Synthesis of new fluorinated proline analogs from polyfluoroalkyl β ketoacetals and ethyl isocyanoacetate

N. A. Tolmachova, ${ }^{a, *}$ I. S. Kondratov, ${ }^{a, b}$ V. G. Dolovanyuk, ${ }^{b}$ S. O. Pridma, ${ }^{a}$ A. V. Chernykh, ${ }^{a}$ C. G. Daniliuc, ${ }^{\text {c }}$ and G. Haufe ${ }^{\text {c,d, }}$ *

a. Enamine Ltd, Chervonotkatska St 78, Kyiv, 02094, Ukraine.
b. Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Str. 1, Kyiv, 02660, Ukraine
c. Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, Münster 48149, Germany.
d. Cells-in-Motion Cluster of Excellence, Universität Münster, Waldeyerstraße 15, 48149 Münster, Germany.

Table of Contents

1. General 2
2. Synthetic procedures and compound characterization 2
2.1. Reaction of ketoacetals $\mathbf{2 a}, \mathbf{b}$ with ethyl isocyanoacetate 2
2.2. Hydrogenation of compounds 3a,b 3
2.3. Synthesis of trans-3-CF - pyroglutamate trans-6a. 6
2.4. Synthesis of trans-3-CF ${ }_{3}$-proline trans-1a from trans-6a. 7
2.5. Synthesis of $3-\mathrm{CF}_{3}-/ \mathrm{C}_{2} \mathrm{~F}_{5}$-prolines. 10
2.5.1. Synthesis of trans-3-CF - proline trans-1a 2 10
2.5.2. Synthesis of cis-3-CF - proline cis-1a 2 11
2.5.3. Synthesis of trans-3- $\mathrm{C}_{2} \mathrm{~F}_{5}$-proline trans-1b and compound trans-11b 13
2.5.4. Synthesis of cis-3- $\mathrm{C}_{2} \mathrm{~F}_{5}$-proline cis-1b and compound cis-11b 15
2.6. Enantiomer separation of compounds trans-/cis-10a 17
2.7. Enantiomer separation of compounds trans-/cis-6a 20
2.8. Reactions of ketoacetals $\mathbf{2 d}, \mathbf{e}$ with ethyl isocyanoacetate. Synthesis of 3- hydroxy-polyfluoroalkyl prolines 16c-e 22
2.8.1. Synthesis of compounds trans-16d and trans-/cis-17d 22
2.8.2. Synthesis of compounds trans-16e and trans-17e 25
2.8.3. Synthesis of compounds trans-16c and trans-17c 27
3. X-ray crystallography data 29
3.1. General 29
3.2. X-ray crystal structure analysis of trans-1b 29
3.3. X-ray crystal structure analysis of trans-6a. 31
3.4. X-ray crystal structure analysis of (2S,3S)-12a. 33
3.5. X-ray crystal structure analysis of (2R,3S)-12a 34
3.6. X-ray crystal structure analysis of trans-15d 36
3.7. X-ray crystal structure analysis of trans-17d 37
4. References 40
5. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR-spectra 41

1. General

Solvents were purified according to standard procedures. Starting materials were purchased from Acros, Sigma-Aldrich, Merck, ABCR and Enamine at the highest commercial quality and were used without further purification. Melting points are uncorrected. Bruker Avance II at 300 and 400 MHz , Bruker DRX at 300 MHz and Agilent DD2 at 500 and $600 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$, at $25^{\circ} \mathrm{C}$. TMS (for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{NMR}$) and $\mathrm{CCl}_{3} \mathrm{~F}$ (for ${ }^{19}$ F NMR) were used as internal standards. Mass spectra (ESI-MS) were measured on a MicroTof Bruker Daltonics. The progress of reactions was monitored by TLC-plates (silica gel 60 F254, Merck). Column chromatography was carried out on silica gel 60 (Merck, particle size $0.040-0.063 \mathrm{~mm}$).

Compounds 2a-e were synthesized according to the literature procedures. ${ }^{1}$

2. Synthetic procedures and compound characterization

2.1. Reaction of ketoacetals $2 a, b$ with ethyl isocyanoacetate

(Z)-Ethyl 3-[(1,3-dioxolan-2-yl)methyl]-4,4,4-trifluoro-2-formamidobut-2-enoate (3a). Ethyl
 isocyanoacetate ($1.13 \mathrm{~g}, 10 \mathrm{mmol}$) in anhydrous THF (10 mL) was added dropwise via a syringe to a solution of t-BuOK ($1.12 \mathrm{~g}, 10 \mathrm{mmol}$) in anhydrous THF (10 mL) at $-78{ }^{\circ} \mathrm{C}$. After the addition was complete, the solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for further 30 min . Then a solution of ketoacetal $\mathbf{2 a}(1.47 \mathrm{~g}, 8 \mathrm{mmol})$ in THF (5 mL) was added dropwise via a syringe. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and warmed up to r.t. during $1-2 \mathrm{~h}$. Aqueous $\mathrm{HCl}(1 \mathrm{~N}, 10 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The products were separated and purified by column chromatography (EtOAc/cHex 1:2, $\mathrm{R}_{\mathrm{f}}=0.62$). Yield: $1.59 \mathrm{~g}(67 \%)$. Colorless solid, $\mathrm{mp} 82-84^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.34\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.86\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=4.2 \mathrm{~Hz}\right), 3.80-3.96(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \mathrm{CH}_{2} \mathrm{O}\right), 4.32\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 5.05\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=4.2 \mathrm{~Hz}, \mathrm{CHO}_{2}\right), 7.83($ br. s, $1 \mathrm{H}, \mathrm{NH}), 8.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})$ ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8,30.9,62.3,65.0,102.4,116.7\left(\mathrm{q}, J_{\mathrm{CF}}=30.0 \mathrm{~Hz}\right), 123.6\left(\mathrm{q}, J_{\mathrm{CF}}=275.0\right.$ $\mathrm{Hz}), 133.2\left(\mathrm{q}, J_{\mathrm{CF}}=3.2 \mathrm{~Hz}\right), 158.7,162.7 \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, CDCl 3): $\delta=-60.60\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.
HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NNaO}_{5}{ }^{+}$(320.0716). Found: 320.0709.
(Z)-ethyl 3-[(1,3-dioxolan-2-yl)methyl]-4,4,5,5,5-pentafluoro-2-formamidopent-2-enoate (3b) was

synthesized from ketoacetal $\mathbf{2 b}(1.87 \mathrm{~g}, 8 \mathrm{mmol})$ by the same method as compound 3a with the following modification: the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and then left overnight at $-20^{\circ} \mathrm{C}$. Then it was heated to $-5^{\circ} \mathrm{C}$. Aqueous $\mathrm{HCl}(1 \mathrm{~N}$, 10 mL) was added and the mixture was stirred for 30 min at $5-10^{\circ} \mathrm{C}$ and the cold solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined, dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The products were separated and purified by column chromatography (EtOAc/cHex, 1:1, $\mathrm{R}_{\mathrm{f}}=0.63$). Yield: $1.69 \mathrm{~g}(61 \%)$. Colorless solid, $\mathrm{mp} 93-95^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.34\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.86\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=4.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.79-3.94(\mathrm{~m}$, $\left.4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 4.32\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.03\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=4.3 \mathrm{~Hz}, \mathrm{CHO}_{2}\right), 7.68(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 8.16(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8,31.2,62.3,65.0,102.6,114.0\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=19.8 \mathrm{~Hz}\right), 135.2,158.4,162.5$ ppm. Low intensity, highly multiplicity signals of $\mathrm{C}_{2} \mathrm{~F}_{5}$-group carbons are located in the area 112-125 ppm.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-84.27\left(\mathrm{t}, 3 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=3.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right),-111.59\left(\mathrm{q}, 2 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=3.2 \mathrm{~Hz}, \mathrm{CF}_{2}\right) \mathrm{ppm}$.
HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{5} \mathrm{NNaO}_{5}{ }^{+}$(370.0684). Found: 370.0691.

2.2 Hydrogenation of compounds 3a,b

Scheme S1. Hydrogenation of compounds 3a,b

Table S1. Hydrogenation of compounds 3a,b: yields and conditions.

Entry	Starting compound	Conditions	Share of 3 [\%] ${ }^{\text {a }}$	Product	Isomer ratio anti/syn ${ }^{\text {b }}$ (isolated yield, \%)
1	3a	10\% Pd /C, 3 bar, r.t., EtOH, 12h	45	4a	73 / 27 (-)
2	3a	10\% Pd /C, 3 bar, r.t., EtOH, 12 h	33	4a	70 / 30 (- ${ }^{\text {d }}$)
3	3a	$\begin{gathered} \text { 10\% Pd /C, } 20 \text { bar, r.t., } \\ \text { EtOH, } 8 \text { h } \end{gathered}$	-c	4a	$75 / 25$ (64/20)
4	3a	5\% Rh /C, 20 bar, r.t., $\mathrm{EtOH}, 8 \mathrm{~h}$	-c	4a	$74 / 26\left(-{ }^{\text {d }}\right.$)
5	3a	$\begin{gathered} \text { 10\% Pt /C, } 20 \text { bar, r.t., } \\ \text { EtOH, } 8 \text { h } \\ \hline \end{gathered}$	5	4a	71/29 (-d)
6	3a	$\begin{gathered} 10 \% \text { Pd /C, } 20 \text { bar, r.t., } \\ \text { THF, } 8 \text { h } \end{gathered}$	-c	4a	$93 / 7\left(-{ }^{\text {d }}\right.$)
7	3a	10\% Pd /C, 20 bar, r.t., EtOAc, 8 h	- ${ }^{\text {c }}$	4a	94 / 6 (84/- ${ }^{\text {e }}$)
8	3a	(+)-COD-Rh-DuPhos, 20 bar, EtOH, $50^{\circ} \mathrm{C}, 12 \mathrm{~h}$	- ${ }^{\text {c }}$	4a	$\begin{aligned} & 96 / 4\left(-{ }^{\mathrm{d}}\right) \\ & \text { ee < } 10 \% \end{aligned}$
9	3b	$\begin{gathered} 10 \% \text { Pd /C, } 20 \text { bar, r.t., } \\ \text { EtOH, } 8 \text { h } \end{gathered}$	85	4b	67 / 33 (- ${ }^{\text {d }}$)
10	3b	$\text { 10\% Pd /C, } 50 \text { bar, } 50$ ${ }^{\circ} \mathrm{C}, \mathrm{EtOH}, 24 \mathrm{~h}$	5	4b	67 / 33 (56/23)

${ }^{\text {a }}$ The conversion was calculated from ${ }^{19} \mathrm{~F}$ NMR spectra of the crude mixture. ${ }^{\mathrm{b}}$ The ratio was calculated from ${ }^{19} \mathrm{~F}$ NMR spectra of the crude mixture. ${ }^{\text {c Compound }} \mathbf{3}$ was not observed in the reaction mixture. ${ }^{d}$ The mixture was not purified. Isomer syn-4 was not isolated.

Ethyl anti- and syn-3-[(1,3-dioxolan-2-yl)methyl]-4,4,4-trifluoro-2-formamidobutanoate (anti-4a and syn-4a). To a solution of compound $3 \mathrm{a}(1.49 \mathrm{~g}, 5 \mathrm{mmol}$) in EtOH (50 mL) 10\% Pd /C (35 mg) was added and the reaction mixture was stirred under hydrogen atmosphere (20 atm) in an autoclave at r.t. for 8 h . The reaction progress was monitored by TLC. After complete hydrogenation, the mixture was filtered and the solution was concentrated under reduced pressure. The obtained mixture of diastereomers $\boldsymbol{a n t i}-4 \boldsymbol{a}$ and syn-4a(75:25) was purified by column chromatography (EtOAc/cHex, 1:1).

Ethyl syn-3-[(1,3-dioxolan-2-yl)methyl]-4,4,4-trifluoro-2-formamidobutanoate (syn-4a) was isolated by column chromatography (eluent: EtOAc/cHex, 1:1, $\mathrm{R}_{\mathrm{f}}=0.41$). Yield: 0.30 g (20\%).Colorless solid, mp 57-59 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=1.28\left(\mathrm{t}, 3 \mathrm{H}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.90$ (ddd, $1 \mathrm{H}, J_{1 \mathrm{HH}}=$ $14.9 \mathrm{~Hz}, J_{2 \mathrm{HH}}=4.3 \mathrm{~Hz}, J_{3 \mathrm{HH}}=3.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}$ of CH_{2}), 2.03 (ddd, $J_{1 \mathrm{HH}}=14.9 \mathrm{~Hz}, J_{2 \mathrm{HH}}=8.8$ $\mathrm{Hz}, \mathrm{J}_{3 \text { нн }}=4.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 3.19-3.32 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCF}_{3}$), 3.85-4.05 (m, 4H,2CH2O), 4.19-4.26 (m, 2H, CH2O), $5.10\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=4.3 \mathrm{~Hz}, \mathrm{CHO}_{2}\right), 5.20\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=9.7\right.$ $\left.\mathrm{Hz}, J_{2 H H}=3.2 \mathrm{~Hz}, \mathrm{CH}\right), 6.39\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=9.7 \mathrm{~Hz}, \mathrm{NH}\right), 8.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=14.2,29.3,41.4\left(\mathrm{q}, J_{\mathrm{CF}}=25.4 \mathrm{~Hz}\right), 49.4\left(\mathrm{q}, J_{\mathrm{CF}}=2.1 \mathrm{~Hz}\right), 62.7,65.5,65.6$, $102.0,127.4\left(q, J_{C F}=281.2 \mathrm{~Hz}\right), 161.7,169.8 \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=-67.15\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FH}}=9.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.
HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NNaO}_{5}{ }^{+}$(322.0873). Found: 322.0870.

Ethyl anti-3-[(1,3-dioxolan-2-yl)methyl]-4,4,4-trifluoro-2-formamidobutanoate (anti-4a) was isolated by column chromatography (eluent: EtOAc/cHex, 1:1, $\mathrm{R}_{\mathrm{f}}=0.30$). Yield: 0.96 g $\mathrm{EtO}_{2} \mathrm{C}_{-}$"NHCHO (64\%). Colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=1.21\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.01$ (ddd, $1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=$ $14.9 \mathrm{~Hz}, J_{2 \mathrm{HH}}=9.5 \mathrm{~Hz}, J_{3 \mathrm{HH}}=5.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}$ of CH_{2}), 2.03 (ddd, $J_{1 \mathrm{HH}}=14.9 \mathrm{~Hz}, J_{2 H H}=3.9$ $\mathrm{Hz}, J_{3 \mathrm{HH}}=3.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 3.11-3.36 (m, $\left.1 \mathrm{H}, \mathrm{CHCF}_{3}\right), 3.78-4.01\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}\right)$, 4.17-4.24 (m, 2H, CH2O), $5.25 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{2 \mathrm{HH}}=3.1 \mathrm{~Hz}, \mathrm{CHO}_{2}$), 5.25 (dd, 1 H , $\left.J_{1 \mathrm{HH}}=9.6 \mathrm{~Hz}, J_{2 \mathrm{HH}}=2.4 \mathrm{~Hz}, \mathrm{CH}\right), 6.63\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=9.6 \mathrm{~Hz}, \mathrm{NH}\right), 8.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=14.3,28.3,40.7\left(\mathrm{q}, J_{\mathrm{CF}}=25.1 \mathrm{~Hz}\right), 48.0\left(\mathrm{q}, J_{\mathrm{CF}}=2.5 \mathrm{~Hz}\right), 62.7,65.2,65.5$, $101.8,127.4\left(q, J_{C F}=279.9 \mathrm{~Hz}\right), 160.8,169.9 \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR $\left(282.5 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=-70.25\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FH}}=9.5 \mathrm{~Hz}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.
HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NNaO}_{5}{ }^{+}$(322.0873). Found: 322.0878 .

Ethyl anti- and syn-3-[(1,3-dioxolan-2-yl)methyl]-4,4,5,5,5-pentafluoro-2-formamidopentanoate (anti-

 $\mathbf{4 b}$ and syn-4b). A solution of compound 3b(1.39 g, 4 mmol) in EtOH and $10 \% \mathrm{Pd} / \mathrm{C}(35 \mathrm{mg})$ was stirred under hydrogen atmosphere (50 atm) in an autoclave at $50^{\circ} \mathrm{C}$ for 8 h . The reaction progress was monitored by TLC. After complete hydrogenation, the mixture was filtered and the solution was concentrated under reduced pressure. The obtained diastereomers anti-4b and syn-4b (67:33) were separated and purified by column chromatography (EtOAc/cHex, 1:1).Ethyl syn-3-((1,3-dioxolan-2-yl)methyl)-4,4,5,5,5-pentafluoro-2-formamidopentanoate (syn-4b). was
 isolated by column chromatography (eluent: EtOAc/cHex, 1:1, $\mathrm{R}_{\mathrm{f}}=0.50$). Yield: 0.32 g (23\%). Colorless solid, $\mathrm{mp} 73-75^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.94$ (ddd, $J_{1 \mathrm{HH}}=15.2$ $\mathrm{Hz}, J_{2 \mathrm{HH}}=3.8 \mathrm{~Hz}, J_{3 \mathrm{HH}}=2.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}$ of CH_{2}), $2.11\left(\mathrm{ddd}, J_{1 \mathrm{HH}}=15.2 \mathrm{~Hz}, J_{2 \mathrm{HH}}=9.7 \mathrm{~Hz}\right.$, $J_{3 \mathrm{HH}}=3.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), $3.45\left(\mathrm{ddq}, J_{1 \mathrm{HF}}=28.1 \mathrm{~Hz}, J_{2 \mathrm{HH}}=9.7 \mathrm{~Hz}, J_{3 \mathrm{HH}(\mathrm{HF})}=2.4 \mathrm{~Hz}\right.$, CHCF_{2}), 3.88-4.07 (m, 4H, 2CH2O), 4.17-4.32 (m, 2H, CH2O), $5.13\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=3.8 \mathrm{~Hz}, \mathrm{CHO}_{2}\right), 5.41(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{1 H H}=9.7 \mathrm{~Hz}, J_{2 \mathrm{HH}}=2.4 \mathrm{~Hz}, \mathrm{CH}\right), 6.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=9.7 \mathrm{~Hz}, \mathrm{NH}\right), 8.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta=13.9,28.4,38.0\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=19.0 \mathrm{~Hz}\right), 49.6,62.3,65.1,65.2,101.7,161.5$, 169.4 ppm . Low intensity, highly multiplicity signals of $\mathrm{C}_{2} \mathrm{~F}_{5}$-group carbons are located in the area 112125 ppm.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-84.01\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$, -113.12 (dd, $1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=274.5 \mathrm{~Hz}, J_{\mathrm{FH}}=2.4 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of $C F_{2}$), -119.42 (dd, 1F, $J_{F F}=274.5 \mathrm{~Hz}, J_{F H}=28.1 \mathrm{~Hz}, F_{B}$ of $\left.C F_{2}\right) \mathrm{ppm}$.

HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~F}_{5} \mathrm{NNaO}_{5}{ }^{+}$(372.0841). Found: 372.0838.

Ethyl anti-3-[(1,3-dioxolan-2-yl)methyl]-4,4,5,5,5-pentafluoro-2-formamidopentanoate (anti-4b) was
isolated by column chromatography (eluent: EtOAc/cHex, 1:1, $\mathrm{R}_{\mathrm{f}}=0.37$). Yield:

0.78 g (56\%). Colorless oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.30=\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.01-2.23(2 \mathrm{H}, \mathrm{m}$, CH_{2}), 3.24-3.47 (1H, m, CHCF_{2}), 3.81-4.05 ($\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{O}$), $4.23\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.97\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=3.8 \mathrm{~Hz}, \mathrm{CHO}_{2}\right), 5.41\left(\mathrm{dd}, 2 \mathrm{H}, J_{1 \mathrm{HH}}=9.5 \mathrm{~Hz}, J_{2 \mathrm{HH}}=2.4 \mathrm{~Hz}\right.$, $\mathrm{CH}), 6.68\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=9.5 \mathrm{~Hz}, \mathrm{NH}\right), 8.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,27.4,38.0\left(\mathrm{t}, J_{\mathrm{CF}}=20.5 \mathrm{~Hz}\right), 47.4,62.3,64.7,65.1,101.4,160.5$, 169.8 ppm . Low intensity, highly multiplicity signals of $\mathrm{C}_{2} \mathrm{~F}_{5}$-group carbons are located in the area 112125 ppm.
${ }^{19}$ F NMR ($282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-82.27\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right),-115.60\left(\mathrm{dd}, 1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=274.5 \mathrm{~Hz}, J_{\mathrm{FH}}=10.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}\right.$ of $\left.C F_{2}\right),-120.40\left(\mathrm{dd}, 1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=274.5 \mathrm{~Hz}, J_{\mathrm{FH}}=21.6 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}\right.$ of $\left.\mathrm{CF}_{2}\right) \mathrm{ppm}$.

HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~F}_{5} \mathrm{NNaO}_{5}{ }^{+}$(372.0841). Found: 372.0848 .

2.3. Synthesis of trans-3-CF - pyroglutamate trans-6a

1-Ethyl anti-5-(2-hydroxyethyl) 2-formamido-3-(trifluoromethyl)pentanedioate (anti-5a). A solution of compound anti-4a ($0.30 \mathrm{~g}, 1 \mathrm{mmol}$) in EtOAc (30 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and generated ozone was bubbled for 1 h . Then oxygen was bubbled for 30 min in order to remove ozone and the mixture was heated to r.t. and concentrated under reduced pressure. The residue was purified by column chromatography. (EtOAc/cHex, 1:1, $\mathrm{R}_{\mathrm{f}}=0.22$). Yield: $0.27 \mathrm{~g}(87 \%)$. Colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=1.30\left(\mathrm{t}, 3 \mathrm{H}, J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.71\left(\mathrm{dd}, 1 \mathrm{H}, J_{1 \mathrm{HH}}=17.2 \mathrm{~Hz}, J_{2 \mathrm{HH}}=7.1 \mathrm{~Hz}\right.$, H_{A} of CH_{2}), $2.77\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=17.2 \mathrm{~Hz}, \mathrm{~J}_{2 \mathrm{HH}}=5.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of CH_{2}), 3.46-3.57 (m, 1H, CHCF ${ }_{3}$), 3.72-3.76 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.16-4.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.22\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{H}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.12\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=3.2 \mathrm{~Hz}, \mathrm{CH}\right), 8.14(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=14.4,30.4,42.9\left(\mathrm{q}, J_{\mathrm{CF}}=24.5 \mathrm{~Hz}\right), 47.5,61.0,63.6,67.9,127.9\left(\mathrm{q}, J_{\mathrm{CF}}=\right.$ $279.8 \mathrm{~Hz}), 163.7,170.4,171.8 \mathrm{ppm}$.
${ }^{19}$ F NMR (282.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=-71.28\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FH}}=9.1 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$.
HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NNaO}_{6}{ }^{+}$(338.0822). Found: 338.0831

1-Ethyl syn-5-(2-hydroxyethyl) 2-formamido-3-(trifluoromethyl)pentanedioate (syn-5a) was obtained

by the same approach as compound anti-5a starting from compound syn-4a (0.30 $\mathrm{g}, 1 \mathrm{mmol}$). The residue was purified by column chromatography. (EtOAc/cHex, 1:1, $R_{f}=0.22$). Yield: 0.25 g (79\%).Colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.33\left(\mathrm{t}, 3 \mathrm{H}, J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.62\left(\mathrm{dd}, 1 \mathrm{H}, J_{1 \mathrm{HH}}=\right.$ $17.5 \mathrm{~Hz}, J_{2 \mathrm{HH}}=11.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}$ of CH_{2}), 2.72 (dd, $1 \mathrm{H}, J_{1 \mathrm{HH}}=17.5 \mathrm{~Hz}, J_{2 \mathrm{HH}}=3.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 3.53-3.67 (m, 1H, CHCF ${ }_{3}$), 3.70 (ddd, $1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=12.6 \mathrm{~Hz}, \mathrm{~J}_{2 \mathrm{HH}}=5.9, \mathrm{~Hz}, \mathrm{~J}_{3 \mathrm{HH}}=2.3$ $\mathrm{Hz}, \mathrm{H}_{\mathrm{A}}$ of $\mathrm{CH}_{2} \mathrm{O}$), 3.91-4.05 (m, 2H, CH2O), 4.21-4.36 (m, 2H, CH2O), 4.68 (ddd, 1 H ,
$J_{1 \mathrm{HH}}=11.2 \mathrm{~Hz}, J_{2 \mathrm{HH}}=5.9, \mathrm{~Hz}, J_{3 \mathrm{HH}}=2.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}$ of $\left.\mathrm{CH}_{2} \mathrm{O}\right), 5.19\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=9.1 \mathrm{~Hz}, J_{2 \mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{CH}\right), 6.56$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=9.1 \mathrm{~Hz}, \mathrm{NH}\right), 8.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,30.1,42.7\left(\mathrm{q}, J_{\mathrm{CF}}=24.9 \mathrm{~Hz}\right), 47.9,60.5,62.9,67.2,126.2\left(\mathrm{q}, J_{\mathrm{CF}}=\right.$ $280.9 \mathrm{~Hz}), 161.9,169.0,170.2 \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=-67.56\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FH}}=8.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.

HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NNaO}_{6}{ }^{+}$(338.0822). Found: 338.0818
trans-5-Oxo-3-(trifluoromethyl)pyrrolidine-2-carboxylic acid (trans-6a). LiOH $\mathrm{H}_{2} \mathrm{O}$ ($21 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added to a solution of compound anti-5a (158 mg, 0.5 mmol) in EtOH (10 mL) and the resulting mixture was stirred overnight. Then solvent was concentrated under reduced pressure. Then the residue was dissolved in water (50 mL) and 1 N aq.
HCl was added $(\sim 0.5 \mathrm{~mL}$, until $\mathrm{pH} 4-5$). The organic layers were combined, washed by brine,dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by crystallization from cyclohexane. Yield 80 mg (81\%):

Also compound trans-6a was obtained starting from compound syn-5a ($158 \mathrm{mg}, 0.5 \mathrm{mmol}$) by the same procedure. Yield: 73 mg (74\%)

Colorless solid, mp $174-176{ }^{\circ} \mathrm{C}$. $\left(\text { Lit.: } 174{ }^{\circ} \mathrm{C}\right)^{2 \mathrm{a}}$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=2.40\left(\mathrm{dd}, 1 \mathrm{H}, J_{1 \mathrm{HH}}=18.0 \mathrm{~Hz}, J_{2 \mathrm{HH}}=3.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}\right.$ of CH2$), 2.76\left(\mathrm{dd}, 1 \mathrm{H}, J_{1 \mathrm{HH}}=\right.$ $18.0 \mathrm{~Hz}, \mathrm{~J}_{2 \mathrm{HH}}=10.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 3.41-3.57 (m, $\left.1 \mathrm{H}, \mathrm{CHCF}_{3}\right), 4.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=3.2 \mathrm{~Hz}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=30.8\left(\mathrm{q}, J_{\mathrm{CF}}=2.4 \mathrm{~Hz}\right), 42.8\left(\mathrm{q}, J_{\mathrm{CF}}=29.6 \mathrm{~Hz}\right), 56.9\left(\mathrm{q}, J_{\mathrm{CF}}=2.8 \mathrm{~Hz}\right), 128.2(\mathrm{q}$, $J_{\mathrm{CF}}=276.8 \mathrm{~Hz}$), 173.3, 177.4 ppm .
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, CD $\left.{ }_{3} \mathrm{OD}\right): \delta=-73.45\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FH}}=9.5 \mathrm{~Hz}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.
HRMS (ESI-TOF) $m / z:[\mathrm{M}-\mathrm{H}]^{-}$calcd. for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{-}$(196.0227). Found: 196.0214.
For literature data see ${ }^{2 a}$

2.4.Synthesis of trans-3-CF3-proline trans-1a from trans-6a

Scheme S2. Synthesis of compound trans-1a from trans-6a.
trans-Methyl 5-oxo-3-(trifluoromethyl)pyrrolidine-2-carboxylate(S1, see Scheme S2). Thionyl chloride $(2.26 \mathrm{~g}, 1.38 \mathrm{~mL}, 19 \mathrm{mmol})$ was added dropwise to methanol $(150 \mathrm{~mL})$ at $5-10^{\circ} \mathrm{C}$.
 When the addition was complete and the mixture was cooled to $0-5^{\circ} \mathrm{C}$ and compound trans-6a ($1.50 \mathrm{~g}, 7.60 \mathrm{mmol}$) was added in one portion. The reaction mixture was stirred at ambient temperature for 16 hours and then was concentrated under reduced pressure and the residue was treated with EtOAc $(300 \mathrm{~mL})$ and 2 M solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(40 \mathrm{~mL})$ and stirred at r.t. for 1 h . The mixture was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The organic fractions were combined and reduced on the rotary evaporator to give $\sim 1.61 \mathrm{~g}$ of compound $\mathbf{S 1}$ which was used for the next step without purification.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.50\left(\mathrm{dd}, 1 \mathrm{H}, J_{1 \mathrm{HH}}=18.0 \mathrm{~Hz}, J_{2 \mathrm{HH}}=4.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}\right.$ of CH_{2}), $2.68\left(\mathrm{dd}, 1 \mathrm{H}, J_{1 \mathrm{HH}}=\right.$ $18.0 \mathrm{~Hz}, \mathrm{~J}_{2 \mathrm{HH}}=10.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 3.31-3.46 (m, $1 \mathrm{H}, \mathrm{CHCF}_{3}$), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=3.3 \mathrm{~Hz}\right.$, CH) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.5$, $41.0\left(\mathrm{q}, J_{\mathrm{CF}}=30.5 \mathrm{~Hz}\right), 53.3,55.3\left(\mathrm{q}, J_{\mathrm{CF}}=2.5 \mathrm{~Hz}\right), 126.1\left(\mathrm{q}, J_{\mathrm{CF}}=\right.$ $277.5 \mathrm{~Hz}), 170.2,174.9 \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, CDCl $): \delta=-73.73\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FH}}=9.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.
HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NNaO}_{3}{ }^{+}$(234.0348). Found: 234.0356.
trans-1-tert-Butyl 2-methyl 5-oxo-3-(trifluoromethyl)pyrrolidine-1,2-dicarboxylate (S2, see Scheme
 $\mathrm{S} 2)$. Obtained compound $\mathbf{S 1}(1.60 \mathrm{~g})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$. Then Boc-anhydride $(1.99 \mathrm{~g}, 9.1 \mathrm{mmol})$ and DMAP ($12 \mathrm{mg}, 0.1 \mathrm{mmol}$) were added and the resulting solution was stirred overnight under Argon atmosphere at r.t. Then the solvent was concentrated under reduced pressure and the residue was purified by column chromatography (EtOAc/Hex, 1:3, $\mathrm{R}_{\mathrm{f}}=0.28$) giving pure target compound S2. Yield:
1.75 g (74\% upon two stages). Colorless solid, $\mathrm{mp} 63-65^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.50\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 2.67\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=18.0 \mathrm{~Hz}, \mathrm{~J}_{2 \mathrm{HH}}=2.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}\right.$ of CH $\left.\mathrm{CH}_{2}\right)$, $2.89\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=18.0 \mathrm{~Hz}, J_{2 \mathrm{HH}}=10.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of CH_{2}), 2.91-3.01 (m, 1H, CHCF ${ }_{3}$), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.71$ (d, $1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=2.2 \mathrm{~Hz}, \mathrm{CH}$) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=27.8,31.3\left(\mathrm{q}, J_{\mathrm{CF}}=1.6 \mathrm{~Hz}\right), 38.1\left(\mathrm{q}, J_{\mathrm{CF}}=30.5 \mathrm{~Hz}\right), 58.2\left(\mathrm{q}, J_{\mathrm{CF}}=2.5 \mathrm{~Hz}\right)$, $84.6,125.6\left(q, J_{\text {CF }}=279.5 \mathrm{~Hz}\right), 148.5,169.2,169.7 \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, CDCl $)$: $\delta=-74.06\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FH}}=9.1 \mathrm{~Hz}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.

HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NNaO}_{5}{ }^{+}$(334.0873). Found: 334.0886.

1-tert-Butyl trans-2-methyl 3-(trifluoromethyl)pyrrolidine-1,2-dicarboxylate (trans-7a). Obtained
 compound $\mathbf{S 2}$ ($1.71 \mathrm{~g}, 5.5 \mathrm{mmol}$) was dissolved in THF (100 mL) and cooled to $0^{\circ} \mathrm{C}$. Then solution of $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}(2.0 \mathrm{M}$ in THF, $5.5 \mathrm{~mL}, 11 \mathrm{mmol})$ was added dropwise under stirring under Argon atmosphere. The solution was allowed to warm to $50{ }^{\circ} \mathrm{C}$ and stirred for additional 3 days. Then the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was quenched with $\mathrm{MeOH}(10 \mathrm{~mL})$. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography (EtOAc/Hex 1:4, Rf = 0.46) giving compound trans-7a. Yield: $605 \mathrm{mg}(37 \%)$. Colorless oil.

NMR-spectra contain overlapping signals of both rotamers in ratio $\sim 2: 3$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.39\left(\mathrm{~s}, 5.4 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, major rotamer), 1.43 ($\mathrm{s}, 3.6 \mathrm{H}, 3 \mathrm{CH}_{3}$, minor rotamer), 2.01-2.25 (m, 2H, CH ${ }_{2}$), 2.83-3.01 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCF}_{3}$), $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.32\left(\mathrm{~d}, 0.6 \mathrm{H}, \mathrm{J}_{\mathrm{H}}=4.0 \mathrm{~Hz}, \mathrm{CH}\right.$, major rotamer), $4.47\left(\mathrm{~d}, 0.64 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right.$, minor rotamer) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, signals of both rotamers): $\delta=24.0,24.7,28.2,28.3,45.3,45.4,46.4\left(\mathrm{q}, \mathrm{J}_{\mathrm{CF}}=\right.$ 28.9 Hz), $47.6\left(q, J_{C F}=28.9 \mathrm{~Hz}\right), 52.5,52.7,58.8,59.0,80.6,80.8,126.1\left(q, J_{C F}=277.0 \mathrm{~Hz}\right), 126.3\left(q, J_{C F}=\right.$ $277.0 \mathrm{~Hz}), 153.1,153.9,171.6,171.8 \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.81\left(\mathrm{~d}, 0.6 \mathrm{~F}, \mathrm{~J}_{\mathrm{FH}}=9.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$, major rotamer), $-71.93\left(\mathrm{~d}, 0.4 \mathrm{~F}, \mathrm{~J}_{\mathrm{FH}}=\right.$ $9.6 \mathrm{~Hz}, \mathrm{CF}_{3}$, minor rotamer), ppm.

HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NNaO}_{4}{ }^{+}$(320.1080). Found: 320.1088.

Methyl trans-3-(trifluoromethyl)pyrrolidine-2-carboxylate hydrochloride (S3, see scheme S2).
 Compound trans-7a ($595 \mathrm{mg}, 2 \mathrm{mmol}$) was dissolved in a 4 N HCl in dioxane (20 mL) and then the residue was stirred at r.t. for 10 hours, then concentrated under reduced pressure giving $\sim 460 \mathrm{mg}$ of compound $\mathbf{S 3}$, which was used for the next step without purification. Colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}$): $\delta=1.98-2.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ of CH_{2}), 2.25-2.37 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 3.26-3.32 (m, 1H, CHCF ${ }_{3}$), 3.61-3.74 (m, 2H, CH2N), $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=5.3 \mathrm{~Hz}, \mathrm{CH}\right), 10.42$ (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=25.3,44.3\left(\mathrm{q}, J_{\mathrm{CF}}=28.7 \mathrm{~Hz}\right), 45.9,54.0,58.0\left(\mathrm{q}, J_{\mathrm{CF}}=2.0 \mathrm{~Hz}\right), 126.7(\mathrm{q}$, $J_{\text {CF }}=278.3 \mathrm{~Hz}$), 167.5 ppm .
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, CD 3 OD): $\delta=-70.93\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FH}}=9.5 \mathrm{~Hz}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.
trans-3-(Trifluoromethyl)pyrrolidine-2-carboxylic acid hydrochloride (trans-1a). The obtained transmethyl 3-(trifluoromethyl)pyrrolidine-2-carboxylate hydrochloride was dissolved in an
 aq. $6 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$ and was stirred at $80^{\circ} \mathrm{C}$ for 8 h . Then the solution was concentrated under reduced pressure and dried under vacuum of oil pump $\left(10^{-3} \mathrm{~mm} \mathrm{Hg}\right)$ giving pure product trans-1a which did not require any additional purification. Yield: 420 mg (96% upon 2 stages). Colorless solid, $\mathrm{mp}>200^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=1.94-2.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ of CH_{2}), 2.20-2.33 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 3.12-3.32 (m, 2H, CH2N), 3.44-3.62 (m, 1H, CHCF $)_{3}$, $4.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=6.2 \mathrm{~Hz}, \mathrm{CH}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=25.4,44.8\left(\mathrm{q}, J_{\mathrm{CF}}=29.5 \mathrm{~Hz}\right), 45.9,58.6,127.1\left(\mathrm{q}, J_{\mathrm{CF}}=277.5 \mathrm{~Hz}\right), 168.7$ ppm.
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, CD $\left.{ }_{3} \mathrm{OD}\right): \delta=-72.43\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FH}}=9.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.
HRMS (ESI-TOF) $m / z:[\mathrm{M}-\mathrm{H}]^{-}$calcd. for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}_{2}^{-}$(182.0434). Found: 182.0442.

2.5.Synthesis of trans/cis-3-CF3-/C2 F_{5}-proline trans-/cis-1a,b from anti-/syn-3a,b

2.5.1. Synthesis of trans-3-CF ${ }_{3}$-proline trans-1a

Scheme S3. Synthesis of compound trans-1a.

Ethyl trans-3-(trifluoromethyl)pyrrolidine-2-carboxylate (trans-9a). $6 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$ was added to a solution of compound anti- 4 a ($299 \mathrm{mg}, 1 \mathrm{mmol}$) in EtOH (20 mL). The resulting mixture
 was stirred at r.t. for 8 h . Then $10 \% \mathrm{Pd} / \mathrm{C}(20 \mathrm{mg})$ was added to the solution and the resulting solution was was stirred under hydrogen atmosphere (20 atm) in an autoclave at r.t. for 8 h . The reaction progress was monitored by TLC. After complete hydrogenation, the mixture was filtered and the solution was concentrated under reduced pressure giving $\sim 190 \mathrm{mg}$ of crude compound trans-9a (contains $\sim 15 \%$ of compound trans-1a and ethylene glycol) which was used for further stage without purification. Colorless oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=1.19\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.10-2.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.32-3.64(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$ and CHCF_{3}), $4.24\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=5.1 \mathrm{~Hz}, \mathrm{CH}\right) \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta=-71.30\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FH}}=9.3 \mathrm{~Hz}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.

HRMS (ESI-TOF) $m / z:[M+H]^{+}$calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+}$(212.0893). Found: 212.0901.
trans-1-(tert-Butoxycarbonyl)-3-(trifluoromethyl)pyrrolidine-2-carboxylic acid (trans-10a). Obtained amount of crude compound trans-9a (190 mg) was dissolved in $6 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$ and the
 resulting solution was stirred for 10 h at $80^{\circ} \mathrm{C}$. Then the cooled mixture was washed by EtOAc ($2 \times 30 \mathrm{~mL}$) and the water layer was concentrated under reduced pressure and the residue was dried in vacuum of oil pump ($10^{-3} \mathrm{~mm} \mathrm{Hg}$) for 5 h giving crude compound trans-1a ($\sim 130 \mathrm{mg}$) which was used for the next step without purification.

A solution of crude compound trans-1a ($\sim 110 \mathrm{mg}$) in dioxane (10 mL) was cooled to $0^{\circ} \mathrm{C}$ and then triethylamine ($0.21 \mathrm{~mL}, 152 \mathrm{mg}, 1.5 \mathrm{mmol}$) and Boc-anhydride ($153 \mathrm{mg}, 0.7 \mathrm{mmol}$) were consequently added portionwise under stirring. The mixture was stirred for 1 h at $0-5^{\circ} \mathrm{C}$ and left stirring overnight at r.t. Then dioxane was evaporated and the resulting aqueous solution was acidified with 1 N HCl solution
to $\mathrm{pH} \sim 2-3$ at $0-5{ }^{\circ} \mathrm{C}$. The aqueous layer was extracted with ethyl acetate ($4 \times 50 \mathrm{~mL}$) and combined organic layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (EtOAc/cHex 1:2, $\mathrm{R}_{\mathrm{f}}=0.11$). Yield: 186 mg (54% upon three steps starting from anti-4a). Colorless solid, mp $>200^{\circ} \mathrm{C}$.

NMR spectra contain overlapping signals of two rotamers in ratio $\sim 3: 2\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$ or $\sim 7: 3\left(\mathrm{CDCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=1.36\left(\mathrm{~s}, 5.4 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, major rotamer), $1.40\left(\mathrm{~s}, 3.6 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, minor rotamer), 1.94-2.25 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.24-3.51 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ and CHCF_{3}), $4.12\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{HH}}=3.7 \mathrm{~Hz}, \mathrm{CH}\right.$, major rotamer), 4.19 (d, $\mathrm{J}_{\mathrm{HH}}=3.7 \mathrm{~Hz}, \mathrm{CH}$, minor rotamer), 13.11 (br. s, $1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$, both rotamers): $\delta=23.4,24.2,27.8,27.9,44.9\left(q, J_{C F}=28.0 \mathrm{~Hz}\right), 45.0$, $45.1,46.0\left(q, J_{C F}=28.0 \mathrm{~Hz}\right), 79.5\left(q, J_{\mathrm{CF}}=278.3 \mathrm{~Hz}\right), 152.6,153.2,171.5,172.0 \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR ($285 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.53\left(\mathrm{~d}, 0.7 \mathrm{~F}, \mathrm{~J}_{\mathrm{CF}}=9.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$, major rotamer), $-71.80\left(\mathrm{~d}, 0.3 \mathrm{~F}, J_{\mathrm{CF}}=9.4\right.$ $\mathrm{Hz}, \mathrm{CF}_{3}$, minor rotamer) ppm.

HRMS (ESI-TOF) $m / z:[M-H]^{-}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{4}{ }^{-}$(282.0959). Found: 282.0965.
trans-3-(Trifluoromethyl)pyrrolidine-2-carboxylic acid hydrochloride (trans-1a). Compound trans-10a
 $(170 \mathrm{mg}, 0.6 \mathrm{mmol})$ was dissolved in a 4 N HCl in dioxane $(10 \mathrm{~mL})$ and then the residue was stirred at r.t. for 10 hours then concentrated under reduced pressure giving pure compound trans-1a.Yield: 124 mg (94\%)

Analytical data are presented above.

2.5.2. Synthesis of trans-3-CF ${ }_{3}$-proline cis-1a

Scheme S4. Synthesis of compound cis-1a.
cis-Ethyl 3-(trifluoromethyl)pyrrolidine-2-carboxylate hydrochloride (cis-9a). was synthesized by the same approach as compound trans-10a starting from compound syn-4a ($299 \mathrm{mg}, 1$
 mmol). Isolated $\sim 180 \mathrm{mg}$ of the crude product (contains $\sim 20 \%$ of compound cis-1a and ethylene glycol) was used for further stage without purification. Colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=1.20\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.17-2.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.34-$ $3.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCF}_{3}\right), 3.57-3.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.24\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}\right.$, $\mathrm{CH}) \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta=-67.83\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FH}}=9.3 \mathrm{~Hz}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.

HRMS (ESI-TOF) $m / z:[M+H]^{+}$calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+}$(212.0893). Found: 212.0904.
cis-1-(tert-Butoxycarbonyl)-3-(trifluoromethyl)pyrrolidine-2-carboxylic acid (cis-10a) was synthesized
 by the same approach as compound trans-10a starting from crude compound cis-9a ($110 \mathrm{mg}, 0.5 \mathrm{mmol}$) and purified by column chromatography (EtOAc/cHex, $\mathrm{R}_{\mathrm{f}}=0.12$). Yield: 119 mg (55% upon 3 steps starting from compound syn-4a). Colorless solid, mp $122-124{ }^{\circ} \mathrm{C}$.

NMR spectra contain overlapping signals of two rotamers in ratio $\sim 1: 2\left(\mathrm{CDCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.39\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, major rotamer), $1.43\left(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, minor rotamer), 2.05$2.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.02-3.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCF}_{3}\right), 3.36-3.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.66-3.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}\right.$ of $\mathrm{CH}_{2} \mathrm{~N}$), 4.43 (d, $\mathrm{J}_{\mathrm{HH}}=8.2 \mathrm{~Hz}, \mathrm{CH}$, major rotamer), 4.53 (d, $J_{\mathrm{HH}}=8.2 \mathrm{~Hz}$, minor rotamer), 10.73 (br. s, 1H, $\left.\mathrm{CO}_{2} \mathrm{H}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both rotamers): $\delta=23.2,24.1,28.1,28.3,44.9,45.1,46.0\left(\mathrm{q}, J_{\mathrm{CF}}=30.1 \mathrm{~Hz}\right.$), $46.9\left(q, J_{C F}=30.1 \mathrm{~Hz}\right), 57.9,58.3,81.1,81.5,124.7\left(q, J_{C F}=278.3 \mathrm{~Hz}\right), 124.8\left(q, J_{C F}=278.3 \mathrm{~Hz}\right), 153.4$, 154.2, 174.7, 175.8 ppm.
${ }^{19} \mathrm{~F}$ NMR ($285 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-68.10\left(\mathrm{~d}, 0.33 \mathrm{~F}, \mathrm{~J}_{\mathrm{FH}}=8.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$, minor rotamer), $-68.27\left(\mathrm{~d}, 0.64 \mathrm{~F}, J_{\mathrm{FH}}=\right.$ $8.4 \mathrm{~Hz}, \mathrm{CF}_{3}$, major rotamer) ppm.

HRMS (ESI-TOF) m / z : $[\mathrm{M}-\mathrm{H}]^{-}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{4}{ }^{-}$(282.0959). Found: 282.0967.
cis-3-(Trifluoromethyl)pyrrolidine-2-carboxylic acid hydrochloride (cis-1a) was synthesized by the same approach as compound trans-1a (see section 2.5.1) starting from compound trans-10a
 (113 mg, 0.4 mmol). Yield: 85 mg (97\%). Colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=2.17-2.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.28-3.66\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHCF}_{3}\right.$ and $\mathrm{CH}_{2} \mathrm{~N}$), $4.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, \mathrm{CH}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=24.6\left(\mathrm{q}, J_{\mathrm{CF}}=1.8 \mathrm{~Hz}\right), 44.0,44.3\left(\mathrm{q}, J_{\mathrm{CF}}=29.1 \mathrm{~Hz}\right), 66.1,125.6\left(\mathrm{q}, J_{\mathrm{CF}}=279.1\right.$ $\mathrm{Hz}), 168.7 \mathrm{ppm}$.
${ }^{19}$ F NMR ($285 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=67.74\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FH}}=9.5 \mathrm{~Hz}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.
HRMS (ESI-TOF) $m / z:[\mathrm{M}-\mathrm{H}]^{-}$calcd. for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}_{2}^{-}$(182.0434). Found: 182.0444.
2.5.3. Synthesis of trans-3-C2 F_{5}-proline trans-1b and compound trans-11b

Scheme S5. Synthesis of compounds trans-1b and trans-11b.

Ethyl trans-3-(perfluoroethyl)pyrrolidine-2-carboxylate hydrochloride (trans-9b) was synthesized by the same approach as compound trans-9a starting from compound anti-4b ($349 \mathrm{mg}, 1$ mmol). Isolated $\sim 210 \mathrm{mg}$ of the crude product (contains $\sim 10 \%$ of compound trans-1b and ethylene glycol) was used for further stage without purification. Colorless oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.35\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.14-2.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ of CH_{2}), 2.39-2.53 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 3.34-3.47 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$ of $\mathrm{CH}_{2} \mathrm{~N}$), 3.50-3.77 (m, $2 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ of $\mathrm{CH}_{2} \mathrm{~N}$ and $\left.\mathrm{CHCF}_{2}\right), 4.36\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=5.5 \mathrm{~Hz}, \mathrm{CH}\right) \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=-84.51\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right),-118.38$ (dd, $1 \mathrm{~F}, J_{\mathrm{FF}}=273.0 \mathrm{~Hz}, J_{\mathrm{FH}}=13.1 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of CF_{2}), $-124.13\left(\mathrm{dd}, 1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=273.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{FH}}=19.2 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}\right.$ of $\left.\mathrm{CF}_{2}\right) \mathrm{ppm}$.

HRMS (ESI-TOF) $m / z:[M+H]^{+}$calcd. for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{NO}_{2}{ }^{+}$(262.0861). Found: 262.0871.
trans-1-(tert-Butoxycarbonyl)-3-(perfluoroethyl)pyrrolidine-2-carboxylic acid (trans-10b) was synthesized by the same approach as compound trans-10a starting from compound
 trans-9b ($\sim 135 \mathrm{mg}$) and purified by column chromatography (EtOAc/cHex 1:2, $\mathrm{R}_{\mathrm{f}}=0.15$). Yield: 133 mg (52\% upon 3 steps starting from compound anti-4b). Colorless solid, mp $103-104{ }^{\circ} \mathrm{C}$

NMR spectra contain overlapping signals of two rotamers in ratio $\sim 2: 3\left(\mathrm{CDCl}_{3}\right)$
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.41\left(\mathrm{~s}, 3.6 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, minor rotamer), $1.46\left(\mathrm{~s}, 5.4 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, major rotamer), 1.99-2.27 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.97-3.14 ($\mathrm{m}, 0.4 \mathrm{H}, \mathrm{CHCF}_{2}$, minor rotamer), 3.29-3.55 (1.6H, H_{A} of $\mathrm{CH}_{2} \mathrm{~N}$ and CHCF_{2}, major rotamer), 3.56-3.77 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ of $\mathrm{CH}_{2} \mathrm{~N}$), $4.46\left(\mathrm{~d}, 0.4 \mathrm{H}, \mathrm{J}_{\mathrm{H}}=4.0 \mathrm{~Hz}, \mathrm{CH}\right.$, minor rotamer), $4.60\left(\mathrm{~d}, 0.6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=4.0 \mathrm{~Hz}, \mathrm{CH}\right.$, major rotamer), 9.58 (br. s, $1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both rotamers): $\delta=24.2,24.5,28.1,28.3,42.7\left(\mathrm{t}, J_{\mathrm{CF}}=21.2 \mathrm{~Hz}\right), 45.4\left(\mathrm{t}, J_{\mathrm{CF}}=\right.$ $21.2 \mathrm{~Hz}), 45.6,46.0,58.3,58.7,81.6,82.7,153.2,156.1,172.3,176.4 \mathrm{ppm}$. Low intensity, highly multiplicity signals of $\mathrm{C}_{2} \mathrm{~F}_{5}$-group carbons are located in the area 112-125 ppm.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-83.50\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right),-115.90\left(\mathrm{dd}, 0.4 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=270.7 \mathrm{~Hz}, J_{F H}=11.1 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}\right.$ of CF_{2}, minor rotamer), -117.20 (dd, $0.6 \mathrm{~F}, J_{\mathrm{FF}}=270.7 \mathrm{~Hz}, J_{F H}=9.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of CF_{2}, major rotamer), -123.59 (dd, 0.6F, $J_{\mathrm{FF}}=270.7 \mathrm{~Hz}, J_{\mathrm{FH}}=19.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of CF_{2}, major rotamer), -125.60 (dd, $0.4 \mathrm{~F}, J_{\mathrm{FF}}=270.7 \mathrm{~Hz}, J_{\mathrm{FH}}=$ $19.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of CF_{2}, minor rotamer) ppm .

HRMS (ESI-TOF) $m / z:[M-H]^{-}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~F}_{5} \mathrm{NO}_{4}^{-}$(332.0927). Found: 332.0916.
trans-3-(Perfluoroethyl)pyrrolidine-2-carboxylic acid hydrochloride (trans-1b) was synthesized by the same approach as compound trans-1a (see section 2.5.1) starting from compound
 trans-10b (100 mg, 0.3 mmol). Yield: $75 \mathrm{mg}(93 \%)$. Colorless solid, $\mathrm{mp}>200^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=2.19-2.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ of CH_{2}), 2.41-2.50 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 3.36-3.44 (m, 1H, H_{A} of $\left.\mathrm{CH}_{2} \mathrm{~N}\right)$, 3.50-3.57 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ of $\mathrm{CH}_{2} \mathrm{~N}$), 3.62-3.72 (m, 1 H , $\left.\mathrm{CHCF}_{2}\right), 4.73\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=5.4 \mathrm{~Hz}, \mathrm{CH}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=26.1$, $44.3\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=21.7 \mathrm{~Hz}\right.$), 47.5, 59.4, 169.4 ppm. Low intensity, highly multiplicity signals of $\mathrm{C}_{2} \mathrm{~F}_{5}$-group carbons are located in the area 112-125 ppm.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=-84.63\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right),-118.33$ (dd, $1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=273.0 \mathrm{~Hz}, J_{\mathrm{FH}}=12.3 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of $C F_{2}$), -124.53 (dd, 1F, $J_{F F}=273.0 \mathrm{~Hz}, J_{F H}=19.0 \mathrm{~Hz}, F_{B}$ of $\left.C F_{2}\right) \mathrm{ppm}$.

HRMS (ESI-TOF) $m / z:[M+H]^{+}$calcd. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~F}_{5} \mathrm{NO}_{2}{ }^{+}$(234.0548). Found: 234.0561.
trans-1-(tert-Butoxycarbonyl)-3-(perfluoroethyl)pyrrolidine-2-carboxylic acid (trans-11b). A solution of crude compound trans-9a ($\sim 210 \mathrm{mg}$) in dioxane (10 mL) was cooled to $0^{\circ} \mathrm{C}$ and then triethylamine ($0.42 \mathrm{~mL}, 304 \mathrm{mg}, 3 \mathrm{mmol}$) and Boc-anhydride ($314 \mathrm{mg}, 1.4 \mathrm{mmol}$) were consequently added portionwise under stirring. The mixture was stirred for 1 h at $0-5^{\circ} \mathrm{C}$ and left stirring overnight at r.t. Then dioxane was evaporated and the residue was acidified with 1 N HCl solution to $\mathrm{pH} \sim 2-3$ at $0-5^{\circ} \mathrm{C}$. The aqueous layer was extracted with ethyl acetate $(4 \times 50 \mathrm{~mL})$ and combined organic layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (EtOAc/cHex 1:2, $\mathrm{R}_{\mathrm{f}}=0.61$). Yield: 245 mg (68% upon two stages, starting from anti-4b). Colorless oil.

NMR spectra contain overlapping signals of two rotamers in ratio $\sim 2: 3\left(\mathrm{CDCl}_{3}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.27\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.41\left(\mathrm{~s}, 5.4 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, major rotamer), $1.44(\mathrm{~s}$, $3.6 \mathrm{H}, 3 \mathrm{CH}_{3}$, minor rotamer), 2.02-2.20 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.89-3.05 (m, $1 \mathrm{H}, \mathrm{CHCF}_{2}$), 3.45-3.54 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$ of
$\mathrm{CH}_{2} \mathrm{~N}$), 3.57-3.77 (m, 1H, H_{B} of $\mathrm{CH}_{2} \mathrm{~N}$), 4.11-4.28 (m, 2H, CH2O), , 4.42 (d, $0.6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=5.2 \mathrm{~Hz}, \mathrm{CH}$, major rotamer), $4.54\left(\mathrm{~d}, 0.4 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=5.2 \mathrm{~Hz}, \mathrm{CH}\right.$, minor rotamer) ppm.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both rotamers): $\delta=14.0,24.2,24.8,28.1,28.2,44.3\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=21.5\right), 45.5\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=\right.$ 21.5), 45.6, 45.7, 58.4, 61.6, 61.5, 80.6, 80.8, 153.1, 153.8, 171.4, 171.6 ppm. Low intensity, highly multiplicity signals of $\mathrm{C}_{2} \mathrm{~F}_{5}$-group carbons are located in the area 112-125 ppm.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-83.04\left(\mathrm{~s}, 1.2 \mathrm{~F}_{\mathrm{N}} \mathrm{CF}_{3}\right.$, minor rotamer), -83.07 ($\mathrm{s}, 1.8 \mathrm{~F}, \mathrm{CF}_{3}$, major rotamer), -115.64 (dd, $0.6 \mathrm{~F}, J_{\mathrm{FF}}=272.5 \mathrm{~Hz}, J_{F H}=8.3 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of CF_{2}, major rotamer), -116.51 (dd, $0.4 \mathrm{~F}, J_{\mathrm{FF}}=$ $272.5 \mathrm{~Hz}, J_{F H}=11.4 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of CF_{2}, minor rotamer), -124.14 (dd, $0.4 \mathrm{~F}, J_{\mathrm{FF}}=272.5 \mathrm{~Hz}, J_{F H}=19.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of CF_{2}, minor rotamer), -124.88 (dd, $0.6 \mathrm{~F}, J_{\mathrm{FF}}=272.5 \mathrm{~Hz}, J_{F H}=20.3 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of CF_{2}, major rotamer) ppm.

HRMS (ESI-TOF) $m / z:[M+N a]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~F}_{5} \mathrm{NNaO}_{4}+$ (384.1205). Found: 384.1212.

2.5.4. Synthesis of cis-3- $\mathrm{C}_{2} \mathrm{~F}_{5}$-proline cis-1b

Scheme S6. Synthesis of compounds cis-1b and cis-11b

Ethyl cis-3-(perfluoroethyl)pyrrolidine-2-carboxylate hydrochloride (cis-9b) was synthesized by the same approach as compound trans-9a starting from compound syn-4b (349 mg,
 1 mmol). Isolated $\sim 200 \mathrm{mg}$ of the crude product (contains $\sim 10 \%$ of compound cis-1b and ethylene glycol) was used for further stage without purification.

Colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.32\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.20-2.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{2}\right), 2.41-2.54(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 3.45-3.79 (m, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ and CHCF_{2}), 4.27-4.39 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $4.73\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{CH}\right)$ ppm.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=-84.94\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right),-114.71\left(\mathrm{dd}, 1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=274.9 \mathrm{~Hz}, J_{\mathrm{FH}}=6.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}\right.$ of C_{2}), $-123.72\left(\mathrm{dd}, 1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=276.7 \mathrm{~Hz}, J_{\mathrm{FH}}=28.9 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}\right.$ of $\left.\mathrm{CF}_{2}\right) \mathrm{ppm}$.

HRMS (ESI-TOF) $m / z:[M+H]^{+}$calcd. for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{NO}_{2}{ }^{+}$(262.0861). Found: 262.0868
cis-1-(tert-Butoxycarbonyl)-3-(perfluoroethyl)pyrrolidine-2-carboxylic acid (cis-10b) was synthesized by the same approach as compound trans-9a starting from compound cis-10b ($135 \mathrm{mg}, 0.5$
 mmol) and purified by column chromatography (EtOAc/cHex 1:2, $\mathrm{R}_{\mathrm{f}}=0.16$). Yield: 151 mg (56% upon 3 stages starting from compound syn-4b). Colorless solid, mp $166-168{ }^{\circ} \mathrm{C}$.

NMR spectra contain overlapping signals of two rotamers in ratio $\sim 1: 2\left(\mathrm{CDCl}_{3}\right)$.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.39\left(\mathrm{~s}, 5.4 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, major rotamer), $1.43\left(\mathrm{~s}, 3.6 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, minor rotamer), 2.06-2.43 (m, 2H, CH2), 2.94-3.17 (m, 1H, CHCF 2), 3.35-3.47 (m, 1H, H_{A} of CH_{2}), 3.68-3.86 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ of $\left.\mathrm{CH}_{2}\right), 4.48\left(\mathrm{~d}, 0.6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{CH}\right.$, major rotamer), $4.59\left(\mathrm{~d}, 0.4 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{CH}\right.$, minor rotamer), 8.67 (br. s, 1H, $\mathrm{CO}_{2} \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both rotamers): $\delta=22.9,23.7,28.1,28.3,43.4\left(\mathrm{t}, J_{\mathrm{CF}}=20.7 \mathrm{~Hz}\right), 44.4\left(\mathrm{t}, J_{\mathrm{CF}}=\right.$ $20.7 \mathrm{~Hz}), 45.1,45.2,57.9,58.3,81.1,81.4,153.3,154.1,174.7,175.8 \mathrm{ppm}$. Low intensity, highly multiplicity signals of $\mathrm{C}_{2} \mathrm{~F}_{5}$-group carbons are located in the area 112-125 ppm.
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, CDCl_{3}): $\delta=-84.37\left(\mathrm{~s}, 1.8 \mathrm{~F}_{\mathrm{N}} \mathrm{CF}_{3}\right.$, major rotamer), -84.43 ($\mathrm{s}, 1.2 \mathrm{~F}, \mathrm{CF}_{3}$, minor rotamer), -115.95 (dd, $0.6 \mathrm{~F}, J_{\mathrm{FF}}=274.5 \mathrm{~Hz}, J_{F H}=8.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of CF_{2}, major rotamer), -116.26 (dd, $0.4 \mathrm{~F}, J_{\mathrm{FF}}=$ $274.5 \mathrm{~Hz}, J_{F H}=8.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of CF_{2}, minor rotamer), -123.02 (dd, $0.4 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=274.5 \mathrm{~Hz}, J_{\mathrm{FH}}=21.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of CF_{2}, minor rotamer), -124.41 (dd, $0.6 \mathrm{~F}, J_{\mathrm{FF}}=274.5 \mathrm{~Hz}, J_{\mathrm{FH}}=21.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of CF_{2}, major rotamer) ppm.

HRMS (ESI-TOF) $m / z:[M-H]^{-}$calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FF}_{5} \mathrm{NO}_{4}^{-}$(332.0927). Found: 332.0911.
cis-3-(Perfluoroethyl)pyrrolidine-2-carboxylic acid hydrochloride (cis-1b) was synthesized by the same approach as compound trans-1a (see section 2.5.1) starting from compound cis-10b
 ($100 \mathrm{mg}, 0.3 \mathrm{mmol}$). Yield: 77 mg (96\%). Colorless oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=2.22-2.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.41-3.77 (m, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ and $\left.\mathrm{CHCF}_{2}\right), 4.66\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{CH}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=25.0,44.1\left(\mathrm{t}, J_{\mathrm{CF}}=20.5 \mathrm{~Hz}\right), 45.7,60.6,169.4 \mathrm{ppm}$. Low intensity, highly multiplicity signals of $\mathrm{C}_{2} \mathrm{~F}_{5}$-group carbons are located in the area 112-125 ppm.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=-85.01\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right),-114.65$ (dd, $1 \mathrm{~F}, J_{\mathrm{FF}}=276.7 \mathrm{~Hz}, J_{F H}=6.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of CF_{2}), $-123.98\left(\mathrm{dd}, 1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=276.7 \mathrm{~Hz}, J_{\mathrm{FH}}=28.9 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}\right.$ of $\left.\mathrm{CF}_{2}\right) \mathrm{ppm}$.

HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~F}_{5} \mathrm{NO}_{2}{ }^{+}$(234.0548). Found: 234.0559.
cis-1-(tert-Butoxycarbonyl)-3-(perfluoroethyl)pyrrolidine-2-carboxylic acid (cis-11b) was synthesized by the same approach as compound trans-10b starting from compound cis-9b ($\sim 200 \mathrm{mg}$) and purified by column chromatography (EtOAc/cHex 1:2, $\mathrm{R}_{\mathrm{f}}=0.57$). Yield: 225 mg (62% upon two stages starting from compound syn-4a). Colorless oil.

Boc \quad NMR spectra contain overlapping signals of two rotamers in ratio ~2:3 $\left(\mathrm{CDCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25\left(\mathrm{t}, 1.2 \mathrm{H}, J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$, minor rotamer), $1.27\left(\mathrm{t}, 1.8 \mathrm{H}, J_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right.$, CH_{3}, major rotamer), $1.40\left(\mathrm{~s}, 5.4 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, major rotamer), $1.44\left(\mathrm{~s}, 3.6 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, minor rotamer), 2.07-2.14 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{2}\right), 2.22-2.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}\right.$ of $\left.\mathrm{CH}_{2}\right)$, 2.91-3.10 (m, $\left.1 \mathrm{H}, \mathrm{CH}\right), 3.36-3.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{~N}\right)$, $3.75\left(\mathrm{t}, 0.4 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=9.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of $\mathrm{CH}_{2} \mathrm{~N}$, minor rotamer), $3.83\left(\mathrm{t}, 0.6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=10.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of $\mathrm{CH}_{2} \mathrm{~N}$, major rotamer), 4.11-4.26 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $4.46\left(\mathrm{~d}, 0.6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}, \mathrm{CHN}\right.$, major rotamer), $4.57\left(\mathrm{~d}, 0.4 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=\right.$ $7.6 \mathrm{~Hz}, \mathrm{CHN}$, minor rotamer) ppm.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both rotamers): $\delta=13.7,13.9,22.8,23.6,28.2,28.3,43.2\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=21.2\right.$), 44.0 ($\mathrm{t}, J_{\mathrm{CF}}=21.2$), 45.0, 45.1, 58.0, 58.4, 61.4, 61.5, 80.6, $80.7,153.2,153.9,170.2,170.3$ ppm. Low intensity, highly multiplicity signals of $\mathrm{C}_{2} \mathrm{~F}_{5}$-group carbons are located in the area 112-125 ppm.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-83.79\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right),-115.44\left(\mathrm{dd}, 0.6 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=274.7 \mathrm{~Hz}, J_{\mathrm{FH}}=8.1 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}\right.$ of CF_{2}, major rotamer), -115.80 (dd, $0.4 \mathrm{~F}, J_{\mathrm{FF}}=274.7 \mathrm{~Hz}, J_{\mathrm{FH}}=8.1 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of CF_{2}, minor rotamer), -122.87 (dd, $0.4 \mathrm{~F}, J_{\mathrm{FF}}=274.7 \mathrm{~Hz}, J_{\mathrm{FH}}=21.9 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of CF2, major rotamer), -123.28 (dd, 0.6F, $J_{\mathrm{FF}}=274.7 \mathrm{~Hz}, J_{\mathrm{FH}}=$ $21.9 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of CF_{2}, major rotamer) ppm.

HRMS (ESI-TOF) $m / z:[M+N a]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~F}_{5} \mathrm{NNaO}_{4}+$ (384.1205). Found: 384.1214.

2.6. Enantiomer separation of compounds trans-/cis-10a

(2S,3S)-and (2R,3R)-tert-Butyl 2-[((S)-1-phenylethyl)carbamoyl]-3-(trifluoromethyl)pyrrolidine-1carboxylate ($(2 S, 3 S)$ - and (2R,3R)-12a). Triethylamine ($0.25 \mathrm{~mL}, 182 \mathrm{mg}, 1.8 \mathrm{mmol}$), HBTU ($606 \mathrm{mg}, 1.6$ mmol) and (S)-PEA ($194 \mathrm{mg}, 1.6 \mathrm{mmol}$) were consequently added to a stirred solution of compound trans-10a ($500 \mathrm{mg}, 1.5 \mathrm{mmol}$) in dry acetonitrile (20 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0-5^{\circ} \mathrm{C}$ for 1 h and then left stirring overnight at r.t. Then the solution was concentrated under reduced pressure, Dissolved in EtOAc (10 mL) and consequently washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 25 \mathrm{~mL})$, saturated solution of $\mathrm{NaHCO}_{3}(2 \times 25 \mathrm{~mL})$ and brine (25 mL). The organic layer was dried under over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (EtOAc/cHex, 1:3) giving pure diastereomer (2S,3S)- and (2R,3R)-12a.
(2R,3R)- tert-Butyl 2-[((S)-1-phenylethyl)carbamoyl]-3-(trifluoromethyl)pyrrolidine-1-carboxylate
 $((2 R, 3 R)-12 a)$ isolated by column chromatography (EtOAc/cHex, 1:2, $\left.R_{f}=0.35\right)$. Yield: 249 mg (43\%). Colorless solid, mp 102-104 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=-59.5(c, 1.0, \mathrm{MeOH})$.

NMR-spectra contain overlapping signals of both rotamers in ratio $\sim 1: 4\left(\mathrm{CDCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.33-1.54\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 2.04-2.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.21-$ 3.71 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ and CHCF_{3}), 4.38 (br. $\mathrm{s}, 0.2 \mathrm{H}, \mathrm{CHN}$, minor rotamer), 4.57 (br. $\mathrm{s}, 0.8 \mathrm{H}, \mathrm{CHN}$, major rotamer), 4.99-5.10 (m, 1H, CHN), 6.39 (br. s, 0.2H, NH, minor rotamer), 7.18-7.37 (m, 5H, Ph), 7.77 (br. $\mathrm{s}, 0.8 \mathrm{H}, \mathrm{NH}$, major rotamer) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, signals of major rotamer only): $\delta=22.9,24.7,28.2,43.1$ ($\mathrm{q}, J_{\mathrm{CF}}=28.6 \mathrm{~Hz}$), $45.8,49.2,59.7,81.3,125.8,127.1,128.6,143.5,155.8,168.2$. Low intensive signal of $\mathrm{CF}_{3}-\mathrm{Carbon}$ is located in the area 120-125 ppm.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.36\left(\mathrm{~d}, J_{\mathrm{FH}}=9.7 \mathrm{~Hz}, 0.8 \mathrm{~F}\right.$, major rotamer), $-71.68 . .-71.86(\mathrm{~m}, 0.2 \mathrm{~F}$, minor rotamer) ppm.

HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{3}{ }^{+}$(409.1709). Found: 409.1720
(2S,3S)- tert-Butyl 2-[((S)-1-phenylethyl)carbamoyl]-3-(trifluoromethyl)pyrrolidine-1-carboxylate $((2 S, 3 S)-12 a)$ isolated by column chromatography (EtOAc/cHex, 1:2, $\left.R_{f}=0.30\right)$. Spectra contain overlapping signals of both rotamers in ratio $\sim 1: 3$. Yield 214 mg (37\%). Colorless solid, mp 119-121 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=-83.0(c, 1.0, \mathrm{MeOH})$.

NMR-spectra contain overlapping signals of both rotamers in ratio $\sim 1: 3\left(\mathrm{CDCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.33-1.54\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 2.04-2.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.21-3.71\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$ and $\left.\mathrm{CHCF}_{3}\right), 4.38(\mathrm{~s}, 0.25 \mathrm{H}, \mathrm{CH}$, minor rotamer), $4.57(\mathrm{~s}, 0.75 \mathrm{H}, \mathrm{CH}$, major rotamer), 4.99-5.10 ($\mathrm{m}, 1 \mathrm{H}$, CHN), 6.39 (br. s, 0.25H, NH, minor rotamer), 7.18-7.37 (m, 5H, Ph), 7.77 (br. s, 0.75H, major rotamer).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, signals of major rotamer only): $\delta=22.3,24.8,28.3,43.3$ (q, $J=27.5 \mathrm{~Hz}$), 45.8, 81.3, 115.9 ($q, J=267.0 \mathrm{~Hz}$), 126.0, 127.3, 128.7, 143.1, 155.8, 168.5 ppm .
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, CDCl_{3}): $\delta=\delta=-71.35\left(\mathrm{~d}, J_{\mathrm{HF}}=9.7 \mathrm{~Hz}, 0.75 \mathrm{~F}\right.$, major rotamer), $-71.74 . .-71.97(\mathrm{~m}$, 0.25 F , minor rotamer) ppm.

HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{3}{ }^{+}$(409.1709). Found: 409.1727
(2S,3R)-and (2R,3S)-tert-Butyl 2-[((S)-1-phenylethyl)carbamoyl]-3-(trifluoromethyl)pyrrolidine-1carboxylate ($(2 S, 3 R)$ - and ($2 R, 3 S$)-12a). The mixture of diastereomers was obtained by the same method as (2S,3S)- and (2R,3R)-12a starting from cis-10a ($500 \mathrm{mg}, 1.5 \mathrm{mmol}$) and were separated by column chromatography.
(2S,3R)- tert-Butyl 2-[((S)-1-phenylethyl)carbamoyl]-3-(trifluoromethyl)pyrrolidine-1-carboxylate
((2S,3R)-12a). Isolated by column chromatography. (EtOAc/cHex, 1:3, $\mathrm{R}_{\mathrm{f}}=0.37$).
 Yield: 220 mg (38\%). Colorless solid, $\mathrm{mp} 172-174^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=-142.3(c, 1.0, \mathrm{MeOH})$.

NMR spectra contain overlapping signals of two rotamers in ratio $\sim 2: 3\left(\mathrm{CDCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.05-1.53(12 \mathrm{H}, \mathrm{m}, 4 \mathrm{CH} 3), 2.08-2.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{2}\right)$, 2.24-2.58 (m, 1H, H_{B} of CH_{2}), 2.94-3.11 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$ of $\mathrm{CH}_{2} \mathrm{~N}$), 3.37-3.47 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCF}_{3}$), 3.69-3.82 (m, 1 H , H_{B} of $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.15-4.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.03-5.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 5.73-6.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 7.12-7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ ppm.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, major rotamer): $\delta=20.6,23.4,28.2,45.3,45.6-47.5(\mathrm{~m}), 59.7,80.7,125.2$ (q, $\left.J_{\text {CF }}=280.0 \mathrm{~Hz}\right), 126.3,127.5,128.6,142.6,153.6,167.5 \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, CDCl_{3}): $\delta=-66.54$ (br.s, $0.4 \mathrm{~F}, \mathrm{CF}_{3}$, minor rotamer), -67.07 (br.s, $0.6 \mathrm{~F}, \mathrm{CF}_{3}$, major rotamer) ppm.

HRMS (ESI-TOF) $m / z:[M+N a]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{3}{ }^{+}$(409.1709). Found: 409.1714
(2R,3S)- tert-Butyl 2-[((S)-1-phenylethyl)carbamoyl]-3-(trifluoromethyl)pyrrolidine-1-carboxylate ((2R,3S)-12a). Isolated by column chromatography. (EtOAc/cHex, 1:3, $\mathrm{R}_{\mathrm{f}}=0.25$). Yield: $255 \mathrm{mg}(44 \%)$. Colorless solid, mp 104-106 ${ }^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{20}=-60.2$ (c, 1.0, MeOH).

NMR spectra contain overlapping signals of two rotamers.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.19-1.45\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.52\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 2.07-2.16 (m, 1H, H_{A} of CH_{2}), 2.19-2.46 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 2.95-3.11 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$ of $\mathrm{CH}_{2} \mathrm{~N}$), 3.39-3.51 (m, $1 \mathrm{H}, \mathrm{CHCF}_{3}$), 3.70-3.77 (m, 1H, H_{B} of $\mathrm{CH}_{2} \mathrm{~N}$), 4.23-4.36 (m, 1H, CH), 5.08-5.17 (m, 1H, CH), 5.79-6.22 (m, 1H, NH), 7.15-7.40 (5H,m, Ph) ppm.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, major rotamer): $\delta=21.0,26.9,28.2,45.5,45.7-47.0(\mathrm{~m}), 49.0,60.0,80.9$, $125.2\left(q, J_{C F}=279.5 \mathrm{~Hz}\right), 126.4,127.5,128.6,142.3,153.9,167.5 \mathrm{ppm}$
${ }^{19} \mathrm{~F}$ NMR $\left(282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-66.38,-67.55\left(\mathrm{~m}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.

HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{3}{ }^{+}$(409.1709). Found: 409.1718
(2S,3S)-1-(tert-Butoxycarbonyl)-3-(trifluoromethyl)pyrrolidine-2-carboxylic acid ((2S,3S)-10a)). 6N HCl $(5 \mathrm{~mL})$ was added to the solution of compound (2S,3S)-12a (193 mg, 0.5 mmol) in
 dioxane (5 mL) and the resulting mixture was stirred under reflux for 12 h . The reaction progress was monitored by TLC. Then the mixture was concentrated under reduced pressure and dried under vacuum of oil pump $\left(10^{-3} \mathrm{~mm} \mathrm{Hg}\right)$. The residue was dissolved in dioxane and cooled to $0^{\circ} \mathrm{C}$. Then $\mathrm{Et}_{3} \mathrm{~N}(0.21 \mathrm{~mL}, 152 \mathrm{mg}, 1.5 \mathrm{mmol})$ and Boc-anhydride ($218 \mathrm{mg}, 1 \mathrm{mmol}$) were added consequently portionwise under stirring. The mixture was stirred at 0-5 ${ }^{\circ} \mathrm{C}$ for 1 h and left stirring at r.t. overnight. Then dioxane was evaporated and the resulting aqueous solution was acidified with 1 N HCl solution to $\mathrm{pH} \sim 2-3$ at $0-5^{\circ} \mathrm{C}$. The aqueous layer was extracted with ethyl acetate $(4 \times 50 \mathrm{~mL})$ and combined organic layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (EtOAc/cHex 1:2, $\mathrm{R}_{\mathrm{f}}=0.11$). Yield: $96 \mathrm{mg}(68 \%)$. Colorless solid, $\mathrm{mp}>200^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{20}=-26.5$ (c, 1.0, MeOH).

See NMR-spectra description above for trans-10a.
HRMS (ESI-TOF) $m / z:{ }^{[M-H]^{-}}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{4}{ }^{-}$(282.0959). Found: 282.0986
(2R,3R)-1-(tert-Butoxycarbonyl)-3-(trifluoromethyl)pyrrolidine-2-carboxylic acid ((2R,3R)-10a)) was
 synthesized by the same method as compound ($2 S, 3 S$)-10a starting from compound ($2 R, 3 R$)-10a ($193 \mathrm{mg}, 0.5 \mathrm{mmol}$) and purified by column chromatography (EtOAc/cHex 1:2, $\mathrm{R}_{\mathrm{f}}=0.11$). Yield: $99 \mathrm{mg}(70 \%)$. Colorless solid, $\mathrm{mp}>200^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+27.8(\mathrm{MeOH})$.

See NMR-spectra description above for trans-10a.

HRMS (ESI-TOF) $m / z:[\mathrm{M}-\mathrm{H}]^{-}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{4}{ }^{-}$(282.0959). Found: 282.0969

2.7. Enantiomer separation of compounds trans-6a

Scheme S7. Enantiomer separation of compounds trans-6a
(2S,3S)- and (2R,3R)-5-Oxo-N-((S)-1-phenylethyl)-3-(trifluoromethyl)pyrrolidine-2-carboxamide ($(2 S, 3 S)$ - and ($2 R, 3 R$)-S4). The mixture of diastereomers was obtained by the same method as (2S,3S)and (2R,3R)-12a starting from trans-6a (296 $\mathrm{mg}, 1.5 \mathrm{mmol}$) and were separated by column chromatography.
(2S,3S)- 5-Oxo-N-((S)-1-phenylethyl)-3-(trifluoromethyl)pyrrolidine-2-carboxamide ((2S,3S)- S4) was separated by column chromatography ($\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOH}, 97: 3, \mathrm{R}_{\mathrm{f}}=0.16$). Yield: 158 mg
 (35\%). Colorless solid, $m p=166-168{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=-50.0(c, 1.0, \mathrm{MeOH})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.48\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.37\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=\right.$ $18.0 \mathrm{~Hz}, J_{2 \mathrm{HH}}=4.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}$ of CH_{2}), 2.53 (dd, $1 \mathrm{H}, J_{1 \mathrm{HH}}=18.0 \mathrm{~Hz}, J_{2 \mathrm{HH}}=10.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 3.23-3.37 (m, 1H, CHCF $)_{3}$, $4.13\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=2.9 \mathrm{~Hz}, \mathrm{CH}\right), 5.01-5.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.22\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.4\right.$ Hz, NH), 7.23-7.35 (m, 5H, Ph), 7.41 (br. s, 1H, NH) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.5,29.7,41.6\left(\mathrm{q}, J_{\mathrm{CF}}=29.9 \mathrm{~Hz}\right), 49.5,56.6,126.2,126.3\left(\mathrm{q}, J_{\mathrm{CF}}=279.8\right.$ Hz), 127.6, 128.7, 142.6, 168.4, 175.5 ppm.
${ }^{19}$ F NMR (282.5 MHz, CDCl 3): $\delta=-73.60\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.
HRMS (ESI-TOF) $m / z:[M+N a]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}$(323.0978). Found: 323.0968.
(2R,3R)-5-Oxo- N-((S)-1-phenylethyl)-3-(trifluoromethyl)pyrrolidine-2-carboxamide ((2R,3R)-24a) was separated by column chromatography ($\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOH}, 97: 3, \mathrm{R}_{\mathrm{f}}=0.28$). Yield: 167 mg
 (37\%). Colorless solid, $m p=130-132{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=-179.3(c, 1.0, \mathrm{MeOH})$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta=1.48\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.34\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=\right.$ $18.0 \mathrm{~Hz}, J_{2 \mathrm{HH}}=5.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}$ of CH_{2}), 2.43 (dd, $1 \mathrm{H}, J_{1 \mathrm{HH}}=18.0 \mathrm{~Hz}, J_{2 \mathrm{HH}}=10.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 3.23-3.35 (m, 1H, CHCF ${ }_{3}$), $4.17\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=3.3 \mathrm{~Hz}, \mathrm{CH}\right.$), 5.08 (qwint, $1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{CH}$), $6.91(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}_{\mathrm{H}}=7.0 \mathrm{~Hz}, \mathrm{NH}$), 7.21-7.32 (m, 5H, Ph), 7.43 (br. s, 1H, NH) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.5,29.5,42.7\left(\mathrm{q}, J_{\mathrm{CF}}=30.0 \mathrm{~Hz}\right), 49.6,56.6,126.1,126.2\left(\mathrm{q}, J_{\mathrm{CF}}=279.8\right.$ $\mathrm{Hz}), 127.7,128.8,142.4,168.2,175.7$ ppm.
${ }^{19} \mathrm{~F} \mathrm{NMR}\left(282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-73.48\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm}$.
HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}$(323.0978). Found: 323.0980
(2S,3S)-5-oxo-3-(trifluoromethyl)pyrrolidine-2-carboxylic acid ((2S, $3 S$)- 6 a$) .6 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ was added to the solution of compound ($2 S, 3 S$)-S4 ($150 \mathrm{mg}, 0.5 \mathrm{mmol}$) in dioxane (5 mL) and the
 resulting mixture was stirred under reflux for 12 h . The reaction progress was monitored by TLC. Then the mixture was concentrated under reduced pressure and the residue was dissolved in EtOAc (30 mL), washed with water ($2 \times 25 \mathrm{~mL}$), dried under MgSO_{4}, concentrated under reduced pressure and crystallized from cyclohexane. Yield: $78 \mathrm{mg}(79 \%)$. Colorless solid, mp $119-120^{\circ} \mathrm{C}$, (Lit.: $\left.120-122{ }^{\circ} \mathrm{C}\right) .{ }^{2 \mathrm{~b}}[\alpha]_{\mathrm{D}}{ }^{20}=+24.7(\mathrm{c}$, 1.0, MeOH) $\left\{\right.$ Lit.: $\left.[\alpha]_{D^{20}}=+25.3(c, 1.2, \mathrm{MeOH}),{ }^{2 b}+24.9(c, 0.5, \mathrm{MeOH})^{2 c}\right\}$

See NMR-spectra description above for racemic trans-6a.
HRMS (ESI-TOF) $m / z:[M-H]^{-}$calcd. for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{-}$(196.0227). Found: 196.0204.
(2R,3R)-5-oxo-3-(trifluoromethyl)pyrrolidine-2-carboxylic acid ((2R,3R)-6a) was synthesized by the same method as compound (2S,3S)-6a starting from compound (2R,3R)-S4 (150 mg,
 0.5 mmol) and purified by column chromatography. Yield: 81 mg (82%). Colorless solid, $\mathrm{mp}=123-124^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=-26.3(\mathrm{c}, 0.5, \mathrm{MeOH})$.

See NMR-spectra description above for trans-6a.

HRMS (ESI-TOF) $m / z:[\mathrm{M}-\mathrm{H}]^{-}$calcd. for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{-}$(196.0227). Found: 196.0211.

2.8. Reactions of ketoacetals 2d,e with ethyl isocyanoacetate. Synthesis of 3-hydroxy-polyfluoroalkyl prolines 16c-e

2.8.1. Synthesis of compounds trans-16d and trans-/cis-17d

anti/syn-Ethyl 3-[(1,3-dioxolan-2-yl)methyl]-4-chloro-4,4-difluoro-2-formamido-3-hydroxybutanoate (anti/syn-14d). The mixture of diastereomers was obtained by the same procedure as compounds trans-/cis-3a,b(see section 2.1), starting from ketoacetal 2d (1.60 g, 8.0 mmol) and purified by column chromatography (without separation, EtOAc/cHex, 1:1, $\mathrm{R}_{\mathrm{f}}=0.21$) giving $\sim 1.3 \mathrm{~g}$ of compound anti/syn-14d Even after column chromatography the compounds is $\sim 70 \%$ purity and contains EtOAc. Colorless oil.

NMR spectra contain overlapping signals of both diastereomers in ratio $\sim 1: 9$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, signals of major diastereomer only): $\delta=1.32\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), 2.15 (dd, $1 \mathrm{H}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}$ of CH_{2}), $2.38\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=4.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of $\left.\mathrm{CH}_{2}\right), 3.85-4.05(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \mathrm{CH}_{2} \mathrm{O}\right), 4.26\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.17-5.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}\right.$ and $\left.\mathrm{CHO}_{2}\right), 6.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $7.7 \mathrm{~Hz}, \mathrm{NH}), 8.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-62.50\left(\mathrm{~d}, 0.9 \mathrm{~F}, J_{\mathrm{CF}}=170.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}\right.$ of $\mathrm{CF}_{2} \mathrm{Cl}$, major diastereomer), -62.91 (d, $0.1 \mathrm{~F}, J_{\mathrm{CF}}=172.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of $\mathrm{CF}_{2} \mathrm{Cl}$, minor diastereomer), -63.16 (d, $0.9 \mathrm{~F}, J_{\mathrm{CF}}=170.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of $\mathrm{CF}_{2} \mathrm{Cl}$, major diastereomer), -63.71 (d, $0.1 \mathrm{~F}, \mathrm{~J}_{\mathrm{CF}}=172.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of $\mathrm{CF}_{2} \mathrm{Cl}$, minor diastereomer),

HRMS (ESI-TOF) $m / z:[M+N a]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{ClF}_{2} \mathrm{NNaO}_{6}{ }^{+}$(354.0526). Found: 354.0535.
trans-/cis-Ethyl 3-(chlorodifluoromethyl)-3-hydroxypyrrolidine-2-carboxylate hydrochloride(trans-/cis15d) was synthesized by the same approach as compound trans-9a starting from the crude mixture of compounds anti-/syn-14d (1.3 g) giving $\sim 1.0 \mathrm{~g}$ of the crude mixture of compounds trans-/cis-15d. Colorless oil.

NMR spectra contain signals of trans- and cis-15d in ratio 9:1 (by ${ }^{19} \mathrm{~F}$ NMR).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=1.32\left(\mathrm{t}, 2.7 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$, major diastereomer), $1.36\left(\mathrm{t}, 0.3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=\right.$ $7.2 \mathrm{~Hz}, \mathrm{CH}_{3}$, minor diastereomer), 2.29-2.39 (m, 1H, H_{A} of CH_{2}), 2.44-2.57 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 3.57-3.68 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$ of $\mathrm{CH}_{2} \mathrm{~N}$), 3.77-3.78 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ of $\mathrm{CH}_{2} \mathrm{~N}$), 4.22-4.35 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $4.37(\mathrm{~s}, 0.9 \mathrm{H}, \mathrm{CH}$, major diastereomer), $4.66(\mathrm{~s}, 0.1 \mathrm{H}, \mathrm{CH}$, minor diastereomer) ppm.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=-62.87$ (d, $0.9 \mathrm{~F}, J_{\mathrm{FF}}=172.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of $\mathrm{CF}_{2} \mathrm{Cl}$, major diastereomer), -64.68 (d, 0.9F, $J_{F F}=172.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of $\mathrm{CF}_{2} \mathrm{Cl}$, major diastereomer), -64.94 ($\mathrm{d}, 0.1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=169.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of $\mathrm{CF}_{2} \mathrm{Cl}$, minor diastereomer), -66.00 (d, 0.1F, $J_{F F}=169 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of $\mathrm{CF}_{2} \mathrm{Cl}$, minor diastereomer) ppm.

HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{ClF}_{2} \mathrm{NO}_{3}{ }^{+}$(244.0547). Found: 244.0540.
trans-Ethyl 3-(chlorodifluoromethyl)-3-hydroxypyrrolidine-2-carboxylate hydrochloride(trans-15d)
 was isolated by crystallization from EtOH. Yield: 580 mg (26%, upon 2 stages starting from compound $\mathbf{2 d}$). Colorless solid, mp 112-114 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=1.22\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.32\left(\mathrm{ddd}, 1 \mathrm{H}, J_{1 \mathrm{HH}}=14.0 \mathrm{~Hz}\right.$, $J_{2 \mathrm{HH}}=6.1 \mathrm{~Hz}, J_{3 \mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}$ of $\left.\mathrm{CH}_{2}\right), 2.54\left(\mathrm{dt}, 1 \mathrm{H}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=9.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of CH2$)$, 3.57-3.66 (m, 1H, H_{A} of $\mathrm{CH}_{2} \mathrm{~N}$), 3.78 (ddd, $1 \mathrm{H}, J_{1 \mathrm{HH}}=12.0 \mathrm{~Hz}, J_{2 \mathrm{HH}}=9.8 \mathrm{~Hz}, J_{3 \mathrm{HH}}=2.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of CH 2 N$)$, 4.19$4.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta=12.9,31.0,43.5,64.5,65.7,85.7\left(\mathrm{t}, J_{\mathrm{CF}}=27.0 \mathrm{~Hz}\right), 122.7\left(\mathrm{t}, J_{\mathrm{CF}}=299.0 \mathrm{~Hz}\right)$, 166.2 ppm.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=-62.34\left(\mathrm{~d}, 1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=172.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}\right.$ of $\left.\mathrm{CF}_{2} \mathrm{Cl}\right),-64.33\left(\mathrm{~d}, 1 \mathrm{~F}, J_{\mathrm{FF}}=172.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}\right.$ of $\mathrm{CF}_{2} \mathrm{Cl}$) ppm.

HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{ClF}_{2} \mathrm{NO}_{3}{ }^{+}$(244.0547). Found: 244.0552.
trans-3-(Chlorodifluoromethyl)-3-hydroxypyrrolidine-2-carboxylic acid hydrochloride (trans-16d). Compound trans-15d ($\sim 560 \mathrm{mg}, 2 \mathrm{mmol}$) was dissolved in $6 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$ and the
 resulting solution was stirred for 10 h at $80^{\circ} \mathrm{C}$. Then the cooled mixture was washed by EtOAc $(2 \times 30 \mathrm{~mL})$ and the water layer was concentrated under reduced pressure and the residue was dried in vacuum of oil pump ($10^{-3} \mathrm{~mm} \mathrm{Hg}$) for 5 h giving pure compound trans-16d. Yield: 368 mg (73\%). Colorless oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=2.27$ (dddd, $1 \mathrm{H}, J_{1 \mathrm{HH}}=13.8 \mathrm{~Hz}, J_{2 \mathrm{HH}}=7.6 \mathrm{~Hz}, J_{3 \mathrm{HH}}=2.0 \mathrm{~Hz}, J_{4 \mathrm{HH}}=1.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}$ of CH_{2}), $2.53\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=13.8 \mathrm{~Hz}, \mathrm{~J}_{2 \mathrm{HH}}=10.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of CH_{2}), $3.55\left(\mathrm{ddd}, 1 \mathrm{H}, J_{1 \mathrm{HH}}=11.0 \mathrm{~Hz}, J_{2 \mathrm{HH}}=10.1, J_{3 \mathrm{HH}}=\right.$ $7.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}$ of $\mathrm{CH}_{2} \mathrm{~N}$), 3.79 (ddd, $1 \mathrm{H}, J_{1 \mathrm{HH}}=11.0 \mathrm{~Hz}, J_{2 \mathrm{HH}}=10.1 \mathrm{~Hz}, J_{3 \mathrm{HH}}=2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of CH 2 N$), 4.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $1.1 \mathrm{~Hz}, \mathrm{CH}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=31.4,48.1,68.1,85.4$, (dd, $\left.J_{1 \mathrm{CF}}=28.0 \mathrm{~Hz}, J_{2 \mathrm{CF}}=26.5 \mathrm{~Hz}\right), 128.1\left(\mathrm{dd}, J_{1 \mathrm{CF}}=\right.$ $299.0 \mathrm{~Hz}, J_{2 \mathrm{CF}}=296.1 \mathrm{~Hz}$), 169.1 ppm .
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): ~ \delta=-61.38\left(\mathrm{~d}, 1 \mathrm{~F}, J_{\mathrm{FF}}=171.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}\right.$ of $\left.\mathrm{CF}_{2} \mathrm{Cl}\right),-63.12\left(\mathrm{~d}, 1 \mathrm{~F}, J_{\mathrm{FF}}=171.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}\right.$ of $\mathrm{CF}_{2} \mathrm{Cl}$) ppm.

HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{ClF}_{2} \mathrm{NO}_{3}{ }^{+}$(216.0234). Found: 216.0236.
trans- and cis-1-tert-Butyl 2-ethyl 3-(chlorodifluoromethyl)-3-hydroxypyrrolidine-1,2-dicarboxylate (trans- and cis-17d). A solution of crude diastereomeric mixture trans-/cis-15d ($\sim 1.0 \mathrm{~g}$) in dioxane (10 mL) was cooled to $0^{\circ} \mathrm{C}$ and then triethylamine ($0.40 \mathrm{~mL}, 300 \mathrm{mg}, 3 \mathrm{mmol}$) and Boc-anhydride (327 mg , 1.5 mmol) were consequently added in portions under stirring. The mixture was stirred for 1 h at $0-5^{\circ} \mathrm{C}$ and left stirring overnight at r.t. Then dioxane was evaporated and the resulting aqueous solution was acidified with 1 N HCl solution to $\mathrm{pH} \sim 2-3$ at $0-5^{\circ} \mathrm{C}$. The aqueous layer was extracted with ethyl acetate $(4 \times 50 \mathrm{~mL})$ and combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and water (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue contained diastereomers trans- and cis-17d in ratio 9:1 which were separated and purified by column chromatography.
cis-1-tert-Butyl 2-ethyl 3-(chlorodifluoromethyl)-3-hydroxypyrrolidine-1,2-dicarboxylate (cis-17d) was purified by column chromatography (EtOAc/cHex, 1:4, $\mathrm{R}_{\mathrm{f}}=0.37$). Yield: 82 mg (3% upon 3 steps starting from 2d). Colorless oil.

NMR-spectra contain overlapping signals of both rotamers in ratio $\sim 2: 3$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.29\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.35-1.46\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 2.11-2.19(\mathrm{~m}, 1 \mathrm{H}$, Ha of CH_{2}), $2.35\left(\mathrm{t}, 0.6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right.$ of CH_{2}, major rotamer), $2.38\left(\mathrm{t}, 0.4 \mathrm{H}, J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right.$ of CH_{2}, minor rotamer), 3.56 (br. s, $0.6 \mathrm{H}, \mathrm{OH}$, major rotamer), $3.59-3.68$ (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.84 (br. s, $0.4 \mathrm{H}, \mathrm{OH}$, minor rotamer), 4.17-4.33 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $4.48(\mathrm{~s}, 0.6 \mathrm{H}, \mathrm{CH}$, major rotamer), $4.56(\mathrm{~s}, 0.4 \mathrm{H}, \mathrm{CH}$, minor rotamer).
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): $\delta=13.9,14.0,28.2,28.3,44.2,44.5,62.0,62.2,62.5,63.1,80.8,81.1,83.6$ (t , $\left.J_{\text {CF }}=27.0 \mathrm{~Hz}\right), 84.8(\mathrm{t}, J=27.0 \mathrm{~Hz}), 129.7\left(\mathrm{t}, J_{\mathrm{CF}}=298.5 \mathrm{~Hz}\right), 153.1,153.8,169.7 \mathrm{ppm}$
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-65.80\left(\mathrm{~d}, 0.4 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=167.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}\right.$ of $\mathrm{CF}_{2} \mathrm{Cl}$, minor rotamer), -65.87 (d, $0.6 \mathrm{~F}, J_{\mathrm{FF}}=168.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of $\mathrm{CF}_{2} \mathrm{Cl}$, major rotamer), -66.47 (d, $0.4 \mathrm{~F}, J_{\mathrm{FF}}=167.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of $\mathrm{CF}_{2} \mathrm{Cl}$, minor rotamer), $-66.59\left(\mathrm{~d}, 0.6 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=168.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}\right.$ of $\mathrm{CF}_{2} \mathrm{Cl}$, major rotamer) ppm .

HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClF}_{2} \mathrm{NNaO}_{5}{ }^{+}$(366.0890). Found: 366.0884.
trans-1-tert-Butyl 2-ethyl 3-(chlorodifluoromethyl)-3-hydroxypyrrolidine-1,2-dicarboxylate (trans-17d) was purified by column chromatography chromatography (EtOAc/cHex, 1:4, $\mathrm{R}_{\mathrm{f}}=0.21$).
 Yield: 1.07 g (39% upon 3 steps starting from compound 2d). Colorless solid, mp 141$143^{\circ} \mathrm{C}$.

Spectra contain overlapping signals of both rotamers in ratio ~2:3.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25\left(\mathrm{t}, 1.2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$, minor rotamer), $1.27\left(\mathrm{t}, 1.8 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right.$, CH_{3}, major rotamer), 1.37-1.45 ($\mathrm{m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}$), 1.98-2.03 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$ of CH_{2}), 2.39-2.47 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), 3.18 (br. s, $1 \mathrm{H}, \mathrm{OH}$), 3.54-3.62 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$ of $\mathrm{CH}_{2} \mathrm{~N}$), $3.76\left(\mathrm{t}, 0.4 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=9.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of $\mathrm{CH}_{2} \mathrm{~N}$, minor rotamer), $3.83\left(\mathrm{t}, 0.6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=9.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of $\mathrm{CH}_{2} \mathrm{~N}$, major rotamer), 4.12-4.21 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 4.25 ($\mathrm{s}, 0.6 \mathrm{H}$, CH , major rotamer), $4.27(\mathrm{~s}, 0.4 \mathrm{H}, \mathrm{CH}$, minor rotamer) ppm.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.7,13.9,28.2,28.3,30.8,31.3,43.6,44.0,61.8,61.9,66.8,67.1,80.8$, $80.9,84.8\left(\mathrm{t}, J_{\mathrm{CF}}=27.5 \mathrm{~Hz}\right), 85.7\left(\mathrm{t}, J_{\mathrm{CF}}=27.5 \mathrm{~Hz}\right), 128.5\left(\mathrm{t}, J_{\mathrm{CF}}=298.0 \mathrm{~Hz}\right), 153.5,154.3,168.7 \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-61.95\left(\mathrm{~d}, 0.4 \mathrm{H}, J_{\mathrm{FF}}=170.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}\right.$ of $\mathrm{CF}_{2} \mathrm{Cl}$, minor rotamer), -62.13 (d, $0.6 \mathrm{H}, J_{\mathrm{FF}}=170.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of $\mathrm{CF}_{2} \mathrm{Cl}$, major rotamer), -64.02 ($\mathrm{d}, 0.4 \mathrm{H}, J_{\mathrm{FF}}=170.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{b}}$ of $\mathrm{CF}_{2} \mathrm{Cl}$, minor rotamer), $-64.12\left(\mathrm{~d}, 0.6 \mathrm{H}, \mathrm{J}_{\mathrm{FF}}=170.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}\right.$ of $\mathrm{CF}_{2} \mathrm{Cl}$, major rotamer) ppm.

HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClF}_{2} \mathrm{NNaO}_{5}{ }^{+}$(366.0890). Found: 366.0881.

2.8.2. Synthesis of compounds trans-16e and trans-17e

Ethyl anti-3-[(1,3-dioxolan-2-yl)methyl]-4-bromo-4,4-difluoro-2-formamido-3-hydroxybutanoate (anti-

26e) The mixture of diastereomers was obtained by the same procedure as compounds anti-/syn-14b starting from ketoacetal 7e (1.96 g, 8 mmol) and purified by column chromatography (EtOAc/cHex, 1:1, $\mathrm{R}_{\mathrm{f}}=0.31$). Yield: 1.59 g (53\%). Colorless oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.19\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=\right.$ $15.4 \mathrm{~Hz}, J_{2 \mathrm{HH}}=6.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}$ of CH_{2}), $2.42\left(\mathrm{dd}, 1 \mathrm{H}, J_{1 \mathrm{HH}}=15.4 \mathrm{~Hz}, J_{2 \mathrm{HH}}=6.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of $\left.\mathrm{CH}_{2}\right), 3.85-4.08(\mathrm{~m}, 4 \mathrm{H}$, $2 \mathrm{CH}_{2} \mathrm{O}$), $4.27\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.0 \mathrm{~Hz} \mathrm{CH}_{2} \mathrm{O}\right), 5.08(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 5.21-5.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}\right.$ and $\left.\mathrm{CHO}_{2}\right), 6.8(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{\mathrm{HH}}=8.7 \mathrm{~Hz}, \mathrm{NH}\right), 8.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,36.1,53.6,62.5,64.8,65.0,79.1\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=21.0 \mathrm{~Hz}\right), 100.8,126.4\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}\right.$ $=316.0 \mathrm{~Hz}), 160.9,168.8 \mathrm{ppm}$
${ }^{19} \mathrm{~F}$ NMR (282.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=-56.45\left(\mathrm{~s}, \mathrm{CF}_{2} \mathrm{Br}\right) \mathrm{ppm}$.
HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{BrF}_{2} \mathrm{NNaO}_{6}{ }^{+}$(398.0021 and 400.0001). Found: 398.0030 and 400.0010.
trans-Ethyl 3-(bromodifluoromethyl)-3-hydroxypyrrolidine-2-carboxylate hydrochloride (trans-15e)
 was synthesized by the same approach as compound trans-9a (see section 2.5.1) starting from compound anti-26e ($376 \mathrm{mg}, 1.0 \mathrm{mmol}$) and purified by crystallization from EtOH. Yield: 243 mg (75\%). Colorless solid, mp 105-107 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=1.35\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.36$ (ddd, $1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=14.0$ $\mathrm{Hz}, J_{2 \mathrm{HH}}=8.0 \mathrm{~Hz}, J_{3 \mathrm{HH}}=1.9 \mathrm{~Hz} \mathrm{H}$ A CH_{2}), $2.52\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=14.0 \mathrm{~Hz}, J_{2 \mathrm{HH}}=10.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of CH 2$), 3.61-3.69$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.85\left(\mathrm{td}, J_{1 \mathrm{HH}}=10.2 \mathrm{~Hz}, \mathrm{~J}_{2 \mathrm{HH}}=1.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.23-4.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.38(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=12.6,30.8,43.3,62.9,65.5,86.3\left(\mathrm{t}, J_{\mathrm{CF}}=24.5 \mathrm{~Hz}\right), 122.2\left(\mathrm{t}, J_{\mathrm{CF}}=311.0\right.$ Hz), 165.9 ppm .
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=-57.41\left(\mathrm{~d}, 1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=171.8 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}\right.$ of $\left.\mathrm{CF}_{2} \mathrm{Br}\right),-59.44\left(\mathrm{~d}, 1 \mathrm{~F}, J_{\mathrm{FF}}=171.8 \mathrm{~Hz}\right.$, F_{B} of $\mathrm{CF}_{2} \mathrm{Br}$) ppm.

HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{BrF}_{2} \mathrm{NO}_{3}{ }^{+}$(288.0041 and 290.0021). Found: 288.0054 and 290.0034.
trans-3-(Bromodifluoromethyl)-3-hydroxypyrrolidine-2-carboxylic acid hydrochloride (trans-16e) was
 synthesized by the same hydrolysis method as compound trans-16d above starting from compound trans-15e (162 mg, 0.5 mmol$)$. Yield: 108 mg (73%). Colorless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=2.34\left(\mathrm{dd}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz}, J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}\right.$ of CH_{2}), 2.51 (dt, $1 \mathrm{H}, J_{\mathrm{HH}}=13.5 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), $3.57-3.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.81(\mathrm{t}, 1 \mathrm{H}$, $J_{\mathrm{HH}}=10.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=32.6,44.8,67.1,87.9\left(\mathrm{t}, J_{\mathrm{CF}}=25.5 \mathrm{~Hz}\right), 123.9\left(\mathrm{t}, J_{\mathrm{CF}}=309.0 \mathrm{~Hz}\right), 168.4$ ppm.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=-58.93\left(\mathrm{~d}, 1 \mathrm{~F}, J_{\mathrm{FF}}=172.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}\right.$ of $\left.\mathrm{CF}_{2} \mathrm{Br}\right),-56.81\left(\mathrm{~d}, 1 \mathrm{~F}, J_{\mathrm{FF}}=172.5 \mathrm{~Hz}\right.$, F_{B} of $\mathrm{CF}_{2} \mathrm{Br}$) ppm.

HRMS (ESI-TOF) $m / z:[M+H]^{+}$calcd. for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{BrF}_{2} \mathrm{NO}_{3}{ }^{+}$(259.9729 and 261.9708). Found: 259.9717 and 261.9701.
trans-1-tert-Butyl 2-ethyl 3-(bromodifluoromethyl)-3-hydroxypyrrolidine-1,2-dicarboxylate (trans-17e)
 was synthesized by the same approach as compound trans-/cis-17d above starting from compound trans-15e ($325 \mathrm{mg}, 1.0 \mathrm{mmol}$) and purified by column chromatography (EtOAc/cHex, 1:2, $\mathrm{R}_{\mathrm{f}}=0.45$). Yield: 330 mg (85%). Colorless solid, mp $115-117^{\circ} \mathrm{C}$.

NMR-spectra contain overlapping signals of both rotamers in ratio $\sim 2: 3$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.27\left(\mathrm{t}, 1.2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$, minor rotamer), $1.28\left(\mathrm{t}, 1.8 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right.$, CH_{3}, major rotamer), $1.40\left(\mathrm{~s}, 3.6 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, minor rotamer), $1.45\left(\mathrm{~s}, 5.4 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, major rotamer), 2.01-2.07 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{2}\right), 2.39-2.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}\right.$ of $\left.\mathrm{CH}_{2}\right), 3.55-3.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.77\left(\mathrm{t}, 0.4 \mathrm{H}, \mathrm{J}_{\mathrm{H}}=10.0\right.$ $\mathrm{Hz}, \mathrm{H}_{\mathrm{B}}$ of $\mathrm{CH}_{2} \mathrm{~N}$, minor rotamer), 3.82 (br. $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), $3.84\left(\mathrm{t}, 0.6 \mathrm{H}, \mathrm{J}_{\mathrm{H}}=10.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of $\mathrm{CH}_{2} \mathrm{~N}$, major rotamer), 4.13-4.23 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), $4.28(\mathrm{~s}, 0.6 \mathrm{H}, \mathrm{CH}$, major rotamer), $4.41(\mathrm{~s}, 0.4 \mathrm{H}, \mathrm{CH}$, minor rotamer) ppm.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): $\delta=13.7,13.9,28.2,28.3,31.0,31.4,43.6,44.0,61.7,61.8,66.5,66.9,80.9$, $81.1,85.5(\mathrm{t}, \mathrm{J}=24.5 \mathrm{~Hz}), 86.4\left(\mathrm{t}, J_{\mathrm{CF}}=24.5 \mathrm{~Hz}\right), 123.0\left(\mathrm{t}, J_{\mathrm{CF}}=312.0 \mathrm{~Hz}\right), 123.2\left(\mathrm{t}, J_{\mathrm{CF}}=312.0 \mathrm{~Hz}\right), 153.8$, $154.4,168.9 \mathrm{ppm}$.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-55.58$ (d, $0.4 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=168.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of $\mathrm{CF}_{2} \mathrm{Br}$, minor rotamer), -55.75 (d, $0.6 \mathrm{~F}, J_{\mathrm{FF}}=168.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of $\mathrm{CF}_{2} \mathrm{Br}$, major rotamer), -57.76 ($\mathrm{d}, 0.4 \mathrm{~F}, J_{\mathrm{FF}}=168.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of $\mathrm{CF}_{2} \mathrm{Br}$, minor rotamer), $-57.88\left(\mathrm{~d}, 0.6 \mathrm{~F}, J_{\mathrm{FF}}=168.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}\right.$ of $\mathrm{CF}_{2} \mathrm{Br}$, major rotamer) ppm.

HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{BrF}_{2} \mathrm{NNaO}_{5}{ }^{+}$(410.0386 and 412.0365). Found: 410.0390 and 412.0369.

2.8.3. Synthesis of compounds trans-16c and trans-17c

trans-1-tert-Butyl 2-ethyl 3-(difluoromethyl)-3-hydroxypyrrolidine-1,2-dicarboxylate (trans-17c). Compound trans-17e (194 mg, 0.5 mmol) was dissolved in EtOH (20 mL) then $\mathrm{Et}_{3} \mathrm{~N}$
 $(0.08 \mathrm{~mL}, 61 \mathrm{mg}, 0.6 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(5 \mathrm{mg})$ were added and the solution was stirred under hydrogen atmosphere (50 atm) in an autoclave at r.t. for 8 h. The reaction progress was monitored by TLC. After complete hydrogenation, the mixture was filtered and the solution was concentrated under reduced pressure. The residue was purified by column chromatography (EtOAc/cHex, 1:2, $\mathrm{R}_{\mathrm{f}}=0.33$). Yield: 136 mg (88%). Colorless solid, mp $150-152^{\circ} \mathrm{C}$.

NMR-spectra contain overlapping signals of both rotamers in ratio ~2:3.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.27\left(\mathrm{t}, 1.2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$, minor rotamer), $1.29\left(\mathrm{t}, 1.8 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, CH_{3}, major rotamer), $1.41\left(\mathrm{~s}, 5.4 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, major rotamer), $1.46\left(\mathrm{~s}, 3.6 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$, minor rotamer), 1.87-1.93 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$ of CH_{2}), 2.25-2.33 (m, 1H, H_{B} of CH_{2}), 2.66 (br. $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 3.55-3.63 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$ of $\mathrm{CH}_{2} \mathrm{~N}$), 3.74 ($\mathrm{t}, 0.4 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=9.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of $\mathrm{CH}_{2} \mathrm{~N}$), $3.81\left(\mathrm{t}, 0.6 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=9.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.14-4.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.22(\mathrm{~s}$, $0.6 \mathrm{H}, \mathrm{CH}$, major rotamer), $4.31\left(\mathrm{~s}, 0.4 \mathrm{H}, \mathrm{CH}\right.$, minor rotamer), $5.79\left(\mathrm{t}, 0.6 \mathrm{H}, \mathrm{J}_{\mathrm{HF}}=55.5 \mathrm{~Hz}\right.$, major rotamer), $5.81\left(\mathrm{t}, 0.4 \mathrm{H}, \mathrm{J}_{\mathrm{HF}}=55.5 \mathrm{~Hz}\right.$, minor rotamer) ppm.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,14.0,28.2,28.3,30.1,30.7,43.7,44.0,61.6,61.7,66.9,67.2,80.5$, $80.6,80.9\left(\mathrm{t}, J_{\mathrm{CF}}=22.5 \mathrm{~Hz}\right), 82.0\left(\mathrm{t}, J_{\mathrm{CF}}=22.5 \mathrm{~Hz}\right), 113.7\left(\mathrm{t}, J_{\mathrm{CF}}=245.0 \mathrm{~Hz}\right), 113.8\left(\mathrm{t}, J_{\mathrm{CF}}=245.0 \mathrm{~Hz}\right), 153.5$, 154.5, 169.1, 169.2 ppm.
${ }^{19} \mathrm{~F}$ NMR ($282.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-129.05\left(\mathrm{dd}, 1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=290.0 \mathrm{~Hz}, J_{\mathrm{HF}}=55.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}\right.$ of CHF_{2}), -130.71 (dd, $0.4 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=290.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{HF}}=55.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of CHF_{2}, minor rotamer), -130.96 (dd, $0.6 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=290.0 \mathrm{~Hz}, J_{\mathrm{HF}}=55.5$ $\mathrm{Hz}, \mathrm{F}_{\mathrm{B}}$ of CHF_{2}, major rotamer) ppm.

HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NNaO}_{5}{ }^{+}$(332.1280). Found: 332.1283.
trans-3-(Difluoromethyl)-3-hydroxypyrrolidine-2-carboxylic acid hydrochloride (trans-16c). Compound trans-17c ($93 \mathrm{mg}, 0.3 \mathrm{mmol}$) was dissolved in dioxane (5 mL). $6 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ was added
 and the resulting mixture was stirred for 10 h at $80^{\circ} \mathrm{C}$. Then the cooled mixture was washed by EtOAc ($2 \times 30 \mathrm{~mL}$) and the water layer was concentrated under reduced pressure and the residue was dried in vacuum of oil pump $\left(10^{-3} \mathrm{~mm} \mathrm{Hg}\right)$ for 5 h giving pure compound (trans-16c). Yield: 55 mg (84\%). Colorless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=2.16\left(\mathrm{dd}, 1 \mathrm{H}, J_{1 \mathrm{HH}}=13.5 \mathrm{~Hz}, J_{2 \mathrm{HH}}=6.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{2}\right), 2.33\left(\mathrm{dt}, 1 \mathrm{H}, J_{1 \mathrm{HH}}=\right.$ $13.5 \mathrm{~Hz}, J_{2 \mathrm{HH}}=9.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$ of CH_{2}), $3.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.65\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{1 \mathrm{HH}}=9.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right.$ of CH 2 N$), 4.33(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}), 6.11\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HF}}=54.5 \mathrm{~Hz}, \mathrm{CHF}_{2}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CD 3 OD$): ~ \delta=31.8,45.0,68.2,82.3\left(\mathrm{t}, J_{\mathrm{CF}}=24.0 \mathrm{~Hz}\right), 115.5\left(\mathrm{t}, \mathrm{J}_{\mathrm{CF}}=241.5 \mathrm{~Hz}\right), 168.2$ ppm.
${ }^{19}$ F NMR ($282.5 \mathrm{MHz}, C D_{3} \mathrm{OD}$): $\delta=-129.05$ (dd, $1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=290 \mathrm{~Hz}, J_{\mathrm{FH}}=54.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{A}}$ of CHF_{2}), -132.61 (dd, 1 F , $J_{\mathrm{FF}}=290 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{FH}}=54.5 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{B}}$ of CHF_{2}) ppm.

HRMS (ESI-TOF) $m / z:[M+H]^{+}$calcd. for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{NO}_{3}{ }^{+}$(182.0623). Found: 182.0634.

3. X-ray crystallography data

3.1. General

For compound trans-17d data sets were collected with a Nonius Kappa CCD diffractometer. Programs used: data collection, COLLECT; ${ }^{3}$ data reduction Denzo-SMN; ${ }^{4}$ absorption correction, Denzo; ${ }^{5}$ structure solution SHELXS-97; ${ }^{6}$ structure refinement SHELXL-97. ${ }^{6}$ Data sets for compounds (2S,3S)-12a, (2R,3S)12a and trans-15d were collected with a D8 Venture CMOS diffractometer. For compounds trans-1b and trans-6a data sets were collected with a Bruker APEX II CCD diffractometer. Programs used: data collection: APEX3 V2016.1-0; ${ }^{7}$ cell refinement: SAINT V8.37A; ${ }^{7}$ data reduction: SAINT V8.37A; ${ }^{7}$ absorption correction, SADABS V2014/7;7 structure solution SHELXT-2015; ${ }^{8}$ structure refinement SHELXL-2015. ${ }^{8} R$-values are given for observed reflections, and $w R^{2}$ values are given for all reflections. Exceptions and special features: For compound (2S,3S)-12a one O-tBu group and for compound trans15d two ethoxy and one $\mathrm{CF}_{2} \mathrm{Cl}$ were found disordered over two positions in the asymmetric unit. Several restraints (SADI, SAME, ISOR and SIMU) were used in order to improve refinement stability.

3.2 X-ray crystal structure analysis of trans-1b

A colorless plate-like specimen of $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{ClF}_{5} \mathrm{NO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, approximate dimensions $0.040 \mathrm{~mm} \times 0.150 \mathrm{~mm} \times$ 0.150 mm , was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 1276 frames were collected. The total exposure time was 19.87 hours. The frames were integrated with the Bruker SAINT software package using a wide-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 14163 reflections to a maximum θ angle of 66.80° ($0.84 \AA$ resolution), of which 1940 were independent (average redundancy 7.301 , completeness $=$ $99.1 \%, R_{\text {int }}=5.07 \%, R_{\text {sig }}=2.85 \%$) and $1700(87.63 \%)$ were greater than $2 \sigma\left(F^{2}\right)$. The final cell constants of $\underline{a}=11.5790(5) \AA, \underline{b}=10.2974(4) \AA, \underline{c}=9.8109(4) \AA, \beta=109.426(2)^{\circ}$, volume $=1103.19(8) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 5379 reflections above $20 \sigma(I)$ with $8.096^{\circ}<2 \theta<133.6^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.782 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6000 and 0.8630 . The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P 2_{1} / c$, with $Z=4$ for the formula unit, $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{ClF}_{5} \mathrm{NO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 174 variables converged at R1 $=3.05 \%$, for the observed data and $w R 2=7.35 \%$ for all data. The goodness-offit was 1.083. The largest peak in the final difference electron density synthesis was $0.281 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.237 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.053 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.732 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000)$, $584 \mathrm{e}^{-}$.

Figure S1. Crystal structure of compound trans-1b.
Thermal ellipsoids are shown at 30 \% probability.

Figure S2. Excerpt of the packing diagram of trans-1b presenting the formations of various types of hydrogen bonds interactions ($\mathrm{OH} \cdots \mathrm{O}, \mathrm{OH} \cdots \mathrm{Cl}, \mathrm{NH} \cdots \mathrm{Cl}, \mathrm{CH} \cdots \mathrm{O}$ hydrogen bonds).

Table S2. Hydrogen bond interactions in compound trans-1b (Å and deg) ${ }^{\text {a }}$

$D-\mathrm{H} \cdots A$	$d(D-\mathrm{H})$	$d(\mathrm{H} \cdots A)$	$d(D \cdots A)$	$\angle(D H A)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\# 1}$	1.00	2.44	$3.404(2)$	161.4
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~F}^{\# 2}$	1.00	2.50	$3.344(2)$	141.5
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{O}^{\# 2}$	0.99	2.42	$3.350(2)$	155.6
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{Cl}^{\# 3}$	0.99	2.97	$3.902(2)$	156.9
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl} 1^{\# 1}$	$0.89(3)$	$2.24(3)$	$3.087(2)$	$157(2)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O}^{\# 4}$	$0.87(3)$	$2.08(3)$	$2.926(2)$	$163(2)$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 3$	$0.87(3)$	$1.68(3)$	$2.550(2)$	$174(3)$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{Cl} 1^{\# 5}$	$0.77(3)$	$2.32(3)$	$3.089(2)$	$176(3)$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{Cl} 1$	$0.85(3)$	$2.24(3)$	$3.045(2)$	$157(3)$

Symmetry transformations used to generate equivalent atoms: ${ }^{\# 1} x, 1.5-y,-0.5+z ;{ }^{\# 2} x, 1.5-y, 0.5+z ;{ }^{\# 3} x, 1+y, z ;{ }^{\# 4}-x, 0.5+y, 0.5-z$; \#5 $x, 0.5-y,-0.5+z$.

3.3. X-ray crystal structure analysis of trans-6a

A colorless plate-like specimen of $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{3}$, approximate dimensions $0.020 \mathrm{~mm} \times 0.200 \mathrm{~mm} \times 0.200$ mm , was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 1831 frames were collected. The total exposure time was 39.82 hours. The frames were integrated with the Bruker SAINT software package using a wide-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 18311 reflections to a maximum θ angle of $66.71^{\circ}(0.84 \AA$ resolution), of which 2632 were independent (average redundancy 6.957 , completeness $=98.3 \%$, $\mathrm{R}_{\text {int }}=$ $10.00 \%, \mathrm{R}_{\text {sig }}=7.38 \%$) and $1810(68.77 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=$ $11.4217(13) \AA, \underline{b}=20.9410(19) \AA, \underline{c}=6.3348(6) \AA, \beta=94.730(7)^{\circ}$, volume $=1510.0(3) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 3472 reflections above $20 \sigma(I)$ with $8.444^{\circ}<2 \theta<130.9^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.705 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7330 and 0.9680 . The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P 2_{1} / c$, with $Z=8$ for the formula unit, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{3}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 246 variables converged at R1 $=5.32 \%$, for the observed data and $w R 2=13.64 \%$ for all data. The goodness-of-fit was 1.034 . The largest peak in the final difference electron density synthesis was $0.328 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $0.278 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.062 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.734 \mathrm{~g} / \mathrm{cm}^{3}$ and $F(000), 800 \mathrm{e}^{-}$.

Figure S3. Asymmetric unit of compound trans-6a presenting the formation
of pair unit trough $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the carboxylic group of molecule " A " and the proline derivative ring of molecule " B ".
Thermal ellipsoids are shown at 15 \% probability.

Figure S4. Dimer structure formation between the pair units of compound trans-6a involving N-H..O hydrogen bonds of two proline derivative rings from the molecules " A ".

Table S3. Hydrogen bond interactions in compound trans-6a (Å and deg) ${ }^{\text {a }}$

$D-H \cdots A$	$d(D-H)$	$d(H \cdots A)$	$d(D \cdots A)$	$\angle(D H A)$
N1A-H1 $\cdots{ }^{(D 1 A} A^{\# 1}$	$0.86(4)$	$2.06(4)$	$2.897(4)$	$162(4)$
O3A-H3A \cdots O1B	0.84	1.71	$2.538(3)$	166.8
N1B-H2 \cdots O2A	$0.84(4)$	$2.17(4)$	$2.961(4)$	$157(3)$
C3A-H301 \cdots F2B $^{\# 2}$	0.99	2.53	$3.496(4)$	164.5
O3B-H3B $\cdots \mathrm{O}^{\# 3}$	0.84	1.76	$2.597(3)$	170.2

Symmetry transformations used to generate equivalent atoms: ${ }^{\# 1} 1-x, 2-y, 1-z ;{ }^{\# 2}-1+x, 1.5-y, 0.5+z ;{ }^{\# 3} 1-x,-0.5+y, 1.5-z$.

3.4. X-ray crystal structure analysis of (2S,3S)-12a

A colorless plate-like specimen of $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$, approximate dimensions $0.038 \mathrm{~mm} \times 0.203 \mathrm{~mm} \times 0.214$ mm , was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. The integration of the data using a monoclinic unit cell yielded a total of 37191 reflections to a maximum θ angle of 65.05° ($0.85 \AA$ A resolution), of which 12106 were independent (average redundancy 3.072, completeness $=95.1 \%, \mathrm{R}_{\text {int }}=5.42 \%, \mathrm{R}_{\text {sig }}=6.38 \%$) and 10067 (83.16%) were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=9.4312(2) \AA, \underline{b}=44.5944(10) \AA, \underline{c}=9.6364(2) \AA, \beta=93.151(2)^{\circ}$, volume $=$ $4046.74(15) \AA^{3}$, are based upon the refinement of the XYZ-centroids of reflections above $20 \sigma(I)$. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8330 and 0.9670. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P 2_{1}$, with $Z=8$ for the formula unit, $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$. The final anisotropic full-matrix leastsquares refinement on F^{2} with 1054 variables converged at $R 1=5.65 \%$, for the observed data and wR2 = 10.38% for all data. The goodness-of-fit was 1.079. The largest peak in the final difference electron density synthesis was $0.222 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.234 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.047 \mathrm{e}^{-}$ $/ \AA^{3}$. On the basis of the final model, the calculated density was $1.268 \mathrm{~g} / \mathrm{cm}^{3}$ and $F(000), 1632 \mathrm{e}^{-}$. Flack parameter was refined to $0.09(8)$.

Figure S5. Crystal structure of compound (2S,3S)-12a. Only one molecule (molecule " A ") of four found in the asymmetric unit is shown. Thermal ellipsoids are shown at 15 \% probability.

Figure S6. Linear chains containing alternate molecules "A" and "B" involving $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in compound (2S,3S)-12a.

Table S4. Hydrogen bond interactions in compound (2S,3S)-12a (Å and deg) ${ }^{\text {a }}$

$D-H \cdots A$	$d(D-H)$	$d(H \cdots A)$	$d(D \cdots A)$	$\angle(D H A)$
N2A-H1 $\cdots \mathrm{O}^{\prime} \mathrm{B}^{\# 1}$	$0.93(7)$	$1.94(7)$	$2.845(6)$	$163(5)$
N2B-H2 \cdots O3A	$0.86(6)$	$1.99(6)$	$2.832(6)$	$167(6)$
N2C-H3 \cdots O3D	$0.93(5)$	$1.93(6)$	$2.859(6)$	$174(5)$
N2D-H4 \cdots O3C $^{\# 2}$	$1.00(5)$	$1.80(5)$	$2.792(5)$	$171(4)$

Symmetry transformations used to generate equivalent atoms: ${ }^{\# 1}-1+x, y, z ;{ }^{\# 2} x, y, 1+z$.

3.5. X-ray crystal structure analysis of (2R,3S)-12a

A colorless needle-like specimen of $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$, approximate dimensions $0.048 \mathrm{~mm} \times 0.091 \mathrm{~mm} \times$ 0.175 mm , was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 1233 frames were collected. The total exposure time was 24.12 hours. The frames were integrated with the Bruker SAINT software package using a wide-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 22784 reflections to a maximum θ angle of 68.26° ($0.83 \AA$ resolution), of which 3580 were independent (average redundancy 6.364 , completeness = $99.4 \%, \mathrm{R}_{\text {int }}=6.71 \%, \mathrm{R}_{\text {sig }}=3.87 \%$) and 3292 (91.96%) were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=8.9485(2) \AA, \underline{b}=11.2537(3) \AA, \underline{c}=19.5558(4) \AA$, volume $=1969.34(8) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 9983 reflections above $20 \sigma(\mathrm{I})$ with $9.044^{\circ}<2 \theta<136.2^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.884 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8570 and 0.9580 . The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P 2_{1} 2_{1} 2_{1}$, with $Z=4$ for the formula unit, $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 252 variables converged at $R 1=3.59 \%$, for the observed data and $w R 2=7.49 \%$ for all data. The goodness-of-fit was 1.120. The largest peak in the final difference electron density synthesis was $0.152 \mathrm{e}^{-} / \AA^{3}$ and the largest
hole was $-0.206 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.043 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.303 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 816 \mathrm{e}^{-}$. Flack parameter was refined to $0.1(1)$.

Figure S7. Crystal structure of compound (2R,3S)-23a.
Thermal ellipsoids are shown at 30 \% probability.

Figure S8. Linear chains along " a "-axis involving $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in compound $(\mathbf{2 R}, 3 S)-12 \mathrm{a}$.

Table S5. Hydrogen bond interactions in compound (2R,3S)-12a (\AA and deg) ${ }^{\text {a }}$

$D-H \cdots A$	$d(D-H)$	$d(H \cdots A)$	$d(D \cdots A)$	$\angle(D H A)$
$\mathrm{N} 2-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O1}^{\# 1}$	$0.75(3)$	$2.17(3)$	$2.890(3)$	$161(3)$

Symmetry transformations used to generate equivalent atoms: ${ }^{\# 1} 0.5+x, 1.5-y, 1-z$.

3.6. X-ray crystal structure analysis of trans-15d

A colorless plate-like specimen of $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{NO}_{3} \cdot 1.25 \times \mathrm{H}_{2} \mathrm{O}$, approximate dimensions $0.120 \mathrm{~mm} \times 0.261$ $\mathrm{mm} \times 0.320 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 2709 frames were collected. The total exposure time was 45.15 hours. The frames were integrated with the Bruker SAINT software package using a wide-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 33870 reflections to a maximum θ angle of $68.37^{\circ}(0.83$ Å resolution), of which 4837 were independent (average redundancy 7.002 , completeness $=$ $98.9 \%, \mathrm{R}_{\text {int }}=5.16 \%, \mathrm{R}_{\text {sig }}=3.51 \%$) and $4616(95.43 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=32.3706(15) \AA, \underline{b}=5.5808(3) \AA, \underline{c}=32.0773(15) \AA, \beta=113.0500(10)^{\circ}$, volume $=5332.2(5) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 9849 reflections above $20 \sigma(I)$ with $6.577^{\circ}<2 \theta<$ 136.6°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.601 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.3150 and 0.6020 . The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group C2/c, with $Z=16$ for the formula unit, $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{NO}_{3} \cdot 1.25 \times \mathrm{H}_{2} \mathrm{O}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 414 variables converged at $\mathrm{R} 1=5.50 \%$, for the observed data and $w R 2=13.86 \%$ for all data. The goodness-of-fit was 1.080 . The largest peak in the final difference electron density synthesis was 0.737 $\mathrm{e}^{\mathrm{e}} / \mathrm{A}^{3}$ and the largest hole was $-0.746 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.073 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.508 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 2504 \mathrm{e}^{-}$.

Cl 2

Figure S9. Crystal structure of compound trans-15d.
Thermal ellipsoids are shown at 15% probability.

Figure S10. Excerpt of the packing diagram of trans-15d presenting the formations of various types of hydrogen bonds interactions ($\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds).

Table S6. Hydrogen bond interactions in compound trans-15d (Å and deg)a

$D-H \cdots A$	$d(D-H)$	$d(H \cdots A)$	$d(D \cdots A)$	$\angle(D H A)$
N1A-H1A \cdots O4A	0.86(2)	2.03(2)	2.824(3)	153(3)
N1A-H1B \cdots Cl2A ${ }^{\# 1}$	0.86(2)	2.29(2)	3.087(3)	154(4)
O1A-H1 \cdots O4B $^{\# 2}$	0.86(2)	1.78(2)	2.635(4)	172(4)
O4A-H4A $\cdots \mathrm{Cl} 2 A^{\# 3}$	0.86(2)	2.28(2)	3.125(2)	166(3)
N1B-H1C...Cl2B\#5	0.87(2)	2.24(2)	3.109(3)	173(4)
N1B-H1D..Cl2B	0.87(2)	2.48(4)	3.152(3)	134(4)
O1B-H2 \cdots O5B ${ }^{\# 4}$	0.85(2)	1.82(2)	2.650(3)	165(4)
O4B-H4C...Cl2B	0.85(2)	2.50(3)	3.265(3)	150(4)
O4B-H4C...O2B	0.85(2)	2.55(4)	3.081(4)	122(4)
O4B-H4D \cdots Cl2B ${ }^{\# 3}$	0.86(2)	2.25(2)	3.109(3)	174(5)
O5B-H5A \cdots Cl2A	0.86(2)	2.36(2)	3.210(3)	168(4)
O5B-H5B \cdots Cl2A ${ }^{\# 3}$	0.86(2)	2.40(2)	3.240(3)	166(4)

Symmetry transformations used to generate equivalent atoms: ${ }^{\# 1} 2-x, y, 0.5-z ;{ }^{\# 2} 0.5+x,-0.5-y,-z ;{ }^{\# 3} x, 1+y, z ;{ }^{\# 4} 1.5-x,-0.5+y, 0.5-$ $z ;{ }^{\# 5} x,-1+y, z$.

3.7. X-ray crystal structure analysis of trans-17d.

Formula $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ClF}_{2} \mathrm{NO}_{5}, M=343.75$, colourless crystal, $0.23 \times 0.18 \times 0.04 \mathrm{~mm}, a=19.3791(4), b=$ $9.2260(2), c=19.4047(4) \AA, b=105.322(1)^{\circ}, V=3346.1(1) \AA^{3}, \rho_{\text {calc }}=1.365 \mathrm{gcm}^{-3}, \mu=0.269 \mathrm{~mm}^{-1}$, empirical absorption correction ($0.940 \leq T \leq 0.989$), $Z=8$, monoclinic, space group $P 2_{1} / n$ (No.14), $\lambda=$ $0.71073 \AA, T=173(2) \mathrm{K}, \omega$ and ϕ scans, 21562 reflections collected ($\pm h, \pm k, \pm I$), 5760 independent ($R_{\text {int }}=$ 0.050) and 4993 observed reflections [$/>2 \sigma(I)], 408$ refined parameters, $R=0.086, w R^{2}=0.271$, max. (min.) residual electron density $0.53(-0.61)$ e. \AA^{-3}, the hydrogen atoms were calculated and refined as riding atoms.

Figure S11. Crystal structure of compound trans-17d.
Only one molecule of two found in the asymmetric unit is shown.
Thermal ellipsoids are shown at 15 \% probability.

Figure S12. Wave chains perpendicular to ac-diagonal involving O-H...O hydrogen bonds in compound trans-17d.

Table S7. Hydrogen bond interactions in compound trans-17d (Å and deg) ${ }^{\text {a }}$

$D-H \cdots A$	$d(D-H)$	$d(H \cdots A)$	$d(D \cdots A)$	$\angle(D H A)$
O5A-H5C \cdots O1	0.84	1.85	$2.691(6)$	173.4
O5-H5 \cdots O1A $^{\# 1}$	0.89	1.89	$2.705(6)$	162.1

Symmetry transformations used to generate equivalent atoms: ${ }^{\# 1} 0.5+x, 1.5-y, 0.5+z$.

4. References

[1] (a) I. S. Kondratov, I. I. Gerus, A. D. Kacharov, M. G. Gorbunova, V. P. Kukhar and R. Fröhlich, J. Fluorine Chem., 2005, 126, 543; (b) I. S. Kondratov, I. I. Gerus, M. V. Furmanova, S. I. Vdovenko and V. P. Kukhar, Tetrahedron, 2007, 63, 7246.
[2] (a) D. Gestmann, A. J. Laurent and E. G. Laurent, J. Fluorine Chem., 1996, 80, 27; (b) L. Antolini, A. Forni, I. Moretti, F. Prati, E. Laurent and D. Gestmann, Tetrahedron: Asymmetry, 1996, 7, 3309; (c) V. A. Soloshonok, D. V. Avilov, V. P. Kukhar', L. Van Meervelt and N. Mischenko, Tetrahedron Lett., 1997, 38, 4903.
[3] R. W. W. Hooft, COLLECT, Program for Collecting Data on CCD Area Detectors Bruker AXS, 2008, Delft, The Netherlands.
[4] Z. Otwinowski, W. Minor, Methods Enzymol., 1997, 276, 307.
[5] Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Crystallogr. Sect. A, 2003, 59, 228.
[6] SHELX software (2008). G. M. Sheldrick, G. M. Acta Cryst. 2008, A64, 112.
[7] XP - Interactive molecular graphics, Version 5.1, Bruker AXS Inc., Madison, Wisconsin, USA, 1998; APEX3 (2016), SAINT (2015) and SADABS (2014), Bruker AXS Inc., Madison, Wisconsin, USA.
[8] SHELX software: G. M. Sheldrick, Acta Cryst., 2015, A71, 3.

5. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR-spectra

${ }^{1} \mathrm{H}$ NMR, compound 3a

${ }^{13} \mathrm{C}$ NMR, compound 3 a

${ }^{19}$ F NMR, compound 3a

${ }^{1} \mathrm{H}$ NMR, compound syn-4a

${ }^{13}$ C NMR, compound syn-4a
※
※

ハ꾼 \square

1	1	15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \text { f1 (MA) } \end{gathered}$	70	60	50	40	30	20	10	0	-10

${ }^{19}$ F NMR, compound syn-4a

${ }^{1} \mathrm{H}$ NMR, compound anti-4a

${ }^{13}$ C NMR, compound anti-4a

${ }^{19} \mathrm{~F}$ NMR, compound anti-4a

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	+	1	1	1	1		
30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	$\begin{gathered} -100 \\ \mathrm{f}_{1}(\mathrm{MA}) \end{gathered}$	-120	-140	-160	-180	-200	-220		

${ }^{1} \mathrm{H}$ NMR, compound syn-4b

${ }^{13}$ C NMR, compound syn-4b

${ }^{19}$ F NMR, compound syn-4b

${ }^{1} \mathrm{H}$ NMR, compound anti-4b

$\stackrel{8}{i}$
登

(年)

${ }^{13}$ C NMR, compound anti-4b
 F
I +

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
180	170	160	150	140	130	120	110	100	$\begin{aligned} & 90 \\ & f 1 \text { (MA) } \end{aligned}$	80	70	60	50	40	30	20	10	0

${ }^{19}$ F NMR, compound anti-4b

${ }^{1} \mathrm{H}$ NMR, compound anti-5a

${ }^{13} \mathrm{C}$ NMR, compound anti-5a

ハ~~~

$\stackrel{\stackrel{\circ}{i}}{\stackrel{1}{0}}$

${ }^{19}$ F NMR, compound anti-5a

\qquad

${ }^{1} \mathrm{H}$ NMR, compound syn-5a

${ }^{13} \mathrm{C}$ NMR, compound syn-5a

${ }^{19} \mathrm{~F}$ NMR, compound syn-5a

${ }^{1} \mathrm{H}$ NMR, compound trans-6a

${ }^{13}$ C NMR, compound trans-6a

${ }^{19}$ F NMR, compound trans-6a

${ }^{1}$ H NMR , Compound S1 (see Scheme S2)

${ }^{13}$ C NMR, Compound S1 (see Scheme S2)

$\stackrel{\circ}{\square}$

[^0]${ }^{19}$ F NMR Compound S1 (see Scheme S2)

${ }^{1}$ H NMR, Compound S2 (see Scheme S2)

号肙

${ }^{13}$ C NMR, Compound S2 (see Scheme S2)

$\stackrel{m}{\stackrel{m}{\dot{m}}}$

${ }^{19}$ F NMR, Compound S2 (see Scheme S2)

${ }^{1} \mathrm{H}$ NMR, Compound trans-7a

${ }^{13}$ C NMR, Compound trans-7a

1	1	1	1	1	1	1	1	1		1	1	1	T	1	1	I	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{19}$ F NMR, Compound trans-7a

${ }^{1}$ H NMR , compound S3 (See scheme S2)

${ }^{13}$ C NMR, compound S3 (See scheme S2)

${ }^{19}$ F NMR, compound S3 (See scheme S2)

\qquad

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160

${ }^{1} \mathrm{H}$ NMR, compound trans-1a

${ }^{13}$ C NMR, compound trans-1a
(

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{Mg}) \end{gathered}$	80	70	60	50	40	30	20	10	0

${ }^{19}$ F NMR, compound trans-1a

ぞ N

${ }^{1} \mathrm{H}$ NMR, compound trans-10a
$\stackrel{7}{\stackrel{m}{1}}$

${ }^{13} \mathrm{H}$ NMR, compound trans-10a
$\stackrel{\text { ® }}{\stackrel{2}{2}}$

V

${ }^{1} \mathrm{H}$ NMR, compound cis-10a

${ }^{13}$ C NMR, compound cis-10a

${ }^{19}$ F NMR, compound cis-10a

${ }^{1} \mathrm{H}$ NMR, compound cis-1a

${ }^{13}$ C NMR, compound cis-1a

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
190	180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

${ }^{19}$ F NMR, compound cis-1a

[^1]${ }^{1} \mathrm{H}$ NMR, compound trans-10b

${ }^{13}$ C NMR, compound trans-10b

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, compound trans-10b

${ }^{1} \mathrm{H}$ NMR, compound trans-1b

${ }^{13}$ C NMR, compound trans-1b

${ }^{19}$ F NMR, compound trans-1b

${ }^{1} \mathrm{H}$ NMR, compound trans-11b

${ }^{13} \mathrm{C}$ NMR, compound trans-11b

${ }^{19}$ F NMR, compound trans-11b

1	1	,	1	1	1	,	1	,	1	1	1	1	1	1	1
0	-10	-20	-30	-40	-50	-60	-70	$\mathrm{f1}(\mathrm{MA})^{-80}$	-90	-100	-110	-120	-130	-140	-150

${ }^{1} \mathrm{H}$ NMR, compound cis-10b
$\stackrel{8}{i}$

$$
\int_{\mathrm{N}_{\text {Boc }}}^{\mathrm{CF}_{2} \mathrm{CF}_{3}}
$$

${ }^{13} \mathrm{C}$ NMR, compound cis-10b

${ }^{19}$ F NMR, compound cis-10b

${ }^{1} \mathrm{H}$ NMR, compound cis-1b

${ }^{13}$ C NMR, compound cis-1b

춘

${ }^{19}$ F NMR, compound cis-1b

${ }^{1} \mathrm{H}$ NMR, compound cis-11b

${ }^{13} \mathrm{C}$ NMR, compound cis-11b

${ }^{19}$ F NMR, compound cis-11b

${ }^{1} \mathrm{H}$ NMR, compound (2R,3R)-12a

${ }^{13} \mathrm{C}$ NMR, compound (2R,3R)-12a

$\begin{array}{ll} \underset{\sim}{m} & \stackrel{\circ}{4} \\ \underset{\sim}{\mid} & \stackrel{\sim}{n} \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{N}{2}} \\ & \stackrel{y}{t} \end{aligned}$	

$\stackrel{\beta}{i}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{19}$ F NMR, compound (2R,3R)-12a

${ }^{1} \mathrm{H}$ NMR, compound (2S,3R)-12a

${ }^{13} \mathrm{C}$ NMR, compound (2S,3R)-12a

${ }^{19}$ F NMR, compound (2S,3R)-12a

解

${ }^{1} \mathrm{H}$ NMR, compound (2R,3S)-12a

${ }^{13} \mathrm{C}$ NMR, compound (2R,3S)-12a

${ }^{19}$ F NMR, compound (2R,3S)-12a

${ }^{1} \mathrm{H}$ NMR, compound (2S,3S)-12a

${ }^{13} \mathrm{C}$ NMR, compound (2S,3S)-12a

${ }^{19}$ F NMR, compound (2S,3S)-12a

${ }^{1} \mathrm{H}$ NMR, compound (2S,3S)-S4 (Scheme S7)

${ }^{13}$ C NMR, compound (2S,3S)- S4 (Scheme S7)

[^2]${ }^{19}$ F NMR, compound (2S,3S)- S4 (Scheme S7)

h

教
e

${ }^{1} \mathrm{H}$ NMR , compound (2R,3R)-S4 (Scheme S7)

${ }^{13}$ C NMR, compound (2R,3R)-S4 (Scheme S7)

${ }^{19}$ F NMR, compound (2R,3R)- S4 (Scheme S7)

${ }^{1} \mathrm{H}$ NMR, compound trans-15d
CHOCle

$\mathrm{H} \cdot \mathrm{HCl}$

											15				
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5

${ }^{13}$ C NMR, compound trans-15d

Conce

${ }^{19}$ F NMR, compound trans-15d

へir

${ }^{1} \mathrm{H}$ NMR, compound trans-16d

${ }^{13} \mathrm{C}$ NMR, compound trans-16d

${ }^{19}$ F NMR, compound trans-16d

${ }^{1} \mathrm{H}$ NMR，compound cis－17d

Boc

${ }^{13} \mathrm{C}$ NMR，compound cis－17d
+
$\stackrel{+}{0}$
$\stackrel{+}{1}$

Coct

髥 部解
$\stackrel{m}{\dot{q}} \underset{\sim}{m}$

${ }^{19}$ F NMR, compound cis-17d

${ }^{1} \mathrm{H}$ NMR, compound trans-17d

${ }^{13} \mathrm{C}$ NMR, compound trans-17d

 $\stackrel{\sim}{\sim}$

170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0

${ }^{19}$ F NMR, compound trans-17d

${ }^{1} \mathrm{H}$ NMR, compound trans-15e

${ }^{13}$ C NMR, compound trans-15e

$\stackrel{\stackrel{0}{0}}{\stackrel{0}{0}}$

${ }^{19}$ F NMR, compound trans-15e

${ }^{1} \mathrm{H}$ NMR, compound trans-16e

${ }^{13} \mathrm{C}$ NMR, compound cis-16e
Concen
$\stackrel{\rightharpoonup}{\dot{N}} \stackrel{0}{\square}$
$\underbrace{}_{\substack{m \\ \text { mop } \\ \text { wion }}}$
命

${ }^{19}$ F NMR, compound cis-16e

${ }^{1} \mathrm{H}$ NMR, compound trans-17e

${ }^{13} \mathrm{C}$ NMR, compound trans-17e

${ }^{19}$ F NMR, compound trans-17e

i i i R

${ }^{1} \mathrm{H}$ NMR, compound trans-17c

${ }^{13} \mathrm{C}$ NMR, compound trans-17c

${ }^{19}$ F NMR, compound trans-17c

${ }^{1} \mathrm{H}$ NMR, compound trans-16c

${ }^{13}$ C NMR, compound trans-16c

${ }^{19}$ F NMR, compound trans-16c

[^0]: $\begin{array}{lllllllllllllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^1]:

[^2]:

