Relay Tricyclic Pd(II)/Ag(I) Catalysis: Design of a Four-Component Reaction Driven by Nitrene-Transfer on Isocyanide Yields Inhibitors of EGFR

Devesh M. Sawant,^{*a} Shivani Sharma,^{‡a} Ramdas S. Pathare,^{‡a} Gaurav Joshi,^b Sourav Kalra,^b Sukanya Sukanya,^a Antim K. Maurya,^c Ramesh K. Metre,^d Vijai K. Agnihotri,^c Shahnawaz Khan,^e Raj Kumar,^{*b} and R. T. Pardasani^a

[‡]These authors contributed equally

- ^a School of Chemical Sciences and Pharmacy, Central University of Rajasthan NH8 (Jaipur-Ajmer Highway), Bandarsindri, Ajmer-305817, Rajasthan, India.
- ^b Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda- 151001 Punjab, India.
- ^c Department of Chemistry, Indian Institute of Technology Jodhpur, Karwad, Jodhpur-342037, Rajasthan, India
- ^d Natural Product Chemistry and Process Development division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh -176061. India
- ^e Department of Chemistry, Bhupal Nobles' University, Udaipur-313001, India

Table of Contents:

Experii	nental Pro	ocedures	Page no
S 1	General	Considerations	S2
S2	Detailed	Results of screening	S2
S 3	General	procedures	S6
S 4	Analytic	al data of compounds	S 6
S 5	Control I	Experiments	S15
	S5.1	Radical trap	S15
	S5.2	Evolution of species	S16
	S5.3	Chemical kinetics of 4-CR	S16
	S5.4	Experiments on H/D Exchange	S20
	S5.5	Experiment with labelled substrates	S21
	S5.6	Proposed Reaction Mechanism	S21
S6	Experin	nental Biology	S22
	S6.1	Cell Culture and reagents	S22
	S6.2	Evaluation of anticancer activity of the synthesized compounds by MTT	S22
		cytotoxicity Assay	
	S6.3	Human Peripheral Blood Mononuclear Cells (HPBMCs) culturing and treatment	S23
		by investigational molecules to assess cytotoxicity of investigational molecules	
	S6.4	Pyrazolo[1,5-c]quinazoline as EGFR inhibitors	S24
	S6.5	Measurement of intracellular reactive oxygen species (ROS)	S25
	S6.6	Determination of mitochondrial membrane potential (µM)	S26
	S6.7	Cell apoptosis assay using Propidium Iodide	S26
S 7	Molecula	ar docking studies	S27
S 8	Crystallo	graphic Analysis	S28
Result a	and Discu	ssion	
S9	Pharmac c]quinaz	ological activity and literature search for synthesis of pyrazolo[1,5- olines	S34
S 10	Construc	tion of diversity-rich library of pyrazolo[1,5-c]quinazolines	S36
S11	Reference	es	S 37
S12	Copies o	f ¹ H, ¹³ C NMR and HRMS spectra	S38

Experimental Procedures

S1. General Considerations

All other reagents were purchased from Aldrich or Spectrochem used as such without purification. Analytical TLC was performed using 2.5*5cm plated coated with a 0.25mm thickness of silica gel (60F-254 Merck) and visualization was accomplished with UV light or I_2 / KMnO₄ staining. ¹H and ¹³C NMR spectra were obtained from Bruker's Ascend 500 MHz spectrophotometer operating at 500.3 MHz for ¹H and 125.8 MHz for ¹³C experiments. The chemical shifts are reported in ppm scale relative to residual CDCl₃ (δ 7.269 ppm) for ¹H and residual TMS. ¹³C NMR spectra were reported relative to CDCl₃ (δ 77.00 ppm). Melting Points were recorded on BuchiM-655 Melting Point Apparatus and are uncorrected. High-resolution mass spectra (HRMS) were taken in the ESI positive ion mode. The abbreviations for multiplicities are used as: s=singlet, d=doublet, t=triplet, q=quartet, dd=doublet of doublets, m=multiplet, br s=broad singlet, dt=doublet of triplets, tt=triplet of triplets, ddd=doublet of doublet of doublet of doublet s. All starting materials were prepared as reported in the literature.¹

S2. Detailed Results of Screening

S2.1 Table S1: Initial Screening

We started our investigation using 2-azido benzaldehyde **1aa** (1 equiv), *tert*. butyl isocyanide **2aa** (1.2 equiv), tosyl hydrazide **3aa** (1 equiv) and phenylacetylene **4aa** (1.5 equiv) as a benchmark reaction using PdCl₂ (10 mol%),

AgOTf (10 mol%), as catalytic system, in toluene with K_3PO_4 as a base, which did not lead to the formation of desired product **5aa** (Table S1, Entry 1).

^aIsolated yield, ^badditionof 4 Å MS

On extensive screening of various Pd sources, we found that $Pd_2(dba)_3$ and $Pd(OAc)_2$ could afford the desired product **5aa** in 20% and 33% isolated yields Of these, $Pd(OAc)_2$ proved to be optimal because of complete consumption of starting material (Entry 5). We observed the formation of **7aa** as a major side product (Characterized by single–crystal X-ray diffraction analysis, refer Section 6), formed mainly due to condensation of **6aa** and **3aa** followed by nucleophilic attack of water. The origin of **7aa** could be due to the nucleophilic attack of water on carbodiimide **6aa**. Gratifyingly, a substantial improvement in the yield was observed on employing the 4 Å MS (Entry 6).

S2.2 Table S2: Additive effect

^aIsolated yield

To enhance the reactivity, we surveyed a variety of additives which revealed that both silver and copper salts facilitate this reaction. Of these, AgOTf was the most efficient additive for this strategy by overcomes the formation of a side product.

S2.3 Table S3: Base effect

$= Ph$ $4aa$ $+ TsNHNH_2$ N_3 $1aa$ $CN - 4$ $2aa$	Pd(OAc) ₂ (1 AgOTf (10 4 Å MS Base (3.0 d toluene	0 mol%) mol%) equiv) , rt	5			[⊕] N, Ts N, ⊖, Ts N, NH 8aa	CHO N=C=N 6aa
	S.No.	Base		Yield	l	-	
			5aa	8aa	6aa		
	1.	DABCO	82	-	12	-	
	2.	NaOAc	38	31	25		
	3.	Cs_2CO_3	35 ^b	-	30		
	4.	KO ^t Bu	48	-	40		
	5.	DBU	64	-	26		
	6.	K_3PO_4	96	-	-		

^aIsolated yield, ^b1aa recovered.

The choice of base significantly affected the final outcome of this reaction. K_3PO_4 as a base produced best results among various bases screened in Table S3.

S2.4 Table S4: Solvent Effect

^aIsolated yield, ^b1aa recovered

Next, we screened various solvents for 4-CR. The highest yield of 5aa was obtained in toluene.

S2.5 Table S5: Final optimization

^aIsolated yield, ^bMajor side product isolated at 60 °C

Next, we scrutinized the stoichiometric screening of the catalyst, additive and base and observed that decreased in the catalytic loading of $Pd(OAc)_2$ from 10 mol % to 7.5 mol % resulted the desired product **5aa** in comparable yields, but there is substantial reduction in the yield, when 5 mol % of either of the catalysts was employed (entry 3). Furthermore, decrease in the loading of additive and base lead to diminished yields. Evidently, there is a detrimental effect of increasing the temperature from rt to 60 °C, which afforded the lower yield of **5aa** with major side product **9aa** that was characterized by single-crystal X-ray diffraction analysis (refer section S8).

S2.6 Table S6: Optimization of reaction condition for alkene.

6.	Pd(OAc) ₂	Cu(OAc) ₂	4 Å MS	80	-	-	10	-
7.	Pd(OAc) ₂	CuI	4 Å MS	71	-	-	20	-
8.	Pd(OAc) ₂	CuBr	4 Å MS	65	-	-	30	-
9.	Pd(OAc) ₂	CuCl	4 Å MS	55	-	-	27	-
10.	Pd(OAc) ₂	AgOTf	4 Å MS	95	-	-	-	-
11.	Pd(OAc) ₂	AgOAc	4 Å MS	70	-	-	25	-
12.	Pd(OAc) ₂	Ag ₂ CO ₃	4 Å MS	65	-	-	30	-
13.	Pd(OAc) ₂	$AgSbF_{6}$	4 Å MS	42	-	-	25	-
14.	-	AgOTf	4 Å MS	-	-	-	-	91
15.	Pd(OAc) ₂	-	4Å MS	38	-	-	55	-
16.	Pd(OAc) ₂	AgOTf,	4Å MS	93 ^b	-	-	-	-

^aReaction Condition: 1aa (1 equiv), 2aa (1.2 equiv), 3aa (1 equiv), 26aa (1 equiv). ^b 7.5 mol % of Pd(OAc)₂

Thorough optimisation studies for 4CR of alkene were carried out. An analogous reaction condition was required for this reaction compared to reactions involving alkynes. We observed that both palladium and co-catalyst (either Cu or Ag) were essential for this transformation.

S3. General Procedure for the synthesis of compounds 5 and 26

A mixture of 2-Azidobenzaldehyde (1.0 equiv), isocyanide (1.2 equiv), $Pd(OAc)_2$ (7.5 mol%), 4 Å MS, TsNHNH₂ (1.0 equiv), alkyne/alkenes (1.5 equiv), AgOTf (10 mol%) and K₃PO₄ (3.0 equiv) in toluene was added to a 20 mL Schlenk tube. The formed mixture was stirred at rt for 15 min. The reaction mixture was diluted with ethyl acetate (15 mL) and washed with water (10 mL). The organic layer was separated, dried on Na₂SO₄ and evaporated under vacuum. The crude product, so obtained, was purified by column chromatography to afford the desired product.

S4. Analytical Data for the compounds 5aa-5hb and 26aa-26ha

5aa: N-(tert-butyl)-2-phenylpyrazolo[1,5-c]quinazolin-5-amine

Pale yellow solid, Yield: 0.102 g (95%), m.p.: 83-85 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.04 (d, 2H, aromatic C-*H*, *J* = 7.0 Hz), 7.91 (dd, 1H, aromatic C-*H*, *J* = 7.85, 1.1 Hz), 7.67 (d, 1H, aromatic C-*H*, *J* = 8.2 Hz), 7.54-7.48 (m, 3H, aromatic C-*H*), 7.44-7.42 (m, 1H, aromatic C-*H*), 7.29 (td, 1H, aromatic C-*H*, *J* = 8.0, 1.1 Hz), 7.19 (s, 1H, aromatic C-*H*), 6.50 (br s, 1H, N-*H*), 1.69 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 153.4, 142.2, 141.9, 140.9, 132.6, 129.7, 128.9, 128.8, 126.6, 126.1, 123.1, 122.8, 115.9, 95.5, 51.9, 29.1. HRMS (ESI) calcd for C₂₀H₂₁N₄ [M+H]⁺ 317.1761, found 317.1755.

5ab: N-(tert-butyl)-2-(4-methoxyphenyl)pyrazolo[1,5-c]quinazolin-5-amine

White solid, Yield: 0.113 g (96%), m.p.: 138-140 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.96 (d, 2H, aromatic C-*H*, *J* = 8.8 Hz), 7.90 (dd, 1H, aromatic C-*H*, *J* = 7.8, 1.2 Hz), 7.66 (d, 1H, aromatic C-*H*, *J* = 7.9 Hz), 7.51 (td, 1H, aromatic C-*H*, *J* = 7.2, 1.4 Hz), 7.27 (td, 1H, aromatic C-*H*, *J* = 8.0, 1.0 Hz), 7.11 (s, 1H, aromatic C-*H*), 7.02 (d, 2H, aromatic C-*H*, *J* = 8.7 Hz), 6.48 (br s, 1H, N-*H*), 3.89 (s, 3H, OMe), 1.68 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 160.3, 153.2, 142.2, 141.9, 140.9, 129.6, 127.9, 126.1, 125.3, 123.1, 122.7, 115.9, 114.1, 94.9, 55.4, 51.9, 29.1. HRMS (ESI) calcd for C₂₁H₂₃N₄O [M+H]⁺ 347.1867, found 347.1865.

5ac: 2-(4-cyanophenyl)-*N*-(*tert*-butyl)pyrazolo[1,5-*c*]quinazolin-5-amine

White solid, Yield: 0.093 g (80%), m.p.: 214-216 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.12 (d, 2H, aromatic C-*H*, *J* = 8.4 Hz), 7.90 (dd, 1H, aromatic C-*H*, *J* = 7.8, 1.1 Hz), 7.76 (d, 2H, aromatic C-*H*, *J* = 8.3 Hz), 7.68 (d, 1H, *J* = 8.0 Hz), 7.54 (td, 1H, aromatic C-*H*, *J*=7.5, 1.5 Hz), 7.30 (td, 1H, aromatic, C-*H*, *J* = 7.9, 0.9 Hz), 7.21 (s, 1H, aromatic C-*H*), 6.44 (br s, 1H, N-*H*), 1.69 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 151.2, 141.9, 141.8, 141.4, 137.0, 132.6, 130.0, 127.0, 126.3, 123.1, 123.0, 118.8, 115.7, 112.2, 95.9, 52.1, 29.1.

5ad: N-(tert-butyl)-2-(4-nitrophenyl)pyrazolo[1,5-c]quinazolin-5-amine

Yellow solid, Yield: 0.120 g (97%), m.p.: 209-211 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.35 (d, 2H, aromatic C-*H*, *J* = 8.3 Hz), 8.19 (d, 2H, aromatic C-*H*, *J* = 8.1 Hz), 7.92 (d, 1H, aromatic C-*H*, *J* = 7.8 Hz), 7.69 (d, 1H, aromatic C-*H*, *J* = 8.2 Hz), 7.55 (t, 1H, aromatic C-*H*, *J* = 7.2 Hz), 7.31 (t, 1H, aromatic C-*H*, *J* = 7.4 Hz), 7.27 (s, 1H, aromatic C-*H*), 6.46 (br s, 1H, N-*H*), 1.69 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 150.8, 147.9, 141.8,

 $141.5, 138.9, 130.1, 127.2, 126.3, 124.2, 123.12, 123.13, 115.7, 96.2, 52.2, 29.1. \ \text{HRMS} \ \text{(ESI)} \ \text{calcd for} \ C_{20}H_{20}N_5O_2 \ \text{[M+H]}^+ \ 362.1612, \ \text{found} \ \ 362.1600.$

5ae: 2-(4-bromophenyl)-N-(tert-butyl)pyrazolo[1,5-c]quinazolin-5-amine

Yellow solid, Yield: 0.102 g (76%), m.p.: 146-148 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.90-7.88 (m, 3H, aromatic C-*H*), 7.68 (d, 1H, aromatic C-*H*, *J* = 8.2 Hz), 7.61 (d, 2H, aromatic C-*H*, *J* = 8.4 Hz), 7.53 (td, 1H, aromatic C-*H*, *J* = 8.3, 1.3 Hz), 7.28 (td, 1H, aromatic C-*H*, *J* = 7.9, 0.8 Hz), 7.14 (s, 1H, aromatic C-*H*), 6.46 (br s, 1H, N-*H*), 1.69 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 152.2, 142.0, 141.9, 141.1, 131.9, 131.6, 129.8, 128.1, 126.2, 123.1, 122.9, 122.8, 115.8, 95.4, 52.0, 29.1. HRMS (ESI) calcd for C₂₀H₂₀BrN₄ [M+H]⁺ 395.0866, found 395.0860.

5ba: 2-phenyl-*N*-(2,4,4-trimethylpentan-2-yl)pyrazolo[1,5-*c*]quinazolin-5-amine

White solid, Yield: 0.115 g (91%), m.p.: 82-83 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.03 (d, 2H, aromatic C-*H*, *J* = 7.1 Hz), 7.92 (dd, 1H, aromatic C-*H*, *J* = 7.8, 1.2 Hz), 7.67 (d, 1H, aromatic C-*H*, *J* = 8.15 Hz), 7.54-7.49 (m, 3H, aromatic C-*H*), 7.44-7.41 (m, 1H, aromatic C-*H*), 7.28 (td, 1H, aromatic C-*H*, *J* = 8.0, 1.0 Hz), 7.19 (s, 1H, aromatic C-*H*), 6.67 (br s, 1H, N-*H*), 2.09 (s, 2H, sp³ C-*H*), 1.76 (s, 6H, sp³ C-*H*), 1.11 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 153.3, 142.1, 141.9, 140.8, 132.7, 129.6, 128.9, 128.8, 126.6, 126.2, 123.1, 122.6, 115.9, 95.4, 55.8, 52.4, 31.9, 31.7, 29.3. HRMS (ESI) calcd for C₂₄H₂₉N₄ [M+H]⁺ 373.2387, found 373.2366.

5bb: 1-(4-(5-((2,4,4-trimethylpentan-2-yl)amino)pyrazolo[1,5-c]quinazolin-2-yl)phenyl)ethan-1-one

White solid, Yield: 0.131 g (93%), m.p.: 155-157 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.09 (d, 4H, aromatic C-*H*, *J* = 8.2 Hz), 7.91 (d, 1H, aromatic C-*H*, *J* = 7.1 Hz), 7.67 (d, 1H, aromatic C-*H*, *J* = 7.9 Hz), 7.53 (t, 1H, aromatic C-*H*, *J* = 7.2 Hz), 7.29-7.25 (m, 2H, aromatic C-*H*), 6.64 (br s, 1H, N-*H*), 2.67 (s, 3H, sp³ C-*H*), 2.08 (s, 2H, sp³ C-*H*), 1.75 (s, 6H, sp³ C-*H*), 1.10 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 197.6, 151.9, 141.9, 141.8, 141.1, 137.2, 137.1, 129.8, 128.9, 126.6, 126.2, 123.1, 122.8, 115.8, 95.9, 55.8, 52.5, 31.9, 31.6, 29.3, 26.7. HRMS (ESI) calcd for C₂₆H₃₁N₄O [M+H]⁺415.2493, found 415.2490.

5bc: 2-(3-nitrophenyl)-N-(2,4,4-trimethylpentan-2-yl)pyrazolo[1,5-c]quinazolin-5-amine

Pale yellow solid, Yield: 0.122 g (86%), m.p.: 152-154 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.86 (t, 1H, aromatic C-*H*, *J* = 1.8 Hz), 8.33 (d, 1H, aromatic C-*H*, *J* = 7.7 Hz), 8.26 (dd, 1H, aromatic C-*H*, *J* = 8.1, 1.3 Hz), 7.92 (dd, 1H, aromatic C-*H*, *J* = 7.8, 1.0 Hz), 7.69-7.65 (m, 2H, aromatic C-*H*), 7.55 (td, 1H, aromatic C-*H*, *J* = 8.3, 1.3 Hz), 7.31 (td, 1H, aromatic C-*H*, *J* = 0.9, 7.95 Hz), 7.26 (s, 1H, aromatic C-*H*), 6.62 (br s, 1H, N-*H*), 2.09 (s, 2H, sp³ C-*H*), 1.76 (s, 6H, sp³ C-*H*), 1.10 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 150.8, 148.8, 141.9, 141.8, 141.4, 134.6, 132.3, 130.0, 129.7, 126.3, 123.3, 123.1, 122.9, 121.4, 115.7, 95.7, 55.9, 52.3, 31.9, 31.6, 29.4. HRMS (ESI) calcd for C₂₄H₂₈N₅O₂ [M+H]⁺ 418.2238, found 418.2226. Despite repeated drying on high vacuum, a significant solvent peak is observed in ¹H and ¹³C NMR spectra. The isolated yield has been modified to 86 %.

5bd: 2-(2-bromophenyl)-N-(2,4,4-trimethylpentan-2-yl)pyrazolo[1,5-c]quinazolin-5-amine

Yellow solid, Yield: 0.118 g (77%), m.p.: 95-96.5 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.92 (dd, 1H, aromatic C-*H*, *J* = 7.7, 0.9 Hz), 7.82 (dd, 1H, aromatic C-*H*, *J* = 7.6, 1.5 Hz), 7.73 (dd, 1H, aromatic C-*H*, *J* = 8.0, 0.7 Hz), 7.67 (d, 1H, aromatic C-*H*, *J* = 8.1 Hz), 7.52 (td, 1H, aromatic C-*H*, *J* = 8.3, 1.3 Hz), 7.43 (td, 1H, aromatic C-*H*, *J* = 7.5, 0.9 Hz), 7.34 (s, 1H, aromatic C-*H*), 7.28 (t, 2H, aromatic C-*H*, *J* = 7.7 Hz), 6.59 (br s, 1H, N-*H*), 2.07 (s, 2H, sp³ C-*H*), 1.73 (s, 6H, sp³ C-*H*), 1.08 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 152.5, 141.89, 141.87, 139.9, 134.0, 133.8, 131.8, 129.9, 129.6, 127.4, 126.1, 123.2, 122.7, 122.5, 115.9, 99.4, 52.8, 52.1, 31.8, 31.6, 29.4. HRMS (ESI) calcd for C₂₄H₂₈BrN₄ [M+H]⁺ 451.1492, found 451.1489.

5be: 2-(2-aminophenyl)-*N*-(2,4,4-trimethylpentan-2-yl)pyrazolo[1,5-*c*]quinazolin-5-amine

Light brown solid, Yield: 0.112 g (85%), m. p.:114-116 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.93 (dd, 1H, aromatic C-*H*,*J* = 7.8, 1.0 Hz), 7.72 (dd, 1H, aromatic C-*H*, *J* = 7.7, 1.3 Hz), 7.68 (d, 1H, aromatic C-*H*,*J* = 8.1 Hz), 7.54 (td, 1H, aromatic C-H, *J* = 7.2, 1.3 Hz), 7.29 (td, 1H, aromatic C-*H*, *J* = 8.0, 1.0 Hz), 7.22 (td, 1H, aromatic C-H, *J* = 8.6, 1.4 Hz), 7.19 (s, 1H, aromatic C-*H*), 6.88-6.84 (m, 2H, aromatic C-*H*), 6.41 (br s, 1H, N-*H*), 5.38 (br s, 2H, N-*H*), 2.03 (s, 2H, sp³ C-*H*), 1.76 (s, 6H, sp³ C-*H*), 1.11 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 154.0, 145.2, 141.9, 141.8, 140.1, 129.8, 129.7, 129.6, 126.1, 123.3, 122.8, 117.8, 116.7, 115.8, 115.7, 96.6, 55.9, 53.1, 31.9, 31.7, 29.1. HRMS (ESI) calcd for C₂₄H₃₀N₅ [M+H]⁺ 388.2496, found 388.2494.

5ca: N-(tert-butyl)-2-butylpyrazolo[1,5-c]quinazolin-5-amine

Pale yellow oil, Yield: 0.076 g (76%). ¹H NMR (500 MHz, CDCl₃): δ 7.83 (dd, 1H, aromatic C-*H*,*J* = 7.8, 1.0 Hz), 7.65 (dd, 1H, aromatic C-*H*,*J* = 8.2, 0.5 Hz), 7.49 (td, 1H, aromatic C-*H*, *J* = 8.4, 1.4 Hz), 7.24 (td, 1H, aromatic C-*H*, *J* = 8.0, 1.1 Hz), 6.69 (s, 1H, aromatic C-*H*), 6.35 (br s, 1H, N-*H*), 2.84 (t, 2H, sp³ C-*H*, *J* = 7.7 Hz), 1.79 (quintet, 2H, sp³ C-*H*, *J* = 7.5 Hz), 1.67 (s, 9H, sp³ C-*H*), 1.50-1.44 (sextet, 2H, sp³ C-*H*, *J* = 7.4 Hz), 1.00 (t, 3H, sp³ C-*H*),

J = 7.4 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 156.4, 142.2, 141.9, 140.3, 129.3, 126.0, 123.0, 122.5, 116.0, 97.1, 51.9, 31.7, 29.1, 28.4, 22.6, 13.9. HRMS (ESI) calcd for C₁₈H₂₅N₄ [M+H]⁺297.2074, found 297.2060.

5cb: *N*-(*tert*-butyl)-2-pentylpyrazolo[1,5-*c*]quinazolin-5-amine

Yellow oil, Yield: 0.077 g (73%). ¹H NMR (500 MHz, CDCl₃): δ 7.83 (dd, 1H, aromatic C-*H*, *J* = 7.8, 1.1 Hz), 7.65 (d, 1H, aromatic C-*H*, *J* = 8.1 Hz) 7.49 (td, 1H,aromatic C-*H*, *J* = 8.3, 1.3 Hz), 7.24 (td, 1H, aromatic C-*H*, *J* = 7.9, 1.0 Hz), 6.69 (s, 1H, aromatic C-*H*), 6.35 (br s, 1H, N-*H*), 2.83 (t, 2H, sp³ C-*H*, *J* = 7.7 Hz), 1.81-1.77 (m, 2H, sp³ C-*H*), 1.67 (s, 9H, sp³ C-*H*), 1.45-1.39 (m, 4H, sp³ C-*H*), 0.95 (t, 3H, sp³ C-*H*, *J* = 7.0 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 156.5, 142.2, 141.9, 140.3, 129.3, 126.0, 123.0, 122.5, 115.9, 97.1, 51.9, 31.7, 29.3, 29.1, 28.6, 22.5, 14.1. HRMS (ESI) calcd for C₁₉H₂₇N₄ [M+H]⁺ 311.2230, found 311.2217.

5cc: N-2-di-tert-butylpyrazolo[1,5-c]quinazolin-5-amine

White solid, Yield: 0.071 g (71%), m.p.: 99-101 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.83 (dd, 1H, aromatic C-*H*, *J* = 7.8, 1.1 Hz), 7.62 (d, 1H, aromatic C-*H*, *J* = 8.1 Hz), 7.47 (td, 1H, aromatic C-*H*, *J* = 8.4, 1.4 Hz), 7.23 (td, 1H, aromatic C-*H*, *J* = 8.0, 1.0 Hz), 6.74 (s, 1H, aromatic C-*H*), 6.38 (br s, 1H, N-*H*), 1.66 (s, 9H, sp³ C-*H*), 1.44 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 164.7, 142.3, 141.8, 139.9, 129.2, 125.9, 122.9, 122.4, 116.1, 94.9, 51.7, 32.6, 30.6, 29.1.HRMS (ESI) calcd for C₁₈H₂₅N₄ [M+H]⁺ 297.2074, found 297.2055.

5cd: N-(tert-butyl)-2-(trimethylsilyl)pyrazolo[1,5-c]quinazolin-5-amine

Colorless oil, Yield: 0.049 g (46%). ¹H NMR (500 MHz, CDCl₃): δ 7.91 (d, 1H, aromatic C-*H*, *J* = 7.7 Hz), 7.69 (d, 1H, aromatic C-*H*, *J* = 8.1 Hz), 7.52 (t, 1H, aromatic C-*H*, *J* = 7.3 Hz), 7.29 (d, 1H, aromatic C-*H*, *J* = 7.8 Hz), 7.02 (s, 1H, aromatic C-*H*), 6.57 (br s, 1H, N-*H*), 1.70 (s, 9H, sp³ C-*H*), 0.45 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 156.1, 142.4, 141.8, 139.7, 129.2, 125.9, 123.1, 122.6, 116.4, 104.4, 51.8, 29.1, -1.1. HRMS (ESI) calcd for C₁₇H₂₅N₄Si [M+H]⁺ 313.1843, found 313.1836.

5cd': *N*-(tert-butyl)pyrazolo[1,5-*c*]quinazolin-5-amine

Transparent oil, Yield: 0.032 g (39%). ¹H NMR (500 MHz, CDCl₃): δ 7.91 (d, 1H, aromatic C-*H*, *J* = 2.0 Hz), 7.88 (dd, 1H, aromatic C-*H*, *J* = 7.8, 1.2 Hz), 7.66 (d, 1H, aromatic C-*H*, *J* = 8.2 Hz), 7.51 (td, 1H, aromatic C-*H*, *J* = 7.1, 1.4 Hz), 7.29-7.26 (m, 1H, aromatic C-*H*), 6.89 (d, 1H, aromatic C-*H*, *J* = 2.0 Hz), 6.40 (br s, 1H, N-*H*), 1.66 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 142.1, 141.7, 141.5, 139.8, 129.6, 126.1, 123.1, 122.8, 116.1, 98.3, 51.9, 29.1. HRMS (ESI) calcd for C₁₄H₁₇N₄ [M+H]⁺ 241.1448, found 241.1435.

5ce: *N*-(tert-butyl)-2-(thiophen-2-yl)pyrazolo[1,5-*c*]quinazolin-5-amine

White solid, Yield: 0.079 g (72%), m.p.: 132-135 °C, ¹H NMR (500 MHz, CDCl₃): δ 7.88 (dd, 1H, aromatic C-*H*, *J* = 7.8, 1.3 Hz), 7.66 (d, 1H, aromatic C-*H*, *J* = 8.2 Hz),7.59 (dd, 1H, aromatic C-*H*, *J* = 3.5, 0.8 Hz), 7.52 (td, 1H, aromatic C-*H*, *J* = 8.3, 1.2 Hz), 7.38 (dd, 1H, aromatic C-*H*, *J* = 5.0, 0.8 Hz),7.29-7.26 (m, 1H, aromatic C-*H*),7.15 (dd, 1H, aromatic C-*H*, *J* = 4.9, 3.6 Hz), 7.08 (s, 1H, aromatic C-*H*), 6.41 (br s, 1H, N-*H*), 1.68 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 148.6, 142.0, 141.0, 135.7 129.8, 127.7, 126.16, 126.15, 125.8, 123.2, 122.8, 115.8, 95.5, 52.0, 29.1. HRMS (ESI) calcd for C₁₈H₁₉N₄S [M+H]⁺ 323.1325, found 323.1321.

5cf: N-(tert-butyl)-2-(pyridin-2-yl)pyrazolo[1,5-c]quinazolin-5-amine

Pale yellow solid, Yield: 0.092 g (85%), m.p.: 81-83 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.74 (d, 1H, aromatic C-*H*, *J* = 4.3 Hz), 8.19 (d, 1H, aromatic C-*H*, *J* = 7.8 Hz), 7.93 (d, 1H, aromatic C-H, *J* = 7.8 Hz), 7.81 (t, 1H, aromatic, C-*H*, *J* = 7.7 Hz), 7.67 (d, 1H, aromatic C-*H*, *J* = 8.2 Hz), 7.55 (s, 1H, aromatic C-*H*), 7.52 (t, 1H, aromatic C-*H*, *J* = 8.0 Hz), 7.30 (q, 2H, aromatic C-*H*, *J* = 6.9 Hz), 6.49 (br s, 1H, N-*H*), 1.69 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 153.4, 151.6, 149.7, 142.1, 141.8, 141.1, 136.7, 129.7, 126.1, 123.4, 123.2, 122.9, 121.1, 116.1, 97.1, 52.1, 29.1. HRMS (ESI) calcd for C₁₉H₂₀N₅ [M+H]⁺ 318.1713, found 318.1701.

5cg: ethyl 5-(tert-butylamino)pyrazolo[1,5-c]quinazoline-2-carboxylate

White solid, Yield: 0.051 g (48%), m.p.: 73.3-74.9 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.89 (dd, 1H, aromatic C-*H*, *J* = 7.8, 1.1 Hz), 7.67 (d, 1H, aromatic C-*H*, *J* = 8.1 Hz), 7.55 (td, 1H, aromatic C-*H*, *J* = 8.4, 1.4 Hz), 7.39 (s, 1H, aromatic C-*H*), 7.30 (td, 1H, aromatic C-*H*, *J* = 8.0, 1.0 Hz), 6.48 (br s, 1H, N-*H*), 4.50 (q, 2H, sp³ C-*H*, *J* = 7.1 Hz), 1.66 (s, 9H, sp³ C-*H*), 1.48 (t, 3H, sp³ C-*H*, *J* = 7.1 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 162.4, 145.0, 141.7, 141.6, 140.9, 130.2, 126.3, 123.3, 123.1, 115.8, 100.8, 61.6, 52.4, 28.9, 14.3. HRMS (ESI) calcd for C₁₇H₂₁N₄O₂ [M+H]⁺ 313.1659, found 313.1640.

5cg': ethyl 5-(tert-butylamino)pyrazolo[1,5-c]quinazoline-1-carboxylate

Transparent oil, Yield: 0.038g (36%). ¹H NMR (500 MHz, CDCl₃): δ 9.44 (dd, 1H, aromatic C-*H*, *J* = 8.2, 1.2 Hz), 8.37 (s, 1H, aromatic C-*H*), 7.69 (d, 1H, aromatic C-*H*, *J* = 7.4 Hz), 7.62 (td, 1H, aromatic C-*H*, *J* = 7.0, 1.3Hz), 7.35 (td, 1H, aromatic C-*H*, *J* = 8.2, 1.2 Hz), 6.51 (br s, 1H, N-*H*), 4.43 (q, 2H, sp³ C-*H*, *J* = 7.1 Hz), 1.65 (s, 9H,

sp³ C-*H*), 1.46 (t, 3H, sp³ C-*H*, J = 7.1 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 163.3, 144.8, 143.5, 141.9, 140.7, 131.3, 127.3, 125.9, 123.1, 115.5, 108.9, 60.6, 52.2, 28.9, 14.4. HRMS (ESI) calcd for C₁₇H₂₁N₄O₂ [M+H]⁺ 313.1659, found 313.1644.

5ch: (5-(tert-butylamino)pyrazolo[1,5-c]quinazolin-2-yl)methyl acetate

Pale yellow solid, Yield: 0.093 g (88%), m.p.: 93.5-95 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.84 (dd, 1H, aromatic C-*H*, *J* = 7.8, 1.1 Hz), 7.65 (d, 1H, aromatic C-*H*, *J* = 8.1 Hz), 7.51 (td, 1H, aromatic C-*H*, *J* = 7.3, 1.4 Hz), 7.27 (td, 1H, aromatic C-*H*, *J* = 6.9, 1.0 Hz), 6.90 (s, 1H, aromatic C-*H*), 6.34 (br s, 1H, N-*H*), 5.32 (s, 2H, sp³ C-*H*), 2.16 (s, 3H, sp³ C-*H*), 1.65 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 170.7, 150.1, 141.9, 141.8, 140.8, 129.8, 126.1, 123.1, 122.9, 115.8, 98.1, 60.1, 52.0, 29.0, 21.0. HRMS (ESI) calcd for C₁₇H₂₁N₄O₂ [M+H]⁺313.1659, found 313.1644.

5da: (5-((2,4,4-trimethylpentan-2-yl)amino) pyrazolo [1,5-c] quinazolin-2-yl) methanol

Pale yellow solid, Yield: 0.084 g (76%), m.p.: 116-117 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.82 (dd, 1H, aromatic C-*H*, *J* = 7.8, 0.9 Hz), 7.66 (d, 1H, aromatic C-*H*, *J* = 8.1 Hz), 7.51 (td, 1H, aromatic C-*H*, *J* = 8.3, 1.3 Hz), 7.27-7.24 (m, 1H, aromatic C-*H*), 6.85 (s, 1H, aromatic C-*H*), 6.42 (br s, 1H, N-*H*), 4.91 (s, 2H, sp³ C-*H*), 2.08 (s, 2H, sp³ C-*H*), 1.71 (s, 6H, sp³ C-*H*), 1.04 (s, 9H, sp³ C-*H*).¹³C NMR (125 MHz, CDCl₃): δ 154.7, 141.8, 141.7, 140.7, 129.7, 126.1, 123.1, 122.7, 115.8, 96.4, 59.4, 55.8, 51.7, 31.7, 31.5, 29.5. HRMS (ESI) calcd for C₁₉H₂₇N₄O [M+H]⁺ 327.2180, found 327.2178. Despite repeated drying on high vacuum, a significant solvent peak is observed in ¹H and ¹³C NMR spectra. The isolated yield has been modified to 76 %.

5db: *N*-((5-((2,4,4-trimethylpentan-2-yl)amino)pyrazolo[1,5-*c*]quinazolin-2-yl)methyl)benzamide

Pale yellow solid, Yield: 0.140 g (96%), m.p.: 110-112 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.86-7.82 (m, 3H, aromatic C-*H*), 7.64 (d, 1H, aromatic C-*H*, *J* = 8.0 Hz), 7.55-7.45 (m, 4H, aromatic C-*H*), 7.27-7.24 (m, 1H, aromatic C-*H*), 6.87 (s, 1H, aromatic C-*H*), 6.77 (br s, 1H, N-*H*), 6.42 (br s, 1H, N-*H*), 4.88 (d, 1H, sp³ C-*H*, *J* = 5.3 Hz), 2.04 (s, 2H, sp³ C-*H*), 1.71 (s, 6H, sp³ C-*H*), 1.06 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 167.4, 151.8, 141.8, 141.7, 140.9, 134.3, 131.7, 129.7, 128.6, 127.0, 126.1, 123.2, 122.8, 115.7, 97.1, 55.8, 52.3, 38.3, 31.8, 31.6, 29.3. HRMS (ESI) calcd for C₂₆H₃₂N₅O [M+H]⁺430.2602, found 430.2601.

5dc: 2-(naphthalen-1-yl)-*N*-(2,4,4-trimethylpentan-2-yl)pyrazolo[1,5-*c*]quinazolin-5-amine

Off-white solid, Yield: 0.113 g (93%), m.p.: 127-129.5 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.62-8.61 (m, 1H, aromatic C-*H*), 7.97-7.95 (m, 3H, aromatic C-*H*), 7.87 (d, 1H, aromatic C-*H*, *J* = 6.8 Hz), 7.73 (d, 1H, aromatic C-*H*, *J* = 8.1 Hz), 7.61 (t, 1H, aromatic C-*H*, *J* = 7.6 Hz), 7.58-7.55 (m, 3H, aromatic C-*H*), 7.31 (t, 1H, aromatic C-*H*, *J* = 7.4 Hz), 7.19 (s, 1H, aromatic C-*H*), 6.71 (br s, 1H, N-*H*), 2.09 (s, 2H, sp³ C-*H*), 1.78 (s, 6H, sp³ C-*H*), 1.13 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 153.4, 142.1, 142.0, 140.3, 134.0, 131.5, 130.9, 129.7, 129.2, 128.4, 128.1, 126.6, 126.2, 126.1, 126.0, 125.4, 123.2, 122.7, 115.9, 99.5, 55.8, 52.5, 31.9, 31.6, 29.4. HRMS (ESI) calcd for C₂₈H₃₁N₄ [M+H]⁺423.2543, found 423.2537.

5dd: 2-cyclopropyl-N-(2,4,4-trimethylpentan-2-yl)pyrazolo[1,5-c]quinazolin-5-amine

Yellow oil, Yield: 0.098 g (86%). ¹H NMR (500 MHz, CDCl₃): δ 7.79 (dd, 1H, aromatic C-*H*, *J* = 7.8, 1.2 Hz), 7.63 (d, 1H, aromatic C-*H*, *J* = 8.2 Hz), 7.48 (td, 1H, aromatic C-*H*, *J* = 7.2, 1.4 Hz), 7.23 (td, 1H, aromatic C-*H*, *J* = 8.0, 1.1Hz), 6.52 (s, 1H, aromatic C-*H*), 6.45 (br s, 1H, N-*H*), 2.14 (tt, 1H, sp³ C-*H*, *J* = 8.4, 5.0 Hz), 2.07 (s, 2H, sp³ C-*H*), 1.71 (s, 6H, sp³ C-*H*), 1.09-1.08 (m, 2H, sp³ C-*H*), 1.07 (s, 9H, sp³ C-*H*) 0.94 (dt, 2H, sp³ C-*H*, *J* = 7.0, 4.2 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 158.2, 141.95, 141.92, 140.3, 129.3, 126.0, 122.9, 122.3, 115.8, 94.6, 55.6, 52.1, 31.8, 31.6, 29.4, 9.7, 9.1. HRMS (ESI) calcd for C₂₁H₂₉N₄ [M+H]⁺ 337.2387, found 337.2366.

5ea: 8-bromo-*N*-(tert-butyl)-2-phenylpyrazolo[1,5-*c*]quinazolin-5-amine

Pale yellow solid, Yield: 0.057 g (65%), m.p.: 168-170 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.01 (d, 2H, aromatic C-*H*, *J* = 7.0 Hz), 7.84 (d, 1H, aromatic C-*H*, *J* = 1.9 Hz), 7.74 (d, 1H, aromatic C-*H*, *J* = 8.4 Hz), 7.50 (t, 2H, aromatic C-*H*, *J* = 7.2 Hz), 7.43 (t, 1H, aromatic C-*H*, *J* = 6.2 Hz), 7.37(dd,1H, aromatic C-*H*, *J* = 8.3, 1.9 Hz), 7.15 (s, 1H, aromatic C-*H*), 6.56 (br s, 1H, N-*H*), 1.68 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 153.7, 143.0, 142.6, 140.4, 132.4, 129.0, 128.8, 128.7, 126.6, 125.8, 124.3, 123.3, 114.7, 95.7, 52.2, 29.1. HRMS (ESI) calcd for C₂₀H₂₀BrN₄ [M+H]⁺ 395.0866, found 395.0862.

5eb: *N*-(tert-butyl)-2-phenyl-8-(trifluoromethyl)pyrazolo[1,5-*c*]quinazolin-5-amine

White solid, Yield: 0.070 g (78%), m.p.: 54-56 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.02 (d, 2H, aromatic C-*H*, *J* = 7.2 Hz), 7.99 (d, 1H, aromatic C-*H*, *J* = 8.1 Hz), 7.94 (s, 1H, aromatic C-*H*), 7.52-7.43 (m, 4H, aromatic C-*H*), 7.25 (s, 1H, aromatic C-*H*), 6.60 (br s, 1H, N-*H*), 1.69 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 153.8, 142.7, 141.7, 140.0, 132.2, 131.4 (q, *J*_{C-F} = 18 Hz), 129.1, 128.9, 126.7, 123.8, 123.4 (q, *J*_{C-F} = 18 Hz), 118.7 (q, *J*_{C-F} = 3.7 Hz), 118.2, 96.6, 52.3, 29.0. ¹⁹F NMR (470 MHz, CDCl₃): δ -62.44. HRMS (ESI) calcd for C₂₁H₂₀F₃N₄

 $[M+H]^+$ 385.1635, found 385.1630. Despite repeated drying on high vacuum, a significant solvent peak is observed in ¹H and ¹³C NMR spectra. The isolated yield has been modified to 78 %.

5ec: N-(tert-butyl)-8-fluoro-2-phenylpyrazolo[1,5-c]quinazolin-5-amine

Off white solid, Yield: 0.068 g (67%), m.p.: 107-109 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.01 (d, 2H, aromatic C-*H*, *J* = 7.1 Hz), 7.87 (dd, 1H, aromatic C-*H*, *J* = 8.7, 6.1 Hz), 7.49 (t, 2H, aromatic C-*H*, *J* = 7.2 Hz), 7.44-7.41 (m, 1H, aromatic C-*H*), 7.32 (dd, 1H, aromatic C-*H*, *J* = 10.6, 2.5 Hz), 7.12 (s, 1H, aromatic C-*H*), 7.02 (td, 1H, aromatic C-*H*, *J* = 8.5, 2.5 Hz), 6.56 (br s, 1H, N-*H*), 1.68 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 163.7 (d, *J*_{C-F} = 245 Hz), 153.6, 142.7, 140.6, 132.5, 128.9, 128.8, 126.3, 124.7 (d, *J*_{C-F} = 10.0 Hz), 112.6, 111.5, 111.3, 111.1, 95.2, 52.1, 29.1. ¹⁹F NMR (470 MHz, CDCl₃): δ -110.9. HRMS (ESI) calcd for C₂₀H₂₀FN₄ [M+H]⁺ 335.1667, found 335.1665.

5ed:N-(tert-butyl)-8-chloro-2-phenylpyrazolo[1,5-c]quinazolin-5-amine

White solid, Yield: 0.071 g (74%), m.p.: 134-136 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.01 (d, 2H, aromatic C-*H*, *J* = 7.2 Hz), 7.79 (d, 1H, aromatic C-*H*, *J* = 8.3 Hz), 7.67 (d, 1H, aromatic C-*H*, *J* = 1.9 Hz), 7.50 (t, 2H, aromatic C-*H*, *J* = 7.2 Hz), 7.43 (t, 1H, aromatic C-*H*, *J* = 7.2 Hz), 7.23 (dd, 1H, aromatic C-*H*, *J* = 8.3, 2.0 Hz), 7.14 (s, 1H, aromatic C-*H*), 6.56 (br s, 1H, N-*H*), 1.68 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 153.7, 142.9, 142.7, 140.4, 135.1, 132.4, 129.0, 128.8, 126.6, 125.6, 124.2, 123.1, 114.4, 95.7, 52.2, 29.1. HRMS (ESI) calcd for C₂₀H₂₀ClN₄ [M+H]⁺ 351.1371, found 351.1369.

5fa: dimethyl-5-(tert-butylamino)pyrazolo[1,5-c]quinazoline-1,2-dicarboxylate

White solid, Yield: 0.089 g (74%), m.p.: 159-161°C. ¹H NMR (500 MHz, CDCl₃): δ 8.76 (dd, 1H, aromatic C-*H*, *J* = 8.1, 0.9 Hz), 7.69 (d, 1H, aromatic C-*H*, *J* = 8.1 Hz), 7.62 (td, 1H, aromatic C-*H*, *J* = 8.3, 1.2 Hz), 7.33 (td, 1H, aromatic C-*H*, *J* = 8.1, 1.0 Hz), 6.45 (br s, 1H, N-*H*), 4.03 (s, 3H, sp³ C-*H*), 3.99 (s, 3H, sp³ C-*H*), 1.64 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 163.7, 163.2, 145.8, 143.1, 141.3, 140.1, 131.5, 126.3, 125.5, 123.4, 114.9, 108.0, 52.9, 52.49, 52.48, 28.9.

5fb: dimethyl 5-(tert-butylamino)-8-chloropyrazolo[1,5-c]quinazoline-1,2-dicarboxylate

White solid, Yield: 0.087 g (81%), m.p.: 181-182 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.82 (d, 1H, aromatic C-*H*, *J* = 8.7 Hz), 7.69 (d, 1H, aromatic C-*H*, *J* = 2.1 Hz), 7.28 (dd, 1H, aromatic C-*H*, *J* = 8.8, 2.1 Hz), 6.52 (br s, 1H, N-*H*), 4.03 (s, 3H, sp³ C-*H*), 3.97 (s, 3H, sp³ C-*H*), 1.63 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 163.4, 163.2, 146.4, 144.2, 141.8, 139.8, 137.3, 127.1, 125.7, 123.9, 113.4, 107.9, 53.0, 52.7, 52.5, 28.8. HRMS (ESI) calcd for C₁₈H₂₀ClN₄O₄ [M+H]⁺ 391.1168, found 391.1165.

5ga: diethyl-5-(tert-butylamino)pyrazolo[1,5-c]quinazoline-1,2-dicarboxylate

Off-white solid, Yield: 0.110 g (84%), m.p.: 63-65 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.83 (d, 1H, aromatic C-*H*, *J* = 8.1 Hz), 7.69 (d, 1H, aromatic C-*H*, *J* = 8.1 Hz), 7.61 (t, 1H, aromatic C-*H*, *J* = 8.1 Hz), 7.33 (t, 1H, aromatic C-*H*, *J* = 8.0 Hz), 6.46 (br s, 1H, N-*H*), 4.49 (q, 2H, sp³ C-*H*, *J* = 7.1 Hz), 4.45 (q, 2H, sp³ C-*H*, *J* = 7.1 Hz), 1.64 (s, 9H, sp³ C-*H*), 1.45 (t, 3H, sp³ C-*H*, *J* = 7.1Hz), 1.42 (t, 3H, sp³ C-*H*, *J* = 7.1 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 163.3, 162.9, 146.3, 143.1, 141.4, 140.0, 131.4, 126.3, 125.7, 123.4, 115.0, 108.1, 62.2, 61.5, 52.5, 28.9, 14.2, 14.1.

5gb: diethyl-8-bromo-5-(tert-butylamino)pyrazolo[1,5-c]quinazoline-1,2-dicarboxylate

Off-white solid, Yield: 0.075 g (74%), m.p.: 125-127 °C.¹H NMR (500 MHz, CDCl₃): δ 8.82 (d, 1H, aromatic C-*H*, *J* = 8.8 Hz), 7.87 (d, 1H, aromatic C-*H*, *J* = 2.0 Hz), 7.42 (dd, 1H, aromatic C-*H*, *J* = 8.7, 2.0 Hz), 6.53 (br s, 1H, N-*H*), 4.49 (q, 2H, sp³ C-*H*, *J* = 7.1 Hz), 4.43 (q, 2H, sp³ C-*H*, *J* = 7.1 Hz), 1.63 (s, 9H, sp³ C-*H*), 1.45 (t, 3H, sp³ C-*H*, *J* = 7.1 Hz), 1.41 (t, 3H, sp³ C-*H*, *J* = 7.1 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 162.925, 162.920, 146.9, 144.3, 141.9, 139.8, 128.8, 127.3, 126.5, 125.6, 113.8, 108.0, 62.3, 61.5, 52.7, 28.8, 14.2, 14.1.

5ha: dimethyl-5-((2,4,4-trimethylpentan-2-yl)amino)pyrazolo[1,5-c]quinazoline-1,2-dicarboxylate

White solid, Yield: 0.119 g (85%), m.p.: 103-105 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.76 (dd, 1H, aromatic C-*H*, *J* = 8.2, 1.0 Hz),7.70 (dd, 1H, aromatic C-*H*, *J* = 8.2, 0.7 Hz), 7.63-7.59 (m, 1H, aromatic C-*H*), 7.35-7.32 (m, 1H, aromatic C-*H*), 6.51 (br s, 1H, N-*H*), 4.03 (s, 3H, sp³ C-*H*), 3.99 (s, 3H, sp³ C-*H*), 2.08 (s, 2H, sp³ C-*H*), 1.69 (s, 6H, sp³ C-*H*), 1.02 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 163.8, 163.2., 145.8, 143.1, 141.2, 139.9, 131.4, 126.3, 125.5, 123.4, 114.8, 107.6, 56.2, 52.9, 52.5, 51.3, 31.8, 31.5, 29.4. HRMS (ESI) calcd for C₂₂H₂₉N₄O₄ [M+H]⁺413.2184, found 413.2178. Despite repeated drying on high vacuum, a significant solvent peak is observed in ¹H and ¹³C NMR spectra. The isolated yield has been modified to 85 %.

5hb: diethyl-5-((2,4,4-trimethylpentan-2-yl)amino)pyrazolo[1,5-c]quinazoline-1,2-dicarboxylate

White solid, Yield: 0.111 g (73%), m.p.: 176-178 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.83 (dd, 1H, aromatic C-*H*, J = 8.2, 1.0 Hz), 7.69 (dd, 1H, aromatic C-*H*, J = 8.0, 0.7 Hz), 7.63-7.59 (m, 1H, aromatic C-*H*), 7.34-7.31 (m, 1H,

aromatic C-*H*), 6.53 (br s, 1H, N-*H*), 4.49 (q, 2H, sp³ C-*H*, *J* = 7.2 Hz), 4.45 (q, 2H, sp³C-*H*, *J* = 7.2 Hz), 2.08 (s, 2H, sp³ C-*H*), 1.69 (s, 6H, sp³ C-*H*), 1.45 (t, 3H, sp³ C-*H*, *J* = 7.1 Hz), 1.42 (t, 3H, sp³ C-*H*, *J* = 7.1 Hz), 1.02 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 163.3, 162.9, 146.3, 143.1, 141.2, 139.9, 131.3, 126.3, 125.7, 123.3, 114.9, 108.1, 62.1, 61.5, 56.2, 51.4, 31.8, 31.5, 29.4, 14.2, 14.1. HRMS (ESI) calcd for C₂₄H₃₃N₄O₄ [M+H]⁺ 441.2497, found 441.2490.

26aa: Methyl 5-(tert-butylamino)-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5-c]quinazoline-1-carboxylate

White solid, Yield: 0.144 g (93%), m.p.: 137-138 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.85 (d, 2H, aromatic *C*-*H*, *J* = 8.1 Hz), 7.36 (d, 2H, aromatic *C*-*H*, *J* = 8.0 Hz), 7.12 (t, 1H, aromatic *C*-*H*, *J* = 7.0 Hz), 6.93 (d, 1H, aromatic *C*-*H*, *J* = 7.8 Hz), 6.80 (t, 1H, aromatic *C*-*H*, *J* = 7.2 Hz), 6.76 (d, 1H, aromatic *C*-*H*, *J* = 6.8 Hz), 5.21 (br s, 1H, N-*H*), 4.14 (d, 1H, sp³ C-*H*, *J* = 7.2 Hz), 3.91 (dd, 1H, sp³ C-*H*, *J* = 12.1, 8.4 Hz), 3.79 (dd, 1H, sp³ C-*H*, *J* = 12.1, 2.8 Hz), 3.36 (td, 1H, sp³ C-*H*, *J* = 8.0, 2.8 Hz), 3.21 (s, 3H, sp³ OC-*H*), 2.47 (s, 3H, sp³ C-*H*), 1.33 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 170.9, 148.9, 145.6, 142.4, 131.8, 130.1, 129.16, 129.14, 126.6, 123.7, 120.8, 117.5, 62.4, 52.6, 51.9, 51.2, 47.9, 28.9, 21.7. HRMS (ESI) calcd for C₂₃H₂₉N₄O₄S [M+H]⁺ 457.1904, found 457.1894.

26ab: Methyl 8-bromo-5-(*tert*-butylamino)-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5-*c*]quinazoline-1-carboxylate

Yellow solid, Yield: 0.101 g (85%), m.p.: 178-180 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, 2H, aromatic *C-H*, *J* = 8.2 Hz), 7.36 (d, 2H, aromatic *C-H*, *J* = 8.0 Hz), 7.10 (d, 1H, aromatic *C-H*, *J* = 1.7 Hz), 6.91 (dd, 1H, aromatic *C-H*, *J* = 8.0, 1.8 Hz), 6.62 (d, 1H, aromatic *C-H*, *J* = 8.0 Hz), 5.28 (br s, 1H, N-H), 4.10 (d, 1H, sp³ C-H, *J* = 7.2 Hz), 3.90 (dd, 1H, sp³ C-H, *J* = 12.1, 8.3 Hz), 3.77 (dd, 1H, sp³ C-H, *J* = 12.2, 2.8 Hz), 3.35 (td, 1H, sp³ C-H, *J* = 8.1, 2.8Hz), 3.27 (s, 3H, sp³ OC-H), 2.47 (s, 3H, sp³ C-H), 1.31 (s, 9H, sp³ C-H). ¹³C NMR (125 MHz, CDCl₃): δ 170.8, 149.6, 145.8, 144.1, 131.7, 130.2, 129.1, 127.8, 126.4, 123.4, 122.6, 116.3, 61.9, 52.3, 52.1, 51.4, 47.9, 28.8, 21.7. HRMS (ESI) calcd for C₂₃H₂₈BrN₄O₄S [M+H]⁺ 535.1009, found 535.1007.

26ac: Methyl 5-(*tert*-butylamino)-8-chloro-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5-*c*]quinazoline-1-carboxylate

Yellow solid, Yield: 0.116 g (86%), m.p.: 173-175 °C, ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, 2H, aromatic *C-H*, *J* = 8.2 Hz), 7.36 (d, 2H, aromatic *C-H*, *J* = 8.0 Hz), 6.94 (d, 1H, aromatic C-*H*, *J* = 2.0 Hz), 6.76 (dd, 1H, aromatic *C-H*, *J* = 8.1, 2.1 Hz), 6.68 (d, 1H, aromatic C-*H*, *J* = 8.1 Hz), 5.28 (br s, 1H, N-H), 4.12 (d, 1H, sp³ C-H, *J* = 7.2 Hz), 3.91 (dd, 1H, sp³ C-*H*, *J* = 12.2, 8.3 Hz), 3.78 (dd, 1H, sp³ C-*H*, *J* = 12.2, 2.9 Hz), 3.36 (td, 1H, sp³ C-*H*, *J* = 8.2, 2.9 Hz), 3.27 (s, 3H, sp³ OC-*H*), 2.47 (s, 3H, sp³ C-*H*), 1.31 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 170.8, 149.6, 145.7, 143.9, 134.5, 131.7, 130.2, 129.1, 127.5, 123.4, 120.5, 115.9, 61.8, 52.4, 52.1, 51.4, 47.9, 28.8, 21.7. HRMS (ESI) calcd for C₂₃H₂₈ClN₄O₄S [M+H]⁺ 491.1515, found 491.1510.

26ad: Methyl 5-(*tert*-butylamino)-8-fluoro-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5-*c*]quinazoline-1-carboxylate

Colorless liquid, Yield: 0.130 g (91%), ¹H NMR (500 MHz, CDCl₃): δ 7.85 (d, 2H, aromatic *C*-*H*, *J* = 8.1 Hz), 7.37 (d, 2H, aromatic *C*-*H*, *J* = 8.0 Hz), 6.71 (dd, 1H, aromatic *C*-*H*, *J* = 8.2, 6.4 Hz), 6.63 (d, 1H, aromatic *C*-*H*, *J* = 10.0 Hz), 6.51 (td, 1H, aromatic *C*-*H*, *J* = 8.4, 2.5 Hz), 5.29 (br s, 1H, N-*H*), 4.14, (d, 1H, sp³ C-*H*, *J* = 7.2 Hz), 3.91 (dd, 1H, sp³ C-*H*, *J* = 12.2, 8.3 Hz), 3.78 (dd, 1H, sp³ C-*H*, *J* = 12.2, 2.8 Hz), 3.34 (td, 1H, sp³ C-*H*, *J* = 8.0, 2.8 Hz), 3.26 (s, 3H, sp³ OC-*H*), 2.48 (s, 3H, sp³ C-*H*), 1.32 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 170.9, 163.54 (d, *J*_{C-F} = 243 Hz), 149.5, 145.7, 131.8, 130.2, 129.2, 127.6 (d, *J*_{C-F} = 10 Hz), 113.2, 109.9 (d, *J*_{C-F} = 15.2 Hz), 107.6 (d, *J*_{C-F} = 22.5 Hz), 61.9, 52.4, 52.0, 51.4, 47.9, 28.8, 21.7. ¹⁹F NMR (470 MHz, CDCl₃): δ -113.74. HRMS (ESI) calcd for C₂₃H₂₈FN₄O₄S [M+H]⁺ 475.1810, found.475.1798.

26ae: Methyl 5-(*tert*-butylamino)-3-tosyl-8-(trifluoromethyl)-1,2,3,10b-tetrahydropyrazolo[1,5c]quinazoline-1-carboxylate

Pale yellow Oil, Yield: 0.106 g (87%). ¹H NMR (500 MHz, CDCl₃): δ 7.85 (d, 2H, aromatic *C-H*, *J* = 8.0 Hz), 7.38 (d, 2H, aromatic *C-H*, *J* = 7.8 Hz), 7.18 (s, 1H, aromatic *C-H*), 7.03 (d, 1H, aromatic *C-H*, *J* = 7.6 Hz), 6.87 (d, 1H, aromatic *C-H*, *J* = 7.6 Hz), 5.29 (br s, 1H, N-*H*), 4.20 (d, 1H, sp³ C-*H*, *J* = 7.1 Hz), 3.94 (dd, 1H, sp³ C-*H*, *J* = 12.1, 8.5 Hz), 3.80 (dd, 1H, sp³ C-*H*, *J* = 12.1, 2.4 Hz), 3.41 (t, 1H, sp³ C-*H*, *J* = 6.0 Hz), 3.23 (s, 3H, sp³ OC-*H*), 2.48 (s, 3H, sp³ C-*H*), 1.32 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 170.7, 149.7, 145.8, 143.2, 131.7, 131.5 (q, *J*_{C-F} = 31.5 Hz), 130.2, 129.2, 127.0, 124.1 (q, *J*_{C-F} = 270.7 Hz), 120.9, 120.3 (d, *J*_{C-F} = 4.6 Hz), 116.9 (d, *J*_{C-F} = 7.5 Hz), 61.8, 52.4, 52.0, 51.5, 47.8, 28.8, 21.7. ¹⁹F NMR (470 MHz, CDCl₃): δ -62.88. HRMS (ESI) calcd for C₂₄H₂₈F₃N₄O₄S [M+H]⁺ 525.1778, found. 525.1764.

26ba: methyl 5-(*tert*-butylamino)-3-(phenylsulfonyl)-1,2,3,10b-tetrahydropyrazolo[1,5-c]quinazoline-1-carboxylate

Off-white solid, Yield: 0.134 g (89%), m.p.: 130-132 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.98 (dd, 2H, aromatic *C*-*H*, *J* = 8.5, 0.8 Hz), 7.71 (t, 1H, aromatic *C*-*H*, *J* = 7.5 Hz), 7.58 (t, 2H, aromatic *C*-*H*, *J* = 8.0 Hz), 7.13 (td, 1H, aromatic *C*-*H*, *J* = 8.7, 1.3 Hz), 6.94 (d, 1H, aromatic C-*H*, *J* = 7.8 Hz), 6.81, (td, 1H, aromatic C-*H*, *J* = 7.4, 1.1 Hz), 6.75 (dd, 1H, aromatic C-*H*, *J* = 7.3, 1.1 Hz), 5.19 (br s, 1H, N-*H*), 4.12 (d, 1H, sp³ C-*H*, *J* = 7.3 Hz), 3.94 (dd, 1H, sp³ C-*H*, *J* = 12.2, 8.3 Hz), 3.82 (dd, 1H, sp³ C-*H*, *J* = 12.2, 3.0 Hz), 3.36, (td, 1H, sp³ C-*H*, *J* = 8.2, 3.0 Hz), 3.22 (s, 3H, sp³ OC-*H*), 1.32 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 170.9, 148.8, 142.3, 134.9, 134.3, 129.5, 129.1, 128.1, 126.6, 123.7, 120.9, 117.4, 62.5, 52.5, 51.9, 51.2, 48.0, 28.9. HRMS (ESI) calcd for C₂₂H₂₇N₄O₄S [M+H]⁺ 443.1748, found 443.1735.

26bb: methyl 5-(*tert*-butylamino)-3-((4-iodophenyl)sulfonyl)-1,2,3,10b-tetrahydropyrazolo[1,5-c]quinazoline-1-carboxylate

White solid, Yield: 0.174 g (90%), m.p.: 147-149 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.94 (d, 2H, aromatic *C-H*, *J* = 8.1 Hz), 7.68 (d, 2H, aromatic *C-H*, *J* = 8.1 Hz), 7.15 (t, 1H, aromatic *C-H*, *J* = 7.0 Hz), 7.95 (d, 1H, aromatic *C-H*, *J* = 7.8 Hz), 6.85-6.80 (m, 2H, aromatic C-*H*), 5.12 (brs, 1H, N-*H*), 4.21 (d, 1H, sp³ C-*H*, *J* = 7.1 Hz), 3.88 (dd, 1H, sp³ C-*H*, *J* = 12.0, 8.5 Hz), 3.82 (dd, 1H, sp³ C-*H*, *J* = 12.0, 2.2 Hz), 3.39, (td, 1H, sp³ C-*H*, *J* = 7.0, 5.5 Hz), 3.22 (s, 3H, sp³ OC-*H*), 1.33 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 170.8, 148.6, 142.2, 138.8, 134.5, 130.4, 129.3, 126.7, 123.8, 121.0, 117.3, 102.5, 62.6, 52.4, 52.0, 51.3, 47.9, 28.9. HRMS (ESI) calcd for C₂₂H₂₆IN₄O₄S [M+H]⁺ 569.0714, found 569.0700.

26bc: Methyl 3-((4-bromophenyl)sulfonyl)-5-(*tert*-butylamino)-1,2,3,10b-tetrahydropyrazolo[1,5-*c*]quinazoline-1-carboxylate

White solid, Yield: 0.160 g (91%), m.p.: 142-144 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, 2H, aromatic *C-H*, *J* = 8.5 Hz), 7.72 (d, 2H, aromatic *C-H*, *J* = 8.2 Hz), 7.15 (t, 1H, aromatic *C-H*, *J* = 6.6 Hz), 6.95 (d, 1H, aromatic *C-H*, *J* = 7.7 Hz), 6.86-6.80 (m, 2H, aromatic *C-H*), 5.13 (br s, 1H, N-H), 4.20 (d, 1H, sp³ C-H, *J* = 7.2 Hz), 3.89 (dd, 1H, sp³ C-H, *J* = 12.1, 8.1 Hz), 3.39 (td, 1H, sp³ C-H, *J* = 7.6, 2.4 Hz), 3.22 (s, 3H, sp³ OC-H), 1.33 (s, 9H, sp³ C-H). ¹³C NMR (125 MHz, CDCl₃): δ 170.8, 148.6, 142.2, 133.9, 132.8, 130.6, 129.9, 129.3, 126.6, 123.8, 121.0, 117.3, 62.6, 52.4, 52.0, 51.3, 48.0, 28.9. HRMS (ESI) calcd for C₂₂H₂₆BrN₄O₄S [M+H]⁺ 521.0853, found 521.0849.

26bd: Methyl 5-(*tert*-butylamino)-3-((4-nitrophenyl)sulfonyl)-1,2,3,10b-tetrahydropyrazolo[1,5-*c*]quinazoline-1-carboxylate

Yellow solid, Yield: 0.147 g (89%), m.p.: 131-133 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.41 (d, 2H, aromatic *C-H*, *J* = 8.6 Hz), 8.19 (d, 2H, aromatic *C-H*, *J* = 8.6 Hz), 7.16 (t, 1H, aromatic *C-H*, *J* = 7.4 Hz), 6.96 (d, 1H, aromatic *C-H*, *J* = 7.9 Hz), 6.84 (t, 1H, aromatic *C-H*, *J* = 7.4 Hz), 6.78 (d, 1H, aromatic *C-H*, *J* = 7.0 Hz), 5.13 (br s, 1H, N-H), 4.13 (d, 1H, sp³ C-H, *J* = 7.1 Hz), 3.91-3.89 (m, 2H, sp³ C-H), 3.42-3.38 (m, 1H, sp³ C-H), 3.22 (s, 3H, sp³ OC-*H*), 1.33 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 170.5, 151.1, 148.2, 141.9, 140.6, 130.6, 129.4, 126.6, 124.5, 123.9, 121.3, 117.1, 62.9, 52.1, 52.0, 51.4, 48.2, 28.9. HRMS (ESI) calcd for C₂₂H₂₆N₅O₆S [M+H]⁺ 488.1599, found 488.1599.

26be: Methyl 5-(*tert*-butylamino)-3-(naphthalen-1-ylsulfonyl)-1,2,3,10b-tetrahydropyrazolo[1,5c]quinazoline-1-carboxylate

Yellow solid, Yield: 0.149 g (89%), m.p.: 176-178 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.89 (d, 1H, aromatic *C-H*, *J* = 8.1 Hz), 8.36 (d, 1H, aromatic *C-H*, *J* = 6.8 Hz), 8.18 (d, 1H, aromatic *C-H*, *J* = 7.6 Hz), 8.02 (d, 1H, aromatic *C-H*, *J* = 7.7 Hz), 7.77 (t, 1H, aromatic *C-H*, *J* = 6.6 Hz), 7.66 (t, 1H, aromatic *C-H*, *J* = 7.0 Hz), 7.58 (t, 1H, aromatic *C-H*, *J* = 7.1 Hz), 7.12 (t, 1H, aromatic *C-H*, *J* = 6.5 Hz), 6.96 (d, 1H, aromatic *C-H*, *J* = 6.5 Hz), 6.86 (d, 2H, aromatic *C-H*, *J* = 7.4 Hz), 5.05 (d, 1H, aromatic *C-H*, *J* = 7.2 Hz), 4.46 (t, 1H, sp³ C-H, *J* = 11.2 Hz), 4.32 (br s, 1H, *N-H*), 3.80 (d, 1H, sp³ C-H, *J* = 11.7 Hz), 3.62 (s, 1H, sp³ C-H), 3.19 (s, 3H, sp³ OC-H), 0.72 (s, 9H, sp³ C-H). ¹³C NMR (125 MHz, CDCl₃): δ 171.5, 148.2, 142.3, 135.9, 134.3, 133.6, 130.2, 129.6, 129.5, 129.0, 128.9, 127.4, 126.9, 124.6, 124.3, 123.5, 120.9, 117.9, 63.3, 52.2, 51.9, 50.5, 46.6, 28.2. HRMS (ESI) calcd for C₂₆H₂₉N₄O₄S [M+H]⁺ 493.1904, found 493.1897.

26bf: Methyl 5-(*tert*-butylamino)-3-((4-fluorophenyl)sulfonyl)-1,2,3,10b-tetrahydropyrazolo[1,5-*c*]quinazoline-1-carboxylate

Off-white solid, Yield: 0.131 g (84%), m.p.: 131-133 °C.¹H NMR (500 MHz, CDCl₃): δ 8.03-7.99 (m, 2H, aromatic C-*H*), 7.27-7.23 (m, 2H, aromatic C-*H*), 7.14 (td, 1H, aromatic C-*H*, *J* = 8.8, 1.6 Hz), 6.96 (d, 1H, aromatic C-*H*, *J* = 7.8 Hz), 6.85-6.79 (m, 2H, aromatic C-H), 5.18 (br s, 1H, N-*H*), 4.17 (d, 1H, sp³ C-*H*, *J* = 7.2 Hz), 3.90 (dd, 1H, sp³ C-*H*, *J* = 12.1, 8.2 Hz), 3.83 (dd, 1H, sp³ C-*H*, *J* = 12.1, 3.0 Hz), 3.39 (td, 1H, sp³ C-*H*, *J* = 8.0, 3.0 Hz), 3.22

(s, 3H, sp³ OC-*H*), 1.34 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 170.7, 167.3, 165.2, 148.7, 132.0 (d, *J*_{C-F} = 9.6 Hz), 130.9, 129.3, 126.6, 123.7, 121.0, 117.3, 116.8 (d, *J*_{C-F} = 22.4 Hz), 62.6, 52.4, 52.0, 51.3, 48.0, 28.9. HRMS (ESI) calcd for C₂₂H₂₆FN₄O₄S [M+H]⁺ 461.1654, found 461.1644.

26ca: methyl 3-((4-methoxyphenyl)sulfonyl)-5-((2,4,4-trimethylpentan-2-yl)amino)-1,2,3,10b-tetrahydropyrazolo[1,5-c]quinazoline-1-carboxylate

Off-white solid, Yield: 0.159 g (89%), m.p.: 161-163 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.87 (d, 2H, aromatic *C*-*H*, *J* = 8.8 Hz), 7.12 (t, 1H, aromatic *C*-*H*, *J* = 7.1 Hz), 7.00 (d, 2H, aromatic *C*-*H*, *J* = 8.8 Hz), 6.93 (d, 1H, aromatic *C*-*H*, *J* = 7.8 Hz), 6.80 (t, 1H, aromatic *C*-*H*, *J* = 7.3 Hz), 6.74 (d, 1H, aromatic *C*-*H*, *J* = 7.0 Hz), 5.39 (br s, 1H, N-*H*), 4.06 (d, 1H, sp³ C-*H*, *J* = 7.4 Hz), 3.92-3.90 (m, 1H, sp³ C-*H*), 3.88 (s, 3H, sp³ OC-*H*), 3.77 (dd, 1H, sp³ C-*H*, *J* = 12.2, 3.1 Hz), 3.35 (td, 1H, sp³ C-*H*, *J* = 8.0, 3.1 Hz), 3.21 (s, 3H, sp³ C-*H*), 2.04 (d, 1H, sp³ C-*H*, *J* = 14.7 Hz), 1.48-1.45 (m, 4H, sp³ C-*H*), 1.45 (s, 3H, sp³ C-*H*), 1.02 (s, 9H, sp³ C-*H*).¹³C NMR (125 MHz, CDCl₃): δ 171.0, 164.3, 148.6, 142.4, 131.3, 129.1, 126.6, 126.0, 123.7, 120.6, 117.5, 114.7, 62.4, 55.8, 55.1, 52.7, 52.1, 51.9, 48.3, 31.6, 31.5, 28.4. HRMS (ESI) calcd for C₂₇H₃₇N₄O₅S [M+H]⁺ 529.2479, found 529.2465.

26cb: Methyl 3-((4-chlorophenyl)sulfonyl)-5-((2,4,4-trimethylpentan-2-yl)amino)-1,2,3,10b-tetrahydropyrazolo[1,5-c]quinazoline-1-carboxylate

Pale yellow solid, Yield: 0.161 g (89%), m.p.: 171-173 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.90 (d, 2H, aromatic *C*-*H*, *J* = 5.8 Hz), 7.55 (d, 2H, aromatic *C*-*H*, *J* = 5.7 Hz), 7.14 (s, 1H, aromatic *C*-*H*), 6.95 (d, 1H, aromatic *C*-*H*, *J* = 5.8 Hz), 6.82-6.79 (m, 2H, aromatic *C*-*H*), 5.31 (br s, 1H, N-*H*), 4.09 (d, 1H, sp³ C-*H*, *J* = 4.7 Hz), 3.90-3.81 (m, 2H, sp³ C-*H*), 3.37 (s, 1H, sp³ C-*H*), 3.22 (s, 3H, sp³ OC-*H*), 2.02 (d, 1H, sp³ C-*H*, *J* = 14.3 Hz), 1.49-1.40 (m, 7H, sp³ C-*H*), 1.03 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 170.7, 148.2, 142.3, 141.3, 133.3, 130.5, 129.9, 129.2, 126.6, 123.8, 120.8, 117.3, 62.6, 55.2, 52.4, 52.2, 51.9, 48.4, 31.6, 31.5, 29.7, 28.3. HRMS (ESI) calcd for C₂₆H₃₄CIN₄O₄S [M+H]⁺ 533.1984, found 533.1975.

White solid, Yield: 0.156 g (90%), m.p.: 143-145 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.47-7.42 (m, 5H, aromatic *C*-*H*), 7.20 (td, 1H, aromatic *C*-*H*, *J* = 7.8, 1.2 Hz), 7.03 (d, 2H, aromatic *C*-*H*, *J* = 7.8 Hz), 7.00 (d, 2H, aromatic *C*-*H*, *J* = 7.3 Hz), 6.91 (t, 1H, aromatic *C*-*H*, *J* = 7.32 Hz), 5.53 (br s, 1H, N-*H*), 5.07 (d, 1H, sp³ C-*H*, *J* = 7.7 Hz), 4.57 (d, 1H, sp³ C-*H*, *J* = 13.3 Hz), 4.40 (d, 1H, sp³ C-*H*, *J* = 13.3 Hz), 4.05 (dd, 1H, sp³ C-*H*, *J* = 12.2, 8.6 Hz), 3.72 (dd, 1H, sp³ C-*H*, *J* = 12.3, 3.6 Hz), 3.55 (td, 1H, sp³ C-*H*, *J* = 8.1, 3.7 Hz), 3.25 (s, 3H, sp³ OC-*H*), 2.11 (d, 1H, sp³ C-*H*, *J* = 14.3 Hz), 1.59 (d, 1H, sp³ C-*H*, *J* = 14.8 Hz), 1.53 (s, 6H, sp³ C-*H*), 1.06 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 171.1, 148.2, 142.2, 131.0, 129.3, 129.2, 129.1, 126.9, 126.4, 123.8, 121.2, 117.8, 63.4, 55.6, 54.7, 52.6, 51.99, 51.96, 47.5, 31.6, 29.6, 28.3. HRMS (ESI) calcd for C₂₇H₃₇N₄O₄S [M+H]⁺ 513.2530, found 513.2525.

White solid, Yield: 0.167 g (92%), m.p.: 137-138 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.17 (t, 1H, aromatic *C-H*, *J* = 7.4 Hz), 7.00 (d, 2H, aromatic *C-H*, *J* = 8.9 Hz), 6.89 (t, 1H, aromatic *C-H*, *J* = 7.3 Hz), 5.47 (br s, 1H, N-H), 5.03 (d, 1H, sp³ C-H, *J* = 7.8 Hz), 4.07 (dd, 1H, sp³ C-H, *J* = 12.3, 8.5 Hz), 3.64 (dd, 1H, sp³ C-H, *J* = 12.3, 3.7 Hz), 3.58 (td, 1H, sp³ C-H, *J* = 8.1, 3.8 Hz), 3.25 (s, 3H, sp³ OC-H), 2.20 (d, 1H, sp³ C-H, *J* = 14.8 Hz), 1.91 (quint, 2H, sp³ C-H, *J* = 7.8 Hz), 1.59 (d, 1H, sp³ C-H, *J* = 14.8 Hz), 1.52 (d, 6H, sp³ C-H, *J* = 3.6 Hz), 1.47-1.42 (m, 2H, sp³ C-H), 1.32-1.27 (m, 10H, sp³ C-H), 1.07 (s, 9H, sp³ C-H), 0.88 (t, 3H, sp³ C-H, *J* = 6.4 Hz).¹³C NMR (125 MHz, CDCl₃): δ 171.3, 148.2, 142.1, 129.2, 127.0, 123.8, 121.2, 117.9, 63.1, 55.5, 52.4, 51.9, 51.8, 49.2, 46.5, 31.7, 31.6, 29.8, 28.98, 28.94, 28.53, 28.4, 22.7, 22.6, 14.0. HRMS (ESI) calcd for C₂₈H₄₇N₄O₄S [M+H]⁺ 535.3313, found 535.3309.

26ce: Methyl 3-tosyl-5-((2,4,4-trimethylpentan-2-yl)amino)-1,2,3,10b-tetrahydropyrazolo[1,5c]quinazoline-1-carboxylate

Yellow solid, Yield: 0.155 g (89%), m.p.: 132-134 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, 2H, aromatic *C-H*, *J* = 8.2 Hz), 7.35 (d, 2H, aromatic *C-H*, *J* = 8.1 Hz), 7.12 (td, 1H, aromatic *C-H*, *J* = 8.3, 1.2 Hz), 6.93 (d, 1H, aromatic *C-H*, *J* = 7.8 Hz), 6.79 (t, 1H, aromatic *C-H*, *J* = 6.7 Hz), 6.73 (d, 1H, aromatic *C-H*, *J* = 6.7 Hz), 5.36 (br s, 1H, N-H), 4.06 (d, 1H, sp³ C-H, *J* = 7.5 Hz), 3.93 (dd, 1H, sp³ C-H, *J* = 12.2, 8.4 Hz), 3.77 (dd, 1H, sp³ C-H, *J* = 12.2, 3.3 Hz), 3.34 (td, 1H, sp³ C-H, *J* = 8.1, 3.3 Hz), 3.21 (s, 3H, sp³ OC-H), 2.46 (s, 3H, sp³ C-H), 2.02 (d, 1H, sp³ C-H, *J* = 14.7 Hz), 1.48 (d, 1H, sp³ C-H, *J* = 14.7 Hz), 1.45 (s, 3H, sp³ C-H), 1.39 (s, 3H, sp³ C-H), 1.02 (s, 9H, sp³ C-H). ¹³C NMR (125 MHz, CDCl₃): δ 170.9, 148.5, 145.5, 142.4, 131.9, 130.1, 129.1, 129.0, 126.6, 123.7,

120.6, 117.5, 62.4, 55.1, 52.6, 52.1, 51.9, 48.3, 31.6, 31.5, 29.7, 28.3, 21.7. HRMS (ESI) calcd for $C_{27}H_{37}N_4O_4S$ [M+H]⁺ 513.2530, found 513.2515.

26da: Ethyl 5-(tert-butylamino)-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5-c]quinazoline-1-carboxylate

White solid, Yield: 0.140 g (88%), m.p.: 153-155 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.85 (d, 2H, aromatic *C-H*, *J* = 8.2 Hz), 7.35 (d, 2H, aromatic *C-H*, *J* = 8.1 Hz), 7.12 (td, 1H, aromatic *C-H*, *J* = 8.3, 2.3 Hz), 6.92 (d, 1H, aromatic *C-H*, *J* = 7.8 Hz), 6.81-6.77 (m, 2H, aromatic *C-H*), 5.20 (br s, 1H, N-*H*), 3.90 (dd, 1H, sp³ C-*H*, *J* = 8.2, 7.2 Hz), 3.81 (dd, 1H, sp³ C-*H*, *J* = 12.1, 3.0 Hz), 3.73-3.63 (m, 2H, sp³ C-*H*), 3.34 (td, 1H, sp³ C-*H*, *J* = 7.9, 3.0 Hz), 2.46 (s, 3H, sp³ C-*H*), 1.32 (s, 9H, sp³ C-*H*), 0.74 (t, 3H, sp³ C-*H*, *J* = 7.1 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 170.7, 148.9, 145.5, 142.7, 131.9, 130.1, 129.2, 129.1, 126.7, 123.7, 120.7, 117.7, 62.4, 61.2, 52.2, 51.2, 48.0, 28.8, 21.7, 13.3. HRMS (ESI) calcd for C₂₄H₃₁N₄O₄S [M+H]⁺ 471.2061, found 471.2059. Despite repeated drying on high vacuum, a significant solvent peak is observed in ¹H and ¹³C NMR spectra. The isolated yield has been modified to 76 %.

26db: Butyl 5-(*tert*-butylamino)-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5-c]quinazoline-1-carboxylate:

White solid, Yield: 0.158 g (93%), m.p.: 137-138 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, 2H, aromatic *C-H*, *J* = 8.2 Hz), 7.35 (d, 2H, aromatic *C-H*, *J* = 8.1 Hz), 7.13 (m, 1H, aromatic *C-H*, *J* = 8.5, 1.6 Hz), 6.93 (d, 1H, aromatic *C-H*, *J* = 7.8 Hz) 6.81-6.76 (m, 2H, aromatic *C-H*), 5.19 (br s, 1H, *N-H*), 4.13 (t, 1H, sp³ C-*H*, *J* = 7.1 Hz), 4.02 (t, 2H, sp³ C-*H*, *J* = 6.6 Hz), 3.91-3.83 (m, 3H, sp³ C-*H*), 3.80 (d, 1H, sp³ C-*H*, *J* = 12.1, 2.9 Hz), 3.35 (td, 1H, sp³ C-*H*, *J* = 7.9, 2.9 Hz), 2.46 (s, 3H, sp³ C-*H*), 2.19-2.16 (m, 1H, sp³ C-*H*), 1.98-1.94 (m, 1H, sp³ C-*H*), 1.57 (quintet, 1H, sp³ C-*H*, *J* = 6.8 Hz), 1.31 (s, 9H, sp³ C-*H*), 0.93 (t, 3H, sp³ C-*H*, *J* = 7.3 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 170.5, 148.9, 145.6, 142.6, 131.9, 130.1, 129.2, 129.1, 126.8, 123.7, 120.7, 117.7, 62.4, 60.3, 52.0, 51.3, 47.9, 30.5, 28.8, 21.7, 19.0, 13.7.

26dc: *tert*-butyl 5-(tert-butylamino)-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5-*c*]quinazoline-1-carboxylate White solid, Yield: 0.155 g (92%), m.p.: 153-155 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.84, (d, 2H, aromatic *C-H*, *J* = 8.1 Hz), 7.34 (d, 2H, aromatic *C-H*, *J* = 8.0 Hz), 7.13 (td, 1H, aromatic *C-H*, *J* = 8.3, 2.3 Hz), 6.92 (d, 1H,aromatic *C-H*, *J* = 7.8 Hz), 6.82-6.78 (m, 1H, aromatic *C-H*), 5.21 (br s, 1H, N-*H*), 4.10 (d, 1H, sp³ C-*H*, *J* = 7.2 Hz), 3.82-3.81 (m, 2H, sp³ C-*H*), 3.22 (td, 1H, sp³ C-*H*, *J* = 6.9, 4.3 Hz), 2.46 (s, 3H, sp³ C-*H*), 1.31 (s, 9H, sp³ C-*H*), 0.98 (s, 3H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 169.5, 149.0, 145.4, 142.9, 131.9, 130.0, 129.2, 128.9, 127.0, 123.7, 120.5, 118.2, 81.5, 62.3, 52.4, 51.2, 48.0, 28.8, 27.2, 21.7. HRMS (ESI) calcd for C₂₆H₃₅N₄O₄S [M+H]⁺ 499.2374, found 499.2367.

26dd: Phenyl 5-(tert-butylamino)-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5-c]quinazoline-1 carboxylate

Pale yellow solid, Yield: 0.155 g (88%), m.p.: 177-179 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.88 (d, 2H, aromatic *C*-*H*, *J* = 8.2 Hz), 7.38 (d, 2H, aromatic *C*-*H*, *J* = 8.0 Hz), 7.21-7.15 (m, 3H, aromatic *C*-*H*), 7.08 (t, 1H, aromatic *C*-*H*, *J* = 7.3 Hz), 7.02 (d, 1H, aromatic *C*-*H*, *J* = 7.4 Hz), 6.91 (d, 1H, aromatic *C*-*H*, *J* = 6.4 Hz), 6.83 (td, 1H, aromatic *C*-*H*, *J* = 7.3, 1.0 Hz), 6.43 (d, 2H, aromatic *C*-*H*, *J* = 7.6 *Hz*), 5.20 (br s, 1H, N-*H*), 4.35 (d, 1H, sp³ C-*H*, *J* = 7.3 Hz), 4.06 (dd, 1H, sp³ C-*H*, *J* = 12.3, 8.4 Hz), 3.92 (dd, 1H, sp³ C-*H*, *J* = 12.2, 3.0 Hz), 3.62 (td, 1H, sp³ C-*H*), 1.22 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 169.6, 150.0, 148.8, 145.7, 142.8, 131.9, 130.2, 129.4, 129.2, 129.1, 127.0, 125.8, 123.9, 121.2, 121.1, 117.3, 62.5, 52.3, 51.2, 48.0, 28.8, 21.7. HRMS (ESI) calcd for C₂₈H₃₁N₄O₄S [M+H]⁺ 519.2061, found 519.2059.

26de: Benzyl-5-(tert-butylamino)-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5-c]quinazoline-1- carboxylate

Off-white solid, Yield: 0.159 g (88%), m.p.: 148-150 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.77 (d, 2H, aromatic *C*-*H*, *J* = 7.9 Hz), 7.27 (d, 2H, aromatic *C*-*H*, *J* = 7.8 Hz), 7.18-7.17 (m, 3H, aromatic *C*-*H*), 7.05 (t, 1H, aromatic *C*-*H*, *J* = 6.1 Hz), 6.87-6.85 (m, 3H, aromatic *C*-*H*), 6.72-6.69 (m, 2H, aromatic *C*-*H*), 5.14 (br s, 1H, N-*H*), 4.60 (d, 1H, sp³ C-*H*, *J* = 12.1 Hz), 4.40 (d, 1H, sp³ C-*H*, *J* = 12.1 Hz), 4.07 (d, 1H, sp³ C-*H*, *J* = 7.1 Hz), 3.83 (dd, 1H, sp³ C-*H*, *J* = 11.9, 8.4 Hz), 3.75 (dd, 1H, sp³ C-*H*, *J* = 11.8, 2.3 Hz), 3.31 (t, 1H, sp³ C-*H*, *J* = 7.1 Hz), 2.38 (s, 3H, sp³ C-*H*), 1.24 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 170.7, 148.9, 145.6, 142.6, 134.9, 131.9, 130.1, 129.2, 129.1, 128.5, 128.3, 128.2, 126.7, 123.9, 120.8, 117.6, 67.1, 62.4, 52.2, 51.3, 48.2, 28.8, 21.7. HRMS (ESI) calcd for C₂₉H₃₃N₄O₄S [M+H]⁺ 533.2217, found 533.2211.

26ea: 1-(5-(*tert*-butylamino)-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5-*c*]quinazolin-1-yl)ethan-1-one

Off-white solid, Yield: 0.134 g (79%), m.p.: 113-115 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, 2H, aromatic *C*-*H*, *J* = 8.2 Hz), 7.34 (d, 2H, aromatic *C*-*H*, *J* = 8.0 Hz), 7.16 (td, 1H, aromatic *C*-*H*, *J* = 8.9, 1.6 Hz), 6.95 (d, 1H, aromatic *C*-*H*, *J* = 7.8 Hz), 6.89 (dd, 1H, aromatic *C*-*H*, *J* = 7.4, 1.4 Hz), 6.84 (td, 1H, aromatic *C*-*H*, *J* = 7.3, 1.0 Hz), 5.22 (br s, 1H, N-H), 4.12 (t, 1H, sp³ C-*H*, *J* = 7.7 Hz), 3.86 (dd, 1H, sp³ C-*H*, *J* = 11.5, 1.9 Hz), 3.66 (dd, 1H, sp³ C-*H*, *J* = 11.5, 7.6 Hz), 3.49 (td, 1H, sp³ C-*H*, *J* = 7.4, 1.7 Hz), 2.46 (s, 3H, sp³ C-*H*), 1.56 (s, 3H, sp³ C-*H*),

 $1.31 (s, 9H, sp^{3} C-H). {}^{13}C NMR (125 MHz, CDCl_{3}): \delta 205.7, 149.4, 145.4, 142.8, 131.8, 130.0, 129.6, 129.2, 126.2, 124.2, 120.9, 117.7, 62.6, 58.0, 51.3, 47.2, 30.5, 28.7, 21.7. HRMS (ESI) calcd for C_{23}H_{29}N_4O_3S [M+H]^+ 441.1955 found 441.1951. Despite repeated drying on high vacuum, a significant solvent peak is observed in <math>{}^{1}H$ and ${}^{13}C$ NMR spectra. The isolated yield has been modified to 79 %.

26fa: Diethyl 5-(*tert*-butylamino)-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5-*c*]quinazoline-1,2-dicarboxylate White solid, Yield: 0.156 g (70%), m.p.: 133-135 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.90 (d, 2H, aromatic *C*-*H*, *J* = 8.2 Hz), 7.37 (d, 2H, aromatic *C*-*H*, *J* = 8.0 Hz), 7.12 (td, 1H, aromatic *C*-*H*, *J* = 8.2, 1.2 Hz), 6.90 (d, 1H, aromatic *C*-*H*, *J* = 7.9 Hz), 6.85-6.79 (m, 2H, aromatic *C*-*H*), 5.42 (br s, 1H, N-*H*), 4.96 (d, 1H, sp³ C-*H*, *J* = 8.8 Hz), 4.57 (d, 1H, sp³ C-*H*, *J* = 6.8 Hz), 4.21 (q, 2H, sp³ C-*H*, *J* = 7.1 Hz), 3.80 (dd, 1H, sp³ C-*H*, *J* = 8.7, 7.0 Hz), 3.68-3.63 (m, 2H, sp³ C-*H*), 2.47 (s, 3H, sp³ C-*H*), 1.22 (s, 9H, sp³ C-*H*), 0.87 (t, 3H, sp³ C-*H*, *J* = 6.3 Hz), 0.67 (t, 3H, sp³ C-*H*, *J* = 7.1 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 168.8, 167.8, 148.9, 145.6, 143.0, 132.4, 130.1, 129.4, 129.2, 126.7, 123.8, 120.6, 117.0, 63.8, 62.0, 61.2, 60.7, 55.6, 51.0, 28.6, 21.7, 14.1, 13.3. HRMS (ESI) calcd for C₂₇H₃₅N₄O₆S [M+H]⁺ 543.2272, found 543.2265. Despite repeated drying on high vacuum, a significant solvent peak is observed in ¹H and ¹³C NMR spectra. The isolated yield has been modified to 70 %.

$26 ga: 5-(\textit{tert-butylamino})-3-((4-fluorophenyl)sulfonyl)-1,2,3,10b-tetrahydropyrazolo[1,5\ c]quinazoline-1-carbonitrile$

Yellow solid, Yield: 0.120 g (83%), m.p.: 179-181 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.02-7.99 (m, 2H, aromatic *C*-*H*), 7.29-7.25 (m, 3H, aromatic *C*-*H*), 7.11 (d, 1H, aromatic *C*-*H*, *J* = 7.8 Hz), 6.91 (t, 1H, aromatic *C*-*H*, *J* = 7.3 Hz), 6.81 (d, 1H, aromatic *C*-*H*, *J* = 7.3 Hz), 5.10 (brs, 1H, N-*H*), 4.08 (d, 1H, sp³ C-*H*, *J* = 5.0 Hz), 4.03 (dd, 1H, sp³ C-*H*, *J* = 12.2, 8.9 Hz), 3.77 (dd, 1H, sp³ C-*H*, *J* = 12.2, 1.7 Hz), 3.51 (t, 1H, sp³ C-*H*, *J* = 6.0 Hz), 1.34 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 166.4 (d, *J*_{C-F} = 257.5 Hz), 147.5, 142.3, 132.1 (d, *J*_{C-F} = 11.25 Hz), 130.3, 125.9, 124.6, 121.8, 117.2, 116.9, 116.8, 116.2, 61.9, 51.6, 49.2, 38.9, 28.7. ¹⁹F NMR (470 MHz, CDCl₃): δ -100.77. HRMS (ESI) calcd for C₂₁H₂₃FN₅O₂S [M+H]⁺428.1551, found 428.1540.

26ha: Methyl 3-benzoyl-5-(*tert*-butylamino)-1,2,3,10-b-tetrahydropyrazolo[1,5-*c*]quinazoline-1-carboxylate Colorless oil, Yield: 0.110 g (80%). ¹H NMR (500 MHz, CDCl₃): δ 7.81 (d, 2H, aromatic *C*-*H*, *J* = 7.5 Hz), 7.49-7.45 (m, 1H, aromatic *C*-*H*), 7.38 (t, 2H, aromatic *C*-*H*, *J* = 7.6 Hz), 7.16 (t, 1H, aromatic *C*-*H*, *J* = 7.4 Hz), 7.00 (d, 1H, aromatic *C*-*H*, *J* = 7.7 Hz), 6.94 (d, 1H, aromatic *C*-*H*, *J* = 7.2 Hz), 6.85 (t, 1H, aromatic *C*-*H*, *J* = 7.2 Hz), 5.09 (br s, 1H, N-*H*), 4.69 (s, 1H, sp³ C-*H*), 4.50 (d, 1H, sp³ C-*H*, *J* = 8.0 Hz), 3.66 (dd, 1H, sp³ C-*H*, *J* = 11.5, 4.2 Hz), 3.53 (q, 1H, sp³ C-*H*, *J* = 8.4 Hz), 3.23 (s, 3H, sp³ OC-*H*), 1.47 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 173.7, 171.4, 148.8, 142.6, 132.6, 131.7, 130.5, 129.2, 128.6, 128.2, 126.7, 123.9, 121.1, 63.9, 51.8, 51.2, 46.2, 30.9, 29.2. HRMS (ESI) calcd for C₂₃H₂₇N₄O₃ [M+H]⁺ 407.2078, found 407.2068.

S5. Control Experiments for Elucidating Mechanism of 4-CR

S5.1. Radical Trap Experiment

PROCEDURE: The reactions were been carried out as per the protocol reported in section S3 for alkynes and acrylates in the presence of either TEMPO or Galvinoxyl (free radical scavenger). The products were purified by silica-gel column chromatography (EtOAc: Hexane) to produce **5aa** and **26aa** respectively. Radical scavengers did not alter the reaction pathway suggesting the involvement of a non-radical pathway (A & B).

S5.2 Evolution of species

Initially, a mixture of **1aa** and **2aa** was reacted under condition A leading to the formation of carbodiimide **6aa** that was characterized by ¹H NMR. The intermediate **6aa** was highly unstable and immediately converted to the corresponding urea upon prolonged exposure to air. Hence, it was generated *in situ*. Interestingly, **6aa**, generated in situ, or a mixture of **1aa** and **2aa** produced **8aa**, characterized by X-ray crystallographic studies (refer section S8), upon reacting with **3aa**, albeit in a low yield of 38%. On careful analysis of these two reaction mixtures, we observed a side product urea **7aa**, which was characterized by X-ray crystallographic studies (section S8). However, the yield was improved substantially after using 4 Å MS (condition B). Both these steps needed Palladium as a catalyst as **6aa** failed to produce **8aa** under the condition C. The conversion of **8aa** to **5aa** was dependent on both addition of second transition metal (Either Ag and Cu) and a suitable base.

Condition A: 7.5 mol% Pd(OAc)₂, toluene, rt; Condition B: 7.5 mol% Pd(OAc)₂, 4 Å MS, toluene, rt, Condition C: 4 Å MS, toluene, rt

6aa: 2-(((tert-butylimino)methylene)amino)benzaldehyde

¹H NMR (500 MHz, CDCl₃): δ 10.52 (s, 1H, aldehydic *C-H*), 7.84 (d, 1H, aromatic *C-H*, *J* = 7.7, 1.4 Hz), 7.51 (td, 1H, aromatic *C-H*, *J* = 8.0, 1.5 Hz), 7.25 (d, 1H, aromatic *C-H*, *J* = 8.0 Hz), 7.18 (t, 1H, aromatic *C-H*, *J* = 7.5 Hz), 1.45 (s, 9H, sp³ C-H).

7aa: (E)-N'-(2-(3-(tert-butyl)ureido)benzylidene)-4-methylbenzenesulfonohydrazide

¹H NMR (500 MHz, CDCl₃): δ 10.58 (s, 1H, aldehydic *C-H*), 8.32 (d, 1H, aromatic *C-H*, *J* = 7.7 Hz), 7.73-7.71 (m, 3H, aromatic *C-H*), 7.23-7.19 (m, 3H, aromatic *C-H*), 6.98 (d, 1H, aromatic *C-H*, *J* = 7.0 Hz), 6.81 (t, 1H, aromatic *C-H*, *J* = 5.8 Hz), 5.02 (br s, 1H, N-*H*), 2.32 (s, 3H, sp³ C-*H*), 1.45 (s, 9H, sp³ C-*H*).

8aa: 2-(tert-butylamino)quinazolin-3-ium-3-yl)(tosyl)amide

¹H NMR (500 MHz, CDCl₃): δ 9.40 (s, 1H, aromatic *C*-*H*), 7.84 (t, 1H, aromatic *C*-*H*, *J* = 7.3 Hz), 7.76 (d, 1H, aromatic *C*-*H*, *J* = 8.0 Hz), 7.60 (d, 1H, aromatic *C*-*H*, *J* = 8.5 Hz), 7.53 (d, 2H, aromatic *C*-*H*, *J* = 8.0 Hz), 7.38 (t, 1H, aromatic *C*-*H*, *J* = 7.4 Hz), 7.21 (s, 1H, aromatic *C*-*H*), 7.17 (d, 2H, aromatic *C*-*H*, *J* = 7.8 Hz), 2.36 (s, 3H, sp³ C-*H*), 1.18 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 154.8, 150.3, 148.2, 141.7, 141.1, 137.9, 129.6, 128.7, 126.1, 126.0, 124.9, 117.2, 52.2, 27.6, 21.3.

9aa: N-(tert-butyl)quinazolin-2-amine

Yellow solid, Yield: 0.037 g (55%) , m.p.: 79-81 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.93 (s, 1H, aromatic *C-H*), 7.67-7.62 (m, 2H, aromatic *C-H*), 7.57 (d, 1H, aromatic *C-H*, *J* = 8.3 Hz), 7.20 (td, 1H, aromatic *C-H*, *J* = 7.8, 0.9 Hz), 5.29 (br s, 1H, N-*H*), 1.53 (s, 9H, sp³ C-*H*). ¹³C NMR (125 MHz, CDCl₃): δ 161.4, 159.1, 151.9, 133.9, 127.4, 125.8, 122.3, 119.8, 51.1, 28.9.

S5.3 Chemical Kinetics of 4-CR

General Methods: Chemical kinetic study was performed by monitoring the reaction mixture using ¹H NMR (500 MHz) spectroscopy with dibenzyl ether as the internal standard. The spectra were processed and integrated with MestReNova (8.0.2) and the data was processed in Excel (2010). The graphs were plotted with OriginPro (8.6). The reported initial rates are the average of three independent experiments.

General Procedure: A reaction vial (10 mL) was charged with 2-azidobenzaldehyde (1.0 equiv), *tert*butylisocyanide (1.2 equiv), Pd(OAc)₂ (7.5 mol %,), 4 Å MS, TsNHNH₂ (1 equiv), phenyl acetylene (1.5 equiv), AgOTf (10 mol%), K₃PO₄ (3.0 equiv) and toluene (0.5 mL). The reaction mixture was stirred at room temperature for the particular time interval. Then, the reaction mixture was filtered through a bed of Celite[®] and the solution so obtained was evaporated under reduced pressure. The mixture was then transferred into to a standard 5 mm bore NMR tube and subjected to ¹H NMR (500 MHz) spectroscopy using dibenzyl ether (25 µL) as the internal standard.

Species	δ
1 aa	10.36
5 aa	7.19
8 aa	9.40
6aa	10.52
10aa	8.01

Table S6. Characteristic ¹H NMR resonances used for monitoring chemical species.

S5.3.1 Four-component reaction (1aa + 2aa + 3aa + 4aa)

Initial rate for formation of **6aa**: 5.9 mM min⁻¹ (average of three experiments) Initial rate for formation of **8aa**: 6.0 mM min⁻¹ (average of three experiments) Initial rate for formation of **10aa**: 1.43 mM min⁻¹ (average of three experiments)

Figure S1. ¹H NMR spectroscopy profile of domino four CR

S5.3.2 Two-component reaction (1aa + 2aa)

Procedure: Same as section 5.3 with 2-azidobenzaldehyde (1.0 equiv), *tert*-butylisocyanide (1.2 equiv), Pd(OAc)₂ (7.5 mol%) and 4 Å MS in toluene.

Initial rate for formation of **6aa**: 9.8 mM min⁻¹ (average of two experiments)

Figure S2. ¹H NMR spectroscopy profile of two CR (1aa + 2aa)

S5.3.3 Two-component reaction (1aa + 3aa)

Procedure: Same as section 5.3 with 2-azidobenzaldehyde (1.0 equiv), tosyl hydrazide (1.0 equiv), $Pd(OAc)_2$ (7.5 mol%) and 4 Å MS in toluene.

Initial rate for formation of **10aa**: 5.9 mM min⁻¹ (average of two experiments)

Figure S3. ¹H NMR spectroscopy profile of two CR (1aa + 3aa)

S5.3.4 Two-component reaction (6aa + 3aa)

Procedure: Same as section 5.3 with carbodiimide (1.0 equiv), tosyl hydrazide (1 equiv), $Pd(OAc)_2$ (7.5 mol%) and 4 Å MS in toluene.

Initial rate for formation of **8aa**: 47.5 mM min⁻¹ (average of two experiments)

Figure S4. ¹H NMR spectroscopy profile of two CR (6aa + 3aa)

S5.3.5. Two-component reaction (10aa + 2aa)

Procedure: Same as section 5.3 with hydrazone (1.0 equiv), *tert*.-butyl isocyanide (1 equiv), $Pd(OAc)_2$ (7.5 mol%) and 4 Å MS in toluene.

Figure S5. ¹H NMR spectroscopy profile of two CR (10aa + 2aa)

S5.3.6. Result and discussion for kinetic studies

Two plausible routes can be drawn for the generation of the intermediate 8aa:

Figure S6: Proposed reaction pathways for the formation of 8aa

To probe whether the formation of **8aa** could proceed through both path A and path B, or whether one of these pathways was dominating, kinetic studies of 4CR were carried out by monitoring the reaction progress with ¹H NMR spectroscopy, indicated that the formation of **6aa** (**1aa** + **2aa**) was four times faster than the formation of **10aa** (**1aa** + **3aa**). Each coupling step of the process then examined individually by two-component coupling reaction of **1aa** and **2aa** *via* Pd-catalyzed azide-isocyanide denitrogenative coupling reaction for the formation of **6aa** proceeds at comparable rates in both 4-CRs (5.9 mM min⁻¹, the blue line in Fig. S1) and individual 2-CR (9.8 mM min⁻¹, Fig. S2). In contrast, condensation of **1aa** and tosyl hydrazide **3aa** for the formation of **10aa** proceeded faster in the individual 2-CR (5.9 mM min⁻¹, Fig. S3) compared that of the 4-CR (1.4 mM min⁻¹, the green line in Fig. 3a). The reaction of carbodiimide **6aa** with **3aa** exhibited a very rapid conversion to **8aa** (Fig. S4). In addition, the azide-isocyanide denitrogenative coupling of **10aa** and **2aa** was extremely sluggish and unproductive (furnished **8aa** in 15% yields even after prolonging the reaction, Fig. S5). Thus kinetic profiling and isolation of reaction intermediates unequivocally ruled out path B for the formation of **8aa**. The sluggish rate of reaction of the competing concurrent catalytic processes, such as path B, ensured the time-resolution of the relay catalytic process.

S5.4 Experiments on H/D Exchange

8aa (30 mg, 1 equiv), $Pd(OAc)_2$ (2 mg, 7.5 mol%), AgOTf (7.6 mg, 10 mol%), K_3PO_4 (51.5 mg, 3.0 equiv), D_2O (5 equiv) and toluene were added to a 20 mL Schlenk tube. The mixture was stirred at rt for 1 h. The reaction mixture was diluted with ethyl acetate (15 mL) and evaporated under vacuum. The crude product was purified by column chromatography to afford the product. These results revealed that no deuterium atom was incorporated at the C-4 position of the intermediate **8aa**. The result indicates that the reaction is not going through C-H activation.

S5.4.1 Result and discussion

For the conversion of the azomethine imine **8aa** to the title compound **5aa**, a possibility of three reaction pathways emerged as depicted in Fig. S7: (1) dipolar cycloaddition; (2) C-H activation alkynylation; (3) direct alkynylation.

Figure S7: Three plausible pathways for the reaction of azomethine imine 8aa and alkyne and their control experiments

The regiochemical outcome of 4-CR and H/D scrambling experiment (Section S5.4) ruled out dipolar cycloaddition and C-H activation/alkynylation routes, respectively. Hence control experiments supported a base-mediated direct alkynylation as a possible route for the conversion of the azomethine imine **8aa** to **5aa**.

S5.5 Experiment with labelled substrate

To the mixture of **8aa** (30 mg, 1 equiv), **4aa-[D]** (12.5 mg, 1.5 equiv), $Pd(OAc)_2$ (2 mg, 7.5 mol%), AgOTf (7.6 mg, 10 mol%) and K₃PO₄ (51.5 mg, 3.0 equiv) in a 20 mL Schlenk tube was added toluene. The mixture was stirred at rt for 1 h. The reaction mixture was diluted with ethyl acetate (15 mL) and evaporated under vacuum. The crude product, so obtained, was purified by column chromatography to afford 24 mg (94%) of the product. No deuterium incorporation was observed, which implicate that AgOTf activated alkyne by converting it to acetylide, which undergoes 1,2 addition across azomethine imine of **8aa**.

No deuterium incorporation in **5aa** was observed when the deuterated substrate (ethynyl-*d*)-benzene was reacted with **8aa**. This observation supports the formation of acetylide during the reaction.

S5.6: Proposed Reaction Mechanism

Based on experimental studies and literature precedence,² a plausible mechanism for the four-component reaction mediated by three independent catalytic cycles of Pd- and Ag-metals can be proposed as depicted in Fig. S8. **1aa** and **2aa** enters the catalytic cycle A of palladium metal and furnishes a coordination complex **15**. Extrusion of dinitrogen from **15** generates nitrene **16**, which triggers concerted intramolecular isocyanide-transfer on nitrene to produce the carbodiimide **6aa**. The reactive carbodiimide enters catalytical cycle B of palladium metal, where its aldehydic functional group condenses with **3aa** to furnish the hydrazone **19**³ that further undergoes *6-exo-dig* cyclization to produce an air-stable azomethine imine **8aa**. The catalytic cycle C embarks with the formation of acetylide in the presence of base and Ag-salt. The acetylide undergoes 1,2-addition across azomethine imine **8aa** to produce **22**, which converts to **23** by an intramolecular attack of the amide on the alkyne to produce the five-membered ring. Subsequently, detosylative aromatization generates **24**. Protonolysis of the C-Ag bond upon aqueous workup generates the title compound **5aa**, explaining the lack or deuterium incorporation in the labelling studies.

Figure S8: Plausible Reaction mechanism

S6. Experimental biology

6.1 Cell culture and reagents

Cancer cell lines A549 (Lung Cancer), HCT-116 (Colon Cancer), U-87 MG (Human Glioblastoma) were purchased from National Cell Repository at National Centre for Cell Sciences (NCCS, Pune, India). Cancer cells were maintained in Dulbecco's modified Eagle's medium (DMEM) containing 10% heat-inactivated fetal bovine serum (HI-FBS; Gibco, USA) containing penicillin and streptomycin at 100 units/ mL for each. RPMI 1640 and DMEM, Penicillin/ Streptomycin antibiotic solution, phosphate buffer saline, fetal bovine serum media and MTT dye for MTT assay were purchased from HiMedia; z-lyte kinase assay kit-tyr4 peptide for EGFR assay was procured from Invitrogen (catalogue no. PV3193); propidium iodide and RNase for cell cycle analysis were procured from Sigma Aldrich; DMSO, biological grade was purchased from SRL; JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazol-carbocyanine iodide) from Life technologies (Thermo Fisher Scientific); 2,7-dichlorofluorescein diacetate (H2DCFDA) dye from Life technologies (Thermo Fisher Scientific). Automatic cell counter (Invitrogen), incubator (Galaxy, New Brunswick), centrifuge 5430 R (Eppendorf, Germany, laminar air flow (macro scientific works) for aseptic condition, inverted microscope (Magnus, Olympus) for visualization of the cancer cell, BD accuri C6 flow cytometer for cell cycle analysis and microplate reader (BioTek) for reading absorbance in various cell based studies were used.

S6.1.1 Culturing of the cancer cell lines

Cancer cell lines were treated in the DMEM medium. Trypsin was added to detach the cancer cell lines (trypsinization). Centrifugation was done at 1200 rpm at 37 °C for 5 minutes for harvesting the cells. Further, supernatant was disposed and resuspension of the cell pellet was done using 2 mL of the media. The cell number was counted using an automated cell counter. The cells were transferred to fresh media every day.

S6.1.2 Maintenance and sub-culturing of cancer cell lines

The maintenance of cultured cell lines was done in 25 cm² or 75 cm² flasks containing DMEM medium supplemented with 10% Fetal Bovine serum (FBS), 1X antibiotic solution and was incubated at 37 °C containing 5% CO₂, 2% O₂ and 95% humid atmosphere.

S6.2 Evaluation of anticancer activity of the synthesized compounds by MTT Cytotoxicity Assay

A549 (Lung Cancer), HCT-116 (Colon Cancer) and U-87 MG (Human Glioblastoma) cancer cell lines were utilized for the biological studies. Approximately, 10000 cells were seeded in each well of the 96 well plate. The plate was incubated at 37°C with 5% CO₂, 2% O₂ and 95% humid atmosphere for 24 h. At the end of the 24 h, treatments of investigational compounds were given to the cells in triplicate concentrations of 1 μ M, 5 μ M and 25 μ M. The cells were further incubated for 48 h. The media was removed from each well. MTT (1 mg/ml in phosphate-buffered saline—PBS) stock solution was prepared and added as 10 μ l/well. This was subsequently incubated in the dark for 4 h. The resulting intracellular precipitate (formazan) thus formed was dissolved in DMSO solution and was subjected to mild shaking so as to dissolve all the formazan crystals. The absorbance was measured at 570 nm using an ELISA plate reader (Bio-Rad, USA). Cytotoxicity was calculated in percentage by using the formula: Cytotoxicity (%) = (OD of control – OD of test/OD of control) x 100.

Among 29 compounds of pyrazolo[1,5-*c*]quinazolines 5 analyzed, compound 5ea, 5bc, 5aa, 5hb, 5bd, 5be, 5gb, 5ec, 5fb, 5dd and 5ba showed activity of < 3 μ M against A549 cells. Compounds 5aa, 5hb, 5be, 5gb and 5eb exhibited activity of < 3 μ M against HCT-116 cells whereas compound 5fb and 5dd were found to possess activity of < 3 μ M against U-87 MG cells. In tetrahydropyrazolo[1,5-*c*]quinazoline 26, 18 compounds were analyzed for

their antiproliferative potential. Compounds **26dd**, **26dc**, **26ab**, **26fa**, **26cc**, **26be** and **26ga** exhibited low micromolar activity of $< 3 \mu$ M against A549 cells. Compounds **26dd**, **26cc**, **26aa**, **26ba**, **26ca** and **26ga** were shown to be most active ($< 3 \mu$ M) toward HCT-116 cells. Compounds **26ea** and **26ga** exhibited activity of $< 3 \mu$ M against U-87 MG cells. The results are compiled in Table S7.

entry	5		IC ₅₀ (µM) ^a		entry	5/25		IC ₅₀ (µM) ^a	
		A549	HCT-116	U-87MG			A549	HCT-116	U-87MG
1.	5aa	1.8 ± 0.7	2.9 ± 0.4	4.2 ± 0.7	24.	5ec	1.4 ± 0.7	4.8 ± 0.5	4.3 ± 0.2
2.	5ab	9.2 ± 0.3	6.5 ± 0.9	8.1 ± 0.3	25.	5ed	14.3 ± 0.1	17.2 ± 0.6	13.2 ± 0.4
3.	5ac	22.1 ± 0.6	>25	20.7 ± 0.3	26.	5fb	1.1 ± 0.3	2.3 ± 0.3	2.6 ± 0.3
4.	5ad	13.9 ± 0.5	7.7 ± 0.5	7.3 ± 0.6	27.	5gb	1.1 ± 0.1	1.4 ± 0.6	4.7 ± 0.7
5.	5ae	11.6 ± 0.9	4.9 ± 0.6	8.8 ± 0.5	28.	5hb	1.1 ± 0.7	2.9 ± 0.9	6.2 ± 0.5
6.	5ba	9.6 ± 0.7	5.3 ± 0.6	9.3 ± 0.7	29.	26aa	6.4 ± 0.3	1.9 ± 0.7	9.7 ± 0.9
7.	5bb	22.1 ± 0.6	7.3 ± 0.2	5.4 ± 0.9	30.	26ab	2.8 ± 0.4	7.9 ± 0.6	6.3 ± 0.8
8.	5bc	2.3 ± 0.9	4.7 ± 0.5	13.2 ± 0.8	31.	26ac	8.9 ± 0.3	6.6 ± 0.3	17.8 ± 0.3
9.	5bd	1.4 ± 0.3	5.3 ± 0.7	3.6 ± 0.7	32.	26ba	4.1 ± 0.5	2.6 ± 0.9	3.4 ± 0.8
10.	5be	1.6 ± 0.7	2.7 ± 0.5	3.1 ± 0.8	33.	26bc	1.4 ± 0.9	3.4 ± 0.8	7.6 ± 0.8
11.	5cb	14.3 ± 0.3	3.1 ± 0.3	<25	34.	26be	1.5 ± 0.9	3.7 ± 0.8	3.9 ± 0.4
12.	5cc	16.2 ± 0.8	22.8 ± 0.9	19.3 ± 0.5	35.	26bf	17.2 ± 0.7	9.2 ± 0.7	<25
13.	5cd	2.2 ± 0.4	7.4 ± 0.5	5.3 ± 0.9	36.	26ca	8.4 ± 0.8	2.3 ± 0.6	11.8 ± 0.8
14.	5ce	9.3 ± 0.7	6.5 ± 0.4	9.3 ± 0.8	37.	26cb	12.2 ± 0.4	7.6 ± 0.7	9.2 ± 0.4
15.	5cf	21.6 ± 0.8	16.3 ± 0.5	11.4 ± 0.4	38.	26cc	1.8 ± 0.3	2.2 ± 0.5	5.9 ± 0.9
16.	5cg	18.6 ± 0.9	11.2 ± 0.4	9.8 ± 0.3	39.	26cd	19.6 ± 0.6	8.7 ± 0.8	<25
17.	5ch	12.2 ± 0.6	7.3 ± 0.4	<25	40.	26ce	3.8 ± 0.7	4.2 ± 0.7	7.5 ± 0.9
18.	5da	2.6 ± 0.8	4.7 ± 0.9	6.7 ± 0.9	41.	26dc	1.8 ± 0.7	7.6 ± 0.7	8.4 ± 0.3
19.	5db	23.2 ± 0.9	13.4 ± 0.3	<25	42.	26dd	1.3 ± 0.5	1.8 ± 0.7	3.9 ± 0.9
20.	5dc	11.1 ± 0.7	17.2 ± 0.5	<25	43.	26de	17.1 ± 0.5	9.7 ± 0.8	16.7 ± 0.7
21.	5dd	1.4 ± 0.2	1.6 ± 0.5	2.8 ± 0.7	44.	26ea	1.3 ± 0.5	1.7 ± 0.5	2.3 ± 0.9
22.	5ea	1.4 ± 0.4	3.9 ± 0.9	6.3 ± 0.6	45.	26fa	1.6 ± 0.3	6.4 ± 0.3	3.9 ± 0.8
23.	5eb	3.1 ± 0.6	2.9 ± 0.7	7.2 ± 0.6	46.	26ga	1.1 ± 0.5	1.4 ± 0.8	2.2 ± 0.3

Table S7. Antiproliferative potential of the investigational compounds along with their minimal inhibitory concentrations at various cancer cell lines under study

^aValues are derived from averaging three independent experiments and each experiment was done in triplicate Based upon the relevant MTT data four compounds **5fb**, **5dd**, **26ea** and **26ga** were selected for further biological studies.

S6.2.1 Structure-Activity Relationship of cytotoxic activity of pyrazolo[1,5-c]quinazolines

- 1. Substitutions on C-2 of pyrazoles ring were not well tolerated
- 2. Substrates with electron withdrawing substituents, such as ester and cyano, on C-1 of pyrazoles were the most potent, and substrates with bulky groups on the same position were inactive
- 3. Substituents on benzene ring are well tolerated

S6.3 Human Peripheral Blood Mononuclear Cells (HPBMCs) culturing and treatment by investigational molecules to assess the cytotoxicity of investigational molecules

In order to perform selectivity of investigational molecules toward cancer cells, we performed HPBMCs assay. The assay was strictly performed as per the protocol no. CUPB/cc/14/IEC/4483 approved by Institutional Ethics Committee of Central University of Punjab, Bathinda. The protocol used was standard operating procedure,

provided by Institutional Ethics Committee of Central University of Punjab according to guidelines issued by Indian Council of Medical Research (ICMR), Govt. of India.

Fresh Blood was drawn from healthy individual and HPBMCs were isolated from whole blood by lysing RBCs. The cells were then suspended in RPMI media supplemented with 10% fetal bovine serum (FBS), 1% antibiotic solution and were cultured and treated as per the MTT assay procedure discussed previously. Investigational compounds **5fb**, **5dd**, **26ea** and **26ga** do not cause any significant cytotoxicity towards normal HPBMCs even at the highest concentration of 25 µM, implicating a pattern of selectivity to cancer cells (Figure S9).

Figure S9: Graph depicting percentage survival of human peripheral blood mononuclear cells in response to treatment with selected investigational compounds for 48 h at concentrations of 1, 5 and 25 μ M. Data is expressed as mean values \pm S.D. of three independent experiments.

S6.4 Pyrazolo[1,5-*c*]quinazoline as EGFR inhibitors

S6.4.1. Structure Activity Relationship studies

Figure S10: Design strategy for EGFR inhibitors (Series 5 and 26, Scheme 2 and 3)

Owing to their structural resemblance to the quinazoline scaffold of gefitinib and erlotinib, the investigational compounds **5dd**, **5fb**, **26ea** and **26ga** were envisaged to posses EGFR inhibitory activity. EGFR is over-expressed in almost every cancer types and is a validated drug target. Small molecules tend to occupy the ATP binding kinase domain of EGFR and thus alter the cell signalling cascade. The quinazoline-based scaffolds are found to reside in the catalytic EGFR binding pocket, where the *N*1 atom of the quinazoline ring acts as a hydrogen bond acceptor in an interaction with Met-769, the *N*3 atom interacts with Thr-830 through a bridging water molecule, and the arylamino-substituents occupies the normally empty hydrophobic pocket within the active region of EGFR receptor. The pyrazole fusion was hypothesized to occupy the extra space in ATP binding cavity available in the active site of EGFR and may be exploited for extra affinity of quinazoline based EGFR inhibitors. In addition, a bulkier alkylamino substituent at *C*2 might reduce metabolic degradation of quinazoline nucleus and could promote fitting of the bulkier group in the hydrophobic pocket, thereby enhancing the overall stability of protein-ligand complex (figure S10).

S6.4.2 EGFR inhibitory assay

The Z-LYTE[®] kinase assay kit-tyr4 peptide (catalogue no. PV3193) was used for the assessment of EGFR Inhibitory potential of the investigational compounds **5fb**, **5dd**, **26ea** and **26ga**. The assay relies upon an enzymatic reaction through which auto phosphorylation and signalling activity of the EGFR is measured. The assay was done by our previous standardized protocol.⁴ Briefly, the inhibitory effect of compounds on EGFR was measured spectrophotometrically at 400, 445 and 520 nm, respectively. Erlotinib was used as a positive control. The reagents

were prepared according to catalogue no. PV3193, the assay mixture comprised of 133 μ L kinase buffer, 0.5 μ L kinase peptide mixtures, 0.5 μ L phosphopeptide mixtures and 0.5 μ L ATP test sample solution. The assay plates were prepared in triplicates. The investigational compounds **5fb**, **5dd**, **26ea** and **26ga** were serially diluted at a concentration of 250 nM, 750 nM, 1 μ M, 5 μ M and 25 μ M in DMSO (~4%), were mixed and incubated at room temperature for 1 h. After incubation, it was treated with 5 μ L of development solution and kept in the dark for another 1 h. The reaction was quenched with the addition of 5 μ L stop solution. The emission ratio (Coumarin Emission (445 nm)/fluorescein emission (520 nm) signifying the extent of phosphorylation was done using the given equation.

% phosphorylation =
$$1 - \frac{(Emission \ ratio \ x \ F100\%) - \ C100\%}{(C0\% - C100\%) + \ [Emission \ ratio \ (F100\% - F0\%)]}$$

Where C0% = Average coumarin emission signal of the 100% Phos. Control; C100% = Average coumarin emission signal of the 0% Phos. Control; F100% = Average Fluorescein emission signal of the 100% Phos. Control; F0% = Average Fluorescein emission signal of the 0% Phos. Control

Investigational compounds	IC ₅₀ ^a Cancer Cell lines (µM)			EGFR Inhibitory Activity IC ₅₀ ^a (nM)
	A549	HCT-116	U-87MG	
5dd	1.4 ± 0.2	1.6 ± 0.5	2.8 ± 0.7	639.4 ± 0.34
5fb	1.1 ± 0.3	2.3 ± 0.3	2.6 ± 0.3	235 ± 0.92
26ea	1.3 ± 0.5	1.7 ± 0.5	2.3 ± 0.9	3060 ± 0.65
26ga	1.1 ± 0.5	1.4 ± 0.8	2.2 ± 0.3	625 ± 0.74
Erlotinib	-	-	-	423 ± 0.89

Table S8. EGFR inhibitory activity of the investigational compounds

^aValues are derived from averaging three independent experiments and each experiment was done in triplicate

To our delight, **5fb** was found to be the most potent even with respect to the standard drug, erlotinib, while **5dd** and **26ga** showed comparable activity in the nanomolar range. To further validate these results, molecular docking studies were performed. Refer section S7 for details.

S6.5 Measurement of intracellular reactive oxygen species (ROS)

Apoptosis is linked to the increase in ROS levels and the loss of the mitochondrial membrane potential ($\Delta\Psi M$).⁵ The measurement of intracellular production of ROS was done using 2',7'-dichlorofluorescein diacetate (H2DCFDA) dye, a stable non-polar compound that readily diffuses into the cell and converted to 2',7'-dichlorofluorescein (DCF) upon cleavage of acetate groups by intracellular esterases and oxidation by peroxidase. Interestingly, the fluorescent intensity obtained is directly proportional to the amount of ROS produced by the cell. The lung cancer cell line A549 was treated with the investigational compounds **5fb**, **5dd**, **26ea** and **26ga** for 48 h. Then, cells were washed with PBS and incubated in H2DCFDA at 37°C for half an hour. Cells were lysed in alkaline solution and centrifuged for 10 min. The supernatant was transferred to a 96-well plate and fluorescence was measured at 5 and 25 μ M concentration at Ex/Em: ~492–495/517–527 using microplate reader. Results were calculated as fluorescence intensity relative to control cells. A significant time- and dose-dependent increase in ROS level was observed with a positive control, erlotinib (Figure S11)

Figure S11: H2DCFDA based assay to measure intracellular ROS

S6.6 Determination of mitochondrial membrane potential (µM)

A549 cells were seeded in 96 well plated and treated with 1, 5 and 25 mM concentrations of **5fb**, **5dd**, **26ea** and **26ga** for 48 h. Subsequently the cells were incubated with JC-1 dye (10 mL) (5,5',6,6'-tetrachloro-1,1',3,3'tetraethylbenzimi-dazolylcarbocyanine iodide) for 30 min. Cells were washed with PBS and quantitatively analyzed under fluorescent microplate reader (emission at 527 and 590). Cells pre-treated with **5fb** were analyzed under confocal microscopy (Figure S12). JC-1 dye selectively enters mitochondria and reversibly changes colour from red to green as μ M decreases (OD590/OD527 ratio). The results showed that all the compounds lead to imbalance OD590/OD527 ratios and thus altered the mitochondrial membrane (Figure S13).

Figure S12: Confocal microscopy of cells treated with 5fb and JC1 dye

Figure S13: JC-1 dye-based assay to measure a change in mitochondrial membrane potential on A549 cancer cell line treated 5fb, 5dd, 26ea and 26ga.

S6.7 Cell apoptosis assay using Propidium Iodide

A549 cancer cells, pretreated with compound **5fb** and **26ga** at a concentration of 5 and 25 μ M for 24 h, were transferred in a manner to obtain 10⁶ cells per tube. The cells were further centrifuged at 1200 rpm for 5 min and washed with 1X PBS. Thereafter cells were fixed using chilled ethanol and incubated for 3 h at -20 °C. Post 3 h, cells were subjected to centrifugation at 2500 rpm and washed once with 1 X PBS. Each tube was mixed with 50 μ L of propidium iodide (Sigma Aldrich) and 50 μ L Ribonuclease (10 mg/mL solution in water), and incubated for 30 minutes at room temperature in the dark. The DNA content was then measured using BD Accuri C6 flow cytometer. For the cells treated with **5fb**, a substantial rise in the G1 phase of cells, 32.5% and 43.77% at concentration of 5 and 25 μ M respectively, was observed compared to that of control (23.1%). Cells treated with

26ga exhibited similar results with profound G1 phase arrest at 36.32% and 40.65% at concentration of 5 and 25 μ M respectively compared with the control (Figure S14-S15).

Figure S14: Cell cycle analysis using flow cytometry of A549 cancer cell line treated with 5fb and 26ga.

Figure S15: The bar graph represents the percent cell count (DNA) at various stages of cell cycle.

S7. Molecular Docking Studies

Molecular docking studies were performed using GLIDE module of Schrodinger Maestro Licensed software (11.1 version). The protein with PDB Id- 1M17 (2.6 Å) was retrieved from the protein data bank (https://www.rcsb.org/pdb/home/home.do). Initial protein refinement involving bond orders and addition of hydrogen to the side chains was done using protein preparation wizard. Further refinement involved optimization and minimization using OPLS3 force field. Ligands were sketched using 2D sketcher implemented in Maestro 1 and Ligprep was used for ligand optimization and minimization. Further, receptor grid generation involved defining active site in the protein structure for which co-crystallized ligand co-ordinates were used. The bound erlotinib formed the centroid of the grid box. Docking studies were performed in Xtra Precision (XP) mode. Validation of docking protocol was performed by comparing the conformation of docked erlotinib against the conformation of co-crystallized erlotinib. The RMSD of the conformations was found to be 1.27Å and the residue interaction was found to be similar to the native ligand.

In order to investigate the underlying binding pattern, potential inhibitors **5fb**, **5dd**, **26ea** and **26ga** showing promising biological activity (section S6.4) were docked in the generated grid along with erlotinib. The resultant docked conformations resulted in binding affinity scores and residue interaction pattern (Table S9). **5fb** exhibited comparable binding to the wild type EGFR ATP binding site, and similar to erlotinib. It was observed that

compound **5fb** possessed higher affinity as compared to **5dd**, **26ea** and **26ga** despite being more active in the biological evaluation. The binding pattern of the highest active compound **5fb** figuring out the important interactions are represented in Figure S16.

Figure S16: Binding pattern representation of (a) the most active compound, 5fb (blue colour), and (b) 26ea (blue colour) and 26ga (pink colour) with the key amino acid interactions

Table S9. Representation of selected compounds docking scores and their important interaction within the catalytic domain of EGFR

Compound	Docking score	Important interacting with the residues							
Compound		MET769	THR766	THR830	ASP831	CYS773			
5fb	-7.793	+	+	+	-	-			
5dd	-4.462	-	-	-	+	-			
26ga	-3.806	-	-	-	+	+			
26ea	-3.509	-	-	-	+	-			

Though **5dd**, **26ea** and **26ga** binds to the ATP binding site of EGFR, no hydrogen bonding interactions with MET769 and CYS773, essential amino acid residues important for the EGFR inhibitory activity, are observed. This important interaction of hinge residue MET769 is observed in **5fb**. The carbonyl group of the acetate group attached to **5fb** forms hydrogen bond with the -NH of the hinge region residue MET769 of the active site. Additionally, hydrogen bonding is observed between the THR830 and another carbonyl of acetate group and hydrogen bonding of methyl with oxygen atom of THR766. These additional interactions might have enhanced the overall affinity of **5fb** with the ATP binding domain of EGFR, exhibiting a potent activity against the kinase.

S8. Crystallographic Information

S8.1 5ad

Figure S17. X-Ray crystal structure of 5ad. (Carbon, Orange; Nitrogen, Blue; Oxygen, Red; Hydrogen, Black)

Table S10: Crystal data and structure refinement for 5ad

Identification code	CCDC Number 1566282			
Empirical formula	$C_{41}H_{40}Cl_2N_{10}O_4$			
Formula weight	807.73			
Temperature/K	296.15			
Crystal system	Monoclinic			
Space group	C2/c			
a/Å	27.5324(10)			
b/Å	9.3673(3)			
c/Å	19.5352(7)			
$\alpha/^{\circ}$	90.00			
β/°	128.8920(10)			
$\gamma/^{\circ}$	90.00			
Volume/Å ³	3921.4(2)			
Z	4			
$\rho_{calc}g/cm^3$	1.368			
µ/mm ⁻¹	0.222			
F(000)	1688.0			
Crystal size/mm ³	0.3 imes 0.2 imes 0.2			
Radiation	MoKa ($\lambda = 0.71073$)			
2Θ range for data collection/	^o 9.2 to 51			
Index ranges	$-33 \le h \le 33, -11 \le k \le 11, -23 \le l \le 23$			
Reflections collected	23824			
Independent reflections	3307 [$R_{int} = 0.0424$, $R_{sigma} = 0.0229$]			
Data/restraints/parameters	3307/0/261			
Goodness-of-fit on F ²	1.325			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0551, wR_2 = 0.1576$			
Final R indexes [all data]	$R_1 = 0.0660, wR_2 = 0.1722$			
Largest diff. peak/hole / e Å ⁻³ 0.56/-0.44				

S8.2 8aa

Figure S18. X-Ray crystal structure of compound **8aa**. (Carbon, Orange; Nitrogen, Blue; Oxygen, Red; Hydrogen, Black)

Table S11: Crystal data and structure refinement for 8aa

Identification code	CCDC Number 1566284
Empirical formula	$C_{19}H_{22}N_4O_2S$
Formula weight	370.48
Temperature/K	296(2)
Crystal system	Triclinic
Space group	P-1
a/Å	7.8633(6)
b/Å	9.3267(7)
c/Å	13.5742(10)
$\alpha/^{\circ}$	84.166(4)
β/°	89.184(4)
$\gamma/^{\circ}$	79.543(4)
Volume/Å ³	973.90(13)
Z	2
$\rho_{calc}g/cm^3$	1.2633
μ/mm^{-1}	0.186
F(000)	392.4
Crystal size/mm ³	0.2 imes 0.2 imes 0.15
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/	° 3.02 to 51
Index ranges	$\text{-10} \le h \le 11, \text{-13} \le k \le 12, \text{-19} \le l \le 19$
Reflections collected	22709
Independent reflections	$3626 [R_{int} = 0.12, R_{sigma} = 0.1059]$
Data/restraints/parameters	3626/0/238
Goodness-of-fit on F ²	1.130

Figure S19. X-Ray crystal structure of 7aa. (Carbon, Orange; Nitrogen, Blue; Oxygen, Red; Hydrogen, Black)

Identification code	CCDC Number 1566285
Empirical formula	$C_{19}H_{23}N_4O_3S$
Formula weight	387.49
Temperature/K	100(2)
Crystal system	Monoclinic
Space group	C2/c
a/Å	34.877(2)
b/Å	9.0455(6)
c/Å	12.9419(9)
$\alpha/^{\circ}$	90
β/°	105.171(3)
$\gamma/^{\circ}$	90
Volume/Å ³	3940.7(5)
Z	8
$\rho_{calc}g/cm^3$	1.3061
μ/mm^{-1}	0.191
F(000)	1641.7
Crystal size/mm ³	0.2 imes 0.2 imes 0.2
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/	° 2.42 to 50.98
Index ranges	$-46 \le h \le 46, -10 \le k \le 12, -17 \le l \le$

Table S12. Crystal data and structure refinement for 7aa

17

S8.3. 7aa

Reflections collected	29018
Independent reflections	$3651 [R_{int} = 0.0418, R_{sigma} = 0.0253]$
Data/restraints/parameters	3651/0/248
Goodness-of-fit on F ²	1.048
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0502, wR_2 = 0.1728$
Final R indexes [all data]	$R_1 = 0.0623, wR_2 = 0.2088$
Largest diff. peak/hole / e Å-	³ 0.95/-0.71

S8.4. 9aa

Figure S20 X-Ray crystal structure of compound 9aa. (Carbon, Orange; Nitrogen, Blue; Oxygen, Red; Hydrogen, Black)

Table S13. Crystal data and structure refinement for 9aa.

Identification code	CCDC number 1566113
Empirical formula	$C_{12}H_{15}N_3$
Formula weight	201.27
Temperature/K	100(2)
Crystal system	Monoclinic
Space group	$P2_{1}/n$
a/Å	8.3134(8)
b/Å	12.5189(13)
c/Å	11.0332(12)
α/°	90
β/°	107.377(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1095.9(2)
Z	4
$\rho_{calc}g/cm^3$	1.220
μ/mm^{-1}	0.075
F(000)	432.0

Crystal size/mm ³	$0.35 \times 0.22 \times 0.15$	
Radiation	MoKa ($\lambda = 0.71073$)	
2Θ range for data collection/° 5.428 to 50.042		
Index ranges	$-9 \le h \le 9, -14 \le k \le 14, -13 \le l \le 12$	
Reflections collected	8589	
Independent reflections	1924 [$R_{int} = 0.0494, R_{sigma} = 0.0447$]	
Data/restraints/parameters	1924/0/143	
Goodness-of-fit on F ²	1.032	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0446, wR_2 = 0.0950$	
Final R indexes [all data]	$R_1 = 0.0705, wR_2 = 0.1060$	
Largest diff. peak/hole / e Å ⁻³ 0.15/-0.23		

S8.5. 26be

Figure S21. X-Ray crystal structure of 26be. (Carbon, Orange; Nitrogen, Blue; Oxygen, Red; Hydrogen, Black)

Identification code	CCDC Number 1566283
Empirical formula	$C_{26}H_{28}N_4O_4S$
Formula weight	492.58
Temperature/K	296.15
Crystal system	Monoclinic
Space group	C2/c
a/Å	29.7473(8)
b/Å	10.1292(3)
c/Å	18.7181(5)
α/°	90.00
β/°	118.7280(10)
γ/°	90.00
Volume/Å ³	4945.8(2)

Z	8	
$\rho_{calc}g/cm^3$	1.323	
µ/mm ⁻¹	0.171	
F(000)	2080.0	
Crystal size/mm ³	0.2 imes 0.2 imes 0.15	
Radiation	MoKa ($\lambda = 0.71073$)	
2Θ range for data collection/ ^c	⁹ 8.84 to 47.18	
Index ranges	$-33 \le h \le 33, -11 \le k \le 11, -21 \le l \le 21$	
Reflections collected	45616	
Independent reflections	3519 [$R_{int} = 0.0474$, $R_{sigma} = 0.0203$]	
Data/restraints/parameters	3519/0/320	
Goodness-of-fit on F ²	1.282	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0515, wR_2 = 0.1518$	
Final R indexes [all data]	$R_1 = 0.0605, wR_2 = 0.1621$	
Largest diff. peak/hole / e Å ⁻³ 1.04/-0.24		

S9. Pharmacological activity and literature search for the synthesis of pyrazolo[1,5-c]quinazolines

S9.1: Pharmacological activity of pyrazolo[1,5-c]quinazolines reported in the literature

Asproni et al⁶ have reported the synthesis and SAR studies of the pyrazolo[1,5-*c*]quinazolines as novel potent phosphodiesterase 10A(PDE10A) inhibitors. In this series, the compound **1** showed the highest affinity for PDE10A enzyme with $IC_{50} = 16$ nm. Pae et al⁷ employed structure-based virtual screening of pyrazolo quinazoline derivatives against Eg5 inhibitors. These derivatives exhibit growth inhibition in proliferation assays and induce monoastral spindles in cells with IC_{50} value of 6.3 µm (Fig.S22, 2). Kumar et al⁸ have rationally designed and synthesized some 5,6-dihydropyrazolo/ pyrazolo[1,5-*c*]quinazoline derivative and evaluated these compounds for *in vitro* xanthine oxidase inhibitory activity (Fig. S22, 3-5). Cecchi et al⁹ have reported the synthesis and binding activity of the 2-substituted pyrazolo[1,5-*c*]quinazolnes as optimal site of benzodiazepine receptor activity (Fig. S22, 6-7). Varano et al^{10,11} described the binding affinity of pyrazo[1,5-*c*]quinzolines towards AMPA (2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)-propionic acid), Gly/ NMDA (Glycine/N-methyl-D-asparatic acid) and KA (Kainic acid) receptor and also performed their docking studies (Fig.S22, 8)

Figure S22: Pharmacological importance of pyrazolo[1,5-c]quinazoline

S9.2: Synthesis of pyrazolo[1,5-*c*]quinazolines reported in the literature

we envisaged a potential to develop a new higher-order multicomponent reaction by combining four versatile privileged synthons: 2-azidobenzaldehyde, isocyanide, sulfonyl hydrazides and alkynes. Herein, we report the realization of a four-component reaction through a Pd(II)/Ag(I) binary catalytic system for the synthesis of diverse pyrazolo[1,5-c]quinazolines (Fig. S23, Scheme 13) that are known to potential biological interest. Conventionally, pyrazolo[1,5-c]quinazolines are synthesized in a multi-step fashion by condensation of 2-pyrazoloanilines with triphosgene (Fig. S23, Scheme 1),^{9,12} glyoxylic acid (Fig. S23, Scheme 2),¹⁰ aldehydes (Fig. S23, Scheme 3),¹³ chloroacetylchloride (Fig. S23, Scheme 4)⁵ and cyanamide (Fig. S23, Scheme 5),¹⁴ Cu-mediated cyclization of 5-(2-bromoaryl)-1H-pyrazoles with carbonyl compounds in aqueous ammonia (Fig. S23, Scheme 6),¹⁵ reaction of 3diazo-1,3-dihydro-2H-indol-2-one derivatives with either enaminones (Fig. S23, Scheme 7)¹⁶ or activated alkynes (Fig. S23, Scheme 8),¹⁷ two-component [3+2] cycloaddition reactions of N-aminoquinazoliumylides with olefins (Fig. S23, Scheme 9),¹⁸ 1,3-dipolar cycloaddition of N-unprotected ylideneoxindoles and dimethyl diazomethylphosphonate anion generated in situ from Bestmann-Ohira reagent (Fig. S23, Scheme 10),¹⁹ Aucatalysed intramolecular bicyclization of N-propargylic sulfonylhydrazones (Fig. S23, Scheme 11),²⁰ and Cucatalyzed two-step reaction of 1-(2-bromophenyl)-3-alkylprop-2-yn-1-ones, hydrazines and amidines (Fig. S23, Scheme 12).²¹ To the best of our knowledge, there is no report of the multicomponent assembly of pyrazolo[1,5c]quinazolines in one-pot to date.

Figure S23: Various methods reported in the literature for the synthesis of pyrazolo1,5[c]quinazolines.

Results and Discussion

S10. Construction of the diversity-rich library of pyrazolo[1,5-c]quinazolines

The overall scope of this reaction was found to be wide (Scheme 2). Both aromatic and aliphatic terminal alkynes and electron deficient internal alkynes participated in 4CR. The chemical integrity of reactive functional groups such as cyano, ketone, ester and halides (Br and I) remained unperturbed in the standard reaction condition providing a chemical handle for further transformation. Fluorinated substitutions in 5eb, 5ec and 5fc would contribute in enhancing their pharmacodynamics and pharmacokinetic properties. Interestingly, trimethylsilylacetylene participated the 4-CR to furnish 5cd up to 46% isolated yield and a desilylated product 5cd' was also observed with 35% isolated yield. Heteroarvlalkynes such as 2-thienyl, 2-pyridyl were also subjected to the 4CR reaction to afford 5ce and 5cf respectively in high yields. Notably, electron deficient 2-azidobenzadehydes were compatible to deliver 4CR adduct. In contrast, electron rich 2-azidobenzadehydes did not afford desired product 5 due to low reactivity of corresponding carbodiimide intermediate 6. The investigation underscores the high tolerance of the 4CR reaction to steric effect and excellent control over regioselectivity.

Scheme 2: Substrate Scope of Terminal and Internal Alkynes for 4CR

The 4CR could be elegantly extended to activated alkenes to furnish tetrahydropyrazolo[1,5-c]quinazolines **26** of four-point diversity exhibiting excellent atom economy (Scheme 3). Electron-deficient alkenes, such as acrylates and acrylonitrile participated efficiently in 4CR reaction to produce **26** in good to excellent yields with the formation of one diastereomer exclusively. A range of aryl and alkyl sulfonyl hydrazides were successfully incorporated. Both electron-donating and electron-withdrawing group on aryl sulfonyl hydrazides diversity were well tolerated. In all cases, the reaction proceeds with high regiochemical fidelity.

Scheme 3: Substrate Scope of alkenes for 4CR

S11. References

- Synthesis of starting material (i) for 2-azidoaldehydes: a) J. Hu, Y. Cheng, Y. Yang and Y. Rao *Chem. Commun.* 2011, **47**, 10133-10135. (b) B. J. Stokes, S. Liu and T. G. Driver, *J. Am. Chem. Soc.* 2011, **133**, 4702. (ii) for sulfonyl hydrazides: a) A. G. Myers, B. Zheng and M. Movassaghi, *J. Org. Chem.* 1997, **62**, 7507. (b) F.-L. Yang, X.-T. Ma, S.-K. Tian, *Chem. Eur. J.* 2012, **18**, 1582. (iii) For alkenes & alkynes see: a) Q. Xiao, Q. He, J. Li and J. Wang, *Org. Lett.* 2015, **17**, 6069-6093. (b) B. Zhou, H. Chen and C. Wang, *J. Am. Chem. Soc.* 2013, **135**, 1264– 1267.
- 2) P. Huang, Q. Yang, Z. Chen, Q. Ding, J. Xu and Y. Peng, J. Org. Chem., 2012, 77, 8092-8098.
- 3) The hydrazone **18** was found extremely prone towards hydration to produce a major side product urea **7aa.** The use of molecular sieves however could elegantly assist in avoiding this undesired event.
- 4) a) A. Negi, M. Alex, S. M. Amrutkar, A. T. Baviskar, G. Joshi, S. Singh, U. C. Banerjee and R. Kumar, *Bioorg. Med. Chem.* 2015, 23, 5654-5661. (b) G. Joshi, S. M. Amrutkar, A. T. Baviskar, H. Kler, S. Singh, U. C. Banerjee and R. Kumar, *RSC Adv.* 2016, 6, 14880-14892. (c) M. Chauhan, G. Joshi, H. Kler, A. Kashyap, S. M. Amrutkar, P. Sharma, K. D. Bhilare, U. C. Banerjee, S. Singh and R. Kumar, *RSC Adv.* 2016, 6, 77717-77734.
- 5) a) J. D. Ly, D. Grubb and A. Lawen, *Apoptosis* 2003, 8, 115-128; b) E. Gottlieb, M. G. Vander Heiden and C. B. Thompson, *Mol. Cell. Biol.* 2000, 20, 5680-5689.
- 6) B. Asproni, G. Murineddu, A. Pau, G. A. Pinna, M. Langgård, C. T. Christoffersen, J. Nielsen and J. Kehler, *Bioorg. Med. Chem.* 2011, **19**, 642-649.
- 7) S. Nagarajan, D. A. Skoufias, F. Kozielski and A. N. Pae, J. Med. Chem. 2012, 55, 2561-2573.
- 8) D. Kumar, G. Kaur, A. Negi, S. Kumar, S. Singh and R. Kumar, Bioorg. Chem. 2014, 57, 57-64.
- 9) V. Colotta, D. Catarzi, F. Varano, G. Filacchioni, L. Cecchi, A. Galli and C. Costagli, *J. Med. Chem.* 1996, **39**, 2915-2921.

- 10) F. Varano, D. Catarzi, V. Colotta, G. Filacchioni, A. Galli, C. Costagli and V. Carlà, J. Med. Chem. 2002, 45, 1035-1044.
- 11) F. Varano, D. Catarzi, V. Colotta, O. Lenzi, G. Filacchioni, A. Galli and C. Costagli, *Bioorg. Med. Chem.* 2008, **16**, 2617-2626.
- 12) L. A. McQuaid, E. C. Smith, K. K. South, C. H. Mitch, D. D. Schoepp, R. A. True, D. O. Calligaro, P. J. O'Malley, D. Lodge and P. L. Ornstein, *J. Med. Chem.* 1992, **35**, 3319-3324.
- 13) (a) B. Insuasty, H. Torres, J. Quiroga, R. Abonía, M. Nogueras, A. Sánchez, M. Sortino, S Zacchino and J. Low, *Heterocycl. Commun.* 2003, 9, 153-160; (b) D. Kumar and R. Kumar, *Tetrahedron Lett.* 2014, 55, 2679-2683.
- 14) D. Catarzi, V. Colotta, F. Varano, D. Poli, L. Squarcialupi, G. Filacchioni, K. Varani, F. Vincenzi, P. A. Borea and D. Dal Ben, *Biorg. Med. Chem.* 2013, 21, 283-294.
- 15) S. Guo, J. Wang, X. Fan, X. Zhang and D. Guo, J. Org. Chem. 2013, 78, 3262-3270.
- 16) R. Augusti and C. Kascheres, J. Org. Chem. 1993, 58, 7079-7083.
- 17) F. Varano, D. Catarzi, V. Colotta, F. R. Calabri, O. Lenzi, G. Filacchioni, A. Galli, C. Costagli, F. Deflorian and S. Moro, *Biorg. Med. Chem.* 2005, 13, 5536-5549.
- 18) (a) T. Wang, A. Shao, H. Feng, S. Yang, M. Gao, J. Tian and A. Lei, *Tetrahedron* 2015, **71**, 4473-4477; (b) H. Feng, T. Wang, S. Chen, Y. Huang, W. Yu, Y. Huang and F. Xiong, *RSC Adv.* 2016, **6**, 95774-95779.
- 19) A. K. Gupta, S. Ahamad, E. Gupta, R. Kant and K. Mohanan, Org. Biomol. Chem. 2015, 13, 9783-9788.
- 20) H.-T. Tang, K. Xiong, R.-H. Li, Z.-C. Ding and Z.-P. Zhan, Org. Lett. 2014, 17, 326-329.
- 21) X. Yang, Y. Jin, H. Liu, Y. Jiang and H. Fu, RSC Adv. 2012, 2, 11061-11066.

S12. Copies of ¹H, ¹³C NMR and HRMS spectra

Oct24-2016	3.38	2.18 2.190 0.99 0.09 8.81 8.81 6.14 5.98 5.98 5.98	.46	.79	66	.65 .68 .13	
3CA-A110-050	15		95	$\overbrace{77}^{77}$	51	29	
							5aa
			1		I		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	la	╺╌╌╌┑╢┟╶┄┄┅╴╶╽┍╍┟┫╼╢╷╍╢╴╶┅╸┧╴╴╴┅┈┉╸╸╸╸╴╸					****

⊤ 90 f1 (ppm) S40 I Т Т Т -10

PROCESSED BY PAWAN KUMAR	CSIR-IHBT NPC&PD DIVISION	19-Jan-201713:37:42
MCR-A118-056_02 44 (0.816) AM (Cen,3, 80.00, Ar,5000.0,317.18,0.70); Sb (2,10.00); Cm (4/	2:51)	1: TOF MS ES+
	261.0988	6.79e5
	317.17	55
%-		
		220.2254 250.0007 077.4705 005.4755
0-109.0915 124.0030 143.0273 161.0473 177.1397 201.1474 217.1341 0-100 110 120 130 140 150 160 170 180 190 200 210 220 23(239.2043 [] 277.1383 293.1513 [] [] minimum minimum minimum 0 240 250 260 270 280 290 300 310 32	323.2234 353.2937 377.1725 395.1870 шариариариариариариариариариариариариариа

PROCESSED PAWAN KUM) BY IAR						CSIF NPC&PE	R-IHBT DIVISION	l						19-J	an-201713	3:29:52
MCR-A118-08	87_02 42 (0.	779) AM (Cen,3	8, 80.00, Ar	,5000.0,347. ⁻	9,0.70); Sb (2	,10.00); Cm	(39:49)	001	4470							1: TOF M	S ES+
100								291.	1176		347.1	1865					7.3265
-																	
-																	
-																	
-																	
~																	
-																	
-																	
-												1					
-																	
0	124.0918	143.0322 160.0	641	<u></u>	217.1373	239.2703	261.1645	····	313	.3103	·····		379.2081	407.2094	4		m/z
100	120	140 16	0 18	200	220	240	260	280	300	320	340	360	380	400	420	440	

Dec06-2016 MCR-A120-002	-151.20 -151.20 -141.86 -137.02 -137.03 -137.03 -132.60 -132.60 -132.06 -132.06 -132.06 -132.06 -132.06 -132.06 -132.06 -132.06 -132.06	95.93	77.30 77.05 76.79	 29.09	CN

Η 5ac

т 90 f1 (ppm) S46 -10

Dec05-2016 MCR-A120-003	—152.23	142.04 141.88 141.14 131.94	~ 129.80 128.13 126.20 126.20 123.11	95.36	77.32 77.07 76.82	52.03	 Br

	SED BY KUMAR				CSIR-IHB						24-Nov-2	01617:16:18
MCR-A11	18-067R 63 (1.169) AM (Cen	,3, 80.00, Ar,5000.0,3	373.24,0.70); \$	Sb (2,10.00); Cm (58:67)						1: T	OF MS ES+
100				261.100	4							6.85e5
							373	.2366				
-												
-												
-												
_												
%												
-												
-												
_												
	122 1015 150 1464	185 0193	217 1407	249 1944	293,1425	321 1376	349 2253		405.2755	433 2543	467 4111	105 1030
0 - ++++ 100	120 140 160	180 200		240 260	280 300	320	340 360	، ۱۳٬۰۰۱٬۰۰٬ ۲۹٬۰۰ 380	400 4	100.2040 10000000000000000000000000000000000	460 480	

$\begin{array}{c} 8.1063 \\ 8.0898 \\ 7.9235 \\ 7.9093 \\ 7.9093 \\ 7.9093 \\ 7.9093 \\ 7.903 \\ 7.903 \\ 7.903 \\ 7.5345 \\ 7.263 \\ 7.263 \\ 7.263 \\ 7.263 \\ 7.2480 \\ -6.6435 \end{array}$	
---	--

-2.0773

--1.1028

—2.6714

																•	19-Jan-201	714:20:48
MCR-A11	8-082_02 69 (1.280) A	M (Cen,3, 80.	.00, Ar,5000.0	,415.25,0.7	0); Sb (2,10.	.00); Cm (6	62:83)										1: TOF	MS ES+
100-							30)3.11	69									6.70e5
_																		
-																		
_																		
~																		
													115	2100				
													415.	2430				
-																		
_																		
-																		
	124.0858						_		329.2	312								
0		173.102	2 1	217.1298	244.2815	<u>5</u> 267.286	7 291.152				359.3246	381.3127	403.2612	Щ.,,,,	437.2132	4	75.3114	m/z
100	120 140	160 18	80 200	220	240	260	280 3	300	320	340	360	380	400	420	440	460	480	500

PROCES PAWAN	SED BY KUMAR	(1.400)			A., 5000.0	440.00.0.70			C NPC&	SIR-IHE PD DIV	ST ISION								19-Jan-20	1713:22:01
MCR-A1	18-096_02.80	(1.483)	AM (C	en,3, 80.00,	Ar,5000.0	,418.22,0.70); SD (2,1	10.00); Cm ((75:87)	306.0	858								1:10	6.97e5
100-																				
-																				
-																				
-																				
%																				
-																				
																110 0006				
-																410.2220				
-																				
	12/ 0829																			
0	124.0020 	149.	0334	173.0928		217.1219		261.1488	285.295	8	329.2	2114	362.1608		3.2819	_	453	3.7971	475.3126	m/z
100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400	420	440	460	480	500

Dec21-2016 MCR-A120-007	—154.04	$\begin{array}{c} 145.22 \\ 141.95 \\ 141.78 \\ 141.78 \\ 141.78 \\ 141.78 \\ 129.57 \\ 129.57 \\ 129.57 \\ 123.30 \\ 122.77 \\ 115.77 \\ 115.69 \\ 115.69 \end{array}$		₹77.32 77.07 76.81	53.07	31.92 31.70 29.15	$H_2N - V$
----------------------------	---------	---	--	--------------------------	-------	-------------------------	------------

⊤ 90 f1 (ppm) S66 Т Т Т Т -10

PROCESS PAWAN KI	ED BY UMAR								NP	CSIR-IHE	BT /ISION								19-Jan-20	01714:32:39
MCR-A120)-007_02 51 (0.945) AM (Cen,3,	, 80.00, A	Ar,5000.0,388	8.25,0.70); SI	b (2,10.	00); Cm	(48:60)										1: TC	DF MS ES+
100								27	6.0932											8.8465
-																				
-																				
-																				
_																				
、 0																				
0																				
_																				
_																				
														388.	2494					
-																				
_																				
							-													
	101.00	17					25	9.1161												
0-+++++++++++++++++++++++++++++++++++++	131.06 	1 / / //////////////////////////////////	158.0834	185.10	34204.0972	232.111	9	┍᠇᠇ᡰᡃ᠇᠇᠇᠇	290).1212 + '/++++++		339.0411	363.2491		402.2359		453	1494	475.3701 4	194.9378 m/z
100	120	140	160	180	200	220 2	40	260	280	300	320	340	360	380	400	420	440	460	480	500

Jan20-2017 MCR-A120-047	—156.45	<pre>142.18 141.87 140.31</pre>	 129.34 126.02 123.03 122.50 116.00 	—97.12	77.30 77.05 76.79	51.86	31.72 29.15 22.60	
								Image: Normal Scale Scale

-10 ⊤ 90 f1 (ppm) S69 Г Т Т Т Т Т Т

PROCESSED BY		08-May-201718:32:14
MCR-A120-047_01A 117 (2.167) AM (Top,4, Ar,5000.0,297.21,0.70); Sb (2,10.00); Cm (105:15	7)	1: TOF MS ES+
100-	241.2353	8.51e5
		7.0000
	29	
-		
<u>%</u>		
-		
4		
124 2752		
0-harden harden	257.2653 273.2278	313.2415 341.2574 357.1465 397.0499 m/z
100 110 120 130 140 150 160 170 180 190 200 210 220 230	240 250 260 270 280 290	300 310 320 330 340 350 360 370 380 390 400

Nov15-2016 MCR-A118-072	-156.48 142.18 141.86	-129.35 -126.01 -126.01 -122.50 -115.99	—97.13	77.31 77.06 76.80		31.72 29.28 29.14 28.65 22.55 																
						Scb																
 210 200 190 180 170	160 150 140	130 120 110 f1	100 90 (ppm) S72		 50 4i	0 30 20 10 0 -10																
PROC	ESSED BY								C	SIR-IHE	BT									2	4-Nov-20	1617:07:38
------------	-----------------------------	----------------	----------------	----------	------------------------------------	------------	-------------	------------------------	---------	--------------------------	---------------------------------	---------	-------	------	-------	-----------------------------	--	-----------	------------------------	-------------------	----------	----------------
MCR-	AN KUMAR A118-072 128 (2	2.375) AM (Cei	n.3, 80.00, Ar	.5000.0.	311.22,0.7	0); Sb (2.	.10.00); (Cm (119	134)		ISION										1: TO	F MS ES+
100-		/ (,-,,	,,	,-	-,, (.	, ,, -	- (-	- /						311	.2217						8.10e5
										255.1	1645											
-																						
-																						
-																						
-																						
` 0																						
0																						
-																						
_																						
-																						
_																						
		132,0066	158,9844	4 1	82 0094	201.147	5 217 14	18	239 143	6		271.180	5 287	1779		ll.	327,237	0 343.207	76	371.229	4 393	2610
0)0 110 120	130 140	150 160	170	ارا آرانیانی 180 190	200	210 22	יוייזיוייזייו 20 23	0 240	آسرسار 250	יייוייייייייי 260	270	280	290	300 3	r‼////// 10 3	10000000000000000000000000000000000000	340	. 350 30	1001000 60 370	380 390	i m/z ک 400

MCR-A118-071_01A 114 (2.113) AM (Top,4, Ar,5000.0,297.21,0.70); Sb (2,10.00); Cm (104:128) 1: 7 100 241.2552 241.2552	OF MS ES+ 6.93e5
	6.93e5
241.2552	
»-	
	397.0537

Nov15-2016 MCR-A118-070A	—156.13	<pre>142.37 141.83 139.69</pre>	-129.25 -125.92 7123.10 7122.56 -116.36	—104.43	77.29 77.04 76.79	51.83	 1.07
							TMS N N N N N N N N N N N N N N N N N N N

PROC								NDO									2	4-Nov-201	616:35:00
MCR	-A118-70A 98 (1.818) AM (Cen	,3, 80.00, Ar,5	5000.0,31	3.18,0.70);	Sb (2,10.00); Cm (94	106)		31011								1: TO	= MS ES+
100-]								31	3.1836 I									8.65e5
-																			
-																			
-																			
						25	7.1509												
≫-	-																		
-																			
-																			
-																			
-																			
0-	····	143.0183	185.1	180	217.1543	241.1350		289.	.1696	┯╇╃┽┱┱╕┑	345.221	<u>8 373</u>	.2139	413	3.3321				m/z
1(0 120	140 16	50 180	200	220	240	260	280	300	320	340	360	380	400	420	440	460	480	500

11: TOF MS ES- 4.445 127.0605	PROCESSED BY PAWAN KUMAR	CSIR-IHBT NPC&PD DIVISION	1:	9-Jan-201714:01:11
	MCR-A118-103_02 41 (0.760) AM (Cen,3, 80.00, Ar,5000.0,323.13,0.70); Sb (2,10.04	0); Cm (34:42)		1: TOF MS ES+
		267.0505		4.44e5
323.1321				
323.1321				
			323.1321	
	-			
	o~			
	-			
	109.0850 124.0869 143.0260 177.1368 199.1239 217.	1333 239.2494	291.1021 313.3039	83.1447
V-hinkanananananananananananananananananana	0-իուրուղուղուղուղուղուղուղուղուղուղուղուղուղո	۲۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬	۲٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬٬	1000 300 400 m/z

May06-2017 MCR-A120-001

--1.6964

PROCESSED BY PAWAN KUMAR	CSIR-IHBT NPC&PD DIVISION	08-May-201717:59:48
MCR-A120-001_01A 42 (0.779) AM (Top,4, Ar,5000.0,318.17,0.70); Sb (2,10.00); Cm (4	40:57-(75:81+30:34)) 262 1766	1: TOF MS ES+ 4.73e5
100		
-		
	31	3.1701
.e_		
0`		
-		
149.2949		
131.8413 185.3067 217.2478	³ 234.2885 286.1989	340.1484 364.1127 380.0305 397.0966 m/z
100 110 120 130 140 150 160 170 180 190 200 210 220	230 240 250 260 270 280 290 300 310	320 330 340 350 360 370 380 390 400

PROC PAWA	CESSED BY AN KUMAR	CSIR-IHBT NPC&PD DIVISION	24-Nov-201617:11:42
MCR-	-A118-073A 37 (0.687) AM (Cen,3, 80.00, Ar,5000.0,313.16,0.7)	0); Sb (2,10.00); Cm (35:41)	1: TOF MS ES+
100-		257.0898	4.52e5
-	-	313.	1640
%			
-			
-	-		
0-+	122.0928 149.0350 167.0783 19 00 110 120 130 140 150 160 170 180 190	7.1035 229.1075 273.1230 289.1161 306.1318 200 210 220 230 240 250 260 270 280 290 300 310	1 329.1880 353.2773 393.2787 1 329.1880 353.2773 393.2787 320 330 340 350 360 370 380 390 400

PROC PAWA	CESSED BY AN KUMAR	CSIR-IHBT 08-May-201717:47:3 NPC&PD DIVISION	7
MCR-	A118-090_01A 38 (0.705) AM (1) 149.:	2613 1: TOF MS ES- 5.28e	5
		257.1792	
0		313.1644	
		301 1645	
		279.2300	
		167 2780 215.2734	
	124.3677	271.2432 341.0881 368.9510 397.0412	
0-+	hardina in the second	^{Man} manan da manana da	-

PROCESSED BY PAWAN KUMAR		CSIR-IHBT NPC&PD DIVISION	19-Jan-201714:49:04
MCR-A118-077_02 30 (0.556) AM (Cen,3, 80.00, Ar,5000.0	,327.22,0.70); Sb (2,10.00); C	m (25:43)	1: TOF MS ES+
100-	215.0706		1.21e6
_			
×			
0			
-			
			327.2178
	197 1032	249.0719	
124.0845	189.1127 205.1092	273.1166 301	.1576 361.2002 385.2444
100 110 120 130 140 150 160 170 18	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	230 240 250 260 270 280 290 3	^{μμα} ηματρατηματρατηματηματρατηματηματηματηματηματηματηματηματηματημ

PROCESSED BY PAWAN KUMAR	CSIR-IHBT NPC&PD DIVISION	19-Jan-201714:53:04
MCR-A118-083_02 33 (0.612) AM (Cen,3, 80.00, Ar,500	0.0,430.26,0.70); Sb (2,10.00); Cm (28:45)	1: TOF MS ES+
	318.1120	1.13e6
%- - -	430.2601	
124 0898 149.0305 107 1100	201 1475	32 2628
0-freedom 124.0000 11109 0-freedom 124.0000 11109 0-freedom 124.0000 1100 1100 1100 1100 1100 1100 110	239.2655 261.1608 301.1475 353.2880 378.1593 416.2867 220 240 260 280 300 320 340 360 380 400 420 440	460 480 500 520 540

---2.0894

-1.1278

 Nov25-5016
 8.6245

 0.12957
 7.9757

 0.129504
 8.6026

 0.129504
 1.9757

 0.129504
 1.9757

 0.129504
 1.9757

 0.129504
 1.9757

 0.129504
 1.91645

 0.129504
 1.91645

 0.129504
 1.91645

 0.129504
 1.91645

Nov22-2016 MCR-A118-078	—153.40	$129.68 \\ 128.45 \\ 128.09 \\ 126.21 \\ 126.14 \\ 125.38 \\ 1$	 √77.32 √77.06 √76.81	— 55.85 — 52.48	31.8931.6529.36	

PROCESSEI PAWAN KUN	D BY MAR	CSIR-IHBT NPC&PD DIVISION	19-Jan-201713:18:04
MCR-A118-0	078_02 128 (2.373) AM (Cen,3, 80.00, Ar,5000.0,423.	25,0.70); Sb (2,10.00); Cm (121:131)	1: TOF MS ES+
MCR-A118-0	078_02 128 (2.373) AM (Cen,3, 80.00, Ar,5000.0,423.	25,0.70); Sb (2,10.00); Cm (121:131) 311.1150	1: TOF MS ES+ 6.38e5
~			423.2537
0	124.0840 149.0314 177.1298 217.1	184 261.1329 J 327.1395 371.1	020 439.2705 483.2453 m/z

PROCESSED BY PAWAN KUMAR MCR-4118-068 132 (2.449) AM (Cep 3. 80.00, Ar 5000.0.337 24.0.70): Sb (2.10.0	CSIR-IHBT NPC&PD DIVISION	24-Nov-201616:22:44
100¬	225.1050	1.26e6
		337.2366
-		
≫		
0-113.1242 132.0057 149.0335 167.0808 182.0068 199.0149	241.1377 257.1280 285.1203 305.1576	353.2608 369.2464 397.2501
100 110 120 130 140 150 160 170 180 190 200 210	220 230 240 250 260 270 280 290 300 310 320 3	30 340 350 360 370 380 390 400

Dec02-5019 WCK-V150-004 PCC02-5019 PCC02-500	—29.06	Br N N N N N N N N N N N N N N N N N N N
---	--------	--

 $F_{3}C \xrightarrow{N}_{N} \xrightarrow{N}_{N}$

Т Т Т Т Т Т 0 f1 (ppm) S115 110 -10 -100 -110 -120 100 90 80 70 60 50 40 30 20 10 -20 -30 -50 -60 -70 -80 -90 120 -40

PROC PAWA	ESSED BY								CS NPC&P	IR-IHBT D DIVISIO	N						19)-Jan-2017 ⁻	15:01:03
MCR-	A120-026_0)2 60 (1.1 ⁻	12) AM (Ce	n,3, 80.00	, Ar,500	0.0,385.16	,0.70); Sb (2	,10.00); Cm (5	6:68)									1: TOF I	MS ES+
100-												329.0	0948						5.47e5
_																			
_																			
															385.	1630			
-																			
%																			
-																			
_																			
-																			
_																			
	12	4.0854	149.0354	173.0	957	195.1406	217.1098	244.2607	267.27	42	305.169	0	341.3194	370.09	16	401.1799		435.1708	
0-		1 ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹	, , , , , , , , , , , , , , , , , , , 	160	180	200	220	240	260	280	300	320	" ['++++++++++++++++ 340	360	380	400	420	440	ייי m/z

Dec31-2016 MCR-A120-016

0 f1 (ppm) S119 Т Т Т -50 120 110 100 90 80 70 60 50 40 30 20 10 -10 -20 -30 -40 -60 -70 -80 -90 -100 -110 -120

PROCESSED BY PAWAN KUMAR	CSIR-IHBT NPC&PD DIVISION		19-Jan-201714:57:04
MCR-A120-016_02 46 (0.852) AM (Cen,3, 80.00, Ar,5000.0,335.17,0.70); Sb (2,10.00); G	Cm (42:55)		1: TOF MS ES+
100-	279	.0887	8.00e5
-			
-			
~			335.1665
124.0836	261 1220		
0-humminininininininininininininininininini	20.0970 201.1009	295.1151 313.2929	
100 110 120 130 140 150 160 170 180 190 200 210 220	230 240 250 260 270	280 290 300 310 320	330 340 350 360 370 380 390 400

Jan02-2017 MCR-A120-015	-153.68 -153.68 -142.66 -142.66 -128.82 -126.64 -124.17 -114.41	95.66	77.29 77.04 76.79	52.16		-0.02
					CI	5 ed

'	'	'		· 1	1	i l	1	'	1 1		1 1	' 1	1	1	'	'	'		1	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
										f1 (ppm)									
										S 12	22									

~4.0295 ~3.9915

Jan16-2017 SCA-PH005-224	163.73 163.18	7145.82 143.12 141.32 140.06 131.47 7126.34	-125.55 -123.45 -114.92	 77.28 77.02 76.77	 52.95 52.49 52.48 	 MeOOC V V V V N N N N N S fa

Dec27-2016 SCA-PH005-206

Jan07-2017 SCA-PH005-209	 ~145.81 ~143.13 ~141.18 ~139.98	 ∼114.86 ∼114.09 −−108.02	77.29 77.04 76.78	56.25 52.95 52.52 51.33	~31.78 ~31.47 ~29.38	$ \begin{array}{c} MeOOC \\ \leftarrow \\ \leftarrow \\ N \\ + \\ N \\ + \\ Sha \end{array} $

PROCESSED BY PAWAN KUMAR	CSIR-IHBT NPC&PD DIVISION	19-Jan-201715:21:11
SCA-PH005-209_02 39 (0.722) AM (Cen,3, 80.00, Ar,5000.0,413.22	,0.70); Sb (2,10.00); Cm (37:44) 301.0550	1: TOF MS ES+ 5.56e5
-		
-		
.0		
ð-		
		413.2178
-		
-		
	ſ	
	269.0850	435.2050
124.0841143.0235 0	3 239.2525 258.2237 287.1021 313.2941 3	150.2273 369.2198 401.1819 451.1381 475.3116 m/z
100 120 140 160 180 200 220	240 260 280 300 320 340	<u>) 360 380 400 420 440 460 480 500</u>

-2.4688

PROC PAWA	ESSED BY NN KUMAR	CSIR-IHBT NPC&PD DIVISION	19-Jan-201714:09:03
A121-	024_02 22 (0.408) AM (Cen,3, 80.00, Ar,5000.0,491.15,0.70); Sb (2,10.00); Cm (19:31)	40	1: TOF MS ES+
100		40	
_			
_			
%			
_			
_	336.1718		
-			
	140.0460	435 1370	
	124 0958 160 0400 205 1267 226 1240 279.1108		E21 4520
0- 10	0 120 140 160 180 200 220 240 260 280 300 320 340 360	393.2588 457.2129 קייייןייייןייייןייייןייייןייייןייייןיי	من م

Jan09-2017 RMD-A121-025

	1 1	1	1	1				1				1 1			
-45	-50	-55	-60	-65	-70	-75	-80	-85 \$150	-90	-95	-100	-105	-110	-115	-120
								5150							

Jan11-2017 RMD-A121-019

--62.8836

2	6	а	e

			- I - I		1	1	1	·	·							·		·	·		·	'		i T
120	110	100	90	80	70	60	50	40	30	20	10	0 S1	-10 54	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120
												51	J 4											

PRO PAW	CESSED BY AN KUMAR	CSIR-IHBT 24-Nov-201616:43:1 NPC&PD DIVISION	7
RMD	079 20 (0.371) AM (Cen,3, 80.00, Ar,5000.0,443.17,0.70); Sb (2,10.00); Cm (18:2	1: TOF MS ES-	+
100-		443.1735 7.13e	5
	302.2		
.			
~			
· ·			
·			
		387.1894	
	146.1032 172.1312 202.1872 ^{245.1663} 283.1573	2295 357.2188 465.2478 493.2944	
0-	/////////////////////////////////////	קמייין און אין אין אין אין אין אין אין אין אין אי	z

----5.1228

Nov15-2016
RMD-085

9006 8844	3717 3717 1920 1920 0057 55971 55971 1164 55971 1164 55971 1164 55971 1164 55971 1164 55971 1030 5587 5587 5587 5587 5587 5587 5587 558
8 8	00001111100000000
\mathbf{Y}	YY / / / / / /

-4.4798 -4.4574 -4.4386 -4.3178	~3.8123 ~3.7889 ~3.6162	3.1957
--	-------------------------------	--------

5.0695
5.0550

Nov15-2016 RMD-085	 148.23 142.28 142.28 142.28 133.57 133.57 133.57 133.57 130.16 129.53	1128.99 128.33 128.33 128.35 128.35 124.63 124.63 124.31 124.31 124.31 124.31 123.55 112.94	₹77.32 ₹77.07 76.82	63.28	-52.26 51.89 -50.52 -46.59		
						0	

1			· · · ·				· · · ·	· · · ·	1					1	·		I		· · · ·	·	_
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											S169										

PROCESSED BY PAWAN KUMAR	CSIR-IHBT NPC&PD DIVISION	24-Nov-201616:39:09
RMD-085 21 (0.390) AM (Cen,3, 80.00, Ar,5000.0,493.19,0.70); Sb (2,10.00); Cm (17:26)	400	1: TOF MS ES+
	493	0.5065
-		
- - -		
302.2110		
0 146.0873172.1167 202.1703 245.1454 283.1291 339.1862	407.2117 437.1767	
100 120 140 160 180 200 220 240 260 280 300 320 340	360 380 400 420 440 460 480	500 520 540 560 580 600 620 640 660

Jan10-2017 RMD-A121-046

26bf

'n

-																								
Т	·	1	· 1	'	'	1	1	1	1	'	1	'	'				'		1	1	1	1 1		- T
120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120
												S17	73											

S178

1 1	1 1			· · ·	- I	·	· · ·	·	· · · ·	·	·	1	1		·	·					
200	190	180	170	160	150	140	130	120	110	100	90 S179	80	70	60	50	40	30	20	10	0	-10

Nov22-2016 RMD-091	— 171.28		 ✓ 127.00 ✓ 123.84 ✓ 121.20 ✓ 117.93 			77.31 77.05 76.80	63.12	55.50 52.38 51.94 51.86 49.19	28.53 28.57 28.57 28.57 28.94 28.53 28.53	28.47 22.75 22.58		
									- م ا		0 √9; 0 H 26 cd	~~~
. Milita yunika da bu jua ka su d	ul de suglestematie de de juide de seu d	n o d b with the lifet, is a field dated as lifet the state			- tuba (,), og benövin, av de gå sji och		at set to a set of second s					براجع عطا اعتاجه والا معاق والقدي أما
100 190		160 150	 	110 100			70 6	, , , , , , , , , , , , , , , , , , ,	40 30		······································	······································

S185

Nov14-2016 RMD-074	7.8428 7.363 7.3625 7.363 7.1400 7.1375 7.1375 7.1375 7.1375 7.1375 7.1375 7.1375 7.1375 7.1375 7.1375 7.1375 6.7932 6.7932 6.7787 6.7787 6.7766		3.3569 3.9155 3.9155 3.9155 3.9155 3.9155 3.3162 3.362 3.3604 3.3504 3.3504 3.3504 3.3504 3.3504 3.3504 3.3504 3.3504 3.3504 3.3504 3.3506 3.3509 3.3509		-1.4920 1.4625 1.4491 1.3865 -1.0235
					C N N N N N N N N N N N S C C C C C C C C C C C C C
		l			
	2.00 년 0.95 년 1.00 년 1.00 년	0.95- 1	0.97 1.00 2.97 년 2.97	3.10⊣ 0.98⊣	1.24 2.73 9.19 丁 9.19
9.5 9.0 8.5	8.0 7.5 7.0 6.5 6.0	5.5 5.0	4.5 4.0 3.5 3.0 S187	2.5 2.0	1.5 1.0 0.5 0.0 -0.5 -1.0

8609 8445 3638 3476 2592 711378 71133 71135 71135 71135 71135 71135 711135 711135 71135 71135 71135 71135 71135 71	20056 14352 143552 14352 14352 143552 145552 145552 145552 1455552 14555

-1.3227

----2.4658

Nov25-2016 RMD-110	 ~ 148.93 145.51 ~ 142.66	- 131.94 130.09 129.17 129.04 126.73 - 117.73 - 117.73	77.29 77.04 76.78	62.37 61.22	
					$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ } \\ \end{array} } } \\ \end{array} } } } \\ } } } \\ } } } \\ } } } } } } } } } }

100 90 S191 I.

8532 8368 3624 3462	2689 1526 1494	1227 1194 9396	8144 8144 7999 7854 7727 7606

0,	
8	00077000000000000000000000000000000000
õ	
•;	
_	
L()	4 4 4 4 4 6 6 6 6 7 6 7 6 7 6 7 6 7 7 7 7
1	

Nov26-2016 RMD-111	 → 149.02 → 145.40 → 142.99	131.99 130.04 129.18 127.01 127.01 123.75 118.19	81.54 77.30 77.04 76.79	62.32		28.83 27.22 21.70
						X L N-S-
						С 1 0 N N H 26dc
			1			
<u>, and a start of the start of </u>	 :		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.*******	anny Ulata da general anna anna anna anna anna anna anna a	adard Addana and a share and another a ministration and and and a second and a second and a second and

S196 I.

Dec07-2016
RMD-A112-006

56 57	$\begin{array}{c} 96 \\ 90 \\ 112 \\ 118 \\ 1$	586 64 65 79
148. 145.	134. 131. 130. 129. 128. 128.	126. 123. 117.
233		

77.31 77.05 76.80 ----67.16 ----62.45 ~52.22 ~51.28 ~48.16

26 de

1						1		'		1				•	1	1		1	1	
	190	180	170	160	150	140	130	120	110	100	90 S202	80	70	60	50	40	30	20	10	0

Dec02-2016 RMD-1188	~- 149.36 145.43 142.83	77.31 77.05 76.80	62.59 60.41 58.04	51.26 47.21	~~30.51 ~~28.74	0217- 0 + + + + + + + + + + + + + + + + + +

100 90 S205 200 190 180 170 160 -10

----5.0984

-1.3401

26ga

Nov24-2016 RMD-095

1																										
			_	_	_																					
	15	10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	-60	-65	-70	-75	-80	-85	-90	-95	-105	-115	
	15	10	5	0	5	10	15	20	25	50	55	10	15	50	55	00	05	,0	, 5	00	05	50	55	105	115	
	8010																									
	5212																									

Sep15-2016 SCA-A118-022C	-154.80 -154.80 -148.18 -148.18 -141.06 -137.94 -137.94 -126.07 -117.17	-52.21	-27.59 -27.59 -21.32 saa 8aa
			
190 180 170	160 150 140 130 120 110 100	90 80 70 60 50 40 f1 (ppm) S220	30 20 10 0 -10

Sep15-2016 SCA-A118-022C

