Elucidation of the inverse *trans* influence in uranyl, its imido and carbene analogues via quantum chemical simulation

Izaak Fryer-Kanssen and Andy Kerridge

Electronic Supplementary Information

1. Data Tables

Table S1. Calculated uranium-ligand delocalisation indices, obtained using electron densities calculated in the following ways: UU - Fully relaxed electronic structure at fully relaxed geometry; FU - frozen 6p shell electronic structure at fully relaxed geometry; FF - frozen 6p shell electronic structure at frozen 6p shell-optimised geometry.

					$\delta(U,L)$		
Complex	Method	ρ	Total	σ _u	σ_{g}	π_{u}	π_{g}
		UU	2.292	0.582	0.328	0.832	0.550
	PBEO	FU	2.387	0.646	0.333	0.844	0.564
110^{2+}		FF	2.373	0.637	0.326	0.846	0.564
002		UU	1.822	0.448	0.294	0.588	0.492
	CASSCF	FU	1.904	0.492	0.308	0.596	0.508
		FF	1.837	0.464	0.297	0.576	0.500
		UU	2.370	0.525	0.291	0.912	0.642
	PBEO	FU	2.450	0.561	0.309	0.922	0.658
U(NH) ₂ 2+		FF	2.443	0.543	0.302	0.936	0.662
0(111)2		UU	1.850	0.396	0.262	0.624	0.568
	CASSCF	FU	1.892	0.410	0.278	0.626	0.578
		FF	1.798	0.367	0.265	0.594	0.572
		UU	1.974	0.490	0.410	0.575	0.499
	PBEO	FU	1.983	0.475	0.425	0.575	0.508
U(СН _а) ₂ ²⁺		FF	1.957	0.484	0.410	0.563	0.500
- (212		UU	1.445	0.356	0.363	0.331	0.395
	CASSCF	FU	1.440	0.341	0.371	0.330	0.398
		FF	1.345	0.323	0.353	0.292	0.377

				$ ho_{BCP}$	
Complex	Method	ρ	Total	u	g
		UU	0.386	0.225	0.161
	PBEO	FU	0.395	0.228	0.167
LIO ²⁺		FF	0.348	0.200	0.148
002		UU	0.367	0.209	0.158
	CASSCF	FU	0.375	0.212	0.163
		FF	0.323	0.181	0.142
		UU	0.318	0.186	0.132
	PBEO	FU	0.321	0.183	0.138
11(NH) ₂ ²⁺		FF	0.282	0.161	0.121
0(111)2		UU	0.289	0.165	0.124
	CASSCF	FU	0.295	0.165	0.130
		FF	0.239	0.134	0.105
		UU	0.259	0.134	0.125
	PBEO	FU	0.252	0.123	0.129
Ш(СH ₂) ₂ ²⁺		FF	0.230	0.113	0.117
		UU	0.234	0.118	0.116
	CASSCF	FU	0.227	0.110	0.117
		FF	0.191	0.093	0.098

Table S2. Calculated uranium-ligand ρ_{BCP} values, obtained using electron densities calculated in the following ways: UU – Fully relaxed electronic structure at fully relaxed geometry; FU – frozen 6p shell electronic structure at fully relaxed geometry; FF – frozen 6p shell electronic structure at frozen 6p shell elec

Complex	Method	$\Delta E_{ITI} (eV)$
110 2+	PBEO	2.58
002-	CASSCF	2.75
11(N111) 2+	PBEO	1.90
$O(NH)_2^{-1}$	CASSCF	2.46
	PBEO	1.24
$U(CH_2)_2^{2^+}$	CASSCF	1.55

 Table S3. ITI-induced energy stabilisation obtained at geometries optimised using a fully relaxed electronic structure.

Table S4. ITI-induced energy stabilisation obtained at geometries as detailed in Table 5 fo the manuscript.

Complex	Method	$\Delta E_{ITI} (eV)$
U0 ₂ ²⁺	PBEO	2.37
	CASSCF	2.51

	PBEO	1.75
U(NH) ₂ ²⁺	CASSCF	2.14
	PBEO	1.17
$U(CH_2)_2^{2^+}$	CASSCF	1.38

Table S5. Calculated uranium charges, localisation indices and uranium-ligand delocalisation indices, obtained using electron densities calculated in the following ways: UU - Fully relaxed electronic structure at fully relaxed geometry; FU - frozen 6p shell electronic structure at fully relaxed geometry; FF - frozen 6p shell electronic structure at frozen

Complex	Method	ρ	Q(U)	λ(U)	δ(U,L)
		UU	3.270	86.446	2.291
	PBEO	FU	3.101	86.498	2.388
110,2+		FF	3.066	86.549	2.385
		UU	3.328	86.857	1.822
	CASSCF	FU	3.148	86.955	1.904
		FF	2.108	87.060	1.837
		UU	2.934	86.634	2.371
	PBEO	FU	2.753	86.726	2.451
U(NH) ₂ ²⁺		FF	2.748	86.741	2.443
- ()2		UU	3.004	87.070	1.850
	CASSCF	FU	2.850	87.270	1.892
		FF	2.786	87.410	1.798
		UU	2.303	87.517	1.975
U(CH ₂) ₂ ²⁺	PBEO	FU	2.171	87.638	1.983
		FF	2.190	87.651	1.955
		UU	2.354	88.130	1.445
	CASSCF	FU	2.250	88.230	1.440
		FF	2.284	88.300	1.345

Table S6. Energy differences between electronic structures in which the 6p shell was frozen or unfrozen. UU - Fully relaxed electronic structure at fully relaxed geometry; FU - frozen 6p shell electronic structure at fully relaxed geometry; FF - frozen 6p shell electronic structure at frozen 6p shell-optimised geometry.

Complex	Method	<i>E</i> _{FU} - <i>E</i> _{UU} (eV)	$E_{\rm FF}$ - $E_{\rm UU}$ (eV)
U0 ₂ ²⁺	PBEO	2.58	2.38
2	CASSCF	2.76	2.51
U(NH) ₂ ²⁺	PBEO	1.90	1.75
0(((1))2	CASSCF	2.45	2.14
U(CH ₂) ₂ ²⁺	PBEO	1.24	1.17
	CASSCF	1.55	1.37

Table S7. Uranium and ligand localisation indices, obtained using electron densities calculated in the following ways: UU – Fully relaxed electronic structure at fully relaxed geometry; FU – frozen 6p shell electronic structure at fully relaxed geometry; FF – frozen 6p shell electronic structure at frozen 6p shell-optimised geometry.

Complex	Method	ρ	$\lambda(\cup)$	λ(L)
		UU	86.446	7.438
	PBEO	FU	86.498	7.289
110^{2+}		FF	86.549	7.278
0.02		UU	86.857	7.719
	CASSCF	FU	86.955	7.586
		FF	87.060	7.605
		UU	86.634	7.197
	PBEO	FU	86.726	7.060
U(NH) ₂ 2+		FF	86.741	7.066
- (UU	87.070	7.509
	CASSCF	FU	87.270	7.400
		FF	87.410	7.450
		UU	87.517	6.978
U(CH ₂) ₂ ²⁺	PBEO	FU	87.638	6.899
		FF	87.651	6.906
		UU	88.130	7.358
	CASSCF	FU	88.230	7.322
		FF	88.300	7.380

2. Natural Orbital renderings

Figure S1. Natural orbitals and natural occupancies from CASSCF(12,12) calculations of UO_2^{2+} , obtained from the following calculations: UU – Fully relaxed electronic structure at fully relaxed geometry; FU – frozen 6p shell electronic structure at fully relaxed geometry; FF – frozen 6p shell electronic structure at frozen 6p shell-optimised geometry. Note that natural orbitals are shown for the UU simulation only, but are representative of the active spaces in all calculations.

σ_{u}	$\pi_{ m u}$	$\sigma_{\sf g}$	$\pi_{ m g}$
			<u></u>
UU: 1.958	UU: 1.930 (× 2)	UU: 1.974	UU: 1.956 (× 2)
FU: 1.950	FU: 1.929 (× 2)	FU: 1.973	FU: 1.955 (× 2)
FF: 1.945	FF: 1.907 (× 2)	FF: 1.972	FF: 1.942 (× 2)
UU: 0.053	UU: 0.074 (× 2)	UU: 0.016	UU: 0.040 (× 2)
FU: 0.058	FU: 0.076 (× 2)	FU: 0.018	FU: 0.040 (× 2)
FF: 0.061	FF: 0.102 (× 2)	FF: 0.021	FF: 0.049 (× 2)

Figure S2. Natural orbitals and natural occupancies from CASSCF(12,12) calculations of $U(NH)_2^{2+}$, obtained from the following calculations: UU – Fully relaxed electronic structure at fully relaxed geometry; FU – frozen 6p shell electronic structure at fully relaxed geometry; FF – frozen 6p shell

electronic structure at frozen 6p shell-optimised geometry. Note that natural orbitals are shown for the UU simulation only, but are representative of the active spaces in all calculations.

FU: 0.095	FU: 0.134	FU: 0.019	FU: 0.045
FF: 0.121	FF: 0.171	FF: 0.023	FF: 0.055

Figure S3. Natural orbitals and natural occupancies from CASSCF(8,8) calculations of $U(CH_2)_2^{2+}$, obtained from the following calculations: UU – Fully relaxed electronic structure at fully relaxed geometry; FU – frozen 6p shell electronic structure at fully relaxed geometry; FF – frozen 6p shell electronic structure at frozen 6p shell-optimised geometry. Note that natural orbitals are shown for the UU simulation only, but are representative of the active spaces in all calculations.

3. Optimised structural data

UO22+

PBEO/TZVP (6p unfrozen)				PBE0/TZVF	P (6p frozen)		
U	0.000000	0.000000	0.000000	U	0.000000	0.000000	0.000000
0	0.000000	0.000000	1.684254	0	0.000000	0.000000	1.739874
0	0.000000	0.000000	-1.684254	0	0.000000	0.000000	-1.739874

CASSCF(12,12)/TZVP (6p unfrozen)				CASSCF(12,12),	/TZVP (6p froze	en)	
U	0.000000	0.000000	0.000000	U	0.000000	0.000000	0.000000
0	0.000000	0.000000	1.709039	0	0.000000	0.000000	1.774825

0	0.000000	0.000000	-1.709039	0	0.000000	0.000000	-1.774825

 $U(NH)_{2}^{2+}$

PBEO/TZVP (6p unfrozen)						PBE0/TZVI	P (6p frozen)	
U	0.000000	0.000000	0.000000		U	0.000000	0.000000	0.000000
N	0.000000	0.000000	1.746131		N	0.000000	0.000000	1.800954
N	0.000000	0.000000	-1.746131		N	0.000000	0.000000	-1.800954
Н	0.000000	0.000000	2.778370		Н	0.000000	0.000000	2.834617
H	0.000000	0.000000	-2.778370		Н	0.000000	0.000000	-2.834617

CASSCF(12,12)/TZVP (6p unfrozen)				CASSCF(12,12)/TZVP (6p frozen)				
U	0.000000	0.000000	0.000000	U	0.000000	0.000000	0.000000	
N	0.000000	0.000000	1.783373	N	0.000000	0.000000	1.873370	
N	0.000000	0.000000	-1.783373	Ν	0.000000	0.000000	-1.873370	
Н	0.000000	0.000000	2.797736	Н	0.000000	0.000000	2.888377	
Н	0.000000	0.000000	-2.797736	Н	0.000000	0.000000	-2.888377	

 $U(CH_2)_2^{2+}$

PBEO/TZVP (6p unfrozen)				PBEO/TZVP (6p frozen)			
U	0.000000	0.000000	0.000000	U	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.904577	С	0.000000	0.000000	1.953594
С	0.000000	0.000000	-1.904577	С	0.000000	0.000000	1.953594
Н	0.000000	0.945302	2.471137	Н	0.000000	0.946382	2.518224
Н	0.000000	-0.945302	2.471137	Н	0.000000	-0.946382	2.518224
Н	0.000000	0.945302	-2.471137	Н	0.000000	0.946382	-2.518224
Н	0.000000	-0.945302	-2.471137	Н	0.000000	-0.946382	-2.518224

CASSCF(8,8)/TZVP (6p unfrozen)					CASSCF(8,8)/T	ZVP (6p frozer	1)
U	0.000000	0.000000	0.000000	U	0.000000	0.000000	0.000000

C	0.000000	0.000000	1.970008	С	0.000000	0.000000	2.061185
С	0.000000	0.000000	-1.970008	С	0.000000	0.000000	-2.061185
Н	0.000000	0.946389	2.509568	Н	0.000000	0.943977	2.601462
Н	0.000000	-0.946389	2.509568	Н	0.000000	-0.943977	2.601462
Н	0.000000	0.946389	-2.509568	Н	0.000000	0.943977	-2.601462
Н	0.000000	-0.946389	-2.509568	Н	0.000000	-0.943977	-2.601462