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Experiment Methods

Preparation of TiO2 nanotube array electrodes. The electrochemical anodic oxidation 

method was used to fabricate the TiO2 nanotube arrays film.1 To remove the surface oxidation 

layer, the titanium sheet (0.2 mm thickness, 99.5% purity) was first chemically polished in the 

solution containing HF, HNO3, and deionized water (1:2:7 in volume) for 30 s. The resulting 

titanium sheets were ultrasonically cleaned with acetone, ethanol, and deionized water, and 

then were anodized in 250 mL NH4F-containing ethylene glycol (EG) solution (1g NH4F, 245 mL EG, 

5mL deionized water) at 60 V for 15 min at room temperature and the counter electrode was a 

platinum plate. The as-anodized samples were thoroughly cleaned with deionized water and 

then annealed in air at 450 oC for 2 h with a heating rate of 10 oC min-1.

NaBH4 treatment.  The conductor parts of the as obtained sample where no nanotubes 

grown were polished with sandpaper to remove the TiO2 compact layer on the surface of Ti 

sheet formed during heat treatment. The one that whole sample including nanotubes and 

conductor parts was immersed in 0.5 M NaBH4 solution (W-TiO2). The other one the conductor 

parts on the back and front of the photoanode were thoroughly sealed by insulating tape and 

only nanotubes on the sample can contact NaBH4 electrolyte (O-TiO2). For comparison, 

commercial anatase TiO2 nano powders (0.1 g) were added to 50 mL 0.5 M NaBH4 solution 

under magnetic stirring for a relative long time 3 h at room temperature.

Electrochemical doping. The TiO2 nanotubes electrode as the working electrode were 

immersed in 1 M NaOH solution. Then a negative bias -1.35 V was applied in the dark at room 

temperature for 10 ~ 60 s.2

TiO2 nanotube array characterizations. The morphologies of the TiO2 nanotube 

photoanodes were observed by field-emission scanning electron microscope (FE-SEM; Nova 

NanoSEM 230, FEI). Crystal phases of these samples were determined using an X-ray 
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diffractometer (XRD, Rigaku Ultima Ⅲ, Japan) operated at 40 kV and 40 mA using Cu Ka radiation. 

X-ray photoelectron spectroscopy (XPS) measurements were carried out on a Thermo VG 

Scientific ESCALAB 250 spectrometer with monochromatized Al Kα excitation. The spectral 

positions were corrected by normalizing the C1s spectrum at 284.6 eV, and a Shirley background 

was used for peak fitting. The UV-Vis absorption spectra were obtained by ultraviolet-visible 

spectrophotometer (UV, Shimadzu UV-2550). Electron paramagnetic resonance (EPR) was 

conducted with an X-band EPR spectrometer (EMX-10/12, Bruker, German) operating at a 

microwave frequency of 9.49 GHz at 110 k.

Electrochemical and photoelectrochemical characterization. A CHI760E electrochemical 

workstation (Shanghai Chenhua Company, Shanghai, China) was used to conduct the 

electrochemical and photoelectrochemical measurements, which were performed in a standard 

three-electrode cell at room temperature. The electrode except the semiconductor-electrolyte 

interface was thoroughly sealed with silica gel or black insulating tape. A platinum plate and 

saturated Ag/AgCl were used as counter and reference electrodes, respectively. All the potentials 

are described by referring to the Ag/AgCl reference electrode. A 500 W Xe lamp was used as the 

light source for photocurrent measurements. The irradiated area was circular with area of 0.28 

cm2 and photocurrent densities were normalized to 1 cm2. Oxidation–reduction potential was 

measured by open circuit potential (OCP) mode. Mott-Schottky curves were measured using an 

electrochemical analyzer (2273, Princeton Applied Research, AMETEK, USA). The electrochemical 

impedance spectra (EIS) were measured using an electrochemical analyzer (Solartron 1260 + 

1287, AMETEK, USA) with a 10 mV amplitude perturbation and frequencies between 100 kHz and 

0.1 Hz
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Fig. S1 SEM images of TiO2 nanotube array electrode. (a) The as-obtained sample. The inset 

shows a cross-section SEM image. (b) W-TiO2 electrode after immersing in NaBH4 for 1 h. (c) O-

TiO2 electrode after immersing in NaBH4 for 1 h. (d) XRD patterns. The sample after anodic 

oxidation (blue line) and after annealing (green line) in air at 450 oC for 2 h, the TiO2 nanotube 

electrode after NaBH4 treatment for 1 h, O-TiO2 (red line) and W-TiO2 (black line).

The samples obtained by anodic oxidation without annealing in air is essentially amorphous 

because all the diffraction peaks are assigned to Ti substrate. After heating in air at 450 oC for 2 h, 

the amorphous film became crystallized single-phase TiO2 with anatase structure (JCPDS Card No. 

21-1272). Morphology and structural properties of the samples were almost no varied after 

NaBH4 treatment.
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Fig. S2 Wide XPS spectrum. The pristine TiO2 nanotube photoanodes, O-TiO2, W-TiO2 and 

electrode electrochemical over doped in aqueous 1 M NaOH at -1.75 V 90 s.
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Fig. S3 The correlation of Mott-Schottky plots (top) and photocurrent density curves (bottom) of 

TiO2 nanotubes electrode after electrochemical doping in 1 M NaOH solution at -1.35 V for 0, 10, 

30, and 60 s. Scan rate: 20 mV s−1.2
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Fig. S4 (a) Cyclic voltammetry (CV) curves of the O-TiO2 samples before and after NaBH4 

treatment for 10 min. (b) CV curves of the W-TiO2 samples before and after NaBH4 treatment for 

2, 5, and 10 min. (c) CV curves of the samples before and after electrochemical doping in 

aqueous 1 M NaOH at -1.35 V for 10, 30, and 60 s. Scan rate: 500 mV s−1. We can find that after 

NaBH4 treatment the CV curves for W-TiO2 are very similar with the TiO2 nanotube array after 

electrochemical doping.
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Fig. S5 (a) The UV-visible diffuse reflection spectra of TiO2 nanotube array before and after NaBH4 

treatment for 60 min of W-TiO2 and O-TiO2 electrodes. (b) The UV-visible diffuse reflection 

spectra of TiO2 nanoparticles before and after NaBH4 treatment for 3 h. Inset pictures were the 

photo of the samples.
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Fig. S6 (a) EPR spectra for pristine and electrochemical overdoped TiO2 nanotube photoanodes. 

(b) XPS spectra of Ti2p.
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Fig. S7. Electrochemical impedance diagrams (Bode representation) of the as obtained (right), O-

TiO2 (mid) and W-TiO2 (left) nanotube electrodes measured in 1 M NaOH in the dark. The active 

area of the samples was 0.28 cm-2 (b) Equivalent circuits used to simulate the EIS data. Rs: 

resistance from electrolyte and semiconductor- substrate electrical connection; Rct: interfacial 

charge transfer resistance between semiconductor and electrolyte; CPE: capacitance for space 

charge layer or surface states of TiO2 nanotube electrode. 

For the pristine and O-TiO2 when at the potential positive to -0.5 V vs. Ag/AgCl the 

capacitance decreases dramatically. Because at this potential charges in the surface states and 

nanotube walls were fully depleted which could not respond to the electrical signal. In addition, 

for W-TiO2 nanotube electrodes charges in surface states and nanotube walls were not depleted 
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at the potential window we used because the high surface states density formed by 

electrochemical doping induced by the galvanic cell reaction during NaBH4 treatment. The result 

is consistent with the M-S and CV results. So, we believe abundant surface states formed on W-

TiO2 via an electrochemical doping reaction induce by a galvanic cell reaction during NaBH4 

treatment. 

 Fitting parameters of EIS data obtained by using the equivalent circuit proposed in Fig. S7 

CPE

Samples

Potential

(V vs. Ag/AgCl) Q (μΩ-1sn) n

Rct,bulk

(KΩ)

Rs

(Ω)

-0.9 3469 0.95 3.5 1.4

-0.8 2083 0.94 2.3 1.5

-0.7 825.9 0.95 2.3 1.7

-0.3 38.0 0.88 46.8 1.4

Pristine TiO2 

nanotubes

-0.2 16.0 0.96 48.4 1.5

-0.9 3714 0.93 3.6 6.8

-0.8 1916 0.94 2.3 7.1

-0.7 494.9 0.92 7.6 7.7

-0.3 27.3 0.89 29.6 6.6

O-TiO2

-0.2 13.6 0.97 74.2 7.0

-0.9 4684 0.94 3.5 1.4

-0.8 3062 0.94 2.6 1.4

-0.7 1842 0.96 1.9 1,4

-0.6 1484 0.96 7.7 1.5

-0.5 1131 0.99 10.8 1.5

-0.4 934.3 0.99 21.1 1.5

-0.3 770.1 0.99 31.9 1.5

W-TiO2

-0.2 657.9 0.99 57.4 1.5

*The active area of the samples was 0.28 cm-2
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Fig. S8 Under different monochromatic light irradiation, the photocurrents for pristine TiO2 

nanotube photoanodes, O-TiO2 and W-TiO2 photoanodes after 10 min NaBH4 treatment. The 

increased current density was not come from the visible light contribution. After NaBH4 

treatment, the charge separation efficiency for W-TiO2 photoanodes at the ultraviolet region 

increased dramatically comparing to O-TiO2 photoanodes.
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Fig. S9. Effect of sulfite ions on photocurrent density for TiO2 nanotube electrodes (a) pristine 

TiO2 nanotube photoanodes, (b) O-TiO2 and (c) W-TiO2 photoanodes after 10 min NaBH4 

treatment. A slight photocurrent difference was observed at the electrolyte with or without 

Na2SO3 hole scavenger, indicating that NaBH4 treatment does not change the OER kinetics. The 

increasing of charge separation efficiency was the reason of the enhanced photocurrent density 

for W-TiO2 photoanodes. 
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Fig. S10 (a) Photocurrent density measured in 1 M NaOH for W-TiO2 nanotube electrodes just 

after 10 min NaBH4 treatment and the same photoanodes put in air for 20 days. (b) 

Chronoamperometry measurement for W-TiO2 photoanode held at 0.2 V versus Ag/AgCl in NaOH 

for 10 h. 
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