Supporting Information

Phosphine free Mn-complex catalysed dehydrogenative C-C and C-heteroatom bond formation: a sustainable approach to synthesize quinoxaline, pyrazine, benzothiazole and quinoline derivatives

Kalicharan Das, Avijit Mondal and Dipankar Srimani*

Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.

E-mail: dsrimani@iitg.ernet.in

Table of contents

Sl. 1	No. Contents	Page No.
1.	General Considerations	2
2.	Synthesis and characterization of ligands	2
3.	Synthesis and characterization of NNS-Mn(I) complexes	5
4.	General experimental procedure for the synthesis of quinoxalines.	10
5.	General experimental procedure for the synthesis of benzothiazole	zs 11
6.	General experimental procedure for the synthesis of quinolines	11
7.	Spectroscopic characterization of the quinoxaline, benzothiazole, quinoline derivatives	12
8.	Figures reproducing ¹ H and ¹³ C NMR spectra	22
9.	References	74

1. General Considerations:

Unless otherwise stated, all chemicals were purchased from common commercial sources and used as received. All solvents were dried by using standard protocol. The synthesis of catalyst was performed under argon atmosphere with freshly distilled dry THF. All catalytic reactions were carried out under argon atmosphere using dried glassware and standard syringe/septa techniques. DRX-400 Varian spectrometer and Bruker Avance III 600 and 400 spectrometers were used to record ¹H and ¹³C NMR spectra using CDCl₃ and DMSO-d₆ as solvent and TMS as an internal standard. Chemical shifts (δ) are reported in ppm and spin-spin coupling constant (J) are expressed in Hz, and other data are reported as follows: s = singlet, d = doublet, dd = doublet of doublet, dt = doublet of triplet, t = triplet, m = multiplet, q = quartet, and br s = broad singlet. X-ray crystallographic data were collected using Agilent Super Nova (Single source at offset, Eos) diffractometer. FTIR were collected on PerkinElmer IR spectrometer. Q-Tof ESI-MS instrument (model HAB 273) was used for recording mass spectra. SRL silica gel (100-200 mesh) was used for column chromatography.

2. Synthesis and characterization of Ligands:

Pyridine-2-carboxaldehyde (15.76 mmol) and amino-thiol compound (15.0 mmol,) were dissolved in dry CH₂Cl₂ (35 mL) and then Na₂SO₄ (16.9 mmol) was added to it. The resulting suspension was stirred for 20 h at room temperature. Then, it was filtered and the filter residue was washed thoroughly with CH₂Cl₂ and the combined solvent was removed under reduced pressure. The residue obtained was directly used for the next step without further purification. The residue was dissolved in methanol (30 ml) and NaBH₄ (53.6 mmol) was added portion wise in stirring condition at 0 °C and the stirring was continued for overnight at room temperature. Then the solvent was evaporated and 40 mL of water was added. After that, it was extracted by CH₂Cl₂ and the combined organic phase was dried over Na₂SO₄. Then the solvent was evaporated to get the crude product, which was purified further by silica gel column chromatography using 20-40 % ethyl acetate in hexane.

a) 2-(ethylthio)-N-(pyridin-2-ylmethyl)ethan-1-amine:¹ Brown oil (3.077 g, 92%). ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 2.76 Hz, 1H), 7.60 (dt, J = 5.1 Hz, J = 0.84 Hz, 1H), 7.28 (d, J = 5.2 Hz, 1H), 7.13 -7.11 (m, 1H), 3.90 (s, 2H), 2.83 (t, J = 4.4 Hz, 2H), 2.69 (t, J = 4.44 Hz, 2H), 2.49 (m, 2H), 2.35 (br s, 1H), 1.21 (t, J = 4.92 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.73, 149.37, 136.52, 122.25, 122.01, 54.96, 48.35, 31.96, 25.83, 14.90.

b) 2-(tert-butylthio)-N-(pyridin-2-ylmethyl)ethan-1-amine:² Brown oil (2.949 g, 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.55 - 8.53 (m, 1H), 7.63 (td, *J* = 7.6, 1.7 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.15 (dd, *J* = 7.5, 4.9 Hz, 1H), 3.93 (s, 2H), 2.86 (t, *J* = 6.8 Hz, 2H), 2.73 (t, *J* = 6.8 Hz, 2H), 2.34 (s, 1H), 1.31 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 159.70, 149.44, 136.60, 122.34, 122.09, 55.00, 49.27, 42.25, 31.18, 28.87.

c) 2-(benzylthio)-N-(pyridin-2-ylmethyl)ethan-1-amine:³ Brown oil (1.388 g, 91%). ¹H NMR (600 MHz, CDCl₃) δ 8.48 (d, J = 4.8 Hz, 1H), 7.56 (td, J = 7.7, 1.6 Hz, 1H), 7.22 - 7.21

(m, 5H), 7.15 (dt, J = 8.6, 4.4 Hz, 1H), 7.08 (dd, J = 7.3, 5.1 Hz, 1H), 3.81 (s, 2H), 3.62 (s, 2H), 2.73 (t, J = 6.6 Hz, 2H), 2.54 (t, J = 6.6 Hz, 2H), 2.10 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 159.70, 149.38, 138.39, 136.57, 128.91, 128.58, 127.07, 122.29, 122.05, 54.88, 47.86, 36.03, 31.58.

3. Synthesis and characterization of NNS-Mn(I) complexes:

Ligand [(PyCH₂)HN(CH₂CH₂SR), R= Et, *t*Bu, Bn] (5.0 mmol) was taken in 20 mL dry THF and was added dropwise to the orange-yellow suspension of [MnBr(CO)₅] (5.0 mmol) in 12 mL degassed dry THF. Then, the suspension was refluxed for overnight under argon atmosphere. After cooling it down to the room temperature, the solvent was evaporated to obtain the residue, which was further washed with hexane and dried under vacuum to get yellow solid of Mn-complex. The single crystal was grown by slow diffusion of toluene in the THF solution of the complex.

a) Complex-1:⁴

Yellow solid (1.980 g, 95%). ¹H NMR (600 MHz, CDCl₃) δ 8.69 (br s, 1H), 8.26 (br s, 1H), 7.87 (br s, 1H), 7.71 (br s, 1H), 7.40 (br s, 1H), 4.81(br s, 1H), 4.58 (br s, 1H), 3.39-3.35 (m, 2H), 2.98-2.87 (m, 2H), 2.05 (br s, 2H), 1.45 (br s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 218.92, 216.57, 161.90, 152.64, 139.58, 125.25, 122.70, 60.41, 54.57, 33.07, 31.85, 13.42. IR (cm⁻¹): 3059, 2920, 2875, 2030, 1946, 1920, 1609, 1462, 1286, 1196, 1083, 949, 910, 821,

769, 689, 637.

HRMS (ESI) calcd for C₁₃H₁₆MnN₂O₃S [M]⁺: 335.0262; found: 335.0263.

b) Complex-2:

Yellow solid (1.670 g, 92%). ¹H NMR (600 MHz, CDCl₃) δ 8.65 (br s, 1H), 8.24 (br s, 1H), 7.81 (br s, 1H), 7.64 (br s, 1H), 7.20 (br s, 1H), 4.74-4.49 (m, 2H), 3.23 (br s, 2H), 2.81- 2.04 (m, 2H), 1.43 (br s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 219.85, 217.05, 161.94, 153.09, 139.44, 125.41, 122.59, 60.43, 55.94, 49.71, 30.73, 29.92.

IR (cm⁻¹): 3409, 3071, 2960, 2924, 2032, 1943, 1925, 1605, 1442, 1365, 1264, 1159, 1015, 766, 634, 533.

HRMS (ESI) calcd for C₁₅H₂₀MnN₂O₃S [M]⁺: 363.0575; found: 363.0579.

c) Complex-3:

Yellow solid 1.151 g, 89%). ¹H NMR (600 MHz, CDCl₃) δ 8.29 (br s, 1H), 7.89 (br s, 1H), 7.51 (br s, 1H), 7.37 (br s, 1H), 6.98-6.92 (m, 6H), 4.42-4.26 (m, 2H), 3.72-3.67 (m, 2H), 3.06 (br s, 2H), 2.45 (br s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 219.02, 218.62, 216.68, 162.06, 152.77, 139.52, 133.73, 129.40, 129.20, 128.78, 125.29, 122.69, 60.04, 53.89, 41.74, 32.12. IR (cm⁻¹): 3420, 3072, 2914, 2033, 1926, 1631, 1422, 1291, 1073, 768, 704, 685, 633, 532. HRMS (ESI) calcd for C₁₈H₁₈MnN₂O₃S [M]⁺: 397.0419; found: 397.0413.

KD-2-161-R1_1 Sample 179 By Administrator Date Saturday, July 29 2017

C:\Users\Kali\...\AM-DS-COMR1.d\ Injection 1 ESI (+) MS centroid MS + spectrum 0.21

Crystal Structure of Complex-3:

Table of Cat_3

Empirical formula	C18 H18 Br Mn N2 O3 S	
Formula weight	477.25	
Temperature, T	293 K	
Crystal system	orthorhombic	
Space group	'P b c a'	
Unit cell dimensions	a=16.5242(15) Å	α=90°
	b=9.5030(8) Å	β=90°
	c=26.035(3) Å	γ=90°
Volume, V (Å ³)	4088.2(7)	•
Ζ	8	
Density (calculated), Mg⋅m ⁻³	1.551	
Absorption coefficient, μ (mm ⁻¹)	2.721	
F(000)	1920.0	
Crystal size, mm ³	0.34 imes 0.31 imes 0.29	
Theta range for data collection	2.92to 25.00	
Index ranges	$-19 \le h \le 14, -11 \le k \le 10, -25 \le 1 \le 30$	
Reflections collected	2262	
Independent reflections	3597	
Completeness to theta	0.999	
Absorption correction	Multi-scan	
Max. and min. transmission	1.00000 and 0.57204	
Refinement method	'SHELXL-97(Sheldrick, 1997)'	
Data / restraints / parameters	3597 /0/235	

Goodness-of-fit on F ²	0.956
Final R indices [I>2sigma(I)]	R1 = 0.0448(2444), wR=2 0.1531(3597)
R indices (all data)	R1 = 0.0816, wR=2 0.1273
Extinction coefficient	2.721
Largest diff. peak and hole	0.473 and -0.530 $e \cdot Å^{-3}$

Selected Bond length and bond angles

Bond lengths [Å]	Bond angles [°]
Mn1-N1 2.058(4)	N1 Mn1 S1 81.01(12)
Mn1-N2 2.081(4)	N2 Mn1 S1 84.23(12)
Mn1- S1 2.3617(15)	N1 Mn1 N2 80.65(18)
Mn1- C16 1.811(6)	C16 Mn1 S1 173.8(2)
Mn1-C17 1.806(6)	C17 Mn1 S1 92.61(19)
Mn1-C18 1.807(6)	C18 Mn1 S1 96.81(18)

4. General experimental procedure for the synthesis of quinoxalines:

A mixture of 1,2-diaminobenzene (1.0 mmol), 1,2-diol (1.27 mmol) and KOH (0.27 mmol) was stirred under neat condition at 140 $^{\circ}$ C in an open system under argon in the presence of 4 mol % catalyst **2**. After the specified time, the reaction mixture was cooled to room temperature and chloroform was added to dilute the mixture. Then it was filtered through celite and filtrate was concentrated under reduced pressure. The crude residue was purified further by silica gel column chromatography using 2% -5 % ethyl acetate in hexane as an eluent.

5. General experimental procedure for the synthesis of benzothiazoles:

A mixture of 2-Aminothiophenol (1.0 mmol), primary alcohol (1.27 mmol), KOH (0.27 mmol) and complex **2** (0.04 mmol) was stirred at 140 $^{\circ}$ C for the specified time under neat condition in an open system under argon. Then the reaction mixture was cooled to room temperature and was diluted with chloroform. Then it was filtered through celite and the filtrate was concentrated under vacuum. Then silica gel column chromatography was performed to obtain the pure product.

6. General experimental procedure for the synthesis of quinolines:

A mixture of 2-amino benzyl alcohol (1.0 mmol), secondary alcohol (1.27 mmol), *t*BuOK (1.2 mmol) and catalyst **2** (0.05 mmol) was stirred under neat condition at 140 $^{\circ}$ C for 36 h in an open system under argon. After cooling to room temperature, chloroform was added and filtered through celite. The filtrate was concentrated to get the crude residue, which was purified further by column chromatography using silica gel as stationary phase and 2%-5% ethyl acetate in hexane as an eluent.

7. Spectroscopic characterization of the quinoxaline, benzothiazole and quinoline derivatives:

2,3-diphenylquinoxaline (6a)⁵

White solid (203 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 8.21- 8.17 (m, 2H), 7.80 - 7.75 (m, 2H), 7.54-7.52 (m, 4H), 7.39 - 7.31 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.61, 141.37, 139.21, 130.09, 129.97, 129.34, 128.94, 128.41.

6-methyl-2,3-diphenylquinoxaline (6b)⁵

White solid (225 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.5 Hz, 1H), 7.96 (s, 1H), 7.60 (dd, J = 8.6, 1.8 Hz, 1H), 7.55 - 7.48 (m, 4H), 7.39 - 7.29 (m, 6H), 2.62 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.45, 152.70, 141.42, 140.61, 139.83, 139.35, 132.42, 129.96, 129.95, 128.83, 128.81, 128.74, 128.35, 128.15, 22.04.

6,7-dimethyl-2,3-diphenylquinoxaline (6c)⁵

White solid (252 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 2H), 7.50 (dd, J = 7.5, 2.1 Hz, 4H), 7.35 - 7.29 (m, 6H), 2.52 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 152.61, 140.63, 140.34, 139.51, 129.96, 128.63, 128.33, 128.30, 20.55.

6,7-dichloro-2,3-diphenylquinoxaline (6d)⁶

Brown solid (299 mg, 77%). ¹H NMR (600 MHz, CDCl₃) δ 8.20 (s, 2H), 7.43 - 7.41 (m, 4H), 7.32 - 7.30 (m, 2H), 7.27-7.25 (m, *J* = 7.6 Hz, 4H). ¹³C NMR (150 MHz, CDCl₃) δ 154.59, 140.04, 138.47, 134.54, 129.91, 129.89, 129.42, 128.48.

6-bromo-2,3-diphenylquinoxaline(6e)⁷

White solid (287 mg, 74%). ¹H NMR (600 MHz, CDCl₃) δ 8.36 (d, J = 2.1 Hz, 1H), 8.03 (d, J = 8.9 Hz, 1H), 7.83 (dd, J = 8.9, 2.0 Hz, 1H), 7.51 (d, J = 7.2 Hz, 4H), 7.40-7.37 (m, 2H), 7.35-7.33 (m, 4H). ¹³C NMR (150 MHz, CDCl₃) δ 154.31, 153.82, 141.82, 140.01, 138.77, 138.67, 133.58, 131.53, 130.58, 129.93, 129.86, 129.22, 129.15, 128.43, 128.41, 123.93.

6-nitro-2,3-diphenylquinoxaline (6f)⁵

Yellow solid (191 mg, 58%). ¹H NMR (600 MHz, CDCl₃) δ 9.07 (d, J = 2.4 Hz, 1H), 8.58-8.47(m, 1H), 8.29 (d, J = 9.1 Hz, 1H), 7.59 - 7.52 (m, 4H), 7.49-7.41 (m, 2H), 7.37 (t, J = 7.5 Hz, 4H). ¹³C NMR (150, MHz, CDCl₃) δ 154.31, 153.82, 141.82, 140.01, 138.77, 138.67, 133.58, 131.53, 130.58, 129.93, 129.86, 129.22, 129.15, 128.43, 128.41, 123.92.

2,3-di-p-tolylquinoxaline (6g)⁵

White solid (245 mg, 79%). ¹H NMR (600 MHz, CDCl₃) δ 8.16 (dd, J = 6.4, 3.4 Hz, 2H), 7.33 (dd, J = 6.4, 3.4 Hz, 2H) 7.45 (d, J = 8.0 Hz, 4H), 7.16 (d, J = 7.9 Hz, 4H), 2.37 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 153.51, 141.18, 138.78, 136.41, 129.78, 129.72, 129.15, 129.04, 21.43.

6-methyl-2,3-di-p-tolylquinoxaline (6h)⁵

White solid (266 mg, 82%). ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, *J* = 8.5 Hz, 1H), 7.93 (s, 1H), 7.56 (d, *J* = 8.5 Hz, 1H), 7.47 - 7.41 (m, 4H), 7.14 (d, *J* = 8.1 Hz, 4H), 2.60 (s, 3H), 2.37 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 153.34, 152.61, 141.22, 140.15, 139.63, 138.62, 138.54, 136.53, 132.02, 129.77, 129.74, 128.98, 128.64, 127.98, 21.94, 21.40.

6,7-dichloro-2,3-di-p-tolylquinoxaline (6i):

White solid (299 mg, 77%). ¹H NMR (600 MHz, CDCl₃) δ 8.23 (s, 2H), 7.41 (d, *J* = 8.2 Hz, 4H), 7.15 (d, *J* = 8.0 Hz, 4H), 2.38 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 154.50, 139.87, 139.42, 135.70, 134.03, 129.76, 129.72, 129.12, 21.48. HRMS (ESI) calcd for C₂₂H₁₆Cl₂N₂ [M+H]⁺:379.0769; found: 379.0770.

6-bromo-2,3-di-p-tolylquinoxaline (6j)⁸

White solid (287 mg, 74%). ¹H NMR (600 MHz, CDCl₃) δ 8.33 (d, J = 2.1 Hz, 1H), 8.00 (d, J = 8.9 Hz, 1H), 7.79 (dd, J = 8.9, 1.9 Hz, 1H), 7.43 (d, J = 8.1 Hz, 4H), 7.15 (d, J = 8.0 Hz, 4H), 2.37 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 154.28, 153.81, 141.73, 139.90, 139.22, 139.13, 136.07, 135.97, 133.22, 131.42, 130.48, 129.81, 129.74, 129.12, 129.10, 123.53, 21.48.

6,7-dimethyl-2,3-di-p-tolylquinoxaline (6k)⁵

White solid (287 mg, 85%). ¹H NMR (600 MHz, CDCl₃) δ 7.90 (s, 2H), 7.42 (d, *J* = 8.0 Hz, 4H), 7.13 (d, *J* = 8.0 Hz, 4H), 2.49 (s, 6H), 2.36 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 152.51, 140.17, 140.12, 138.40, 136.66, 129.75, 128.92, 128.14, 21.38, 20.44.

2,3-bis(2-chlorophenyl)quinoxaline (6l)⁹

White solid (253 mg, 72%). ¹H NMR (600 MHz, CDCl₃) δ 8.15 (dd, J = 6.4, 3.4 Hz, 2H), 7.76 (dd, J = 6.0, 3.2 Hz, 2H), 7.37 (s, 2H), 7.22 (d, J = 7.8 Hz, 2H), 7.18-7.13 (m, 4H). ¹³C NMR (150 MHz, CDCl₃) δ 152.73, 141.29, 137.27, 131.30, 130.70, 130.23, 129.63, 129.47, 126.50. HRMS (ESI) calcd for C₂₀H₁₂Cl₂N₂ [M+H]⁺: 351.0456; found: 351.0457.

2,3-bis(2-chlorophenyl)-6-methylquinoxaline (6m)

White solid (284 mg, 78%). ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, *J* = 8.6 Hz, 1H), 8.00 (s, 1H), 7.67 (d, *J* = 8.5 Hz, 1H), 7.44 (s, 2H), 7.30 (d, *J* = 7.5 Hz, 2H), 7.24-7.19 (m, 4H), 2.62 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 152.53, 151.73, 141.34, 141.33, 139.76, 137.39, 137.37, 133.00, 131.29, 131.25, 130.09, 130.07, 129.57, 128.93, 128.22, 126.44, 126.42, 22.05. HRMS (ESI) calcd for C₂₁H₁₄Cl₂N₂ [M+H]⁺:: 365.0612; found: 365.0613

6,7-dimethyl-2-phenylquinoxaline (6n)¹⁰

Yellow solid (182 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 8.15 (d, *J* = 7.0 Hz, 2H), 7.88 (s, 1H), 7.83 (s, 1H) 7.56 - 7.47 (m, 3H), 2.48 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 151.08, 142.46, 141.32, 140.89, 140.62, 140.21, 137.21, 129.92, 129.16, 128.74, 128.22, 127.47, 20.46, 20.43.

2-phenylquinoxaline (60)¹⁰

White solid (136 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H), 8.20 - 8.11 (m, 4H), 7.80 - 7.73 (m, 2H), 7.59 - 7.51 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.99, 143.50, 142.44, 141.72, 136.92, 130.42, 130.32, 129.76, 129.67, 129.29, 129.26, 127.69.

6,7-dichloro-2-phenylquinoxaline (6p)¹⁰

Pale yellow solid (176 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H), 8.27 (s, 1H), 8.23 (s, 1H), 8.18 (dd, *J* = 7.8, 1.7 Hz, 2H), 7.61 - 7.52 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.66, 144.29, 141.12, 140.28, 136.00, 134.95, 134.03, 130.79, 130.20, 129.79, 129.29, 127.59.

6-methyl-2-phenylquinoxaline & 7-methyl-2-phenylquinoxaline (6q: 6q'= 45: 55)¹⁰

Brown solid (161 mg, 74%). ¹H NMR (600 MHz, CDCl₃) δ 9.28 (s, 1H), 9.26 (s, 1H), 8.18 (dd, J = 7.0, 4.1 Hz, 4H), 8.05 (d, J = 8.5 Hz, 1H), 8.01 (d, J = 8.5 Hz, 1H), 7.93 (s, 1H), 7.89 (s, 1H), 7.61 (d, J = 8.5 Hz, 1H), 7.57 (t, J = 7.0 Hz, 5H), 7.52 (dd, J = 6.9, 3.5 Hz, 2H), 2.61 (s, 6H). ¹³C NMR

 $(150 \text{ MHz}, \text{CDCl}_3) \\ \delta \\ 151.79, 151.08, 143.28, 142.49, 142.40, 141.65, 140.87, 140.79, 140.17, 140.09, 136.97, 132.66, 131.93, 130.12, 130.02, 129.17, 128.65, 128.51, 128.01, 127.56, 127.47, 21.95, 21.92.$

2-ethyl-3-methylquinoxaline (6r)⁹

White solid (89 mg, 52%). ¹H NMR (600 MHz, CDCl₃) δ 7.95 - 7.90 (m, 2H), 7.60 - 7.57 (m, 2H), 2.96 - 2.92 (m, 2H), 2.68 - 2.67 (m, 3H), 1.36 - 1.33 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 157.51, 153.05, 141.17, 140.85, 128.76, 128.70, 128.53, 128.25, 28.98, 22.71, 11.97.

2-ethyl-3,6,7-trimethylquinoxaline (6s)¹¹

White solid (114 mg, 56%). ¹H NMR (600 MHz, CDCl₃) δ 7.74 (s, 1H), 7.70 (s, 1H), 2.97 (q, J = 7.5 Hz, 2H), 2.70 (s, 3H), 2.44 (s, 6H), 1.37 (t, J = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 156.63, 152.03, 140.18, 139.88, 139.07, 139.02, 127.80, 127.53, 29.04, 22.73, 20.39, 20.34, 12.25.

6,7-dichloro-2-ethyl-3-methylquinoxaline (6t)¹²

Yellow solid (128 mg, 53%). ¹H NMR (600 MHz, CDCl₃) δ 8.09 (s, 1H), 8.04 (s, 1H), 2.99 (q, J = 7.4 Hz, 2H), 2.71 (s, 3H), 1.39 (t, J = 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 158.91, 154.66, 140.07, 139.72, 133.07, 133.05, 129.46, 129.15, 29.02, 22.86, 11.60.

2-phenyl-5,6,7,8-tetrahydroquinoxaline (6u)¹³

Colourless Oil (151mg, 72%) ¹H NMR (600 MHz, CDCl₃) δ 8.74 (s, 1H), 7.97 (d, *J* = 8.2 Hz, 2H), 7.49 (dd, *J* = 10.8, 3.7 Hz, 2H), 7.45 - 7.41 (m, 1H), 3.03-2.99 (m, 4H), 1.95 (d, *J* = 2.0 Hz, 4H). ¹³C NMR (150 MHz, CDCl₃) δ 152.39, 151.21, 149.72, 138.85, 136.95, 129.28, 128.96, 126.80, 32.23, 31.74, 22.74.

2,3-diphenyl-5,6,7,8-tetrahydroquinoxaline (6v)¹⁴

White solid (236 mg, 82%) ¹H NMR (600 MHz, CDCl₃) δ 7.40 - 7.39 (m, 4H), 7.29 - 7.27 (m, 6H), 3.08 - 3.05 (m, 4H), 2.00 - 1.98 (m, 4 H). ¹³C NMR (150 MHz, CDCl₃) δ 150.65, 149.65, 139.06, 129.73, 128.29, 128.22, 31.91, 22.91.

2-Phenylbenzo[d]thiazole (9a)¹⁵

White solid (177 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 8.11-8.08 (m, 3H), 7.90 (d, *J* = 7.96 Hz, 1H), 7.51-7.48 (m, 4H), 7.40 - 7.37 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.19, 154.28, 135.20, 133.76, 131.10, 129.15, 127.69, 126.44, 125.32, 123.37, 121.75.

2-(4-methoxyphenyl)benzo[d]thiazole (9b)¹⁵

White solid (210 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 8.05-8.03 (m, 3H), 7.87 (d, J = 7.92 Hz, 1H), 7.47 (td, J = 7.68, 1.04 Hz, 1H), 7.35 (td, J = 7.56, 0.88 Hz, 1H), 7.02-6.98 (m, 2H), 3.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.01, 162.06, 154.36, 134.99, 129.25, 126.57, 126.34, 124.93, 122.96, 121.64, 114.51,

55.60.

2-(3-methoxyphenyl)benzo[d]thiazole (9c)¹⁵

White solid (205 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.16 Hz 1H), 7.89 (d, J = 7.96 Hz, 1H), 7.67 (t, J = 2.28 Hz, 1H), 7.64 (d, J = 7.72 Hz, 1H), 7.49 (td, J = 7.70, 1.0 Hz 1H), 7.41 - 7.37 (m, 2H), 7.03 (dd, J = 8.24, 2.48 Hz 1H) 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.06, 160.17, 154.18, 135.21, 135.01, 130.16, 21.72 Hz, 142 Hz 15.55 (2)

126.43, 125.35, 123.36, 121.73, 120.35, 117.46, 112.15, 55.62.

2-(3-phenoxyphenyl)benzo[d]thiazole (9d)¹⁶

White solid (252 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.16 Hz, 1H), 7.89 (d, J = 7.96 Hz, 1H), 7.83 - 7.89 (m, 2H), 7.51 - 7.43 (m, 2H), 7.41 - 7.36 (m, 3H), 7.17 - 7.12 (m, 2H), 7.10-7.08 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.38, 158.03, 156.93, 154.18, 135.49, 135.23, 130.50, 130.05, 126.51, 125.47,

123.82, 123.48, 122.54, 121.75, 121.31, 119.23, 117.83.

2-(naphthalen-2-yl)benzo[d]thiazole (9e)¹⁵

White solid (222 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.22 (dd, J = 8.4, 1.6 Hz, 1H), 8.13 (d, J = 8.16 Hz, 1H), 7.98 - 7.87 (m, 4H), 7.56 - 7.50 (m, 3H), 7.42-7.38 (t, J = 8.04, Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.23, 154.36, 135.25, 134.73, 133.30, 131.10, 128.95, 128.00, 127.70, 127.58, 127.01, 126.52,

125.37, 124.56, 123.36, 121.77.

2-(p-tolyl)benzo[d]thiazole (9f)¹⁷

White solid (192 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.16 Hz, 1H), 7.99 (d, J = 8.12 Hz, 2H), 7.89 (d, J = 7.96 Hz, 1H), 7.48 (t, J = 8.16 Hz, 1H), 7.37(t, J = 7.40 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

168.39, 154.30, 141.57, 135.08, 131.10, 129.86, 127.62, 126.38, 125.14, 123.18, 121.71, 21.66.

2-(4-fluorophenyl)benzo[d]thiazole (9g)¹⁵

White solid (174 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 8.10 - 8.05 (m, 3H), 7.89 (d, *J* = 7.96 Hz, 1H), 7.49 (t, *J* = 8.2 Hz, 1H), 7.38 (t, *J* = 8.04 Hz, 1H), 7.18 (t, *J* = 8.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.86, 164.58 (d, J = 251.8Hz), 154.22, 135.17, 130.08 (d, J = 3.25 Hz) 126.54, 125.27, 123.31, 121.74, 116.28 (d, J = 21.08 Hz)

Hz), 129.64 (d, J = 8.62 Hz), 126.54, 125.37, 123.31, 121.74, 116.28 (d, J = 21.98 Hz).

2-(4-chlorophenyl)benzo[d]thiazole (9h)¹⁵

White solid (201 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.2 Hz, 1H), 8.03 - 8.01 (m, 2H), 7.90 (d, J = 8.0 Hz, 1H), 7.52 - 7.45 (m, 3H), 7.42 - 7.36 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.76, 154.20, 137.16, 135.19, 132.24, 129.41, 128.84, 126.62,

2-(3,5-difluorophenyl)benzo[d]thiazole (9i)¹⁸

Yellow solid (173 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.1 Hz, 1H), 7.91 (d, *J* = 7.9 Hz, 1H), 7.62 (d, *J* = 6.0 Hz, 2H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 1H), 6.93 (t, *J* = 8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.21 (t, *J* = 3.4 Hz), 163.37(dd, *J* = 246, 12.7 Hz), 153.97, 136.71 (t, *J* = 9.9 Hz), 135.26, 126.85, 126.03, 123.81, 121.87, 110.71-110.44 (m), 106.19 (t, *J* = 25.4 Hz).

2-(4-bromophenyl)benzo[d]thiazole (9j)¹⁷

White solid (229 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.2 Hz, 1H), 7.93 - 7.86 (m, 3H), 7.60 - 7.59 (m, 2H), 7.50 (t, J = 7.6 Hz, 1H), 7. 40 (t, J = 7.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.72, 154.13, 135.10, 132.58, 132.27, 128.94, 126.57, 125.51,

125.49, 123.39, 121.73.

2-(4-(trifluoromethyl)phenyl)benzo[d]thiazole (9k)¹⁵

White solid (209 mg, 75%). ¹H NMR (600 MHz, CDCl₃) δ 8.18 (d, *J* = 8.1 Hz, 2H), 8.10 (d, *J* = 8.2 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.2 Hz, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 166.15, 154.11,

136.81, 135.28, 132.51, (q, *J* = 32.7 Hz), 127.84, 126.10, (q, *J* = 32.7 Hz), 125.90, 124.83, 123.72, 123.03, 121.85.

2-(2-methoxyphenyl)benzo[d]thiazole (9l)¹⁹

White solid (198 mg, 82%). ¹H NMR (600 MHz, CDCl₃) δ 8.54 (dd, J = 7.8, 1.4 Hz, 1H), 8.10 (d, J = 8.1 Hz, 1H), 7.93 (d, J = 7.9 Hz, 1H), 7.51 - 7.41 (m, 2H), 7.39 - 7.36 (m, 1H), 7.15 - 7.13 (m, 1H), 7.07 (d, J = 8.3 Hz, 1H), 4.06 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 163.28, 157.33, 152.24, 136.21, 131.91, 129.63, 126.02, 124.71, 122.88, 122.35, 121.33, 121.28, 111.77, 55.82.

2-(pyridin-2-yl)benzo[d]thiazole (9m)¹⁷

Yellow solid (163 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 4.8 Hz, 1H), 8.36 (d, *J* = 7.9 Hz, 1H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.95 (d, *J* = 7.9 Hz, 1H), 7.82 (td, *J* = 7.8, 1.6 Hz, 1H), 7.51 - 7.47 (m, 1H), 7.41 (d, *J* = 7.9 Hz, 1H), 7.40 - 7.34 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 169.47, 154.38, 151.49, 149.74, 137.09, 136.22, 126.37,

125.74, 125.35, 123.68, 122.11, 120.85.

2-(thiophen-2-yl)benzo[d]thiazole (9n)¹⁵

White solid (154 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.2 Hz, 1H), 7.85 (d, J = 8.0, Hz, 1H), 7.65 (dd, J = 3.7, 1.1 Hz, 1H), 7.51 - 7.45 (m, 2H), 7.38 - 7.34 (m, 1H), 7.13 (dd, J = 5.0, 3.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 161.51, 153.80, 137.45, 134.80, 129.42, 128.73, 128.16, 126.55, 125.35, 123.09, 121.57.

2-(furan-2-yl)benzo[d]thiazole (90)¹⁵

White solid (139 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 1.0 Hz, 1H), 7.50 - 7.46 (m, 1H), 7.39 - 7.35 (m, 1H), 7.19 (d, J = 3.5 Hz, 1H), 6.58 (dd, J = 3.4, 1.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 157.66, 153.85,

148.85, 144.80, 134.38, 126.58, 125.30, 123.22, 121.67, 112.64, 111.53.

2-phenylquinoline (12a)²⁰

White solid (166 mg, 81%). ¹H NMR (600 MHz, CDCl₃) δ 8.22 (d, J = 8.6 Hz, 1H), 8.20 - 8.16 (m, 3H), 7.88 (d, J = 8.6 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.74 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.55 - 7.52 (m, 3H), 7.49 - 7.46 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 157.52, 148.42, 139.83, 136.91, 129.88, 129.79, 129.45, 128.98, 127.71,

127.60, 127.32, 126.42, 119.16.

2-(4-Tolyl)quinolone (12b)²⁰

126.15, 118.92, 21.44.

Pale yellow oil (180 mg, 83%). ¹H NMR (600 MHz, CDCl₃) δ 8.20 (d, *J* = 8.4 Hz, 1H), 8.17 (d, *J* = 8.6 Hz, 1H), 8.10 (d, *J* = 8.1 Hz, 2H), 7.85 (d, *J* = 8.6 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.74 (t, *J* = 7.5 Hz, 1H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 157.37, 148.33, 139.46, 136.91, 136.74, 129.70, 129.65, 127.52, 127.51, 127.15,

2-(4-fluorophenyl)quinolone (12c)²⁰

Pale yellow solid (173 mg, 78%). ¹H NMR (600 MHz, CDCl₃) δ 8.19 - 8.14 (m, 4H), 7.82 - 7.79 (m, 2H), 7.73 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.54-7.51 (m, 1H), 7.23-7.19 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 163.82 (d, J = 249.2 Hz), 156.24, 148.23, 136.95, 135.82 (d, J = 2.9 Hz), 129.84, 129.64, 129.50 (d, J = 8.6 Hz), 127.58, 127.15, 126.44, 118.71, 115.86 (d, J = 21.6 Hz).

2-(4-chlorophenyl)quinolone (12d)²⁰

White solid (205 mg, 86%). ¹H NMR (600 MHz, CDCl₃) δ 8.20 (d, *J* = 8.6 Hz, 1H), 8.16 (d, *J* = 8.5 Hz, 1H), 8.13 - 8.09 (m, 2H), 7.82 - 7.81 (m, 2H), 7.75 (ddd, *J* = 8.4, 6.8, 1.5 Hz, 1H), 7.55 - 7.52 (m, 1H), 7.51 - 7.48 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 156.08, 148.30, 138.12, 137.07, 135.62, 129.95, 129.77, 129.11, 128.91, 127.60, 127.30, 126.60, 118.66.

2,4-diphenylquinoline (12e)²¹

Brown solid (216 mg, 77%). ¹H NMR (600 MHz, CDCl₃) δ 8.28 (d, *J* = 8.4 Hz, 1H), 8.22 (d, *J* = 7.2 Hz, 2H), 7.93 (d, *J* = 8.4 Hz, 1H), 7.84 (s, 1H), 7.75 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.62 - 7.51 (m, 7H), 7.51 - 7.46 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 156.00, 149.26, 148.89, 139.74, 138.47, 130.20, 129.66, 129.64, 129.45, 128.95, 128.70, 128.51, 127.69, 126.44, 125.85, 125.74, 119.49.

4-phenyl-2-(p-tolyl)quinolone (12f)²¹

Slightly yellow solid (233 mg, 79%). ¹H NMR (600 MHz, CDCl₃) δ 8.32 - 8.28 (m, 1H), 8.15 (t, *J* = 7.7 Hz, 2H), 7.95 - 7.92 (m, 1H), 7.84 (d, *J* = 4.2 Hz, 1H), 7.76 (t, *J* = 7.5 Hz, 1H), 7.60-7.52 (m, 5H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.37 - 7.36 (m, 2H), 2.47 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 156.85, 149.03, 148.85, 139.45, 138.49, 136.83, 130.08, 129.61, 129.49, 128.61, 128.40, 127.49, 126.18, 125.70, 125.65, 119.22, 21.41.

3-methyl-4-phenyl-2-(p-tolyl)quinolone (12g)²¹

Yellow solid (251 mg, 85%). ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, J = 8.4 Hz, 1H), 7.66-7.64 (m, 1H), 7.62 - 7.61 (m, 2H), 7.55 (t, J = 7.4 Hz, 2H), 7.51-7.48 (m, 3H), 7.44 (t, J = 7.4 Hz, 1H), 7.40 - 7.39 (m, 2H), 7.32 - 7.31 (m, 2H), 2.15 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.96, 147.91, 146.33, 141.61, 137.84, 129.54, 129.45, 129.05, 128.78, 128.68, 128.46, 128.23, 127.97, 127.19, 126.87, 126.38, 126.12, 18.75.

3-methyl-2-(p-tolyl)quinolone (12h)²²

Yellow oil (165 mg, 75%). ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, *J* = 8.4 Hz, 1H), 8.01 (s, 1H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.68 - 7.65 (m, 1H), 7.60 (d, *J* = 7.9 Hz, 2H), 7.53 - 7.48 (m, 3H), 7.44 (t, *J* = 7.4 Hz, 1H), 2.49 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.62, 146.68, 140.93, 136.84, 129.35, 129.31, 128.93, 128.85, 128.40, 128.28, 127.67, 126.80, 126.50, 20.73.

2-(naphthalen-2-yl)quinolone (12i)²²

White solid (216 mg, 85%). ¹H NMR (600 MHz, CDCl₃) δ 8.62 (s, 1H), 8.38 (dd, *J* = 8.6, 1.7 Hz, 1H), 8.25 (t, *J* = 7.6 Hz, 2H), 8.05 - 7.99 (m, 3H), 7.91 (dd, *J* = 5.9, 3.4 Hz, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.78 - 7.75 (m, 1H), 7.56 - 7.53 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 157.29, 148.47, 137.06, 136.96, 133.96, 133.60, 129.87, 129.83, 128.95, 128.71, 127.85, 127.63, 127.34,

127.28, 126.84, 126.48, 126.47, 125.18, 119.30.

2-(pyridin-2-yl)quinolone (12j)²²

Yellow solid (152 mg, 75%). ¹H NMR (600 MHz, CDCl₃) δ 8.74 (d, J = 4.7 Hz, 1H), 8.65 (d, J = 7.9 Hz, 1H), 8.56 (d, J = 8.6 Hz, 1H), 8.28 (d, J = 8.6 Hz, 1H), 8.18 (d, J = 8.5 Hz, 1H), 7.87 - 7.84 (m, 2H), 7.73 (t, J = 7.6 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.36 - 7.34 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 156.42, 156.25, 149.28, 148.01, 137.08, 136.94, 129.90, 129.68, 128.34, 127.73, 126.87, 124.15,

121.94, 119.06.

2-(4-phenylnaphthalen-2-yl)pyridine (12k)²³

Yellow solid (186 mg, 66%). ¹H NMR (600 MHz, CDCl₃) δ 8.73 (d, J = 4.0 Hz, 1H), 8.70 (d, J = 7.9 Hz, 1H), 8.53 (s, 1H), 8.26 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.3 Hz, 1H), 7.89 (td, J = 7.8, 1.7 Hz, 1H), 7.77 - 7.72 (m, 1H), 7.62 - 7.58 (m, 2H), 7.56 - 7.46 (m, 4H), 7.40 - 7.34 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 156.47, 155.74, 149.41, 149.30, 148.59, 138.46, 137.10, 130.30, 129.79, 129.55, 128.59, 128.44, 126.93, 126.87, 125.94, 124.19, 122.00, 119.37.

2-hexylquinoline (12l)²⁴

Pale yellow oil (130 mg, 61%) ¹H NMR (600 MHz, CDCl₃) δ 7.97 - 7.94 (m, 2H), 7.66 (d, J = 8.1 Hz, 1H), 7.59 - 7.56 (m, 1H), 7.39 - 7.36 (m, 1H), 7.19 (dd, J = 8.9, 3.3 Hz, 1H), 2.87 (t, J = 8.0, Hz, 2H), 1.74 - 1.68 (m, 2H), 1.35 - 1.30 (m, 2H), 1.26 - 1.20 (m, 4H), 0.79 (t, J = 7.0 Hz, 3H). ¹³C NMR

(150 MHz, CDCl₃) δ 163.20, 147.93, 136.26, 129.39, 128.84, 127.55, 126.76, 125.69, 121.44, 39.47, 31.82, 30.17, 29.33, 22.66, 14.18.

2-hexyl-4-phenylquinoline (12m)²⁵

Pale yellow oil (185 mg, 64%). ¹H NMR (600 MHz, CDCl₃) δ 8.12 (d, J = 8.5 Hz, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.70 -7.67 (m, 1H), 7.54 - 7.47 (m, 5H), 7.43 (t, J = 7.6 Hz, 1H), 7.25 (s, 1H), 3.02 - 2.99 (m, 2H), 1.87-1.82 (m, 2H), 1.78 -1.43 (m, 2H), 1.36 - 1.31 (m, 4H), 0.89 (t, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 162.77, 148.61, 148.48,

138.40, 129.64, 129.31, 129.29, 128.62, 128.39, 125.80, 125.73, 125.36, 121.70, 39.54, 31.85, 30.24, 29.43, 22.69, 14.22.

2-propylquinoline (12n)²⁰

Colorless oil (101 mg, 58%) ¹H NMR (600 MHz, CDCl₃) δ 8.04 (dd, J = 8.4, 3.2 Hz, 2H), 7.75 (d, J = 8.1 Hz, 1H), 7.67 (t, J = 7.7 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 3.08 - 2.83 (m, 2H), 1.87 - 1.81 (m, 2H), 1.01 (t, J = 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 162.98, 147.93, 136.29, 129.42, 128.84,

127.57, 126.79, 125.73, 121.49, 41.36, 23.42, 14.12.

4-phenyl-2-propylquinoline (120)²⁶

Colorless oil (153mg, 62%) ¹H NMR (600 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 8.3 Hz, 1H), 7.69 (t, *J* = 7.3 Hz, 1H), 7.54 - 7.47 (m, 5H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.25 (s, 1H), 3.05 - 2.92 (m, 2H), 1.92 - 1.85 (m, 2H), 1.05 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 162.55, 148.63, 148.49, 138.40, 129.60, 129.34, 129.29, 128.63, 128.41,125.84, 125.75, 125.39, 121.76, 41.43, 23.49, 14.23.

8. Figures reproducing ¹H and ¹³C NMR spectra:

90 80 f1 (ppm) -10

f1 (ppm)

-10

f1 (ppm)

9. References:

- 1. P. Puylaert, R. van Heck, Y. Fan, A. Spannenberg, W. Baumann, M. Beller, J. Medlock, W. Bonrath, L. Lefort and S. Hinze, *Chem. Eur. J.*, 2017, **23**, 8473-8481.
- 2. B. M. Stadler, P. Puylaert, J. Diekamp, R. van Heck, Y. Fan, A. Spannenberg, S. Hinze and J. G. de Vries, *Adv. Synth Catal.*, 2018, **360**, 1151-1158.
- 3. R. Singh, A. Banerjee and K. K. Rajak, *Inorganica Chim. Acta*, 2010, **363**, 3131-3138.
- 4. K. Das, A. Mondal and D. Srimani, J. Org. Chem., 2018, 10.1021/acs.joc.8b01316
- 5. Z. Zhang, C. Xie, L. Feng and C. Ma, *Synth. Commun.*, 2016, **46**, 1507-1518.
- 6. A. Kamal, K. S. Babu, S. A. Hussaini, R. Mahesh and A. Alarifi, *Tetrahedron Lett.*, 2015, **56**, 2803-2808.
- 7. J. Zi, D.-W. Gu, Y. Zhang, Z.-Y. Hu, X.-Q. Zhang and X.-X. Guo, *Synth. Commun.*, 2018, **48**, 915-920.
- 8. D. Q. Shi, G. L. Dou, S. N. Ni, J. W. Shi and X. Y. Li, J. Heterocycl. Chem., 2008, 45, 1797-1801.
- 9. D. W. Allen and P. E. Cropper, *Polyhedron*, 1990, **9**, 129-135.
- 10. K. Gopalaiah, A. Saini, S. N. Chandrudu, D. C. Rao, H. Yadav and B. Kumar, *Org. Biomol. Chem.*, 2017, **15**, 2259-2268.
- 11. J. Qin, F. Chen, Z. Ding, Y.-M. He, L. Xu and Q.-H. Fan, *Org. Lett.*, 2011, **13**, 6568-6571.
- 12. S. Landaud, P. Lieben and D. Picque, *J. Inst. Brew.*, 1998, **104**, 93-99.
- 13. S. A. Raw, C. D. Wilfred and R. J. Taylor, *Org. Biomol. Chem.*, 2004, **2**, 788-796.
- 14. W. Song, P. Liu, M. Lei, H. You, X. Chen, H. Chen, L. Ma and L. Hu, *Synth. Commun.*, 2012, **42**, 236-245.
- 15. L.-m. Ye, J. Chen, P. Mao, Z.-f. Mao, X.-j. Zhang and M. Yan, *Tetrahedron Lett.*, 2017, **58**, 874-876.
- 16. D. S. Bose and M. Idrees, *Eur. J. Org. Chem.*, 2006, **71**, 8261-8263.
- 17. S. Liu, R. Chen, X. Guo, H. Yang, G. Deng and C.-J. Li, *Green Chem.*, 2012, **14**, 1577-1580.
- 18. R. Shelkar, S. Sarode and J. Nagarkar, *Tetrahedron Lett.*, 2013, **54**, 6986-6990.
- 19. Z. Yang, X. Chen, S. Wang, J. Liu, K. Xie, A. Wang and Z. Tan, *Eur. J. Org. Chem.*, 2012, **77**, 7086-7091.
- 20. Q. Wang, M. Wang, H.-J. Li, S. Zhu, Y. Liu and Y.-C. Wu, *Synthesis*, 2016, **48**, 3985-3995.
- 21. M. Mastalir, M. Glatz, E. Pittenauer, G. n. Allmaier and K. Kirchner, *J. Am. Chem. Soc.*, 2016, **138**, 15543-15546.
- 22. S. Shee, K. Ganguli, K. Jana and S. Kundu, *Chem. Commun.*, 2018, **54**, 6883-6886.
- 23. A. C. S. Reddy and P. Anbarasan, J. Catal., 2018, **363**, 102-108.
- 24. N. T. Patil and V. S. Raut, *Eur. J. Org. Chem.*, 2010, **75**, 6961-6964.
- 25. M. S. Reddy, N. Thirupathi and Y. K. Kumar, *RSC Adv.*, 2012, **2**, 3986-3992.
- 26. S. Yaragorla and A. Pareek, *Eur. J. Org. Chem.*, 2018, 1863-1871.