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Materials Synthesis

Bi4Ge3O12 (BGO) micropowders were prepared through a sol-gel method using GeO2 (germanium oxide, 99.99%) and Bi2O3 (bismuth oxide, 
99.99%) and C4H6O6 (L (+)-tartaric acid, 99.5%) as received from Sigma Aldrich. Stoichiometric amounts of germanium and bismuth oxides 
were dissolved in 50 mL of concentrated nitric acid (70% HNO3) and stirred at room temperature overnight. Followed by that, 15 mL of a L 
(+)-tartaric acid solution (0.0171 moles of tartaric acid per BGO gram) was added to the acid mixture and stirred constantly during 3 h. The 
resultant mixture was heated at 80 °C for another 2 h followed by heated to 100 °C until forming an xerogel. Finally, the resultant powder 
was annealed at 850 °C for 4h 

Figure SI1. Flowchart of the synthesis of Bi4Ge3O12 through a sol-gel precursor method with tartaric acid assistance.

Structure characterization

Bi4Ge3O12 (BGO) micropowder was analysed by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron 
microscopy (TEM), Infrared and Raman spectroscopies, and N2 physisorption. using a Philips X’pert diffractometer with a Cu Kα radiation (λ 
= 1.57 Å), a JEOL JSM 5300 in secondary electron mode, a JEOL JEM-2010 in bright mode, a Nexus-760 FTIR spectrometer with in situ Harrick 
cell, a Thermo-Scientific DXR Raman Microscope with a 633 nm laser and a Quantachrome Nova 2200e surface analyzer at 77K, respectively.

Electrochemical testing

A slurry mixture of 70 wt% BGO, 10 wt% graphene (Sigma Aldrich), 10 wt% carbon Super P (TIMCAL), and 10 wt% CMC (MTI) along with 
required amount of water were homogeneously mixed. The resultant thick slurry was coated uniformly on a copper foil using a doctor blade 
method. The coated BGO laminate was dried at 80 °C overnight under vacuum, and then punched into diameter of 12 mm disk electrodes. 
Then, CR2032 coin cells were assembled, using the prepared electrode as a working electrode, Li metal foil as a counter electrode, and 
polypropylene film (Celgard 2500) as a separator, in an inert argon-filled glovebox. The electrolyte used was 1 M LiPF6 in EC: DEC with 1: 1 
volume ratio. Cyclic voltammetry (CV) analysis were performed between a voltage window of 0.01−3 V vs Li/Li+ at a scan rate of 0.2 mV s−1 
using Electrochemistry test station Gamry Reference 600. Ccharge-discharge Galvanostatic cycling data were collected from an Arbin BT-
2000 Potentiostat. 

DFT calculations

DFT (Density functional theory) calculations were achieved using the planewave-based VASP (Vienna ab-initio simulation package). GGA 
(generalized gradient approximation) method within PBE (Perdew-Burke-Ernzerh) of exchange-correlation functional and PAW (projector 
augmented wave) potentials were adopted through the work. The kinetic energy cut-off for the plane-wave expansion was established to 
520 eV, and the Brillouin-zone integrations for the geometry optimizations were sampled by a (3×3×3) Monkhorst-Pack mesh. The 
convergence threshold for self-consistent energy error was set to 1x10-5 eV, and both atomic and lattice parameters coordinates were fully 
relaxed until the maximum force is smaller than 0.03 eV/Å for each atom.
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Figure SI2. Raman information of BGO, with its characteristic Raman active modes.
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Figure SI3. FT-IR spectra of BGO, with its characteristic FT-IR active modes.
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After one charge-discharge cycle, the XRD pattern of BGO pristine material disappeared, indicating that BGO phase transformation through 
a lithiation reaction is not reversible. The X-ray peaks observed after first C-D cycle at 2θ of 27.2°, 46.0°, and 55.4° correspond to the (201), 
(222) and (421) planes of the tetragonal crystal system of β-Bi2O3, respectively, in agreement with JCPDS PDF 27-0050. Also, The X-ray peaks 
observed at 2θ of 26.4°, 38.0°, 39.7°, 48.8° and 56.1° correspond to the (101), (102), (111), (112) and (210) planes of the hexagonal crystal 
system of GeO2, respectively, in agreement with JCPDS PDF 36-1463. No diffraction peaks of BGO is observed in the XRD pattern, indicating 
its transformation to other two phases.
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Figure SI4. Ex-situ XRD pattern of BGO anode after first cycle of charge-discharge between 0.01 to 3.0 V vs Li/Li+.

When one Li atom was put in Bi4Ge3O12, the structure in the left panel in Fig. SI4 is energetically preferred where Li is surrounded by O atoms. 
Our preliminary results on the structural stabilities of LixBi4Ge3O12 with high Li compositions reveal the breaking of Bi-O bonds and the 
appearance of some Bi-Bi bonds with the increasing of Li, such as Li6Bi4Ge3O12 in the middle panel. In contrast, the Ge-O bonds (i.e. the green 
tetrahedra) are hard to be broken in a large x range, as shown in the example of Li10Bi4Ge3O12. 
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Figure SI5. Simulated insertion of 6 and 10 Li+-ions inside Bi4Ge3O12 crystal structure.


