Multifunctional metallo-supramolecular interlocked hexagonal microstructures for the detection of lead and thiols in water

Prabhpreet Singh*^a, Lalit Singh Mittal^a, Kapil Kumar^a, Poonam Sharma^a, Gaurav Bhargava^b and Subodh Kumar^a

Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143 005, India.

e-mail: prabhpreet.chem@gndu.ac.in; Tel: +91-84271-01534

Department of Chemical Sciences, IK Gujral Punjab Technical University, Kapurthala-144601, Punjab, India.

EXPERIMENTAL SECTION

Measurements and Methods

Chemicals and solvents (reagent grade) were obtained from common suppliers such as Sigma-Aldrich, S D Fine-Chem Limited (SDFCL), Spectrochem and were used without further purification, unless otherwise stated. All reactions were performed under N₂. N-Methyl-2pyrrolidone (NMP) was dried over 4Å molecular sieves. THF, DMSO and CH₃CN solvents were of HPLC grade. Deionized water was obtained from ULTRA UV/UF Rions Lab Water System Ultra 370 series device.

Chromatography

Chromatographic purification was performed with silica gel 60-120 mesh. TLC was performed on aluminium sheets coated with silica gel 60 F254 (Merck, Darmstadt).

NMR Spectroscopy

¹H and ¹³C NMR spectra were recorded on a BRUKER Biospin AVANCE-III FT-NMR HD-500 spectrophotometer using CDCl₃ or DMSO(d_6) as solvent. The peak values were obtained as ppm (δ), and referenced to tetramethylsilane (TMS) for ¹H NMR spectroscopy and the residual solvent signal for ¹³C NMR spectroscopy. Data are reported as follows: chemical shifts in ppm, coupling constant J in Hz; multiplicity (s = singlet, bs = broad singlet, t = triplet, q = quartet, m = multiplet). Concentration based ¹H NMR spectroscopic titration of **PDI-HQ** and ¹H NMR spectroscopic titration spectroscopic titration spectroscop

software to draw the stacking spectra of **PDI-HQ** and **PDI-HQ** + Pb^{2+} complex at different concentrations.

UV-Vis and Fluorescence Spectroscopy measurements

The absorption spectra were recorded on SHIMADZU-2450 spectrophotometer equipped with a Peltier system to control the temperature. Quartz cells of 1 cm in length were used for sample measurements. The spectral bandwidth and the scan rate were fixed at 2 nm and 140 nm min⁻¹, respectively. Fluorescence titrations were performed on a CHRONOS-BH and PerkinElmer LS-55 fluorescence spectrophotometers (slit width: excitation = 10 nm, emission = 2.5 nm) with excitation at 490 nm, unless otherwise stated. Quartz cells of 1 cm in length were used for sample measurements. The concentration of HEPES buffer (pH 7.2) was 0.01 M. Stock solutions for various measurements of **PDI-HQ** were prepared in CH₃CN and DMSO. For experiments with PDI-HQ, we have taken 3 mL of the solution that contains 30 µL PDI-HQ in acetonitrile and 2.97 mL of HEPES-buffer (0.01 M, pH = 7.2) in cuvette. Typically aliquots of freshly prepared standard solutions (10⁻¹ M to 10⁻³ M) of Ag⁺, Mg²⁺, Cs⁺, Co²⁺, Ni²⁺, Fe²⁺, Al³⁺, Cr³⁺, K⁺, Mn²⁺, Hg²⁺, Sr²⁺, Cd²⁺, Zn²⁺, Li⁺, Cu²⁺ and Ba²⁺ as perchlorate or nitrate salts, unless otherwise stated, were prepared in deionized Millipore water and were diluted as required. The stock solution of PDI-HQ-Pb²⁺ was prepared by mixing of PDI-HQ and Pb²⁺ (1:30) in 99.9% HEPES-buffer (0.1% CH₃CN) (0.01 M, pH = 7.2). Typically aliquots of freshly prepared standard solutions (10⁻¹ M to 10⁻³ M) of Cl⁻, H₂PO₄⁻, HPO₄²⁻, I⁻, NO₂⁻, NO₃²⁻, F⁻, Br⁻, CO₃²⁻, ClO₄⁻ , CN⁻, OH⁻, AcO⁻; thiols viz. propanethiol, Cys, bovine serum albumin (BSA), S₂O₃²⁻, SO₃²⁻, SO₄²⁻ and S₂O₅²⁻ in deionized Millipore water were used to record UV-Vis and fluorescence spectra.

IR Spectroscopy and Mass Spectrometry

Fourier transform infrared (FT-IR) spectra were recorded on PerkinElmer 92035 spectrometer. High resolution mass spectra (HRMS) results were recorded on a BRUKER DALTONIK micrOTOF-Q11 spectrometer.

Dynamic Light Scattering Measurements

DLS measurements were performed at (25.0±0.1) °C by using a light-scattering apparatus (Zetasizer Nano ZS Malvern Instrument). The stock solutions of **PDI-HQ** (1 mM, CH₃CN) and

water were filtered through Millipore membrane filter (Acrodisc syringe filter, 0.45 μ m Supor membrane) before measurements to remove interfering impurities. Solutions of **PDI-HQ** in acetonitrile and its mixtures with water or solutions of **PDI-HQ** in CH₃CN:H₂O (0.1:99.9, v/v) + Pb²⁺ were prepared. 2 mL of each of these solutions was taken in glass cuvette to record the DLS spectrum. The samples were thermally equilibrated for 10 min before each measurement, and an average of 10 measurement runs were considered to be data. The temperature was controlled to an accuracy of ±0.1 °C using an inbuilt Peltier device. Data was analyzed using the standard algorithms.

Microscopic Measurements

Field-emission scanning electron microscopic (FE-SEM) measurements were performed on a JEOL JSM-6610LV (ZEISS SUPRATM55) operating at an acceleration voltage of 10 kV with a tungsten filament as the electron source. High-resolution transmission electron microscopic (HR-TEM) images were obtained with a JEOL JEM-2100 electron microscope operating at an acceleration voltage of 200 kV. The solutions prepared for DLS experiments were used for SEM and TEM. 5 μ L of each of the solution was added on the pre-cleaned surface of the separate glass slide using drop cast method and was allowed to dry in the incubator at 25 °C. SEM images, 1 μ L of the solution was added on carbon coated Cu-grid which was allowed to dry in the incubator at 25 °C.

Detection limit

The detection limit was calculated based on the absorbance or fluorescence titration. To determine the S/N ratio, the absorbance or emission intensity of **PDI-HQ** (10 μ M) or **PDI-HQ**+Pb²⁺ was measured by 3 times and the standard deviation of blank solution (without addition of Pb²⁺ for **PDI-HQ** or without addition of cysteine for **PDI-HQ**+Pb²⁺) measurements was determined. The detection limit was then calculated with the equation

Detection limit = $3\sigma bi/m$

Where, σbi is the standard deviation of blank solution (without addition of Pb²⁺ for **PDI-HQ** or without addition of cysteine for **PDI-HQ**+Pb²⁺) measurements; m is the slope between intensity versus sample concentration.

Urine sample

A real urine sample of a medically fit person was used for the experiments. For experiments with urine sample we have taken 3 mL of the solution that contains 30 μ L **PDI-HQ** in acetonitrile, 1.5 mL of urine and 1.47 mL of HEPES-buffer (0.01 M, pH = 7.2) in cuvette and fluorescence value obtained was compared with the calibration curve to quantify the Pb²⁺ ions.

Data Analysis

All absorption and fluorescence scans were saved as ACSII files and further processed in Excel[™] to produce all graphs shown in the chapter. The spectral data were analysed through curve fitting procedures by using non-linear regression analysis SPECFIT 3.0.36 to determine the stability constants and the distribution of various species.

MATERIAL SYNTHESIS

8-hydroxyquinoline (5 g, 0.034 mmol) was taken in dicholormethane (150 mL, dry) and tert-butyl dimethylsilyl chloride (5.7 g, 0.038 mol), imidazole (2.46 g, 0.036 mol) were added all at once. The reaction mixture was stirred for 48 hour at RT. After this time interval, the reaction mixture was quenched with 0.1 N HCl solutions, washed with brine solution and crude product silylated 8-hydroxyquinoline was

concentrated under high vacuum. Compound silvlated 8-hydroxyquinoline was Isolated as colorless liquid, yield is 80.1% (7.2 g, 0.025 mol); $R_f = 0.3$ (Et₂O:hexane 2:98 v/v).

Crude product (5.0 g, 0.019 mol) was dissolved in dichloromethane (120 mL, dry) under nitrogen atmosphere. Bromine (0.49 mL, 0.019 mol) in dichloromethane (20 mL, dry) was added drop-wise at RT under nitrogen atmosphere. The reaction mixture was stirred for 10 h at RT. After this interval, quenched the reaction mixture with saturated solution of sodium thiosulfate, washed with brine and crude product was concentrated under high vacuum. The crude product was purified by column chromatography (ethyl acetate:hexane, 1:99 v/v) to obtained compound **2** as pale yellow liquid; Yield is 92% (6.0 g, 0.017 mol); $R_f = 0.6$ (Ethyl acetate:hexane 1:99); HRMS (TOF, ESI) *m/z* found 339.04; calcd. 340.06 for C₁₂H₂₀BrNOSi; ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 0.27 (s, 6H), 1.07 (s, 9H), 7.07 (d, J = 8.0 Hz, HQ-H7, 1H), 7.47 (dd, $J_1 = 8.5$ Hz, J₂ = 4.0 Hz, HQH-3, 1H), 7.67 (d, J = 8 Hz, HQH-6, 1H), 8.45(d, J = 8.5 Hz, HQH-4, 1H), 8.87(d, J = 4 Hz, HQH-2, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃, 25 °C): $\delta = -3.8$, 19.0, 26.0, 112.4, 118.4, 122.4, 128.6, 130.6, 135.4, 143.0, 149.1, 153.0 ppm.

Figure S1: ¹H and ¹³C NMR spectra of compound 4.

5-Bromo-8-(*tert*-butyldimethylsilyloxy) quinoline (**4**) (5.0 g, 14.8 mmoles) and catalyst PdCl₂(PPh₃)₂ (0.5 g, 0.71 mmoles) were dissolved in anhydrous 1,4-dioxane (50 mL) under N₂ at RT. Subsequently, triethylamine (7.75 mL, 55.56 mmoles) and bis(pinacolatoboron) (5.39 g, 21.2 mmoles) were added to the reaction mixture and stirred overnight at 90^o C. The reaction mixture was cooled and poured into water (100 mL), extracted with chloroform and concentrated under high vacuum. The residue was column chromatographed (ethyl acetate/hexane 4:96) to isolate **3** as a pale yellow solid, yield 3.5 g (9.08 mmoles, 61.2%); $R_f = 0.5$ (ethyl acetate/hexane 4:96); ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 0.27 (s, 6H), 1.06 (s, 9H), 1.39 (s, 12H), 7.20 (d, *J* = 7.5 Hz, 1H), 7.39 (dd, *J*₁ = 8.5 Hz, *J*₂ = 4.0 Hz, HQH-3, 1H), 8.03 (d, *J* = 7.5 Hz, HQH-6, 1H), 8.83 (dd, *J*₁ = 4.0 Hz, *J*₂ = 1.5 Hz, HQH-4, 1H), 9.08 (dd, *J*₁ = 8.5 Hz, *J*₂ = 1.5 Hz, HQH-2, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ = -3.70, 19.10, 22.79, 25.11, 26.12, 31.73, 34.82, 83.73, 117.34, 121.61, 133.93, 136.63, 137.44, 142.15, 148.10, 156.18 ppm; HR-MS: *m/z* found 386.2332 (M⁺⁺1); calcd. 385.2245 for [C₂₁H₃₂BNO₃Si].

Figure S2: ¹H, ¹³C NMR and Mass spectra of compound **3**.

Synthesis of PDI 1

PDI 2 (1.0 gm, 1.64 mmoles) and Na₂CO₃ (1.77 g, 16.70 mmoles) were dissolved in toluene (50 mL), ethanol (15 mL) and water (25 mL) mixture and solution was purged with N₂ for 10 min. Subsequently, compound **3** (0.94 g, 2.44 mmoles) and catalyst Pd(PPh₃)₄ (0.37 g, 0.32 mmoles) were added to the reaction mixture and stirred at 70 °C for 10 h. After this time interval the reaction mixture was evaporated under vacuum. The remaining residue was poured into water, extracted with chloroform, dried and concentrated under vacuum. The residue was further purified by column chromatography (SiO₂, CHCl₃/hexane 10:90) to isolate PDI-SiHQ as a red solid, yield 600 mg (0.762 mmol, 46.3%); R_f = 0.45 (CHCl₃/hexane 10:90); ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 0.36 (s, 3 H), 0.41 (s, 3H), 0.86 (t, *J* = 7.5 Hz, 6H), 0.93 (t, *J* = 7.5 Hz, 6H), 1.14 (s, 9H), 1.85-1.97 (m, 4H), 2.15-2.30 (m, 4H), 4.97-5.09 (m, 2H), 7.20 (dd, *J*₁ = 8.5 Hz, *J*₂ = 4.0 Hz, 1H), 7.37 (d, *J* = 7.5 Hz, 1H), 7.52 (d, *J* = 7.5 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.85-7.88 (m, 2H), 8.57 (s, 1H), 8.64-8.76 (m, 4H), 8.90 (d, *J* = 2.5 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 153.99, 149.49, 143.15, 138.57, 135.13, 134.61, 134.50, 133.98, 132.97, 132.93, 129.32, 129.10, 128.80, 128.05, 127.75, 127.40, 126.53, 123.72, 122.96, 122.34, 119.07, 77.37, 57.91, 57.73, 29.84, 26.13, 25.16, 25.06, 15.47, 11.44, -3.70, -3.73 ppm.

Figure S3: ¹H, ¹³C NMR and Mass spectra of compound PDI 1.

Synthesis of PDI-HQ

In a 50 mL round bottom flask, **PDI 1** (100 mg, 0.127 mmol) was dissolved in THF (10 mL). Then 1.0 M solution of *tert*-butyl ammonium fluoride in THF (15 mL) was added and mixture was stirred for 24 h at RT. After this interval, the solvent was removed and residue was dissolved in chloroform and washed with water. The organic solvent dried over Na₂SO₄ and solvent was removed by rotary evaporation. The crude product was purified by column chromatography (SiO₂, chloroform/ hexane) to isolate **PDI-HQ**, as a red solid (60 mg, 0.089 mmol, 70.2%), $R_f = 0.4$ (methanol/chloroform 0.5:9.5).

¹**H NMR (500 MHz, CDCl₃, 25 °C)**: δ 0.86 (t, *J* = 7.5 Hz, 6H 2xCH₃ ethylpropyl), 0.93 (t, *J* = 7.5 Hz, 6H, 2xCH₃ ethylpropyl), 1.86-1.96 (m, 4H, 2xCH₂ ethylpropyl), 2.25-2.28 (m, 4H, 2xCH₂ ethylpropyl), 4.97-5.10 (m, 2H, 2xCH ethylpropyl), 7.27 (m, 1H, HQ), 7.38 (d, *J* = 8.0 Hz, 1H, HQ), 7.62 (d, *J* = 8.0 Hz, 1H, Perylene ArH), 7.69 (d, *J* = 8.0 Hz, 1H, HQ), 7.89 (dd, *J*₁ = 8.5 Hz, *J*₂ = 1.0 Hz, 1H, HQ), 7.92 (d, *J* = 8.0 Hz, 1H, Perylene ArH), 8.58 (s, 1H, Perylene ArH), 8.67-8.74 (m, 4H, Perylene ArH), 8.82 (dd, *J*₁ = 4.5 Hz, *J*₂ = 1.5 Hz, HQ, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 11.42, 11.46, 25.07, 25.16, 29.08, 57.74, 57.92, 111.27, 122.95, 123.75, 125.40, 127.38, 128.06, 128.72, 128.83, 129.07, 129.31, 130.79, 131.31, 133.52, 134.00, 134.48, 134.61, 135.09, 138.16, 139.19, 148.78, 153.28 ppm

Mass Spectrum: *m/z* found 674.2658 [M⁺+1]; calcd. 673.2577 for [C₄₃H₃₅N₃O₅]

UV-Vis (99.9% H₂O:CH₃CN): $\lambda_{max} = 492 \text{ nm}$

Fluorescence (99.9% H₂O:CH₃CN): $\lambda_{max} = 660$ nm (weak band).

Figure S4: ¹H, ¹³C NMR and Mass spectra of compound PDI-HQ.

Figure S5. Absorption and emission changes in **PDI-HQ** (10 μ M) after incremental addition of H₂O to (a,b) DMSO and (d,e) CH₃CN; Plot of degree of aggregation (α_{agg}) *vs.* water fraction in (c) DMSO and (f) CH₃CN. (Slit width Ex/Em = 15/9)

Figure S6. Fluorescence intensity changes as observed in **PDI-HQ** (10 μ M) in the presence of various metal ions recorded in HEPES buffer (0.1% CH₃CN, pH 7.2).

Figure S7. (a) Plot of fluorescence intensity of **PDI-HQ**–Pb²⁺ aggregates (1:30), HEPES buffer (0.1% CH₃CN, pH 7.2) on addition of EDTA; (b) Graph showing percentage recovery of Pb²⁺ ions in urine samples using calibration curve.

Table S1: Application of **PDI-HQ** in determination of Pb^{2+} ions in spiked urine samples along with percentage recovery values of Pb^{2+} ions in urine samples.

Sr. No.	Concentration of Pb ²⁺ ions added	ConcentrationConcentrationPb2+ ions addedof Pb2+ ions obtained	
	(μM)	(μ M)	
1	12	11.8	98.33
2	30	31	103.33
3	60	61	101.66
4	80	79	98.75
5	100	99	99.00
6	160	149	93.12
7	200	202	101.00
8	250	251	100.40

Equivalents	P1 ^a	P2 ^a	P3 ^a	P4 ^a	P5 ^a	P6 ^a
of Pb ²⁺	(Δδ) ^b					
1 equiv.	7.558	7.758	8.539	8.600	8.902	8.932
(10µM)	(0.063)	(0.072)	(0.036)	(0.041)	(0.074)	(0.080)
2 equiv.	7.543	7.731	8.530	8.590	8.875	8.915
(20µM)	(0.078)	(0.101)	(0.045)	(0.051)	(0.101)	(0.097)
3 equiv.	7.504	7.692	8.505	8.565	8.854	8.882
(30µM))	(0.117)	(0.140)	(0.070)	(0.076)	(0.122)	(0.130)
4 equiv.	7.461	7.652	8.477	8.537	overlap	overlap
(40µM)	(0.160)	(0.180)	(0.098)	(0.104)		
5 equiv.	7.364	7.567	8.407	8.472	8.698	8.720
(50µM)	(0.257)	(0.265)	(0.168)	(0.169)	(0.278)	(0.292)

Table S2: Change in chemical shift (δ) of perylene P1-P6 protons and 8-hydroxyquinoline protons as observed in ¹H NMR titration of **PDI-HQ** with Pb²⁺ ions recorded in DMSO(d₆)/H₂O (9:1, v/v).

Equivalents	HQ-7ª	HQ-3ª	HQ-6 ^a	HQ-4 ^a	HQ-2 ^a	P7ª
of Pb ²⁺	(Δδ) ^b	(Δδ) ^b	$(\Delta \delta)^{b}$	(Δδ) ^b	(Δδ) ^b	(Δδ) ^b
1 equiv.	7.287	7.350	7.637	7.907	8.862	8.299
(10µM)	(0.033)	(0.005)	(0.023)	(0.036)	(0.012)	(0.025)
2 equiv.	7.271	7.346	7.628	7.895	8.857	8.292
(20µM)	(0.049)	(0.010)	(0.032)	(0.048)	(0.017)	(0.032)
3 equiv.	7.243	7.338	7.606	7.870	8.839	8.276
(30µM))	(0.077)	(0.018)	(0.054)	(0.073)	(0.035)	(0.048)
4 equiv.	7.224	7.330	7.580	7.842	overlap	8.259
(40µM)	(0.096)	(0.026)	(0.080)	(0.100)		(0.065)
5 equiv.	7.175	7.310	7.509	7.782	8.823	8.218
(50µM)	(0.145)	(0.046)	(0.150)	(0.161)	(0.051)	(0.106)

^{*a*}Chemical shift (δ) in ppm; ^{*b*}Change in chemical shift ($\Delta\delta$) in ppm

Figure S8. SEM (a-b) and TEM (c) micrographs of thin films obtained from drop cast of solution of PDI-HQ (10 μ M) in water (0.1% CH₃CN) showing spherical morphology; (d) SAED pattern recorded in HRTEM.

Figure S9. SEM micrographs of thin films obtained from drop cast of 6 μ l solution of [**PDI-HQ** (10 μ M) + Pb(ClO₄)₂ (300 μ M)] in water (0.1% CH₃CN) showing interlocked hexagonal metallosupramolecular self-assemblies

(a)	Element	Weight%	Atomic%
Spectrum 1	C K N K O K Si K Ca K Au M Pb M	11.21 -0.44 13.38 3.37 0.74 38.11 33.63	41.81 -1.41 37.47 5.37 0.83 8.67 7.27
State -	Totals	100.00	
(b)	Element	Weight%	Atomic%
(b) Bectrum 1	Element C K N K O K Si K Au M Pb M	Weight% 13.79 2.70 20.60 13.83 35.89 13.20	Atomic% 34.10 5.72 38.25 14.63 5.41 1.89

Figure S10. (a-b) EDAX spectrum of PDI-HQ–Pb $^{2+}$ aggregates recorded on FESEM.

Figure S11. TEM micrographs of thin film obtained from drop cast of 6 μ l solution of [**PDI-HQ** (10 μ M) + Pb(ClO₄)₂ (300 μ M)] in water (0.1% CH₃CN) showing interlocked hexagonal metallo-supramolecular self-assemblies.

Figure S12. Fluorescence intensity changes as observed in **PDI-HQ**+Pb²⁺ ensemble **(ES)** (10 μ M) in the presence of various anions/thiols recorded in HEPES buffer (0.1% CH₃CN, pH 7.2).

Figure S13. Absorbance spectra of **PDI-HQ-**Pb²⁺ ensemble (10 μ M) after the incremental addition of cysteine recorded in HEPES buffer (0.1% CH₃CN), pH 7.2.

Figure S14. DLS titration showing gradual decrease in the aggregate size upon titration of **PDI-HQ**+Pb²⁺ ensemble with Cysteine.

	Z Aggregates		Ζ
	(nm)		Aggregates
			(nm)
PDI-HQ	128.26	PDI-HQ – Pb ²⁺ (50 Equiv.)	1579.656
PDI-HQ – Pb ²⁺ (1 Equiv.)	157.553	PDI-HQ – Pb^{2+} + Cys (0.5 Equiv.)	1150.324
PDI-HQ – Pb ²⁺ (3 Equiv.)	275.157	PDI-HQ – Pb^{2+} + Cys (1 Equiv.)	990.565
PDI-HQ – Pb ²⁺ (5 Equiv.)	318.653	PDI-HQ – Pb^{2+} + Cys (2 Equiv.)	865.364
PDI-HQ – Pb ²⁺ (10 Equiv.)	461.965	PDI-HQ – Pb^{2+} + Cys (4 Equiv.)	571.234
PDI-HQ – Pb ²⁺ (15 Equiv.)	619.56	PDI-HQ – Pb^{2+} + Cys (6 Equiv.)	498.139
PDI-HQ – Pb ²⁺ (20 Equiv.)	776.979	PDI-HQ – Pb^{2+} + Cys (8 Equiv.)	353.774
PDI-HQ – Pb ²⁺ (22.5 Equiv.)	890.199	PDI-HQ – Pb^{2+} + Cys (10 Equiv.)	215.376
PDI-HQ – Pb ²⁺ (25 Equiv.)	1030.920		
PDI-HQ – Pb ²⁺ (30 Equiv.)	1193.88		
PDI-HQ – Pb ²⁺ (35 Equiv.)	1290.556		
PDI-HQ – Pb ²⁺ (40 Equiv.)	1382.61		
PDI-HQ – Pb ²⁺ (50 Equiv.)	1618.454		

Table S3: Table showing the Z average value for the aggregates in nm for titration of **PDI-HQ** with Pb^{2+} and titration of **PDI-HQ**+ Pb^{2+} complex with Cys.

 Table S4: Comparison of literature reports for sensing of Pb2+ ions.

	Journal	Fluorophore	Solvent	LOD	λ _{em} (nm)	Metallo- supramolecular assembly	SEM/ TEM studies	Application
1	Present work	Perylene diimide	99.9 % Water	2.5x10 ⁻⁸ M	660	Hexagons (interlocked)	Yes	Yes
2	<i>RSC Adv.</i> 2016 , 6, 656	Rhodamine	HEPES	1.5x10 ⁻⁸ M	552	No	No	Yes
3	<i>Dalton Trans.</i> 2015 , <i>44</i> , 17326	Rhodamine	99% water	2.5x10 ⁻⁷ M Cu ²⁺ interferes	576	No	No	Yes
4	<i>RSC Adv.</i> 2015 , 5, 101802	Anthraquinone- CD	Water	9.0x10 ⁻⁸ M	557	No	No	Yes
50-3	3% aqueous medium							
5	<i>J. Photochem.</i> <i>Photobio.</i> A 2018 , 355, 101	Methyl red	CH ₃ CN:H ₂ O (1:1)	5.4x10 ⁻⁶ M Cr ³⁺ , Hg ²⁺ , Cu ²⁺ interferes	513 (UV)	No	No	Yes
6	Dalton Trans. 2016, 45, 9187	Hydroxyl- quinoline based	CH ₃ OH:H ₂ O (1:1)	1.5x10 ⁻⁷ M	407	No	No	No

7	<i>Chem. Asian J.</i> 2014 , <i>9</i> , 3397	Naphthalimide	CH ₃ CN:H ₂ O (1:1)	$\begin{array}{c} 1.6 \times 10^{-7} \text{ M} \\ \text{Ca}^{2+}, \text{Cd}^{2+} \\ \text{interfere} \end{array}$	538	No	No	Yes
8	<i>Analytica</i> <i>Chimica Acta</i> 2012 , <i>751</i> , 135	Pyrene (quenching)	DMSO:H ₂ O (2:3)	1.0x10 ⁻⁵ M	481	No	No	No
9	<i>Anal. Methods</i> 2016 , <i>8</i> , 2032	Azino bis-schiff base	CH ₃ OH:H ₂ O (2:1)	8.0x10 ⁻⁹ M	442	No	No	No
10	<i>Anal. Methods</i> 2013 , <i>5</i> , 169		DMSO:H ₂ O (2:1)	1.8x10 ⁻⁷ M		No	No	Yes
Pure	e organic solvent or <	< 20% water						
11	<i>Inorg. Chem.</i> 2017 , <i>56</i> , 14533	Phthalocyanin- Porphyrin	THF:CH ₃ OH (4:1)	2.2x10 ⁻⁸ M 3.4x10 ⁻⁹ M	605	No	No	No
12	Analyst 2016 , 141, 4388	Quinoline-2- carbohydrazide	CH ₃ OH:H ₂ O (4:1)	$\begin{array}{c} 3.2 \times 10^{-6} \text{ M} \\ \text{Zn}^{2+}, \text{Cd}^{2+} \\ \text{interfere} \end{array}$	582	No	No	No
13	New J. Chem. 2017, 41, 12198	Naphthalene	CH ₃ CN:H ₂ O (9:1)	$\begin{array}{c} 9.63 x 10^{-10} \\ M \\ Ni^{2+}, Sn^{2+}, \\ Cu^{2+}, Fe^{3+} \\ interfere \end{array}$	358	No	No	No
14	<i>Tetrahedron Lett.</i> 2017 , <i>58</i> , 252	Schiff-base	CH ₃ CN:H ₂ O (95:5)	3.8x10 ⁻⁷ M	508	No	No	No
15	<i>RSC Adv.</i> 2016 , 6, 112728	Rhodamine- quinoline	CH ₃ CN:H ₂ O (95:5)	7.0x10 ⁻⁹ M	570	No	No	Yes
16	<i>Sens. Actuator B</i> , 2015 , 208, 258	Naphthalimide	CH ₃ CN:H ₂ O (99:1)	5.1x10 ⁻⁶ M Fe ³⁺ , Hg ²⁺ interfere		No	No	Yes He
17	<i>Sens. Actuator B</i> , 2018 , <i>258</i> , 648	Spiropyran (UV)	CH ₃ CN	4x10 ⁻⁸ M Cr ³⁺ interfere	482	No	No	No
18	<i>RSC Adv.</i> 2017 , 7, 35528	Thiacalixarene	CH ₂ Cl ₂ - CH ₃ CN (1:1)	Zn ²⁺ , Cd ²⁺ interfere	427	No	No	No
19	<i>Dalton Trans.</i> 2015 , <i>44</i> , 5790	Diferrocenyl propane	CH ₃ CN	4.4x10 ⁻⁷ M Cu ²⁺ , Hg ²⁺ interfere	420	No	No	No
20	<i>Talanta</i> 2014 , <i>130</i> , 103	Triphenyamine- bisthiophenol	CH ₃ CN	1.8x10 ⁻⁵ M	529	No	No	No