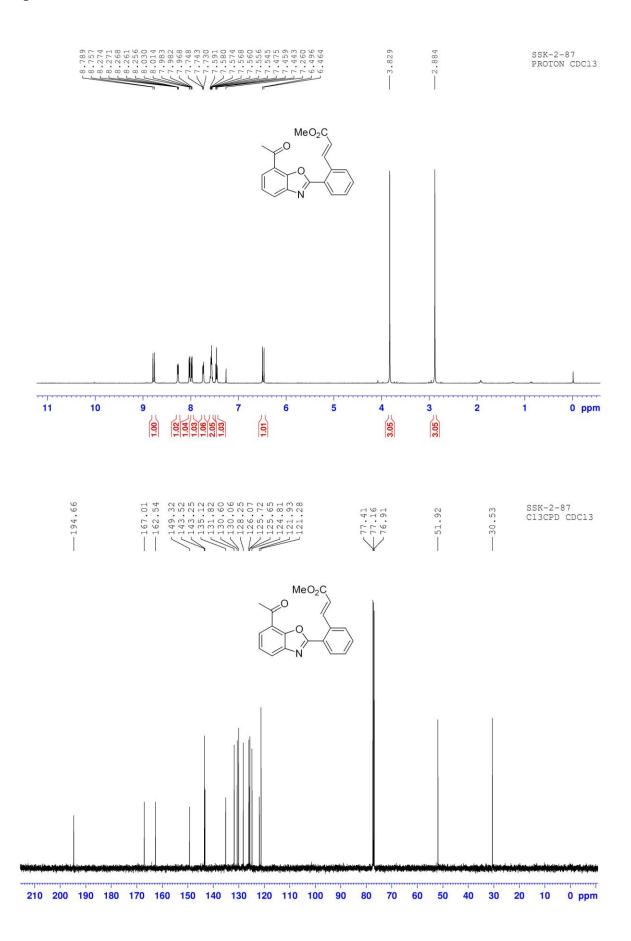




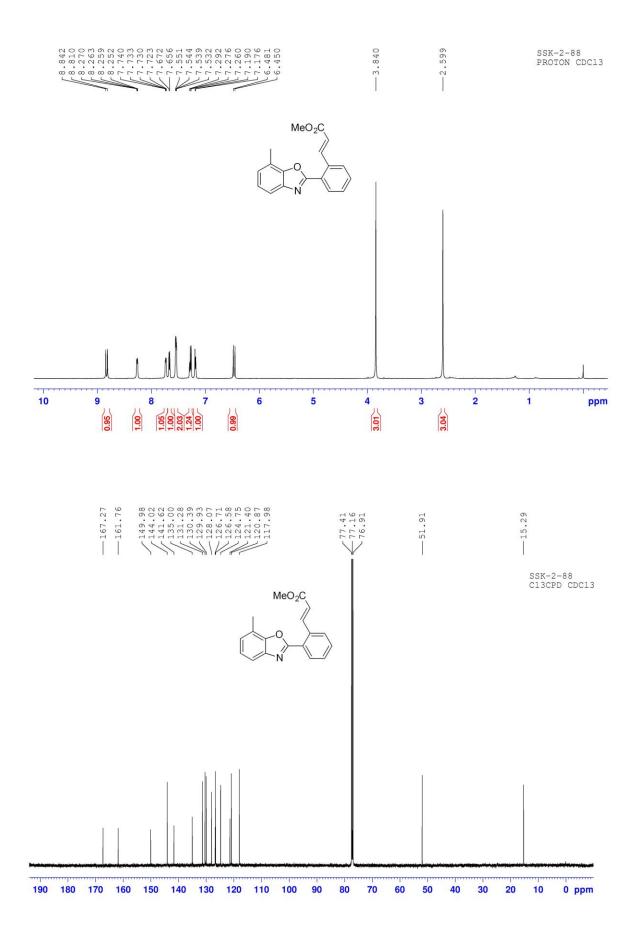
Compound 3e

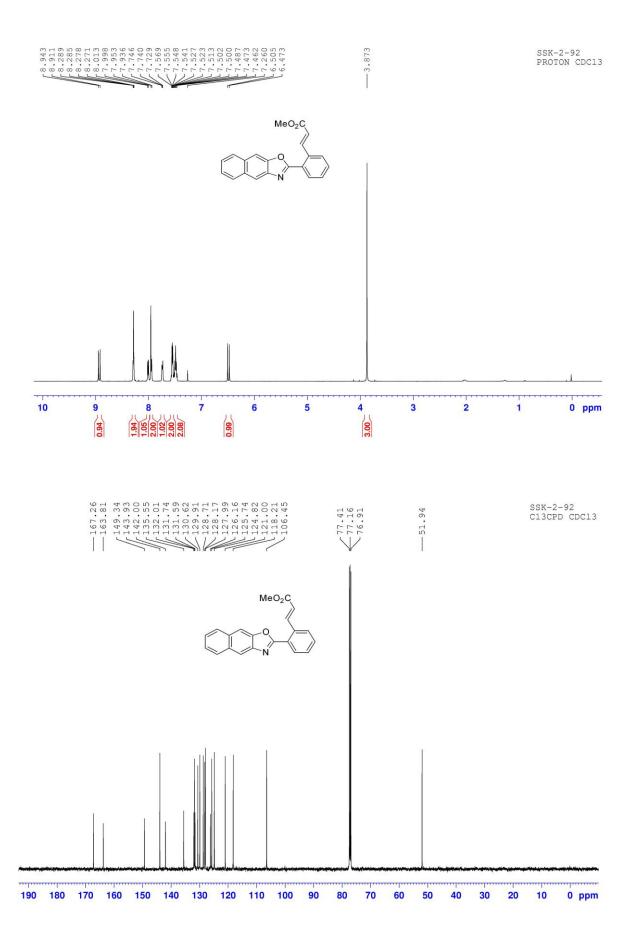


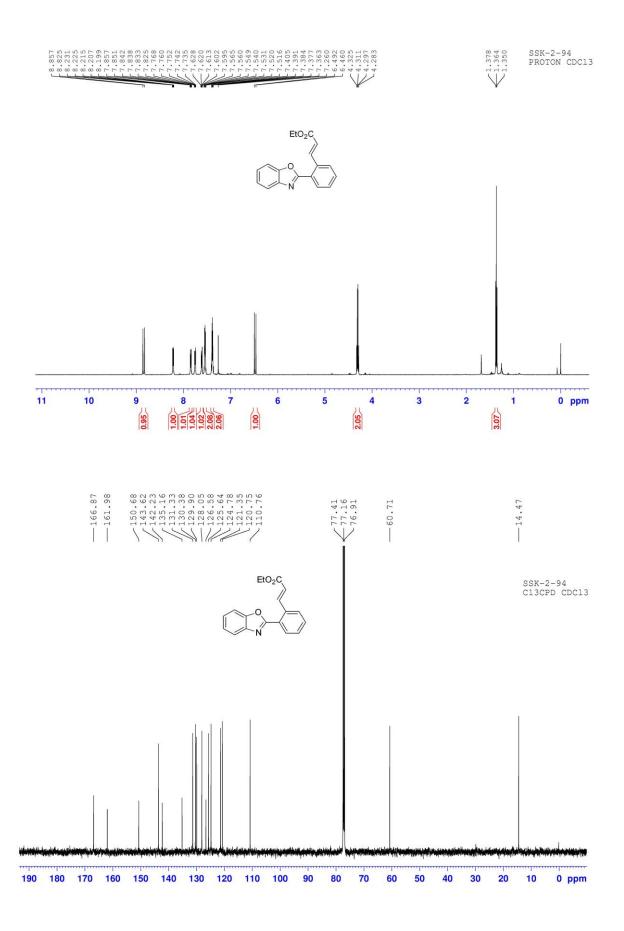

Compound **3f**

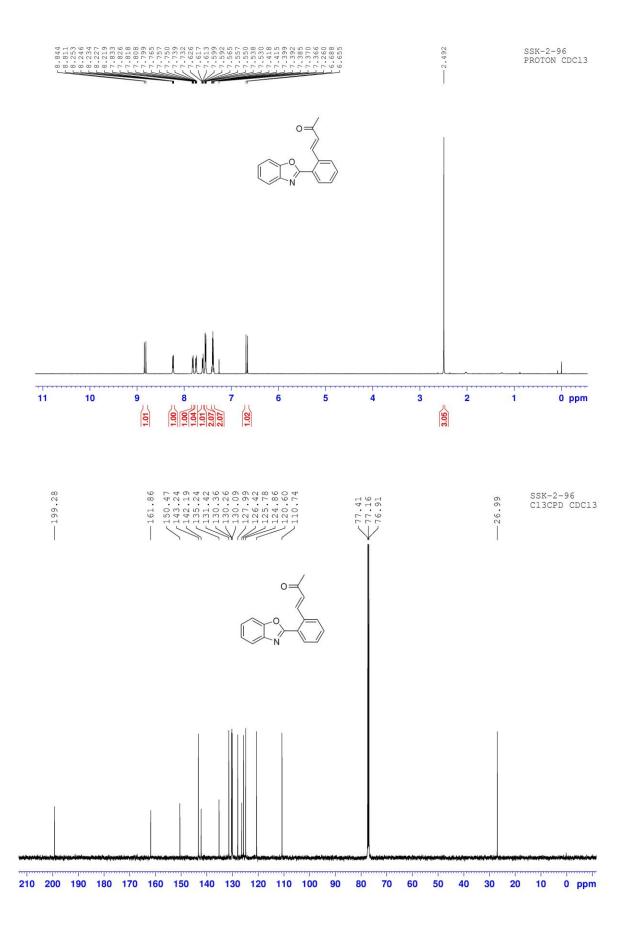


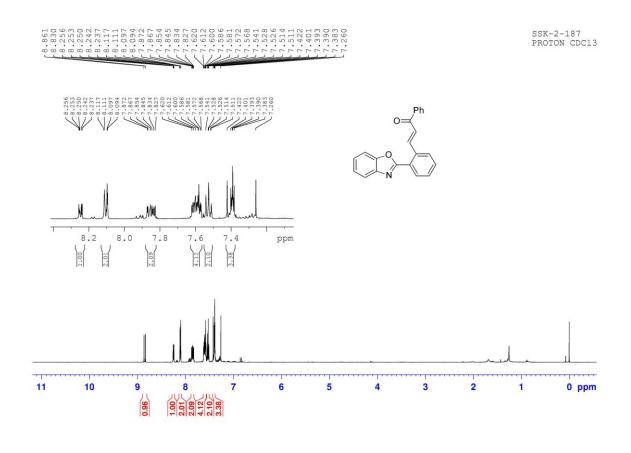
Compound 3g

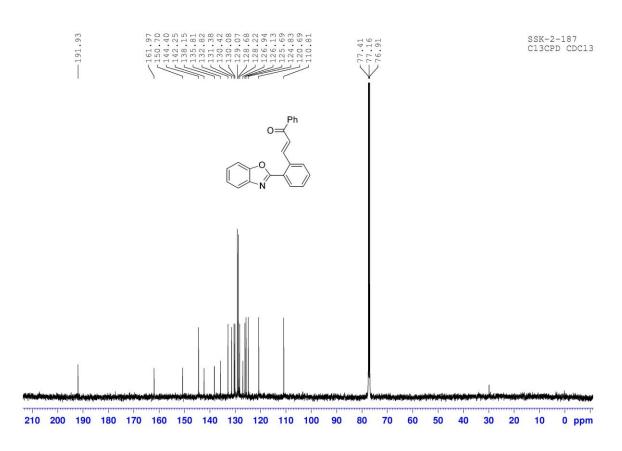



Compound 3h

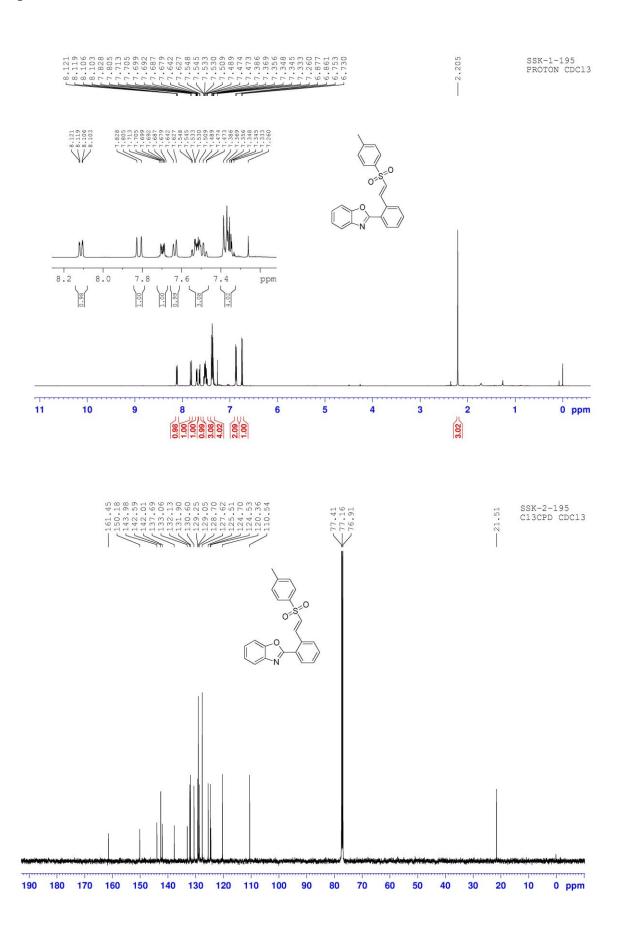

Compound 3i


Compound 3j

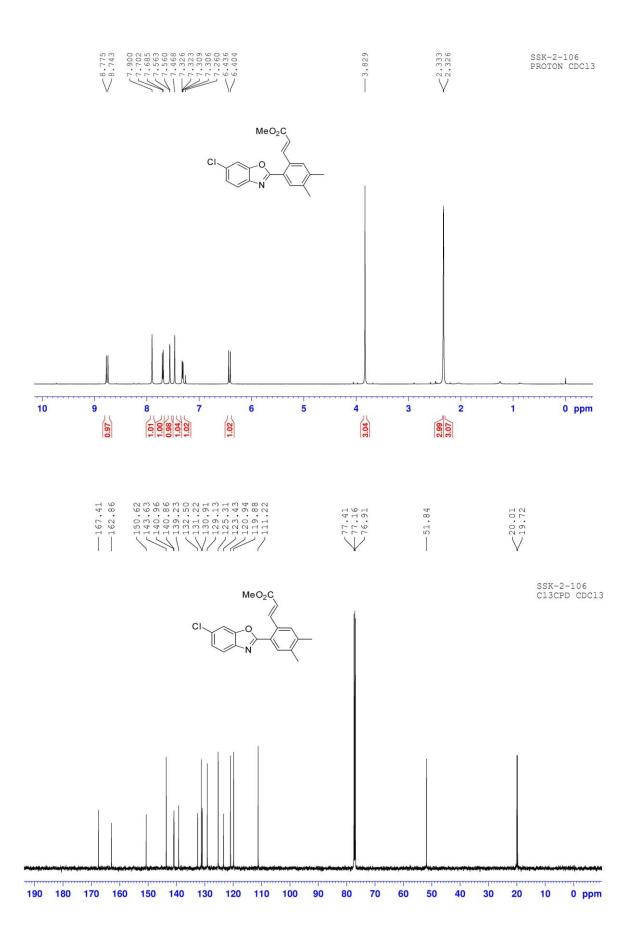

Compound 3k

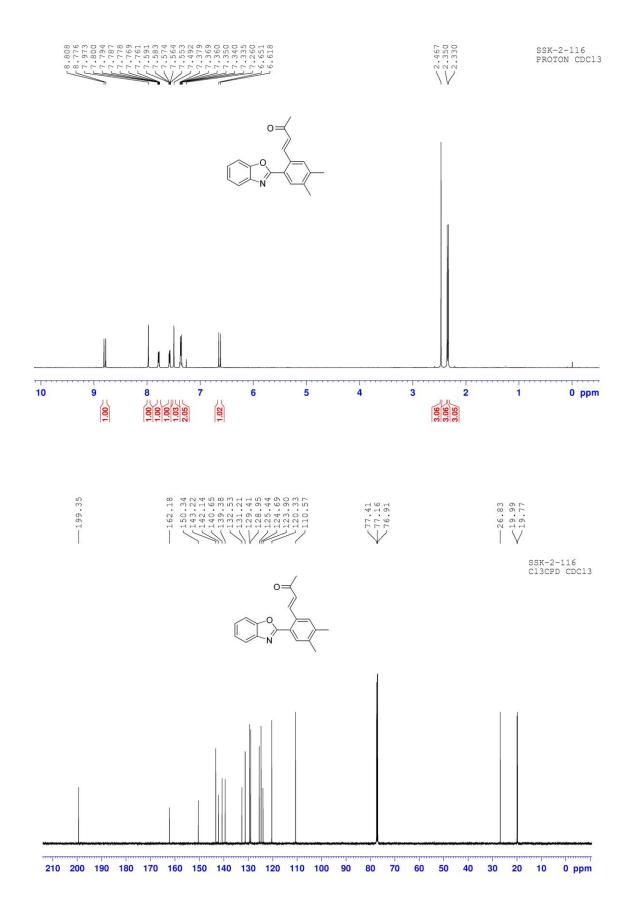


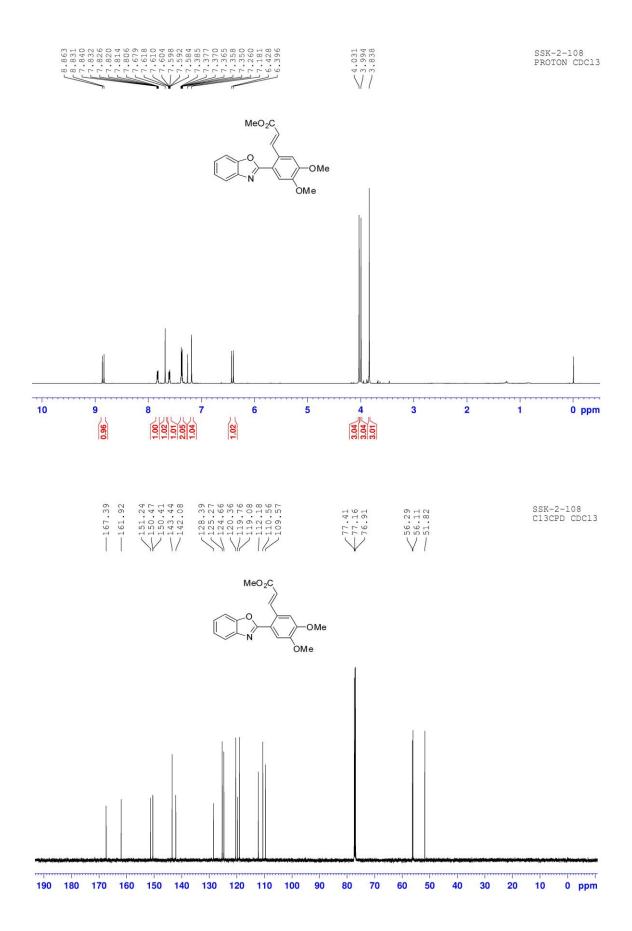
Compound 31

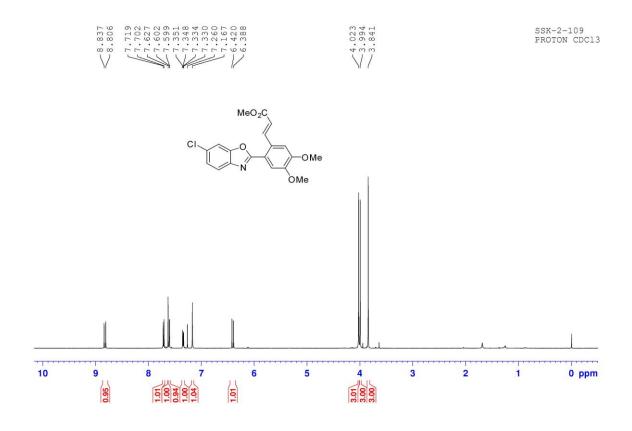


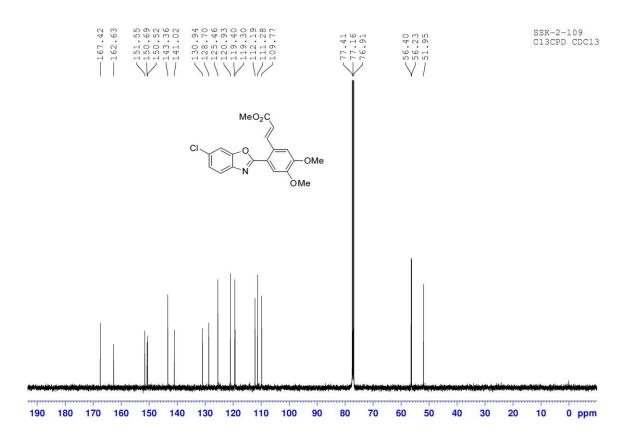
Compound 3m


Compound 3n

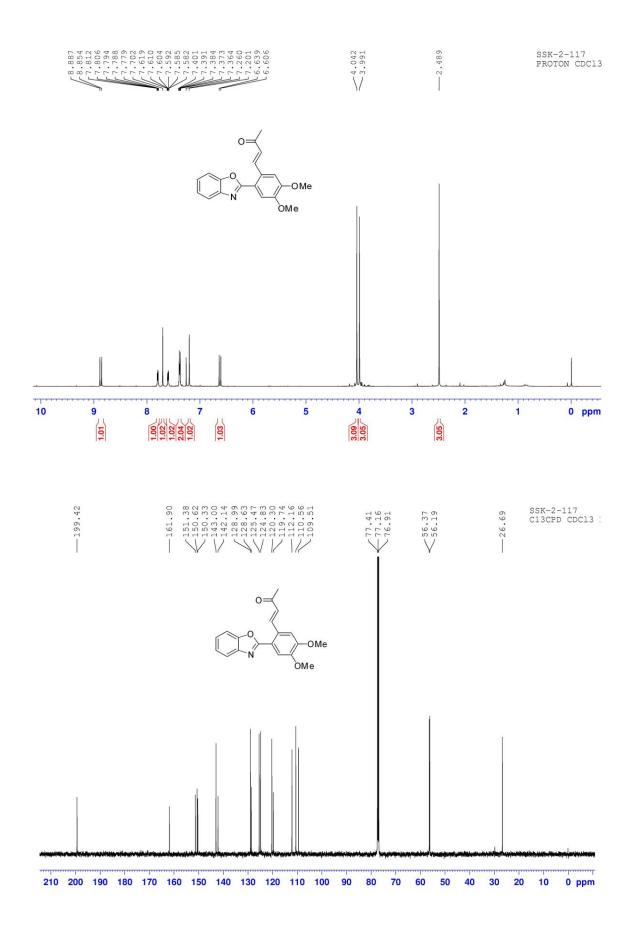

Compound 4a


Compound 4b

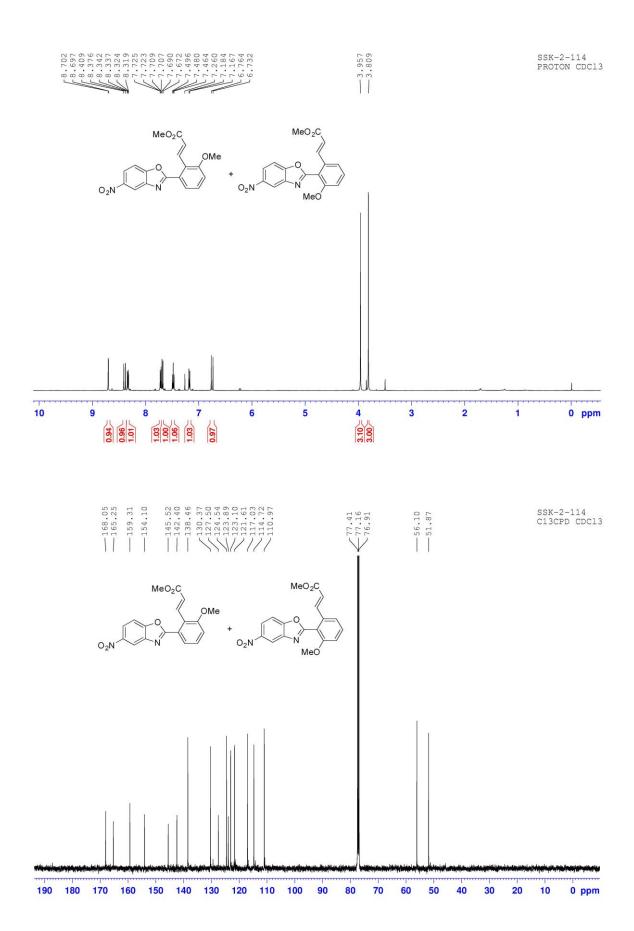

Compound **4c**

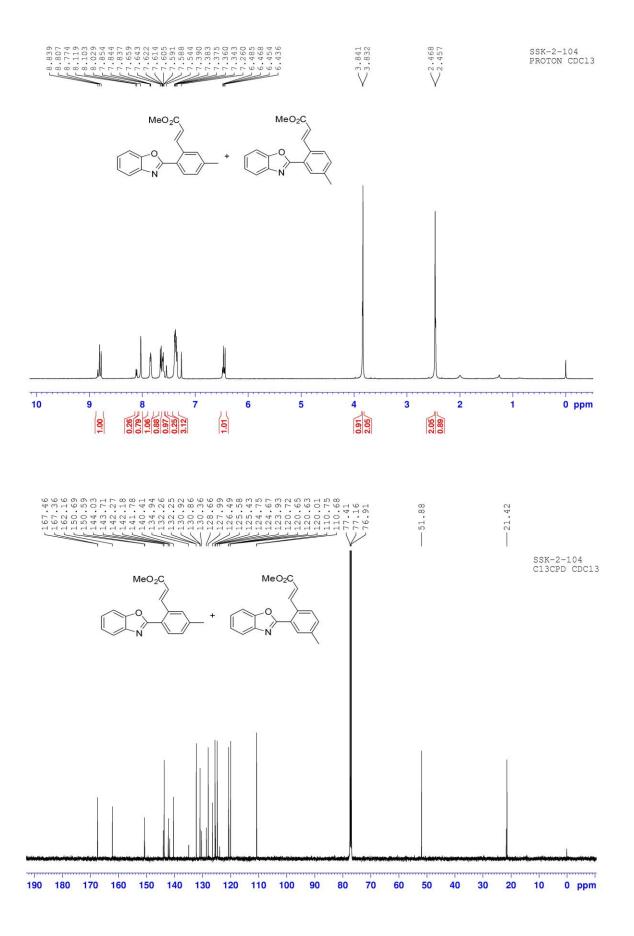


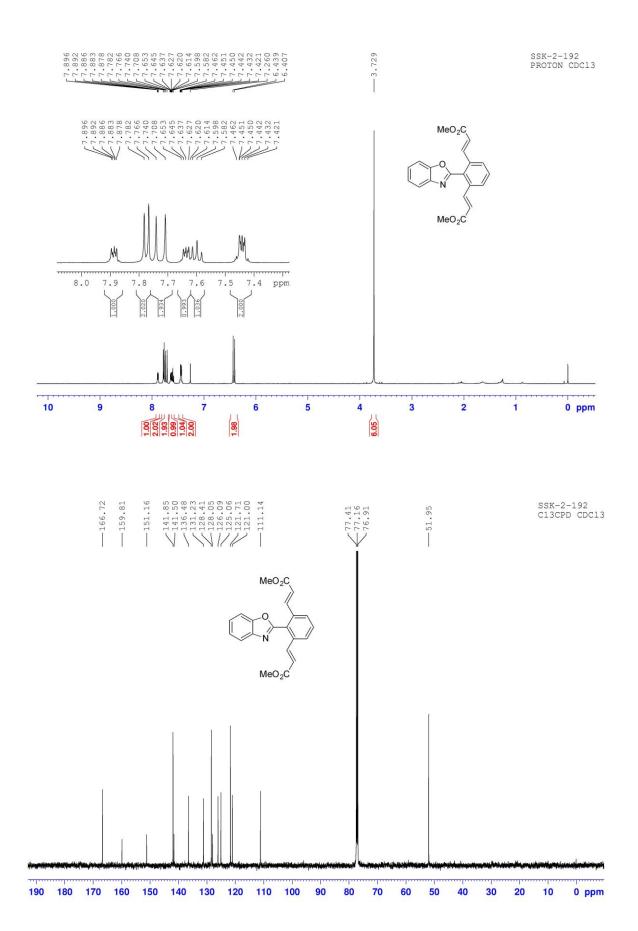
Compound 4d

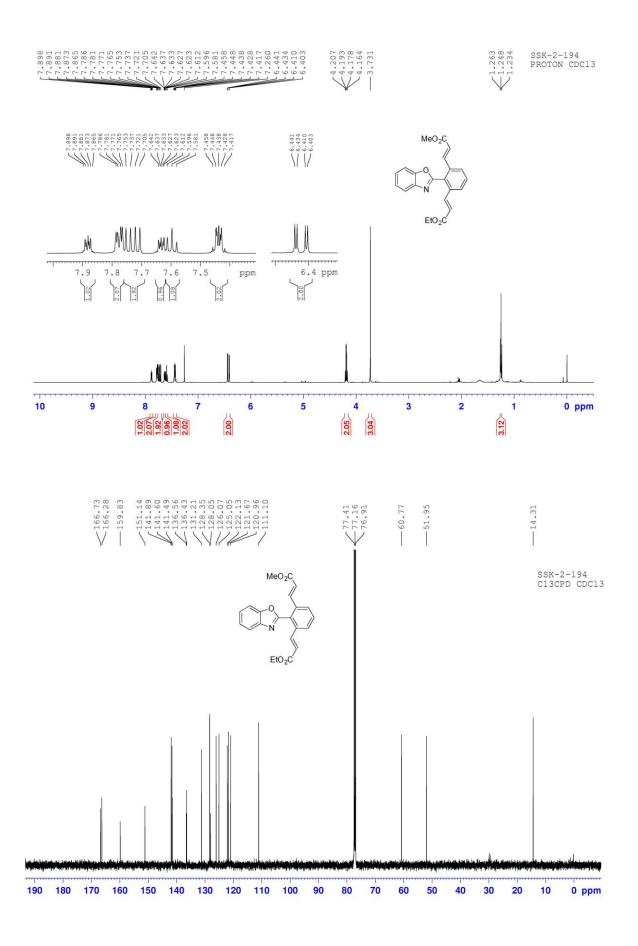


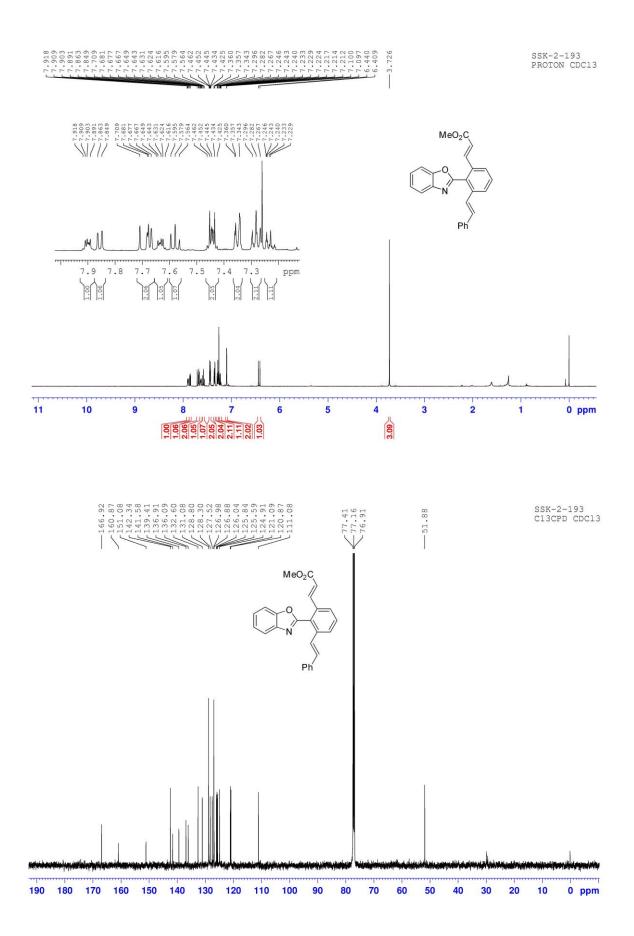
Compound 4e

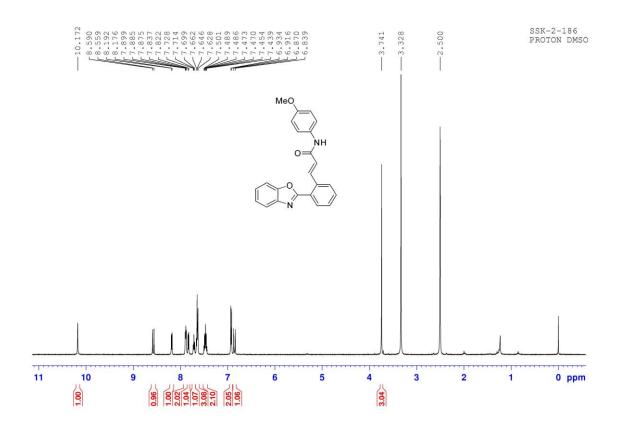


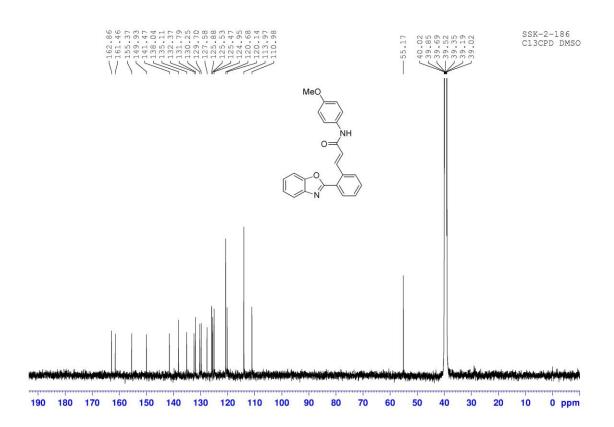

Compound 4f


Compound 4g+4g'


Compound 4h+4h'


Compound 6a


Compound 6b



Compound **6c**

Compound 8

