Multifunctional metallo-supramolecular interlocked hexagonal microstructures for the detection of lead and thiols in water

Prabhpreet Singh*a, Lalit Singh Mittala ${ }^{\text {a }}$, Kapil Kumara ${ }^{\text {a }}$, Poonam Sharma ${ }^{a}$, Gaurav Bhargava ${ }^{\text {b }}$ and Subodh Kumar ${ }^{\text {a }}$
Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, India.
e-mail: prabhpreet.chem@gndu.ac.in; Tel: +91-84271-01534
Department of Chemical Sciences, IK Gujral Punjab Technical University, Kapurthala-144601, Punjab, India.

EXPERIMENTAL SECTION

Measurements and Methods

Chemicals and solvents (reagent grade) were obtained from common suppliers such as SigmaAldrich, S D Fine-Chem Limited (SDFCL), Spectrochem and were used without further purification, unless otherwise stated. All reactions were performed under N_{2}. N-Methyl-2pyrrolidone (NMP) was dried over $4 \AA$ molecular sieves. THF, DMSO and $\mathrm{CH}_{3} \mathrm{CN}$ solvents were of HPLC grade. Deionized water was obtained from ULTRA UV/UF Rions Lab Water System Ultra 370 series device.

Chromatography

Chromatographic purification was performed with silica gel 60-120 mesh. TLC was performed on aluminium sheets coated with silica gel 60 F254 (Merck, Darmstadt).

NMR Spectroscopy

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a BRUKER Biospin AVANCE-III FT-NMR HD-500 spectrophotometer using CDCl_{3} or $\operatorname{DMSO}\left(d_{6}\right)$ as solvent. The peak values were obtained as ppm (δ), and referenced to tetramethylsilane (TMS) for ${ }^{1} \mathrm{H}$ NMR spectroscopy and the residual solvent signal for ${ }^{13} \mathrm{C}$ NMR spectroscopy. Data are reported as follows: chemical shifts in ppm , coupling constant J in Hz ; multiplicity ($\mathrm{s}=$ singlet, $\mathrm{bs}=$ broad singlet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet). Concentration based ${ }^{1} \mathrm{H}$ NMR spectroscopic titration of PDI-HQ and ${ }^{1} \mathrm{H}$ NMR spectroscopic titration of PDI-HQ against Pb^{2+} were performed in $\mathrm{DMSO}\left(d_{6}\right)-\mathrm{H}_{2} \mathrm{O}(9: 1 \mathrm{v} / \mathrm{v})$ on Bruker-AVANCE-II FT-NMR AL400 spectrometer. All data were then processed in delta
software to draw the stacking spectra of PDI-HQ and PDI-HQ $+\mathrm{Pb}^{2+}$ complex at different concentrations.

UV-Vis and Fluorescence Spectroscopy measurements

The absorption spectra were recorded on SHIMADZU-2450 spectrophotometer equipped with a Peltier system to control the temperature. Quartz cells of 1 cm in length were used for sample measurements. The spectral bandwidth and the scan rate were fixed at 2 nm and $140 \mathrm{~nm} \mathrm{~min}^{-1}$, respectively. Fluorescence titrations were performed on a CHRONOS-BH and PerkinElmer LS55 fluorescence spectrophotometers (slit width: excitation $=10 \mathrm{~nm}$, emission $=2.5 \mathrm{~nm}$) with excitation at 490 nm , unless otherwise stated. Quartz cells of 1 cm in length were used for sample measurements. The concentration of HEPES buffer (pH 7.2) was 0.01 M . Stock solutions for various measurements of PDI-HQ were prepared in $\mathrm{CH}_{3} \mathrm{CN}$ and DMSO. For experiments with PDI-HQ, we have taken 3 mL of the solution that contains $30 \mu \mathrm{~L}$ PDI-HQ in acetonitrile and 2.97 mL of HEPES-buffer $(0.01 \mathrm{M}, \mathrm{pH}=7.2)$ in cuvette. Typically aliquots of freshly prepared standard solutions $\left(10^{-1} \mathrm{M}\right.$ to $\left.10^{-3} \mathrm{M}\right)$ of $\mathrm{Ag}^{+}, \mathrm{Mg}^{2+}, \mathrm{Cs}^{+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Al}^{3+}, \mathrm{Cr}^{3+}$, $\mathrm{K}^{+}, \mathrm{Mn}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Li}^{+}, \mathrm{Cu}^{2+}$ and Ba^{2+} as perchlorate or nitrate salts, unless otherwise stated, were prepared in deionized Millipore water and were diluted as required. The stock solution of PDI-HQ- Pb^{2+} was prepared by mixing of PDI-HQ and $\mathrm{Pb}^{2+}(1: 30)$ in 99.9% HEPES-buffer $\left(0.1 \% \mathrm{CH}_{3} \mathrm{CN}\right)(0.01 \mathrm{M}, \mathrm{pH}=7.2)$. Typically aliquots of freshly prepared standard solutions $\left(10^{-1} \mathrm{M}\right.$ to $\left.10^{-3} \mathrm{M}\right)$ of $\mathrm{Cl}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}{ }^{2-}, \mathrm{I}^{-}, \mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}{ }^{2-}, \mathrm{F}^{-}, \mathrm{Br}^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{ClO}_{4}^{-}$, $\mathrm{CN}^{-}, \mathrm{OH}^{-}, \mathrm{AcO}^{-}$; thiols viz. propanethiol, Cys, bovine serum albumin (BSA), $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}, \mathrm{SO}_{3}{ }^{2-}$, $\mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{S}_{2} \mathrm{O}_{5}{ }^{2-}$ in deionized Millipore water were used to record UV-Vis and fluorescence spectra.

IR Spectroscopy and Mass Spectrometry

Fourier transform infrared (FT-IR) spectra were recorded on PerkinElmer 92035 spectrometer. High resolution mass spectra (HRMS) results were recorded on a BRUKER DALTONIK micrOTOF-Q11 spectrometer.

Dynamic Light Scattering Measurements

DLS measurements were performed at $(25.0 \pm 0.1){ }^{\circ} \mathrm{C}$ by using a light-scattering apparatus (Zetasizer Nano ZS Malvern Instrument). The stock solutions of PDI-HQ ($1 \mathrm{mM}, \mathrm{CH}_{3} \mathrm{CN}$) and
water were filtered through Millipore membrane filter (Acrodisc syringe filter, $0.45 \mu \mathrm{~m}$ Supor membrane) before measurements to remove interfering impurities. Solutions of PDI-HQ in acetonitrile and its mixtures with water or solutions of PDI-HQ in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(0.1: 99.9, \mathrm{v} / \mathrm{v})+$ Pb^{2+} were prepared. 2 mL of each of these solutions was taken in glass cuvette to record the DLS spectrum. The samples were thermally equilibrated for 10 min before each measurement, and an average of 10 measurement runs were considered to be data. The temperature was controlled to an accuracy of $\pm 0.1^{\circ} \mathrm{C}$ using an inbuilt Peltier device. Data was analyzed using the standard algorithms.

Microscopic Measurements

Field-emission scanning electron microscopic (FE-SEM) measurements were performed on a JEOL JSM-6610LV (ZEISS SUPRA ${ }^{\text {TM }} 55$) operating at an acceleration voltage of 10 kV with a tungsten filament as the electron source. High-resolution transmission electron microscopic (HRTEM) images were obtained with a JEOL JEM-2100 electron microscope operating at an acceleration voltage of 200 kV . The solutions prepared for DLS experiments were used for SEM and TEM. $5 \mu \mathrm{~L}$ of each of the solution was added on the pre-cleaned surface of the separate glass slide using drop cast method and was allowed to dry in the incubator at $25^{\circ} \mathrm{C}$. SEM images were taken after sputtering with Au. For preparation of samples for recording TEM images, $1 \mu \mathrm{~L}$ of the solution was added on carbon coated Cu -grid which was allowed to dry in the incubator at 25 ${ }^{\circ} \mathrm{C}$.

Detection limit

The detection limit was calculated based on the absorbance or fluorescence titration. To determine the S / N ratio, the absorbance or emission intensity of PDI-HQ ($10 \mu \mathrm{M}$) or PDI$\mathbf{H Q}+\mathrm{Pb}^{2+}$ was measured by 3 times and the standard deviation of blank solution (without addition of Pb^{2+} for PDI-HQ or without addition of cysteine for $\mathbf{P D I - H Q}+\mathrm{Pb}^{2+}$) measurements was determined. The detection limit was then calculated with the equation

Detection limit $=3 \sigma b i / m$
Where, obi is the standard deviation of blank solution (without addition of Pb^{2+} for PDI-HQ or without addition of cysteine for PDI-HQ $+\mathrm{Pb}^{2+}$) measurements; m is the slope between intensity versus sample concentration.

Urine sample

A real urine sample of a medically fit person was used for the experiments. For experiments with urine sample we have taken 3 mL of the solution that contains $30 \mu \mathrm{~L}$ PDI-HQ in acetonitrile, 1.5 mL of urine and 1.47 mL of HEPES-buffer $(0.01 \mathrm{M}, \mathrm{pH}=7.2)$ in cuvette and fluorescence value obtained was compared with the calibration curve to quantify the Pb^{2+} ions.

Data Analysis

All absorption and fluorescence scans were saved as ACSII files and further processed in Excel $^{\mathrm{TM}}$ to produce all graphs shown in the chapter. The spectral data were analysed through curve fitting procedures by using non-linear regression analysis SPECFIT 3.0.36 to determine the stability constants and the distribution of various species.

MATERIAL SYNTHESIS

Scheme 1: Synthesis and chemical structure of PDI-HQ.
8-hydroxyquinoline ($5 \mathrm{~g}, 0.034 \mathrm{mmol}$) was taken in dicholormethane (150 mL , dry) and tert-butyl dimethylsilyl chloride ($5.7 \mathrm{~g}, 0.038 \mathrm{~mol})$, imidazole $(2.46 \mathrm{~g}, 0.036 \mathrm{~mol})$ were added all at once. The reaction mixture was stirred for 48 hour at RT. After this time interval, the reaction mixture was quenched with 0.1 N HCl solutions, washed with brine solution and crude product silylated 8-hydroxyquinoline was
concentrated under high vacuum. Compound silylated 8 -hydroxyquinoline was Isolated as colorless liquid, yield is $80.1 \%(7.2 \mathrm{~g}, 0.025 \mathrm{~mol}) ; \mathrm{R}_{\mathrm{f}}=0.3\left(\mathrm{Et}_{2} \mathrm{O}:\right.$ hexane $\left.2: 98 \mathrm{v} / \mathrm{v}\right)$.

Crude product ($5.0 \mathrm{~g}, 0.019 \mathrm{~mol}$) was dissolved in dichloromethane (120 mL , dry) under nitrogen atmosphere. Bromine ($0.49 \mathrm{~mL}, 0.019 \mathrm{~mol}$) in dichloromethane (20 mL , dry) was added drop-wise at RT under nitrogen atmosphere. The reaction mixture was stirred for 10 h at RT. After this interval, quenched the reaction mixture with saturated solution of sodium thiosulfate, washed with brine and crude product was concentrated under high vacuum. The crude product was purified by column chromatography (ethyl acetate:hexane, $1: 99 \mathrm{v} / \mathrm{v}$) to obtained compound 2 as pale yellow liquid; Yield is $92 \%(6.0 \mathrm{~g}, 0.017 \mathrm{~mol}) ; \mathrm{R}_{f}=0.6$ (Ethyl acetate:hexane 1:99); HRMS (TOF, ESI) m/z found 339.04; calcd. 340.06 for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{BrNOSi}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 0.27(\mathrm{~s}, 6 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, \mathrm{HQ}-\mathrm{H} 7,1 \mathrm{H}), 7.47\left(\mathrm{dd}, J_{l}=8.5\right.$ $\left.\mathrm{Hz}, J_{2}=4.0 \mathrm{~Hz}, \mathrm{HQH}-3,1 \mathrm{H}\right), 7.67$ (d, $\left.J=8 \mathrm{~Hz}, \mathrm{HQH}-6,1 \mathrm{H}\right), 8.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, \mathrm{HQH}-4,1 \mathrm{H})$, $8.87(\mathrm{~d}, J=4 \mathrm{~Hz}, \mathrm{HQH}-2,1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=-3.8,19.0,26.0$, $112.4,118.4,122.4,128.6,130.6,135.4,143.0,149.1,153.0 \mathrm{ppm}$.

Figure S1: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 4 .

5-Bromo-8-(tert-butyldimethylsilyloxy) quinoline (4) (5.0 g, 14.8 mmoles$)$ and catalyst $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.5 \mathrm{~g}, 0.71 \mathrm{mmoles})$ were dissolved in anhydrous 1,4-dioxane (50 mL) under N_{2} at RT. Subsequently, triethylamine ($7.75 \mathrm{~mL}, 55.56 \mathrm{mmoles}$) and bis(pinacolatoboron) ($5.39 \mathrm{~g}, 21.2$ mmoles) were added to the reaction mixture and stirred overnight at $90^{\circ} \mathrm{C}$. The reaction mixture was cooled and poured into water (100 mL), extracted with chloroform and concentrated under high vacuum. The residue was column chromatographed (ethyl acetate/hexane 4:96) to isolate 3 as a pale yellow solid, yield 3.5 g (9.08 mmoles, 61.2%); $\mathrm{R}_{\mathrm{f}}=0.5$ (ethyl acetate/hexane $4: 96$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}$): $\delta 0.27$ (s, 6H), 1.06 (s, 9H), 1.39 (s, 12H), $7.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, \mathrm{HQH}-3,1 \mathrm{H}\right), 8.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, \mathrm{HQH}-6,1 \mathrm{H}), 8.83$ (dd, $\left.J_{1}=4.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, \mathrm{HQH}-4,1 \mathrm{H}\right), 9.08\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, \mathrm{HQH}-2,1 \mathrm{H}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=-3.70,19.10,22.79,25.11,26.12,31.73,34.82,83.73$, 117.34, 121.61, 133.93, 136.63, 137.44, 142.15, 148.10, $156.18 \mathrm{ppm} ; H R-M S: m / z$ found $386.2332\left(\mathrm{M}^{+}+1\right)$; calcd. 385.2245 for $\left[\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{BNO}_{3} \mathrm{Si}\right]$.

Figure S2: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of compound $\mathbf{3}$.

Synthesis of PDI 1

PDI 2 ($1.0 \mathrm{gm}, 1.64 \mathrm{mmoles}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.77 \mathrm{~g}, 16.70 \mathrm{mmoles})$ were dissolved in toluene (50 mL), ethanol (15 mL) and water (25 mL) mixture and solution was purged with N_{2} for 10 min . Subsequently, compound $3(0.94 \mathrm{~g}, 2.44 \mathrm{mmoles})$ and catalyst $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.37 \mathrm{~g}, 0.32$ mmoles $)$ were added to the reaction mixture and stirred at $70^{\circ} \mathrm{C}$ for 10 h . After this time interval the reaction mixture was evaporated under vacuum. The remaining residue was poured into water, extracted with chloroform, dried and concentrated under vacuum. The residue was further purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CHCl}_{3} /$ hexane $10: 90$) to isolate PDI-SiHQ as a red solid, yield $600 \mathrm{mg}(0.762 \mathrm{mmol}, 46.3 \%) ; \mathrm{R}_{\mathrm{f}}=0.45$ ($\mathrm{CHCl}_{3} /$ hexane 10:90); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 0.36$ (s, 3 H), $0.41(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 6 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}), 1.85-1.97(\mathrm{~m}, 4 \mathrm{H}), 2.15-2.30(\mathrm{~m}, 4 \mathrm{H}), 4.97-5.09(\mathrm{~m}, 2 \mathrm{H})$, $7.20\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.85-7.88(\mathrm{~m}, 2 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.64-8.76(\mathrm{~m}, 4 \mathrm{H}), 8.90(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 153.99,149.49,143.15,138.57,135.13,134.61,134.50,133.98,132.97,132.93$, $129.32,129.10,128.80,128.05,127.75,127.40,126.53,123.72,122.96,122.34,119.07,77.37,57.91$, 57.73, 29.84, 26.13, 25.16, 25.06, 15.47, 11.44, -3.70, -3.73 ppm.

Figure S3: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of compound PDI 1.

Synthesis of PDI-HQ

In a 50 mL round bottom flask, PDI $1(100 \mathrm{mg}, 0.127 \mathrm{mmol})$ was dissolved in THF $(10 \mathrm{~mL})$. Then 1.0 M solution of tert-butyl ammonium fluoride in THF (15 mL) was added and mixture was stirred for 24 h at RT. After this interval, the solvent was removed and residue was dissolved in chloroform and washed with water. The organic solvent dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed by rotary evaporation. The crude product was purified by column chromatography (SiO_{2}, chloroform/ hexane) to isolate PDI-HQ, as a red solid ($60 \mathrm{mg}, 0.089 \mathrm{mmol}, 70.2 \%$), $R_{\mathrm{f}}=0.4$ (methanol/chloroform 0.5:9.5).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{2 5}^{\circ} \mathbf{C}$): $\delta 0.86\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H} 2 \mathrm{xCH}_{3}\right.$ ethylpropyl), $0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $6 \mathrm{H}, 2 \mathrm{xCH}_{3}$ ethylpropyl), 1.86-1.96 (m, 4H, $2 \mathrm{xCH}_{2}$ ethylpropyl), 2.25-2.28 (m, 4H, $2 \mathrm{xCH}_{2}$ ethylpropyl), 4.97-5.10 (m, 2H, 2xCH ethylpropyl), 7.27 (m, 1H, HQ), 7.38 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HQ}$), 7.62 (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}$, Perylene ArH), 7.69 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HQ}$), 7.89 (dd, $\left.J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HQ}\right), 7.92$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, Perylene ArH), 8.58 ($\mathrm{s}, 1 \mathrm{H}$, Perylene ArH), 8.67-8.74 (m, 4H, Perylene ArH), 8.82 $\left(\mathrm{dd}, J_{1}=4.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, \mathrm{HQ}, 1 \mathrm{H}\right) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{2 5}^{\circ} \mathbf{C}$): $\delta 11.42,11.46,25.07,25.16,29.08,57.74,57.92,111.27,122.95$, $123.75,125.40,127.38,128.06,128.72,128.83,129.07,129.31,130.79,131.31,133.52,134.00,134.48$, $134.61,135.09,138.16,139.19,148.78,153.28 \mathrm{ppm}$

Mass Spectrum: m / z found $674.2658\left[\mathrm{M}^{+}+1\right]$; calcd. 673.2577 for $\left[\mathrm{C}_{43} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5}\right]$

UV-Vis ($99.9 \% \mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN}$): $\lambda_{\text {max }}=492 \mathrm{~nm}$

Fluorescence ($99.9 \% \mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN}$): $\lambda_{\max }=660 \mathrm{~nm}$ (weak band).

Figure S4: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of compound PDI-HQ.

Figure S5. Absorption and emission changes in PDI-HQ $(10 \mu \mathrm{M})$ after incremental addition of $\mathrm{H}_{2} \mathrm{O}$ to (a, b) DMSO and $(\mathrm{d}, \mathrm{e}) \mathrm{CH}_{3} \mathrm{CN}$; Plot of degree of aggregation $\left(\alpha_{\text {agg }}\right) v s$. water fraction in (c) DMSO and (f) $\mathrm{CH}_{3} \mathrm{CN}$. (Slit width $\mathrm{Ex} / \mathrm{Em}=15 / 9$)

Figure S6. Fluorescence intensity changes as observed in PDI-HQ $(10 \mu \mathrm{M})$ in the presence of various metal ions recorded in HEPES buffer $\left(0.1 \% \mathrm{CH}_{3} \mathrm{CN}, \mathrm{pH} 7.2\right)$.

Figure S7. (a) Plot of fluorescence intensity of PDI-HQ- Pb^{2+} aggregates (1:30), HEPES buffer ($0.1 \% \mathrm{CH}_{3} \mathrm{CN}$, pH 7.2) on addition of EDTA; (b) Graph showing percentage recovery of Pb^{2+} ions in urine samples using calibration curve.

Table S1: Application of PDI-HQ in determination of Pb^{2+} ions in spiked urine samples along with percentage recovery values of Pb^{2+} ions in urine samples.

Sr. No.	Concentration of $\mathbf{P b}^{2+}$ ions added $(\boldsymbol{\mu M})$	Concentration of $\mathbf{P b}^{\mathbf{2 +}} \mathbf{i o n s ~ o b t a i n e d ~}$ $(\boldsymbol{\mu M} \mathbf{M})$	Recovery of $\mathbf{P b}^{\mathbf{2 +}}$ $(\%)$
1	12	11.8	98.33
2	30	31	103.33
3	60	61	101.66
4	80	79	98.75
5	100	99	99.00
6	160	149	93.12
7	200	202	101.00
8	250	251	100.40

Table S2: Change in chemical shift (δ) of perylene P1-P6 protons and 8-hydroxyquinoline protons as observed in ${ }^{1} \mathrm{H}$ NMR titration of PDI-HQ with Pb^{2+} ions recorded in $\operatorname{DMSO}\left(\mathrm{d}_{6}\right) / \mathrm{H}_{2} \mathrm{O}$ (9:1, v/v).

Equivalents of $\mathbf{P b}^{2+}$	$\begin{gathered} \mathbf{P 1}^{\mathrm{a}} \\ (\mathbf{(\delta)})^{\mathrm{b}} \end{gathered}$	$\begin{gathered} \mathbf{P 2}^{\mathbf{a}} \\ (\mathbf{(\delta)})^{\mathrm{b}} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{P 3}^{\mathrm{a}} \\ (\mathbf{(\Delta \delta)} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{P 4}^{\mathbf{a}} \\ (\mathbf{4} \delta)^{\mathrm{b}} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P5}^{\mathrm{a}} \\ (\mathbf{(\delta)})^{\mathrm{b}} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{P 6}^{\mathbf{a}} \\ (\mathbf{(\Delta \delta)} \\ \hline \end{gathered}$
$\begin{aligned} & 1 \text { equiv. } \\ & (10 \mu \mathrm{M}) \end{aligned}$	$\begin{gathered} \hline 7.558 \\ (0.063) \end{gathered}$	$\begin{gathered} 7.758 \\ (0.072) \end{gathered}$	$\begin{gathered} 8.539 \\ (0.036) \end{gathered}$	$\begin{gathered} 8.600 \\ (0.041) \end{gathered}$	$\begin{gathered} 8.902 \\ (0.074) \end{gathered}$	$\begin{gathered} 8.932 \\ (0.080) \end{gathered}$
$\begin{aligned} & 2 \text { equiv. } \\ & (20 \mu \mathrm{M}) \end{aligned}$	$\begin{gathered} \hline 7.543 \\ (0.078) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.731 \\ (0.101) \end{gathered}$	$\begin{gathered} \hline 8.530 \\ (0.045) \\ \hline \end{gathered}$	$\begin{gathered} 8.590 \\ (0.051) \end{gathered}$	$\begin{gathered} 8.875 \\ (0.101) \end{gathered}$	$\begin{gathered} \hline 8.915 \\ (0.097) \end{gathered}$
3 equiv. ($30 \mu \mathrm{M}$))	$\begin{gathered} 7.504 \\ (0.117) \\ \hline \end{gathered}$	$\begin{gathered} 7.692 \\ (0.140) \end{gathered}$	$\begin{gathered} 8.505 \\ (0.070) \\ \hline \end{gathered}$	$\begin{gathered} 8.565 \\ (0.076) \\ \hline \end{gathered}$	$\begin{gathered} 8.854 \\ (0.122) \end{gathered}$	$\begin{gathered} 8.882 \\ (0.130) \end{gathered}$
$\begin{aligned} & \hline 4 \text { equiv. } \\ & (40 \mu \mathrm{M}) \end{aligned}$	$\begin{gathered} \hline 7.461 \\ (0.160) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.652 \\ (0.180) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.477 \\ (0.098) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.537 \\ (0.104) \\ \hline \end{gathered}$	overlap	overlap
$\begin{aligned} & \hline 5 \text { equiv. } \\ & (50 \mu \mathrm{M}) \end{aligned}$	$\begin{gathered} \hline 7.364 \\ (0.257) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.567 \\ (0.265) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.407 \\ (0.168) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.472 \\ (0.169) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.698 \\ (0.278) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.720 \\ (0.292) \\ \hline \end{gathered}$

Equivalents of $\mathbf{P b}^{2+}$	$\begin{gathered} \hline \mathrm{HQ}-7^{\mathrm{a}} \\ (\Delta \delta)^{\mathrm{b}} \end{gathered}$	$\begin{gathered} \hline \mathbf{H Q - 3}{ }^{\mathrm{a}} \\ (\mathbf{\Delta \delta})^{\mathrm{b}} \end{gathered}$	$\begin{gathered} \mathbf{H Q - 6}^{\mathrm{a}} \\ \left(\mathbf{\Delta \delta) ^ { b }}\right. \end{gathered}$	$\begin{gathered} \mathrm{HQ}-4^{\mathrm{a}} \\ (\mathbf{\Delta \delta})^{\mathrm{b}} \end{gathered}$	$\begin{gathered} \mathrm{HQ}-2^{\mathrm{a}} \\ (\mathbf{\Delta \delta})^{\mathrm{b}} \end{gathered}$	$\begin{gathered} \mathrm{P}^{7^{\mathrm{a}}} \\ (\mathbf{(\delta)})^{\mathrm{b}} \end{gathered}$
1 equiv. $(10 \mu \mathrm{M})$ $(10 \mu \mathrm{M})$	$\begin{gathered} \hline 7.287 \\ (0.033) \end{gathered}$	$\begin{gathered} \hline 7.350 \\ (0.005) \end{gathered}$	$\begin{gathered} \hline 7.637 \\ (0.023) \end{gathered}$	$\begin{gathered} \hline 7.907 \\ (0.036) \end{gathered}$	$\begin{gathered} \hline 8.862 \\ (0.012) \end{gathered}$	$\begin{gathered} \hline 8.299 \\ (0.025) \end{gathered}$
$\begin{aligned} & \hline 2 \text { equiv. } \\ & (20 \mu M) \end{aligned}$	$\begin{gathered} \hline 7.271 \\ (0.049) \end{gathered}$	$\begin{gathered} \hline 7.346 \\ (0.010) \end{gathered}$	$\begin{gathered} \hline 7.628 \\ (0.032) \end{gathered}$	$\begin{gathered} \hline 7.895 \\ (0.048) \end{gathered}$	$\begin{gathered} \hline 8.857 \\ (0.017) \end{gathered}$	$\begin{gathered} \hline 8.292 \\ (0.032) \end{gathered}$
$\begin{aligned} & 3 \text { equiv. } \\ & (30 \mu \mathrm{M})) \end{aligned}$	$\begin{gathered} 7.243 \\ (0.077) \\ \hline \end{gathered}$	$\begin{gathered} 7.338 \\ (0.018) \\ \hline \end{gathered}$	$\begin{gathered} 7.606 \\ (0.054) \\ \hline \end{gathered}$	$\begin{gathered} 7.870 \\ (0.073) \\ \hline \end{gathered}$	$\begin{gathered} 8.839 \\ (0.035) \\ \hline \end{gathered}$	$\begin{gathered} 8.276 \\ (0.048) \\ \hline \end{gathered}$
$\begin{aligned} & 4 \text { equiv. } \\ & (40 \mu \mathrm{M}) \end{aligned}$	$\begin{gathered} \hline 7.224 \\ (0.096) \end{gathered}$	$\begin{gathered} \hline 7.330 \\ (0.026) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.580 \\ (0.080) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.842 \\ (0.100) \end{gathered}$	overlap	$\begin{gathered} \hline 8.259 \\ (0.065) \end{gathered}$
$\begin{aligned} & 5 \text { equiv. } \\ & (50 \mu M) \end{aligned}$	$\begin{gathered} \hline 7.175 \\ (0.145) \end{gathered}$	$\begin{gathered} \hline 7.310 \\ (0.046) \end{gathered}$	$\begin{gathered} \hline 7.509 \\ (0.150) \end{gathered}$	$\begin{gathered} \hline 7.782 \\ (0.161) \end{gathered}$	$\begin{gathered} \hline 8.823 \\ (0.051) \end{gathered}$	$\begin{gathered} \hline 8.218 \\ (0.106) \end{gathered}$

${ }^{a}$ Chemical shift (δ) in ppm; ${ }^{b}$ Change in chemical shift ($\Delta \delta$) in ppm

Figure S8. SEM (a-b) and TEM (c) micrographs of thin films obtained from drop cast of solution of PDIHQ $(10 \mu \mathrm{M})$ in water $\left(0.1 \% \mathrm{CH}_{3} \mathrm{CN}\right)$ showing spherical morphology; (d) SAED pattern recorded in HRTEM.

Figure S9. SEM micrographs of thin films obtained from drop cast of 6μ solution of [PDI-HQ $\left.(10 \mu \mathrm{M})+\mathrm{Pb}\left(\mathrm{ClO}_{4}\right)_{2}(300 \mu \mathrm{M})\right]$ in water $\left(0.1 \% \mathrm{CH}_{3} \mathrm{CN}\right)$ showing interlocked hexagonal metallosupramolecular self-assemblies

Figure S10. (a-b) EDAX spectrum of PDI-HQ- Pb^{2+} aggregates recorded on FESEM.

Figure S11. TEM micrographs of thin film obtained from drop cast of 6μ l solution of [PDI-HQ (10 $\left.\mu \mathrm{M})+\mathrm{Pb}\left(\mathrm{ClO}_{4}\right)_{2}(300 \mu \mathrm{M})\right]$ in water $\left(0.1 \% \mathrm{CH}_{3} \mathrm{CN}\right)$ showing interlocked hexagonal metallosupramolecular self-assemblies.

Figure S12. Fluorescence intensity changes as observed in PDI-HQ+ Pb^{2+} ensemble (ES) (10 $\mu \mathrm{M})$ in the presence of various anions/thiols recorded in HEPES buffer $\left(0.1 \% \mathrm{CH}_{3} \mathrm{CN}, \mathrm{pH} 7.2\right)$.

Figure S13. Absorbance spectra of PDI-HQ- Pb^{2+} ensemble ($10 \mu \mathrm{M}$) after the incremental addition of cysteine recorded in HEPES buffer $\left(0.1 \% \mathrm{CH}_{3} \mathrm{CN}\right)$, pH 7.2 .

Figure S14. DLS titration showing gradual decrease in the aggregate size upon titration of PDI$\mathbf{H Q}+\mathrm{Pb}^{2+}$ ensemble with Cysteine.

Table S3: Table showing the Z average value for the aggregates in nm for titration of PDI-HQ with Pb^{2+} and titration of $\mathbf{P D I}-\mathbf{H Q}+\mathrm{Pb}^{2+}$ complex with Cys.

	$\begin{aligned} & \text { Z Aggregates } \\ & (\mathrm{nm}) \end{aligned}$		Z Aggregates (nm)
PDI-HQ	128.26	PDI-HQ - Pb^{2+} (50 Equiv.)	1579.656
PDI-HQ - Pb^{2+} (1 Equiv.)	157.553	PDI-HQ - $\mathrm{Pb}^{2+}+$ Cys (0.5 Equiv.)	1150.324
PDI-HQ - Pb^{2+} (3 Equiv.)	275.157	PDI-HQ - $\mathrm{Pb}^{2+}+$ Cys (1 Equiv.)	990.565
PDI-HQ - Pb^{2+} (5 Equiv.)	318.653	PDI-HQ - $\mathrm{Pb}^{2+}+$ Cys (2 Equiv.)	865.364
PDI-HQ - Pb^{2+} (10 Equiv.)	461.965	PDI-HQ - $\mathrm{Pb}^{2+}+$ Cys (4 Equiv.)	571.234
PDI-HQ - Pb^{2+} (15 Equiv.)	619.56	PDI-HQ - $\mathrm{Pb}^{2+}+$ Cys (6 Equiv.)	498.139
PDI-HQ - Pb^{2+} (20 Equiv.)	776.979	PDI-HQ - $\mathrm{Pb}^{2+}+$ Cys (8 Equiv.)	353.774
PDI-HQ - Pb^{2+} (22.5 Equiv.)	890.199	PDI-HQ - $\mathrm{Pb}^{2+}+$ Cys (10 Equiv.)	215.376
PDI-HQ - Pb^{2+} (25 Equiv.)	1030.920		
PDI-HQ - Pb^{2+} (30 Equiv.)	1193.88		
PDI-HQ - Pb^{2+} (35 Equiv.)	1290.556		
PDI-HQ - Pb^{2+} (40 Equiv.)	1382.61		
PDI-HQ - Pb^{2+} (50 Equiv.)	1618.454		

Table S4: Comparison of literature reports for sensing of $\mathrm{Pb} 2+$ ions.

	Journal	Fluorophore	Solvent	LOD	$\begin{aligned} & \lambda_{\mathrm{em}} \\ & (\mathrm{~nm}) \end{aligned}$	Metallosupramolecular assembly	SEM/ TEM studies	Application
1	Present work	Perylene diimide	$99.9 \text { \% }$ Water	$2.5 \times 10^{-8} \mathrm{M}$	660	Hexagons (interlocked)	Yes	Yes
2	$\begin{aligned} & \hline \text { RSC Adv. 2016, } \\ & 6,656 \end{aligned}$	Rhodamine	HEPES	$1.5 \times 10^{-8} \mathrm{M}$	552	No	No	Yes
3	$\begin{aligned} & \text { Dalton Trans. } \\ & \mathbf{2 0 1 5}, 44,17326 \end{aligned}$	Rhodamine	99\% water	$\begin{aligned} & 2.5 \times 10^{-7} \mathrm{M} \\ & \mathrm{Cu}^{2+} \\ & \text { interferes } \end{aligned}$	576	No	No	Yes
4	$\begin{aligned} & \text { RSC Adv. 2015, } \\ & 5,101802 \\ & \hline \end{aligned}$	Anthraquinone- CD	Water	$9.0 \times 10^{-8} \mathrm{M}$	557	No	No	Yes
50-33\% aqueous medium								
5	J. Photochem. Photobio. A 2018, 355, 101	Methyl red	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O} \\ & (1: 1) \end{aligned}$	$\begin{aligned} & 5.4 \times 10^{-6} \mathrm{M} \\ & \mathrm{Cr}^{3+}, \mathrm{Hg}^{2+}, \\ & \mathrm{Cu}^{2+} \\ & \text { interferes } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 513 \\ & \text { (UV) } \end{aligned}$	No	No	Yes
6	Dalton Trans. 2016, 45, 9187	Hydroxylquinoline based	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{OH}: \mathrm{H}_{2} \mathrm{O} \\ & (1: 1) \end{aligned}$	$1.5 \times 10^{-7} \mathrm{M}$	407	No	No	No

7	Chem. Asian J. 2014, 9, 3397	Naphthalimide	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O} \\ & (1: 1) \end{aligned}$	$\begin{aligned} & 1.6 \times 10^{-7} \mathrm{M} \\ & \mathrm{Ca}^{2+}, \mathrm{Cd}^{2+} \\ & \text { interfere } \\ & \hline \end{aligned}$	538	No	No	Yes
8	Analytica Chimica Acta 2012, 751, 135	Pyrene (quenching)	$\begin{aligned} & \text { DMSO: } \mathrm{H}_{2} \mathrm{O} \\ & (2: 3) \end{aligned}$	$1.0 \times 10^{-5} \mathrm{M}$	481	No	No	No
9	Anal. Methods 2016, 8, 2032	Azino bis-schiff base	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{OH}: \mathrm{H}_{2} \mathrm{O} \\ & (2: 1) \end{aligned}$	$8.0 \times 10^{-9} \mathrm{M}$	442	No	No	No
10	Anal. Methods $\text { 2013, 5, } 169$		$\begin{aligned} & \text { DMSO: } \mathrm{H}_{2} \mathrm{O} \\ & (2: 1) \\ & \hline \end{aligned}$	$1.8 \times 10^{-7} \mathrm{M}$		No	No	Yes
Pure organic solvent or $<20 \%$ water								
11	$\begin{aligned} & \text { Inorg. Chem. } \\ & \text { 2017, } 56,14533 \end{aligned}$	PhthalocyaninPorphyrin	$\begin{aligned} & \text { THF: } \mathrm{CH}_{3} \mathrm{OH} \\ & (4: 1) \end{aligned}$	$\begin{aligned} & \hline 2.2 \times 10^{-8} \mathrm{M} \\ & 3.4 \times 10^{-9} \mathrm{M} \\ & \hline \end{aligned}$	605	No	No	No
12	$\begin{aligned} & \text { Analyst 2016, } \\ & 141,4388 \end{aligned}$	Quinoline-2carbohydrazide	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{OH}: \mathrm{H}_{2} \mathrm{O} \\ & (4: 1) \end{aligned}$	$\begin{aligned} & 3.2 \times 10^{-6} \mathrm{M} \\ & \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+} \\ & \text { interfere } \\ & \hline \end{aligned}$	582	No	No	No
13	$\begin{aligned} & \hline \text { New J. Chem. } \\ & \text { 2017, 41, } 12198 \end{aligned}$	Naphthalene	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O} \\ & (9: 1) \end{aligned}$	$\begin{aligned} & 9.63 \times 10^{-10} \\ & \mathrm{M} \\ & \mathrm{Ni}^{2+}, \mathrm{Sn}^{2+}, \\ & \mathrm{Cu}^{2+}, \mathrm{Fe}^{3+} \\ & \text { interfere } \\ & \hline \end{aligned}$	358	No	No	No
14	Tetrahedron Lett. 2017, 58, 252	Schiff-base	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O} \\ & (95: 5) \end{aligned}$	$3.8 \times 10^{-7} \mathrm{M}$	508	No	No	No
15	$\begin{aligned} & \text { RSC Adv. 2016, } \\ & 6,112728 \\ & \hline \end{aligned}$	Rhodaminequinoline	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O} \\ & (95: 5) \end{aligned}$	$7.0 \times 10^{-9} \mathrm{M}$	570	No	No	Yes
16	Sens. Actuator B, 2015, 208, 258	Naphthalimide	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O} \\ & (99: 1) \end{aligned}$	$\begin{aligned} & 5.1 \times 10^{-6} \mathrm{M} \\ & \mathrm{Fe}^{3+}, \mathrm{Hg}^{2+} \\ & \text { interfere } \\ & \hline \end{aligned}$		No	No	Yes He
17	Sens. Actuator B, 2018, 258, 648	Spiropyran (UV)	$\mathrm{CH}_{3} \mathrm{CN}$	$\begin{aligned} & 4 \times 10^{-8} \mathrm{M} \\ & \mathrm{Cr}^{3+} \\ & \text { interfere } \\ & \hline \end{aligned}$	482	No	No	No
18	$\begin{aligned} & \hline \text { RSC Adv. 2017, } \\ & 7,35528 \\ & \hline \end{aligned}$	Thiacalixarene	$\begin{aligned} & \hline \mathrm{CH}_{2} \mathrm{Cl}_{2^{-}} \\ & \mathrm{CH}_{3} \mathrm{CN}(1: 1) \\ & \hline \end{aligned}$	$\mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}$ interfere	427	No	No	No
19	Dalton Trans. $\mathbf{2 0 1 5}, 44,5790$	Diferrocenyl propane	$\mathrm{CH}_{3} \mathrm{CN}$	$\begin{aligned} & 4.4 \times 10^{-7} \mathrm{M} \\ & \mathrm{Cu}^{2+}, \mathrm{Hg}^{2+} \\ & \text { interfere } \\ & \hline \end{aligned}$	420	No	No	No
20	$\begin{aligned} & \text { Talanta 2014, } \\ & 130,103 \end{aligned}$	Triphenyaminebisthiophenol	$\mathrm{CH}_{3} \mathrm{CN}$	$1.8 \times 10^{-5} \mathrm{M}$	529	No	No	No

