Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Copper-Catalyzed Amination of α -C(sp³)–H Bond in Inactivated

Ethers to Synthesis α-Aminonitriles

Zaifeng Yuan^{a,b}, Chunyu Zhu^a, Zhixian Ma^a, and Chengfeng Xia*^a

^aKey Laboratory of Medicinal Chemistry for Natural Resources (Ministry of Education

and Yunnan Province), School of Chemical Science and Technology, and Library of

Yunnan University, Yunnan University, 2 North Cuihu Road, Kunming 650091, China ^bState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.

Table of Contents

1.				General
Informatio	ons			S2
2.	General	Procedures	for	Copper-Catalyzed
Functiona	lization	S2		
3.				Products
Character	ization			S3
4.				Gram-Scale
Experime	nts			S16
5.		Radical		Inhibiting
Experiments			S	17
6. X-Ray Crystallographic Data of 20			•••••	S18
7. NMR Spectra				

1. General Information

Reactions were performed in oven-dried glassware using syringe-septum cap techniques under nitrogen atmosphere. All commercially obtained compounds were used as received. Solvents were purified as described in "Purification of Laboratory Chemicals". Thin layer chromatography was performed on GF254 plates (0.25 mm layer thickness). Flash chromatography was performed with 300–400 mesh silica gels. Visualization was accomplished with UV light (254 nm) and phosphomolybdic acid. ¹H, ¹³C NMR spectra were recorded using a Bruker AM-400NMR spectrometer at room temperature. The chemical shifts (δ) are reported in ppm relative to CDCl₃ (7.26 ppm for 1H) CDCl₃ (77.0 ppm for ¹³C), CD₃OD (3.34 ppm for ¹H), CD₃OD (49.86 ppm for ¹³C). HRMS (EI) were recorded on a Waters AutoSpec Premier P776 spectrometer.

2. General Procedure for Copper-Catalyzed Functionlization

An oven-dried round-bottom flask equipped with a magnetic stirring bar under a nitrogen atmosphere, was charged with Ligand L2 (0.024 mmol, 0.12 equiv.), Cu(OAc) catalyst (0.02 mmol, 0.1 equiv.), and ether (1 mL). The reaction mixture was allowed to stir at room temperature for 15 min. Then, NH₄Cl (0.24 mmol, 1.2 equiv.), NFSI (0.3 mmol, 1.5 equiv.), TMSCN (0.6 mmol, 3 equiv.), and substrate (0.2 mmol, 1 equiv.) were added to the reaction mixture in turn. The resulting reaction mixture was stirred at room temperature for 8 h. The resulting solution was diluted with ethyl acetate and washed with brine. After dried over anhydrous Na₂SO₄, the organic layer was concentrated. The residue was purified by column chromatography on silica gel to afford the product.

3. Product Characterization

5-Hydroxy-2-(methyl(phenyl)amino)pentanenitrile (2a)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (39.1 mg, 96%).

¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* = 7.7 Hz, 2H), 6.99 – 6.92 (m, 3H), 4.56 (t, *J* = 7.9 Hz, 1H), 3.77 – 3.63 (m, 2H), 2.89 (s, 3H), 2.09 – 1.98 (m, 3H), 1.79 – 1.70 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 149.19, 129.34, 120.96, 117.86, 116.80, 61.71, 54.01, 34.24, 28.55, 28.52; HRMS (EI) exact mass calculated for C₁₂H₁₆N₂O: 204.1263, found *m*/*z* 204.1265.

2-(Ethyl(phenyl)amino)-5-hydroxypentanenitrile (2b)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (41.6 mg, 95%).

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.32 (m, 2H), 7.04 – 6.96 (m, 3H), 4.39 (t, J = 7.8 Hz, 1H), 3.78 – 3.68 (m, 2H), 3.34 (q, J = 7.1 Hz, 2H), 2.08 – 1.96 (m, 2H), 1.84 – 1.73 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.01, 129.32, 121.70, 118.95, 118.85, 98.34, 67.35, 61.77, 53.70, 43.46, 33.18, 29.00, 28.83, 23.33, 13.47; HRMS (EI) exact mass calculated for C₁₃H₁₈N₂O: 218.1419, found *m/z* 218.1415.

2-((3,3-Dimethylbutyl)(phenyl)amino)-5-hydroxypentanenitrile (2c)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (46.6 mg, 85%).

¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.32 (m, 2H), 6.96 – 7.00 (m, 3H), 4.39 (t, J = 7.8 Hz, 1H), 3.83 – 3.63 (m, 2H), 3.40 – 3.16 (m, 2H), 2.00 (dd, J = 14.9, 7.3 Hz, 2H), 1.73 - 1.80 (m, 2H), 1.52 – 1.59 (m, 1H), 1.45 – 1.33 (m, 1H), 0.95 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 147.41, 129.40, 121.66, 118.83, 61.95, 54.26, 45.44, 41.18, 29.99, 29.35, 29.08, 28.95; HRMS (EI) exact mass calculated for C₁₇H₂₆N₂O: 274.2045, found *m/z* 274.2040.

2-((Cyclohexylmethyl)(phenyl)amino)-5-hydroxypentanenitrile (2d)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (46.7 mg, 81%).

¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* = 7.9 Hz, 2H), 7.05 (d, *J* = 8.1 Hz, 3H), 4.28 (t, *J* = 7.9 Hz, 1H), 3.70 (t, *J* = 5.6 Hz, 2H), 3.12 (dd, *J* = 13.6, 5.8 Hz, 1H), 2.89 (dd, *J* = 13.6, 8.4 Hz, 1H), 1.87 -20.5 (m, 2H), 1. 59 – 1.85(m, 8H), 1.49 (ddd, *J* = 11.3, 5.9, 2.9 Hz, 1H), 1.12 (dd, *J* = 14.8, 5.9 Hz, 3H), 0.99 – 0.80 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 147.98, 129.22, 122.56, 120.89, 118.62, 61.89, 56.43, 55.97, 35.43, 31.38, 31.23, 28.86, 28.85, 25.89, 25.79; HRMS (EI) exact mass calculated for C₁₈H₂₆N₂O: 286.2045, found *m/z* 286.2043.

2-((3,7-Dimethyloct-6-en-1-yl)(phenyl)amino)-5-hydroxypentanenitrile (2e)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (51.0 mg, 78%).

¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, J = 7.9 Hz, 2H), 7.12 – 6.92 (m, 3H), 5.05 - 5.09 (m, 1H), 4.36 (td, J = 7.8, 3.0 Hz, 1H), 3.81 – 3.56 (m, 2H), 3.39 – 3.14 (m, 2H), 2.05 – 1.85 (m, 4H), 1.82 – 1.55 (m, 10H), 1.54 – 1.10 (m, 4H), 0.93 (dd, J = 6.3, 3.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.43, 147.33, 131.33, 129.32, 124.53, 122.00, 121.95, 119.50, 119.42, 118.80, 118.74, 61.89, 54.45, 54.42, 47.63, 47.49, 36.95, 36.83, 34.84, 34.76, 30.66, 30.61, 29.01, 28.89, 25.70, 25.40, 19.59, 19.49, 17.63; HRMS (EI) exact mass calculated for C₂₁H₃₂N₂O: 328.2515, found *m/z* 328.2521.

Methyl 2-((1-cyano-4-hydroxybutyl)(methyl)amino)benzoate (2f)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (48.2 mg, 92%).

¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 7.7, 1.0 Hz, 1H), 7.53 – 7.44 (m, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.15 (t, J = 7.5 Hz, 1H), 4.33 (dd, J = 9.1, 6.6 Hz, 1H), 3.87 (s, 3H), 3.69 (t, J = 5.9 Hz, 2H), 2.82 (s, 3H), 2.30 (brs, 1H), 2.21 – 1.91 (m, 2H), 1.86 – 1.62 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.71, 150.66, 132.84, 131.15,

126.24, 124.06, 122.07, 118.04, 61.33, 57.29, 52.32, 36.60, 28.42, 28.28; HRMS (EI) exact mass calculated for $C_{14}H_{18}N_2O_3$: 262.1317, found *m/z* 262.1324.

Methyl 4-((1-cyano-4-hydroxybutyl)(methyl)amino)benzoate (2g)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (47.2 mg, 90%).

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 4.83 (t, J = 7.9 Hz, 1H), 3.86 (s, 3H), 3.70 (dd, J = 11.6, 5.7 Hz, 2H), 2.98 (s, 3H), 2.17 – 1.94 (m, 3H), 1.75 – 1.60 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.00, 152.05, 131.43, 120.70, 117.74, 113.44, 61.67, 51.84, 51.75, 33.63, 28.61, 28.20;HRMS (EI) exact mass calculated for C₁₄H₁₈N₂O₃: 262.1317, found *m/z* 262.1322.

5-Hydroxy-2-(methyl(4-(trifluoromethyl)phenyl)amino)pentanenitrile (2h)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (35.2 mg, 65%).

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.7 Hz, 2H), 4.76 (t, J = 7.9 Hz, 1H), 3.82 – 3.61 (m, 2H), 2.97 (s, 3H), 2.22 – 1.97 (m, 2H), 1.87 (s, 1H), 1.77 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 151.15, 126.73 (q, J =3.8 Hz), 124.53 (q, J = 270.8 Hz), 121.51 (q, J = 32.9 Hz), 114.45, 61.75, 52.28, 33.76, 28.60, 28.19; HRMS (EI) exact mass calculated for C₁₃H₁₅F₃N₂O: 272.1136, found *m/z* 272.1130.

2-(Benzo[d][1,3]dioxol-5-yl(ethyl)amino)-5-hydroxypentanenitrile (2i)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as light-yellow oil (35.9 mg, 68%).

¹H NMR (400 MHz, CDCl₃) δ 6.63 – 6.76 (m, 2H), 6.64 (dd, J = 8.2, 2.3 Hz, 1H), 5.95 (s, 2H), 4.04 (t, J = 7.7 Hz, 1H), 3.77 – 3.62 (m, 2H), 3.23 – 3.05 (m, 2H),

2.03 – 1.71 (m, 4H), 1.05 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl3) δ 148.19, 144.72, 141.52, 118.73, 116.98, 108.24, 105.38, 101.29, 61.98, 56.51, 45.63, 29.17, 29.11, 13.42; HRMS (EI) exact mass calculated for C₁₄H₁₈N₂O₃: 262.1317, found *m/z* 262.1316.

5-Hydroxy-2-((4-methoxyphenyl)(methyl)amino)pentanenitrile (2j)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as light-yellow oil (33.1 mg, 71%).

¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, J = 8.9 Hz, 2H), 6.85 (d, J = 8.9 Hz, 2H), 4.25 (t, J = 7.9 Hz, 1H), 3.77 (s, 3H), 3.70 (dd, J = 9.6, 5.7 Hz, 2H), 2.80 (s, 3H), 1.98 (dd, J = 15.1, 7.5 Hz, 2H), 1.76 (dt, J = 13.0, 6.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 155.36, 143.19, 120.96, 117.81, 114.54, 61.81, 56.63, 55.48, 35.98, 28.80, 28.73; HRMS (EI) exact mass calculated for C₁₃H₁₈N₂O₂: 234.1368, found *m/z* 234.1363.

2-((4-Fluorophenyl)(methyl)amino)-5-hydroxypentanenitrile (2k)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (35.8 mg, 81%).

¹H NMR (400 MHz, CDCl₃) δ 6.91 (dd, J = 16.2, 6.1 Hz, 4H), 4.29 (t, J = 7.3 Hz, 1H), 3.61 (s, 2H), 2.74 (d, J = 1.3 Hz, 3H), 2.20 (s, 1H), 1.92 (dd, J = 14.5, 6.8 Hz, 2H), 1.76 – 1.56 (m, 2H).¹³C NMR (101 MHz, CDCl₃) δ 158.08 (d, J = 241.2 Hz), 145.75 (d, J = 2.5 Hz), 119.81 (d, J = 7.9 Hz), 117.62, 115.83 (d, J = 22.4 Hz), 61.64, 55.64, 35.19, 28.56, 28.47; HRMS (EI) exact mass calculated for C₁₂H₁₅FN₂O: 222.1168, found *m*/*z* 222.1172.

2-((4-Chlorophenyl)(propyl)amino)-5-hydroxypentanenitrile (21)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (49.5 mg, 92%).

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.16 (m, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 4.32 (t, *J* = 7.9 Hz, 1H), 3.70 (dt, *J* = 9.6, 5.4 Hz, 2H), 3.27 – 3.01 (m,2H), 1.97 (dd, *J* = 15.3, 7.6 Hz, 2H), 1.85 (s, 1H), 1.73 (dt, *J* = 12.9, 6.4 Hz, 2H), 1.64 – 1.38 (m, 2H),

0.91 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.98, 129.32, 127.04, 120.68, 118.59, 61.81, 54.45, 51.25, 28.96, 28.72, 20.99, 11.43; HRMS (EI) exact mass calculated for C₁₄H₁₉ClN₂O: 266.1186, found *m/z* 266.1184.

2-((4-Bromophenyl)(propyl)amino)-5-hydroxypentanenitrile (2m)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as light-yellow oil (56.4 mg, 91%).

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.9 Hz, 2H), 6.84 (d, J = 8.9 Hz, 2H), 4.35 (t, J = 7.9 Hz, 1H), 3.74 – 3.55 (m, 2H), 3.26 – 3.05 (m, 2H), 2.14 (s, 1H), 1.96 (dd, J = 15.3, 7.7 Hz, 2H), 1.75 – 1.67 (m, 2H), 1.65 – 1.41 (m, 2H), 0.90 (t, J = 7.4Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.26, 132.08, 120.37, 118.47, 113.93, 61.56, 53.93, 50.84, 28.76, 28.52, 20.82, 11.28; HRMS (EI) exact mass calculated for C₁₄H₁₉BrN₂O: 310.0681, found *m*/*z* 310.0683.

5-Hydroxy-2-(phenylamino)pentanenitrile (2n)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (27.3 mg, 72%).

¹H NMR (400 MHz, CDCl₃) δ 7.26 (t, J = 7.9 Hz, 2H), 6.87 (t, J = 7.4 Hz, 1H), 6.72 (d, J = 7.9 Hz, 2H), 4.31 (q, J = 6.6 Hz, 1H), 3.99 (d, J = 7.7 Hz, 1H), 3.76 (t, J = 5.9 Hz, 2H), 2.09 (q, J = 7.1 Hz, 2H), 1.87 (ddt, J = 13.4, 8.7, 4.5 Hz, 2H), 1.75 – 1.62 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 144.92, 129.57, 120.06, 119.58, 114.12, 61.81, 45.80, 30.43, 28.44; HRMS (EI) exact mass calculated for C₁₁H₁₄N₂O: 190.1106, found *m/z* 190.1104.

2-((4-Chlorophenyl)amino)-5-hydroxypentanenitrile (20)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless crystal (34.0 mg, 76%). Mp:84.2-86.2 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.19 (t, *J* = 5.9 Hz, 2H), 6.62 (d, *J* = 8.7 Hz, 2H), 4.24 (*J* = 5.8 Hz, 2H), 3.71 (t, *J* = 5.8 Hz, 2H), 2.18 (s, 1H), 2.04 (dd, *J* = 12.6, 6.3 Hz, 2H), 1.89 - 1.72 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 143.56, 129.34, 124.58,

119.36, 115.14, 61.57, 45.79, 30.11, 28.26; HRMS (EI) exact mass calculated for $C_{11}H_{13}CIN_2O$: 224.0716, found *m/z* 224.0720.

2-((4-Bromophenyl)amino)-5-hydroxypentanenitrile (2p)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as light-yellow oil (38.3 mg, 71%).

¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.7 Hz, 2H), 6.60 (d, J = 8.7 Hz, 2H), 4.27 (d, J = 6.3 Hz, 1H), 4.11 (d, J = 15.5 Hz, 1H), 3.76 (t, J = 5.7 Hz, 2H), 2.12 – 2.04 (m, 2H), 1.95 – 1.77 (m, 2H), 1.64 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 143.96, 132.30, 119.16, 115.62, 111.91, 61.73, 45.70, 30.27, 28.25; HRMS (EI) exact mass calculated for C₁₁H₁₃BrN₂O: 268.0211, found *m/z* 268.0206.

5-Hydroxy-2-((2-iodophenyl)amino)pentanenitrile (2q)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as light-yellow oil (44.0 mg, 70%).

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.8 Hz, 1H), 7.28 (dd, *J* = 14.0, 6.1 Hz, 1H), 6.72 (d, *J* = 8.1 Hz, 1H), 6.61 (t, *J* = 7.6 Hz, 1H), 4.35 (dt, *J* = 15.2, 7.9 Hz, 2H), 3.86 – 3.65 (m, 2H), 2.16 (dd, *J* = 14.7, 7.2 Hz, 2H), 1.87 (ddd, *J* = 13.2, 9.5, 4.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.28, 139.50, 129.76, 121.30, 119.05, 112.06, 86.32, 61.65, 45.87, 30.15, 28.39; HRMS (EI) exact mass calculated for C₁₁H₁₃IN₂O: 316.0073, found *m/z* 316.0065.

5-Hydroxy-2-(methyl(phenyl)amino)hexanenitrile (2r)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (25.6 mg, 59%).

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 6.97 – 6.90 (m, 3H), 4.58 – 4.52 (m, 1H), 3.84 – 3.87 (m, 1H), 2.88 (s, 3H), 2.15 – 1.94 (m, 2H), 1.86 (brs, 1H), 1.70 – 1.52 (m, 2H), 1.22 (d, J = 6.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.23, 149.17, 129.33, 129.32, 120.93, 120.85, 117.95, 117.83, 116.76, 116.70, 67.29, 67.19,

54.07, 54.05, 34.79, 34.67, 34.17, 34.16, 28.30, 28.03, 23.87, 23.74; HRMS (EI) exact mass calculated for $C_{13}H_{18}N_2O$: 218.1419, found *m/z* 218.1423.

5-Hydroxy-2-(2-methylindolin-1-yl)pentanenitrile (3a)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (37.7 mg, 82%, dr = 5.8:4.2.

¹H NMR (400 MHz, CDCl₃) δ 7.11 (t, J = 7.7 Hz, 2H), 6.79 (dd, J = 7.3, 1.9 Hz, 1H), 6.65 (d, J = 8.5 Hz, 1H), 4.41 (t, J = 8.1 Hz, 1H, minor diastereomer), 4.24 (t, J = 8.1 Hz, 1H, major diastereomer), 3.93 – 3.75 (m, 1H), 3.75 – 3.64 (m, 2H), 3.32 (dd, J = 15.7, 9.0 Hz, 1H, minor diastereomer), 3.16 (dd, J = 15.4, 8.4 Hz, 1H, major diastereomer), 2.72 – 2.56 (m, 1H), 2.27 – 1.91 (m, 3H), 1.87 – 1.67 (m, 2H), 1.36 (d, J = 6.2 Hz, 3H, minor diastereomer), 1.35 (d, J = 6.1 Hz, 3H, major diastereomer); ¹³C NMR (101 MHz, CDCl₃) δ 149.06, 148.27, 129.36, 129.14, 127.35, 127.25, 124.77, 124.65, 119.91, 119.61, 118.24, 118.02, 109.09, 108.30, 61.66, 61.58, 59.32, 59.09, 50.65, 47.92, 37.44, 36.98, 29.11, 28.92, 28.75, 28.49, 21.69, 18.90 ; HRMS (EI) exact mass calculated for C₁₄H₁₈N₂O: 230.1419, found *m/z* 230.1418.

2-(3,4-Dihydroquinolin-1(2H)-yl)-5-hydroxypentanenitrile (3b)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (37.2 mg, 81%).

¹H NMR (400 MHz, CDCl₃) δ 7.12 (t, *J* = 7.7 Hz, 1H), 7.03 (d, *J* = 7.3 Hz, 2H), 6.75 (dd, *J* = 14.1, 7.6 Hz, 15H), 4.56 (t, *J* = 7.9 Hz, 1H), 3.79 – 3.63 (m, 1H), 3.34 – 3.18 (m, 2H), 2.86 – 2.67 (m, 2H), 2.15 – 1.95 (m, 4H), 1.89 (brs, 1H), 1.81 – 1.68 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 143.64, 129.51, 127.13, 125.31, 118.69, 118.31, 111.94, 61.68, 50.39, 43.95, 28.41, 27.78, 27.64, 21.96; HRMS (EI) exact mass calculated for C₁₄H₁₈N₂O: 230.1419, found *m/z* 230.1420.

5-Hydroxy-2-(4-oxo-3,4-dihydroquinolin-1(2H)-yl)pentanenitrile (3c)

Following the general procedure, column chromatography on silica gel (eluent:

hexanes: EtOAc = 2:1) afforded the title compound as colorless oil (42.3 mg, 87%).

¹H NMR (400 MHz, CDCl₃) δ 8.00 (dd, J = 7.8, 1.5 Hz, 1H), 7.57 – 7.42 (m, 1H), 7.01 – 6.81 (m, 2H), 4.90 (t, J = 7.9 Hz, 1H), 3.87 – 3.71 (m, 2H), 3.66 – 3.47 (m, 2H), 2.92 – 2.70 (m, 2H), 2.34 – 2.06 (m, 2H), 1.90 – 1.75 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 192.79, 149.57, 135.67, 128.99, 121.73, 119.61, 117.34, 112.67, 61.76, 49.35, 44.10, 38.04, 28.18, 27.88.; HRMS (EI) exact mass calculated for C₁₄H₁₆N₂O₂: 244.1212, found *m/z* 244.1210.

5-Hydroxy-2-(5-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-1-yl)pentanenitrile (3d)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 2:1) afforded the title compound as colorless oil (47.8 mg, 93%).

¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.7 Hz, 1H), 7.42 (t, *J* = 7.7 Hz, 1H), 7.11 – 6.93 (m, 2H), 4.64 (t, *J* = 7.8 Hz, 1H), 3.82 – 3.63 (m, 2H), 3.58 – 3.39 (m, 1H), 3.19 – 3.01 (m, 1H), 2.95 – 2.78 (m, 1H), 2.78 – 2.66 (m, 1H), 2.26 – 1.99 (m, 5H), 1.86 – 1.71 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 202.49, 151.00, 133.22, 130.16, 129.36, 121.43, 118.53, 115.88, 61.44, 51.85, 51.07, 40.53, 29.51, 28.64, 28.47; HRMS (EI) exact mass calculated for C₁₅H₁₈N₂O₂: 258.1368, found *m/z* 258.1365.

2-(7-Chloro-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)-5-hydroxypentanenitrile (3e)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as light-yellow oil (33.0 mg, 62%).

¹H NMR (400 MHz, CDCl₃) δ 6.99 – 6.69 (m, 3H), 4.56 (t, *J* = 7.9 Hz, 3H), 3.77 – 3.63 (m, 2H), 2.89 (s, 2H), 2.09 – 1.98 (m, 2H), 1.79 – 1.70 (m, 2H),1.61 (brs, 1H).¹³C NMR (101 MHz, CDCl₃) δ 145.83 , 131.42 , 125.19 , 121.35 , 117.47 , 117.38 , 114.30 , 64.36 , 61.81 , 50.34 , 41.93 , 28.22 , 27.59 ; HRMS (EI) exact mass calculated for C₁₃H₁₅ClN₂O₂: 266.0822, found *m/z* 266.0819.

2-((2-Fluoropyridin-3-yl)(methyl)amino)-5-hydroxypentanenitrile (3f)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 2:1) afforded the title compound as light-yellow oil (35.4 mg, 79%).

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 4.7 Hz, 1H), 7.55 – 7.43 (m, 1H), 7.17 (dd, J = 7.0, 5.5 Hz, 1H), 4.44 – 4.32 (m, 1H), 3.73 (t, J = 5.6 Hz, 2H), 2.84 (s, 3H), 2.06 (dd, J = 15.4, 7.9 Hz, 2H), 1.95 (s, 1H), 1.79 (dt, J = 11.3, 6.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 155.99 (d, J = 238.2 Hz), 140.45 (d, J = 14.5 Hz), 133.49 (d, J = 23.6 Hz), 130.13 (d, J = 4.1 Hz), 122.17 (d, J = 4.3 Hz), 117.19 , 61.59 , 54.84 (d, J = 6.0 Hz), 34.32 , 28.36 , 28.27 ; HRMS (EI) exact mass calculated for C₁₁H₁₄FN₃O: 223.1121, found *m/z* 223.1126.

2-((2-Chloropyridin-3-yl)(methyl)amino)-5-hydroxypentanenitrile (3g)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 2:1) afforded the title compound as light-yellow oil (40.8 mg, 85%).

¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 4.4 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.38 – 7.21 (m, 1H), 4.33 (t, J = 8.0 Hz, 1H), 3.75 (t, J = 5.9 Hz, 2H), 2.85 (s, 3H), 2.42 (s, 1H), 2.15 – 2.04 (m, 2H), 1.89 – 1.78 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 146.87, 144.72, 144.06, 131.19, 123.24, 117.13, 61.47, 55.51, 35.30, 28.32, 28.23; HRMS (EI) exact mass calculated for C₁₁H₁₄ClN₃O: 239.0825, found *m/z* 239.0820.

2-((4,6-Dimethyl-2-oxo-2H-chromen-7-yl)(ethyl)amino)-5-hydroxypentanenitrile (3h)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as yellow oil (58.1 mg, 92%).

¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.32 (d, J = 2.1 Hz, 1H), 6.19 (s, 1H), 4.01 (t, J = 7.9 Hz, 1H), 3.78 – 3.64 (m, 2H), 3.30 – 3.05 (m, 2H), 2.61 (d, J = 34.7 Hz, 1H), 2.41 (s, 3H), 2.35 (s, 3H), 2.03 (dd, J = 13.9, 6.2 Hz, 2H), 1.84 – 1.66 (m, 2H), 1.03 (td, J = 6.8, 1.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.02, 152.12, 150.02, 131.63, 126.55, 118.05, 116.87, 113.71, 111.23, 61.32, 55.54, 43.17, 28.54, 28.21, 18.39, 17.79, 12.70; HRMS (EI) exact mass calculated for C₁₈H₂₂N₂O₃: 314.1630, found *m*/*z* 314.1639.

5-Hydroxy-2-((2-(trifluoromethyl)-1H-benzo[d]imidazol-5-yl)amino)pentanenitrile (3i)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 1:1) afforded the title compound as colorless oil (38.5 mg, 65%).

¹H NMR (400 MHz, MeOD) δ 7.57 – 7.49 (m, 1H), 6.91 - 6.92 (m, 2H), 4.48 (t, J = 7.3 Hz, 5H), 3.66 (t, J = 6.2 Hz, 2H), 2.14 – 2.02 (m, 9H), 1.88 – 1.79 (m, 2H);¹³C NMR (101 MHz, MeOD) δ 147.04, 141.18 (d, J = 39.9 Hz), 125.30, 122.63, 122.05, 119.95, 117.27, 116.78, 62.90, 47.81, 31.75, 30.65; HRMS (EI) exact mass calculated for C₁₃H₁₃F₃N₄O: 298.1041, found *m/z* 298.1038.

5-Hydroxy-2-(4-phenylpiperazin-1-yl)pentanenitrile (3j)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 2:1) afforded the title compound as colorless oil (31.4 mg, 61%).

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.23 (m, 2H), 7.00 – 6.80 (m, 3H), 3.79 – 3.53 (m, 3H), 3.41 – 3.12 (m, 4H), 2.99 – 2.84 (m, 2H), 2.77 – 2.63 (m, 2H), 2.61 (brs, 1H), 2.12 – 1.91 (m, 2H), 1.89 – 1.69 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 150.89, 129.14, 120.22, 116.65, 116.39, 61.91, 57.64, 49.71, 48.94, 29.57, 28.24; HRMS (EI) exact mass calculated for C₁₅H₂₁N₃O: 259.1685, found *m/z* 259.1682.

2-(3,4-Dihydroisoquinolin-2(1H)-yl)-5-hydroxypentanenitrile (3k)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 2:1) afforded the title compound as colorless oil (35.0 mg, 76%).

¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.09 (m, 3H), 7.07 – 7.01 (m, 1H), 3.90 (d, J = 14.3 Hz, 1H), 3.81 – 3.59 (m, 1H), 3.13 – 2.86 (m, 4H), 2.82 – 2.66 (m, 3H), 2.63 (brs, 1H), 2.17 – 1.94 (m, 2H), 1.88 – 1.65 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 133.41, 133.08, 128.67, 126.57 ,126.53 , 125.93, 116.84, 61.84, 57.70, 52.29, 47.71, 29.45, 28.99, 28.36; HRMS (EI) exact mass calculated for C₁₄H₁₈N₂O: 230.1419, found *m/z* 230.1414.

5-Hydroxy-2-(methyl(phenethyl)amino)pentanenitrile (31)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 2:1) afforded the title compound as colorless oil (28.3 mg, 61%).

¹H NMR (400 MHz, CDCl₃) δ 7.29 (dd, J = 14.7, 7.4 Hz, 2H), 7.21 (t, J = 9.5 Hz, 3H), 3.71 – 3.43 (m, 3H), 2.86 – 2.75 (m, 3H), 2.73 – 2.58 (m, 1H), 2.39 (s, 3H), 2.01 – 1.78 (m, 1H), 1.74 – 1.54 (m, 1H).; ¹³C NMR (101 MHz, CDCl₃) δ 139.35, 128.74, 128.50, 126.37, 117.13, 61.95, 57.38, 56.74, 38.06, 34.04, 29.51, 28.99; HRMS (EI) exact mass calculated for C₁₄H₂₀N₂O: 232.1576, found *m/z* 232.1579.

6-Hydroxy-2-(methyl(phenyl)amino)hexanenitrile (3m)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (34.4 mg, 79%).

¹H NMR (400 MHz, CDCl₃) δ 7.29 (dd, J = 15.3, 8.0 Hz, 1H), 6.94 (t, J = 7.1 Hz, 1H), 4.48 (t, J = 7.9 Hz, 1H), 3.68 (s, 1H), 2.90 (s, 1H), 2.14 – 1.90 (m, 1H), 1.61 (dd, J = 14.6, 2.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 149.33 , 129.42 , 120.95 , 117.93 , 116.80 , 62.41 , 54.14 , 34.35 , 31.82 , 31.60 , 29.72 , 22.27 , 19.18; HRMS (EI) exact mass calculated for C₁₃H₁₈N₂O: 218.1419, found *m/z* 218.1415.

2-(3,4-Dihydroquinolin-1(2H)-yl)-6-hydroxyhexanenitrile (3n)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (36.6 mg, 75%).

¹H NMR (400 MHz, CDCl₃) δ 7.11 (t, *J* = 7.8 Hz, 1H), 7.02 (d, *J* = 7.3 Hz, 1H), 6.82 - 6.65 (m, 2H), 4.66 (t, *J* = 7.8 Hz, 1H), 3.75 - 3.61 (m, 2H), 3.26 (qt, *J* = 11.2, 5.8 Hz, 2H), 2.86 - 2.77 (m, 1H), 2.76 - 2.66 (m, 1H), 2.07 - 1.91 (m, 4H), 1.70 - 1.52 (m, 4H), 1.46 (s, 1H);¹³C NMR (101 MHz, CDCl₃) δ 143.70, 129.57, 127.18, 125.32, 118.69, 118.31, 111.86, 62.31, 50.57, 44.08, 31.76, 30.85, 27.69, 22.25, 22.02 ; HRMS (EI) exact mass calculated for C₁₅H₂₀N₂O: 244.1576, found *m/z* 244.1582.

2-((4-Fluorophenyl)(methyl)amino)-6-hydroxyhexanenitrile (30)

Following the general procedure, column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) afforded the title compound as colorless oil (33.5 mg, 71%).

¹H NMR (400 MHz, CDCl₃) δ 6.96 (dt, J = 13.3, 8.9 Hz, 1H), 4.26 (t, J = 7.9 Hz, 1H), 3.65 (t, J = 5.6 Hz, 1H), 2.82 (s, 1H), 1.91 (dd, J = 14.4, 7.3 Hz, 1H), 1.58 (dd, J = 18.2, 5.2 Hz, 1H);¹³C NMR (101 MHz, CDCl₃) δ 158.15 (d, J = 241.1 Hz), 145.93 (d, J = 2.4 Hz), 119.88 (d, J = 7.9 Hz), 117.73, 115.94 (d, J = 22.4 Hz), 62.27, 55.84, 35.35, 31.76, 31.57, 22.28; HRMS (EI) exact mass calculated for C₁₃H₁₇FN₂O: 236.1325, found *m*/*z* 236.1321.

3-(Methyl(phenyl)amino)tetrahydro-2H-pyran-2-one(2a')

To a solution of 5-hydroxy-2-(methyl(phenyl)amino)pentanenitrile **2a** (0.2 mmol, 1 equiv.) in chlorobenzene (1 mL) was added methanesulfonic acid (1 mL) at 0 °C. Then, the reaction was allowed to stir at 60 °C for 6 hours. After that, saturated aqueous NaHCO₃ (5 mL) was added to stirred for 10 min. The aqueous layer was extracted by ethyl acetate (10 mL \times 3). The combined organic layers were dried over anhydrous sodium sulfate and concentrated. The residue was purified via chromatography on silica gel (eluent: hexanes: EtOAc = 5:1) to afford the product **2a'** as colorless oil in 86% yield (35.2 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.21 (m, 2H), 6.86 – 6.73 (m, 3H), 4.56 –

4.27 (m, 3H), 2.92 (s, 3H), 2.30 – 2.17 (m, 1H), 2.17 – 1.98 (m, 3H); ^{13}C NMR (101 MHz, CDCl₃) δ 170.75 , 149.22 , 129.14 , 118.01 , 113.74 , 68.76 , 59.25 , 34.87 , 23.81 , 22.69 , 22.58 ; HRMS (EI) exact mass calculated for $C_{12}H_{15}NO_2$: 205.1102, found m/z 205.1100.

3-(3,4-dihydroquinolin-1(2H)-yl)tetrahydro-2H-pyran-2-one(3b')

To a solution of 2-(3,4-dihydroquinolin-1(2*H*)-yl)-5-hydroxypentanenitrile **3b'** (0.2 mmol, 1 equiv.) in chlorobenzene (1 mL) was added methanesulfonic acid (1 mL) at 0 °C. Then, the reaction was allowed to stir at 60 °C for 6 hours. After that, saturated aqueous NaHCO₃ (5 mL) was added to stir for 10 min. The aqueous layer was extracted by ethyl acetate (10 mL × 3). The combined organic layers were dried over by anhydrous sodium sulfate and concentrated. The residue was purified via chromatography on silica gel (eluent: hexanes: EtOAc = 5:1) to afford the product **3b** as colorless oil in 83% yield (38.3 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.08 – 6.93 (m, 2H), 6.63 (t, *J* = 7.2 Hz, 1H), 6.47 (d, *J* = 8.2 Hz, 1H), 4.53 – 4.30 (m, 3H), 3.27 (t, *J* = 5.7 Hz, 2H), 2.86 – 2.69 (m, 2H), 2.28 – 1.90 (m, 6H);¹³C NMR (101 MHz, CDCl₃) δ 170.50, 144.10, 129.49, 126.89 , 123.90 , 116.94 , 110.77 , 68.90 , 57.83 , 46.06 , 28.05 , 23.34 , 22.90 , 22.40 ;HRMS (EI) exact mass calculated for C₁₄H₁₇NO₂: 231.1259, found m/z 231.1255.

4. Gram-Scale Experiments

An oven-dried round-bottom flask equipped with a magnetic stirring bar under a nitrogen atmosphere, was charged with Ligand L2 (0.14 mmol, 0.12 equiv.), Cu(OAc) (0.12 mmol, 0.1 equiv.) and ether (60 mL). The reaction was allowed to stir at room temperature for 15 min. Then, NH₄Cl (1.4 mmol, 1.2 equiv.), NFSI (1.8 mmol, 1.5 equiv.), TMSCN (3.6 mmol, 3 equiv.) and *N*-methylaniline (1.2 mmol, 1 equiv.) were added to the reaction mixture in turn. The resulting reaction mixture was stirred at room temperature for 8 h. Then, the resulting solution was concentrated and purified by column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) to afford the product as colorless oil in 82% yield (2.04 g, 10.04 mmol).

An oven-dried round-bottom flask equipped with a magnetic stirring bar under a nitrogen atmosphere, was charged with Ligand L2 (0.14 mmol, 0.12 equiv.), Cu(OAc) (0.12 mmol, 0.1 equiv.) and ether (60 mL). The reaction was allowed to stir at room temperature for 15 min. Then, NH₄Cl (1.4 mmol, 1.2 equiv.), NFSI (1.8 mmol, 1.5 equiv.), TMSCN (3.6 mmol, 3 equiv.) and 1,2,3.4-*tetra*-hydroquinoline (1.2 mmol, 1 equiv.) were added to the reaction mixture in turn. The resulting reaction mixture was stirred at room temperature for 8 h. Then, the resulting solution was concentrated and purified by column chromatography (eluent: hexanes: EtOAc = 3:1) on silica gel to afford the product as colorless oil in 78% yield (2.17 g, 9.42 mmol).

5. Radical Inhibiting Experiments

An oven-dried round-bottom flask equipped with a magnetic stirring bar under a nitrogen atmosphere, was charged with Ligand L2 (0.024 mmol, 0.12 equiv.), Cu(OAc) (0.02 mmol, 0.1 equiv.) and ether (1 mL). The reaction was allowed to stir at room temperature for 15 min. Then, BHT (0.4 mmol, 2 equiv.), NH₄Cl (0.24 mmol, 1.2 equiv.), NFSI (0.3 mmol, 1.5 equiv.), TMSCN (0.6 mmol, 3 equiv.) and *N*-methylaniline (0.2 mmol, 1 equiv.) were added to the reaction mixture in turn. The resulting reaction mixture was stirred at room temperature for 8 h. Then, the resulting solution was concentrated and only a trace amount of product was detected.

An oven-dried round-bottom flask equipped with a magnetic stirring bar under a nitrogen atmosphere, was charged with Ligand L2 (0.024 mmol, 0.12 equiv.), Cu(OAc) (0.02 mmol, 0.1 equiv.) and ether (1 mL). The reaction was allowed to stir at room temperature for 15 min. Then, 1,3-dinitrobenzene (0.4 mmol, 2 equiv.), NH₄Cl (0.24 mmol, 1.2 equiv.), NFSI (0.3 mmol, 1.5 equiv.), TMSCN (0.6 mmol, 3 equiv.) and *N*-methylaniline (0.2 mmol, 1 equiv.) were added to the reaction mixture in turn. The resulting reaction mixture was stirred at room temperature for 8 h. Then, the resulting solution was concentrated and purified by column chromatography on silica gel (eluent: hexanes: EtOAc = 3:1) to afford the product in 9% yield (3.7mg, 18.1 µmol).

5. X-ray Crystallographic Data of 20

]	Identification code	20		
	Empirical formula	$C_{11}H_{12}C1N_2O$		
	Formula weight	223.68		
	Temperature	293(2) K		
	Crystal system, space group	Monoclinic, P2(1)/c		
	Unit cell dimensions	a = 11.8906(18) Å alpha = 90 deg.		
		b = 8.8166(14) Å beta = 104.338(2)		
	deg.			
		c = 11.2785(17) Å gamma = 90 deg.		
	Volume	1145.5(3) A ³		
	Z, Calculated density	4, 1.297 Mg/m ³		
	Absorption coefficient	0.309 mm ⁻¹		
	F (000)	468		
	Crystal size	0.300 x 0.250 x 0.200 mm		
	Theta range for data	1 768 to 25 149 deg		
collection		1.700 to 20.149 deg.		
	Limiting indices	$-11{<\!=}h{<\!=}14, \ -10{<\!=}k{<\!=}10, \ -13{<\!=}1{<\!=}13$		
	Reflections collected / unique	6314 / 2047 [R(int) = 0.0261]		
	Completeness to theta = 25.149	99.90%		
	Absorption correction	Semi-empirical from equivalents		
	Max. and min. transmission	0.940 and 0.911		
	Refinement method	Full-matrix least-squares on F ²		
	Data / restraints / parameters	2047 / 0 / 137		
	Goodness-of-fit on F ²	0.971		
	Final R indices [I>2sigma(I)]	R1 = 0.0456, wR2 = 0.1387		
	R indices (all data)	R1 = 0.0667, wR2 = 0.1588		

17,123 17,123

-10 150 140

0 -10 150 140 130 120

17.1.20 6.6814 6.681

-10 150 140

