Supporting Information

Transition-metal-free synthesis of vicinal triborated compounds and selective functionalisation of the internal C-B bond

```
Elliot Davenport }\mp@subsup{}{}{[a,b]}\mathrm{ and Elena Fernández*[a]
```

[a] Dr. Elena Fernández, Mr. Elliot Davenport Department Química Física i Inorgànica University Rovira i Virgili Tarragona, Spain
E-mail: mariaelena.fernandez@urv.cat
[b] Mr. Elliot Davenport Department Chemistry
Edinburgh University
Edinburgh, UK

Content:

General Information

General procedure for the preparation of 1,3-dienes via Wittig olefination
Spectral data of 1,3-dienes
General procedure for the transition metal-free 1,4-hydroboration reaction
General procedure for the transition metal free 1,2-diboration reaction
General procedure for the transition metal-free 1,2,3,4-tetraboration reaction
General procedure for the transition metal-free 1,2,3-triboration reaction
Spectral data of borylated compounds
General Procedure for the Suzuki-Miyaura Cross-Coupling Reaction
Spectral Data for Suzuki-Miyaura Cross-Coupling Products
NMR for 1,3-dienes
NMR for Borylated Compounds
NMR for Suzuki-Miyaura Cross-Coupling Products
X-Ray crystal data for 38

General Information

NMR spectra were recorded at 300K using a Varian Goku 400 (400 MHz) spectrometer or a Varian Mercury $400(400 \mathrm{MHz})$ spectrometer. Chemical shifts (δ) are reported in ppm with the solvent resonance as the internal standard $\left(\mathrm{CHCl}_{3}: 7.26\right.$ ppm $\left({ }^{1} \mathrm{H}\right)$) and $\left(\mathrm{CDCl}_{3}: 77.16 \mathrm{ppm}\left({ }^{(13} \mathrm{C}\right)\right) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts (δ) are reported in ppm relative to $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{O}---\mathrm{BF}_{3}$. Data are reported as follows: chemical shift, multiplicity ($\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz) and integration. High resolution mass spectra (HRMS) were recorded using a 6210 Time of Flight (TOF) mass spectrometer from Agilent Technologies (Waldbronn, Germany) with an ESI interface and it was performed at the Servei de Recursos Científics i Tècnics (Universitat Rovira I Virgili, Tarragona) or using a BIOTOF II Time of Flight (TOF) mass spectrometer from Bruker with an APCI interface or an El interface and it was performed at the Unidade de Espectrometria de Masas e Proteómica (Universidade de Santiago de Compostela, Santiago de Compostela). Solvents and reagents were obtained from commercial suppliers such as Sigma Aldrich or Alfa Aesar and used as received. All reactions were conducted in oven and flame-dried glassware under an inert atmosphere of argon, using Schlenk-type techniques. Flash chromatography was performed on standard silica gel (Merck Kieselgel 60 F $_{254}$ 400-630 mesh) using standard visulaising agents: UV fluorescence (254 nm) and potassium permanganate/ Δ. GC-MS analysis was performed on an HP6890 gas chromatograph with an Agilent Technologies 5973 Mass selective detector (Waldbronn, Germany) equipped with an achiral capillary column HP-5 (30 $\mathrm{m}, 0.25 \mathrm{~mm}$, i.d., $0.25 \mu \mathrm{~m}$ thickness) using He as the carrier gas.

General procedure for the preparation of 1,3-dienes via Wittig olefination ${ }^{1}$

To a dry reaction vessel equipped with a magnetic stirrer bar, alkyl phosphonium bromide ($3.75 \mathrm{mmol}, 1.25$ equiv) and potassium tert-butoxide ($3.9 \mathrm{mmol}, 1.3$ equiv) were added. The flask was flushed with argon 3 times and dry THF (8 mL) was added slowly with stirring at room temperature. The mixture was left for 30 minutes before the corresponding aldehyde, dissolved in dry THF (4 mL), was added dropwise over 10 minutes at room temperature. The mixture was then left to stir for 16 hours. The reaction was quenched with aqueous saturated ammonium chloride solution (25 mL). The aqueous layer was then extracted three times with diethyl ether before the combined organic extracts were washed with brine and dried over sodium sulphate. After filtration, the volatile components were removed under reduced pressure. The crude residue was purified by silica gel flash chromatography to afford the diene product.

Spectral data of 1,3-dienes:

(E)-1-(buta-1,3-dien-1-yl)-4-chlorobenzene (7)

The product was synthesised according to the general procedure using methyl phosphonium bromide ($1.34 \mathrm{~g}, 3.75 \mathrm{mmol}$) and trans-4-chlorocinnamaldehyde (499.8 $\mathrm{mg}, 3 \mathrm{mmol}$). The product was purified by flash column chromatography using pentane:ethyl acetate ($40: 1$) as eluent. The product 7 was obtained as an orange oil ($2.44 \mathrm{mmol}, 81.4 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.28-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.74-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.49-6.34$ (m, 2H), $5.31-5.22(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=136.9,135.7,133.2,131.5,130.2,128.8,127.6,118.2$.

1. S. R. Sardini, M. K. Brown, J. Am. Chem. Soc., 2017, 139, 9823.

(E)-4-(buta-1,3-dien-1-yl)-N,N-dimethylaniline (9)

The product was synthesised according to the general procedure using methyl phosphonium bromide (1.34 g, 3.75 mmol) and trans-4(dimethylamino)cinnamaldehyde ($525.7 \mathrm{mg}, 3 \mathrm{mmol}$). The product was purified by flash column chromatography using pentane:ethyl acetate (10:1) as eluent. The product 9 was obtained as a yellow solid ($2.80 \mathrm{mmol}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\boldsymbol{\delta}=7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.58(\mathrm{~m}, 1 \mathrm{H}), 6.56-6.43$ (m, 2H), 5.24 (d, J = $17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=150.1,137.8,133.1,127.5,125.6,125.6,115.0,112.4$, 40.5

(E)-1-(buta-1,3-dien-1-yl)-4-methylbenzene (11)

11

The product was synthesised according to the general procedure using methyl phosphonium bromide ($1.34 \mathrm{~g}, 3.75 \mathrm{mmol}$) and trans-4-methylcinnamaldehyde $(438.57 \mathrm{mg}, 3 \mathrm{mmol})$. The product was purified by flash column chromatography using pentane as eluent. The product 11 was obtained as a yellow liquid ($2.06 \mathrm{mmol}, 69 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68$ (dd, J = 15.6, 10.5 Hz, 1H), $6.52-6.36$ (m, 2H), 5.23 (d, J = $16.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.07 (d, J $=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=137.6,137.3,134.3,132.8,129.4,128.7,126.4,117.1$, 21.3.

(E)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene (13)

13

The product was synthesised according to the general procedure using methyl phosphonium bromide ($1.34 \mathrm{~g}, 3.75 \mathrm{mmol}$) and trans-p-methoxycinnamaldehyde
($486.57 \mathrm{mg}, 3 \mathrm{mmol}$). The product was purified by flash column chromatography using pentane:ethyl acetate (4:1) as eluent. The product 13 was obtained as a colourless oil ($2.82 \mathrm{mmol}, 94 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=7.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.60$ (dd, $J=15.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-6.34(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=159.3,137.4,132.4,129.9,127.7,116.5,114.1,55.3$.

(E)-1-(buta-1,3-dien-1-yl)-2-methoxybenzene (15)

15

The product was synthesised according to the general procedure using methyl phosphonium bromide ($1.34 \mathrm{~g}, 3.75 \mathrm{mmol}$) and 2-methoxycinnamaldehyde (486.6 mg , 3 mmol). The product was purified by flash column chromatography using pentane:ethyl acetate (30:1) as eluent. The product 15 was obtained as a yellow liquid ($2.68 \mathrm{mmol}, 88 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.41(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.08(\mathrm{~m}, 1 \mathrm{H})$, $6.93-6.64(\mathrm{~m}, 4 \mathrm{H}), 6.56-6.36(\mathrm{~m}, 1 \mathrm{H}), 5.24$ (ddd, $J=17.0,1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ (ddd, $J=10.0,1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta=156.8,138.0,130.3,128.7,127.6,126.5,126.1,120.7$, 117.0, 110.9, 55.5.

(E)-2-(buta-1,3-dien-1-yl)furan (17)

17

The product was synthesised according to the general procedure using methyl phosphonium bromide ($1.34 \mathrm{~g}, 3.75 \mathrm{mmol}$) and 3 -(2-furyl)acrolein ($366.36 \mathrm{mg}, 3$ $\mathrm{mmol})$. The product was purified by flash column chromatography using pentane as eluent. The product 17 was obtained as a yellow oil ($1.59 \mathrm{mmol}, 53 \%$).
${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=7.29(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, \mathrm{J}=15.6,10.8 \mathrm{~Hz}$, 1 H), $6.44-6.24(\mathrm{~m}, 3 \mathrm{H}), 6.20(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=153.0,142.2,136.7,128.2,120.4,117.8,111.6,108.6$.

(E)-3-(buta-1,3-dien-1-yl)pyridine (19)

The product was synthesised according to the general procedure using methyl phosphonium bromide ($835 \mathrm{mg}, 3.75 \mathrm{mmol}$) and 3-(3-pyridyl)acrolein ($250 \mathrm{mg}, 1.87$ $\mathrm{mmol})$. The product was purified by flash column chromatography using pentane:ethyl acetate (10:1) as eluent. The product 19 was obtained as a yellow oil ($1.4 \mathrm{mmol}, 77 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=8.55(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.57(\mathrm{~m}$, 1 H), $7.19(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{dd}, \mathrm{J}=16.4,10.7,1 \mathrm{H}), 6.54-6.36(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{~d}, \mathrm{~J}=16.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=148.3,148.2,136.6,132.9,132.8,131.7,128.9,123.6$, 119.3.

buta-1,3-diene-1,1-diyIdibenzene (21)

The product was synthesised according to the general procedure using methyl phosphonium bromide ($1.34 \mathrm{~g}, 3.75 \mathrm{mmol}$) and β-phenylcinnamaldehyde $(624.78 \mathrm{mg}$, $3 \mathrm{mmol})$. The product was purified by flash column chromatography using pentane:ethyl acetate ($30: 1$) as eluent. The product 21 was obtained as a yellow liquid ($2.85 \mathrm{mmol}, 95 \%$).
${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\boldsymbol{\delta}=7.27(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 7 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=11.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.35 (ddd, $J=16.8,11.0,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.25(\mathrm{dd}, J=16.9,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.03 (dd, $J=10.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=143.2,142.1,139.7,135.0,130.4,128.5,128.2,127.6$, 127.5, 127.4, 118.6.

((1E)-penta-1,3-dien-1-yl)benzene (23)

23

The product was synthesised according to the general procedure using ethyl phosphonium bromide ($1.39 \mathrm{~g}, 3.75 \mathrm{mmol}$) and trans-cinnamaldehyde ($396.48 \mathrm{mg}, 3$ $\mathrm{mmol})$. The product was purified by flash column chromatography using pentane as eluent. The product 23 was obtained as a yellow oil ($2.2 \mathrm{mmol}, 72 \%$) ($E: Z=78: 22$). ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=(E): 7.38-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.15-$ 7.05 (m, 1H), 6.99 (dd, $J=15.6,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, ~ J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.02$ (m, 1H), $5.58-5.45(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 3 \mathrm{H}) .(Z): 7.29-7.25(\mathrm{~m}, 2 \mathrm{H})$, $7.25-7.16$ (m, 2H), $7.15-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=15.7,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.33$ (d, J $=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{dq}, J=14.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{dd}, J=6.8$, $1.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=(E: Z=78: 22) 137.7,131.9,130.3,129.8,129.7,129.4$, 128.6, 128.5, 127.3, 127.1, 127.1, 126.3, 126.1, 124.2, 18.3, 13.6.

1-chloro-4-((1E)-penta-1,3-dien-1-yl)benzene (25)

The product was synthesised according to the general procedure using ethyl phosphonium bromide ($1.39 \mathrm{~g}, 3.75 \mathrm{mmol}$) and trans-4-chlorocinnamaldehyde (499.8 $\mathrm{mg}, 3 \mathrm{mmol})$. The product was purified by flash column chromatography using pentane as eluent. The product 25 was obtained as a yellow solid ($2.6 \mathrm{mmol}, 87 \%$) ($\mathrm{E}: \mathrm{Z}=$ 56:44).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=(E): 7.29-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.63(\mathrm{dd}, \mathrm{J}=15.7,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.28(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.70(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{dd}, J=$ $6.8,1.6 \mathrm{~Hz}, 3 \mathrm{H}) .(\mathrm{Z}): 7.29-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.98$ (ddd, $J=15.6,11.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.48(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=7.2,1.8$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=(E: Z=56: 44) 136.2,132.8,132.5,131.6,131.1,130.5$, 130.0, 129.4, 128.8, 128.7, 128.4, 127.9, 127.5, 127.3, 124.7, 18.5, 13.7.

N, N-dimethyl-4-((1E)-penta-1,3-dien-1-yl)aniline (27)

The product was synthesised according to the general procedure using ethyl phosphonium bromide ($1.39 \mathrm{~g}, 3.75 \mathrm{mmol}$) and 4 -(dimethylamino)cinnamaldehyde ($512 \mathrm{mg}, 3 \mathrm{mmol}$). The product was purified by flash column chromatography using pentane as eluent. The product 27 was obtained as a yellow solid ($2.6 \mathrm{mmol}, 85 \%$) ($E: Z=56: 44$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=(E): 7.29-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.63(\mathrm{dd}, \mathrm{J}=15.7,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.28(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.70(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{dd}, J=$ $6.8,1.6 \mathrm{~Hz}, 3 \mathrm{H}) .(\mathrm{Z}): 7.29-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.98$ (ddd, $J=15.6,11.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.48(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=7.2,1.8$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=(E: Z=56: 44) 150.0,133.3,131.1,129.8,129.7,127.3$, 126.9, 125.1, 121.2, 111.3, 40.2, 19.1, 13.7.

(E)-(4-methylpenta-1,3-dien-1-yl)benzene (29)

29

The product was synthesised according to the general procedure using isopropyl phosphonium iodide ($1.62 \mathrm{~g}, 3.75 \mathrm{mmol}$) and trans-cinnamaldehyde ($396.5 \mathrm{mg}, 3$ mmol). The product was purified by flash column chromatography using pentane as eluent. The product 29 was obtained as a clear liquid ($1.95 \mathrm{mmol}, 65 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.33(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (t, J = 7.3 Hz, 1H), $6.92(\mathrm{dd}, J=15.5,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta=138.1,136.7,129.5,128.6,126.9,126.1,125.7,125.5$, 26.3, 18.6.
(E)-(2-methylbuta-1,3-dien-1-yl)benzene (31)

31

The product was synthesised according to the general procedure using methyl phosphonium bromide ($1.34 \mathrm{~g}, 3.75 \mathrm{mmol}$) and α-methyl-trans-cinnamaldehyde ($438.5 \mathrm{mg}, 3 \mathrm{mmol}$). The product was purified by flash column chromatography using pentane as eluent. The product 31 was obtained as a colourless oil ($2.64 \mathrm{mmol}, 88 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.31-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.47$ (dd, J $=17.2,10.6,1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.91 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\boldsymbol{\delta}=141.9,137.7,136.0,131.7,129.2,128.2,126.6,113.0$, 13.2.

(Z)-(2-bromobuta-1,3-dien-1-yl)benzene (33)

33

The product was synthesised according to an adapted version of the general procedure using methyl phosphonium bromide (1.34 g, 3.75 mmol), α bromocinnamaldehyde ($633 \mathrm{mg}, 3 \mathrm{mmol}$) and potassium tertbutoxide ($201 \mathrm{mg}, 0.6$ equiv). The product was purified by flash column chromatography using pentane as eluent. The product 33 was obtained as a yellow oil ($1.59 \mathrm{mmol}, 53 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=7.62(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.92$ (s, 1 H), 6.44 (dd, $J=16.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H})$.
${ }^{13}{ }^{3} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=137.1,135.6,132.3,129.6,128.3,128.1,125.5,123.9$, 119.0.

But-3-en-1-yn-1-ylbenzene (35)

The product was synthesised according to an adapted version of the general procedure using methyl phosphonium bromide (1.34 g, 3.75 mmol), α bromocinnamaldehyde ($633 \mathrm{mg}, 3 \mathrm{mmol}$) and potassium tertbutoxide ($840 \mathrm{mg}, 2.5$ equiv). The product was purified by flash column chromatography using pentane as eluent. The product 35 was obtained as a yellow oil ($2.2 \mathrm{mmol}, 72 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.41-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.95$ (dd, J $=17.5,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=17.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=11.1,2.1 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=131.6,131.5,128.3,128.3,126.8,123.2,117.2,90.0$, 88.1 .

General Procedure for the transition metal-free 1,4-hydroboration reaction

To an oven-dried Schlenk-flask equipped with a magnetic stir bar, $\mathrm{B}_{2} \mathrm{pin}_{2}(0.55 \mathrm{mmol}$, 1.1 equiv), sodium carbonate ($0.075 \mathrm{mmol}, 0.15$ equiv), dry MeOH as solvent (1 mL), and substrate 2 ($0.5 \mathrm{mmol}, 1$ equiv) were added. The vial was sealed with a plastic cap and heated to $90^{\circ} \mathrm{C}$ in an oil bath for 16 hours. Upon completion, the reaction mixture was concentrated under reduced pressure and a known amount of naphthalene (ca. 10 mg) as internal standard was added. An aliquot was taken to determine the conversion and selectivity by ${ }^{1} \mathrm{H}$ NMR and GC-MS analysis. The crude residue was purified by silica gel flash chromatography to afford the hydroborated product.

General procedure for the transition metal free 1,2-diboration reaction

To an oven-dried Schlenk-flask equipped with a magnetic stir bar, $\mathrm{B}_{2} \mathrm{pin}_{2}(0.55 \mathrm{mmol}$, 1.1 equiv), sodium carbonate ($0.075 \mathrm{mmol}, 0.15$ equiv), dry MeOH as solvent (1 mL), and substrate 4 ($0.5 \mathrm{mmol}, 1$ equiv) were added. The vial was sealed with a plastic cap and heated to $90^{\circ} \mathrm{C}$ in an oil bath for 16 hours. Upon completion, the reaction mixture was concentrated under reduced pressure and a known amount of naphthalene (ca. 10 mg) as internal standard was added. An aliquot was taken to determine the conversion and selectivity by ${ }^{1} \mathrm{H}$ NMR and GC-MS analysis. The crude residue was purified by silica gel flash chromatography to afford the diborated product.

General procedure for the transition metal-free 1,2,3,4-tetraboration reaction

To an oven-dried Schlenk-flask equipped with a magnetic stir bar, $\mathrm{B}_{2} \mathrm{pin}_{2}(1.50 \mathrm{mmol}$, 3 equiv), sodium carbonate ($0.15 \mathrm{mmol}, 0.3$ equiv), dry MeOH as solvent (1 mL), and substrate 4 ($0.5 \mathrm{mmol}, 1$ equiv) were added. The vial was sealed with a plastic cap and heated to $90^{\circ} \mathrm{C}$ in an oil bath for 16 hours. Upon completion, the reaction mixture was concentrated under reduced pressure and a known amount of naphthalene (ca. 10 mg) as internal standard was added. An aliquot was taken to determine the conversion and selectivity by ${ }^{1} \mathrm{H}$ NMR and GC-MS analysis. The crude residue was purified by silica gel flash chromatography to afford the polyborylated product.

General procedure for the transition metal-free 1,2,3-triboration

To an oven-dried Schlenk-flask equipped with a magnetic stir bar, $\mathrm{B}_{2} \mathrm{pin}_{2}(1.50 \mathrm{mmol}$, 3 equiv), sodium carbonate ($0.15 \mathrm{mmol}, 0.3$ equiv), dry MeOH as solvent (1 mL), and the substrate ($0.5 \mathrm{mmol}, 1$ equiv) were added. The vial was sealed with a plastic cap and heated to $90^{\circ} \mathrm{C}$ in an oil bath for 16 hours. Upon completion, the reaction mixture was concentrated under reduced pressure and a known amount of naphthalene (ca. 10 mg) as internal standard was added. An aliquot was taken to determine the conversion and selectivity by ${ }^{1} \mathrm{H}$ NMR and GC-MS analysis. The crude residue was purified by silica gel flash chromatography to afford the triborated product.

Spectral data of organoboron compounds:

4,4,5,5-tetramethyl-2-(4-phenylbut-2-en-1-yl)-1,3,2-dioxaborolane (2)

The product was purified by flash column chromatography using pentane:ethyl acetate (20:1) as eluent. The product 2 was obtained as a colourless liquid ($52 \mathrm{mg}, 40 \%$) ($E: Z$ $=3: 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=(E) 7.35-7.13(\mathrm{~m}, 5 \mathrm{H}), 5.70-5.51(\mathrm{~m}, 2 \mathrm{H}), 3.44-$ 3.36 (d, J = $6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.80 (d, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$). (Z) $7.35-7.13$ (m, 5H), $5.70-5.51$ (m, 2H), 3.33 (d, J = 5.5 Hz, 2H), $1.69(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=141.3,132.8,128.5,128.3,128.3,128.1,126.7,125.9$, 125.8, 125.3, 83.3, 83.1, 39.2, 33.3, 27.4, 24.9, 24.8, 24.6.
${ }^{11} \mathrm{~B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=33.01$.
HRMS-(ESI+) for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BO}_{2}[\mathrm{M}]^{+}$: calculated: 258.1791, found: 258.1786.

2,3',2"-(4-phenylbutane-1,2,3-triyl)tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)

(3)

The product was purified by flash column chromatography using pentane:ethyl acetate (10:1) as eluent. The product 3 was obtained as a colourless liquid ($182 \mathrm{mg}, 71 \%$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.20(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H})$, $1.31(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.19(\mathrm{~m}, 24 \mathrm{H}), 1.10(\mathrm{~s}, 6 \mathrm{H}), 1.08(\mathrm{~s}, 6 \mathrm{H}), 0.91-0.78(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=143.0,129.1,129.1,127.8,127.8,125.2,82.8,82.8$, 82.7, 36.3, 24.9.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=33.15$ (br s).
HRMS-(ESI+) for $\mathrm{NaC}_{28} \mathrm{H}_{47} \mathbf{B}_{3} \mathrm{O}_{6}$ [$\left.\mathbf{M + N a}\right]^{+}$: calculated: 535.3549 , found: 535.3549 .

(E)-2,2'-(pent-3-ene-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (5)

The product was purified by flash column chromatography using pentane:ethyl acetate (20:1) as eluent. The product 5 was obtained as a colourless oil ($41.2 \mathrm{mg}, 33 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=5.49(\mathrm{ddd}, \mathrm{J}=15.3,7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.30(\mathrm{~m}$, 1 H), 1.90 (m, 1H), 1.61 (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.20 (s, 24H), 0.98 (dd, $J=15.9,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 0.87$ (dd, $J=15.9,6.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\boldsymbol{\delta}=133.6,122.7,83.0,82.9,82.8,28.6,25.7,24.9,24.8$, 24.7, 18.2.

11B NMR (128 MHz, CDCl_{3}) $\boldsymbol{\delta}=33.41$ (br s)
HRMS-(ESI+) for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{~B}_{2} \mathrm{O}_{4}\left[\mathbf{M +} \mathrm{H}^{+}\right]^{+}$: calculated: 323.2565, found: 323.2562.

2,2',2",2'"-(pentane-1,2,3,4-tetrayl)tetrakis(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (6)

The product was purified by flash column chromatography using pentane:ethyl acetate ($10: 1$) as eluent. The product 6 was obtained as a colourless oil ($68.7 \mathrm{mg}, 52 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=1.39(\mathrm{~m}, 1 \mathrm{H})$,), $1.16-1.13(\mathrm{~m}, 24 \mathrm{H}), 1.12(\mathrm{~s}, 12 \mathrm{H})$, $1.10(\mathrm{~s}, 12 \mathrm{H}), 0.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.59-0.54(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=8289$, 82.6,, 82.5, 82.4, 25.2, 25.1, 25.0, 24.9, 24.8, 24.7, 24.6, 15.0, 13.9.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=34.02$ (br s).
HRMS-(ESI+) for $\mathrm{C}_{29} \mathrm{H}_{57} \mathrm{~B}_{4} \mathrm{O}_{8}\left[\mathbf{M}+\mathrm{H}^{+}\right]^{+}$: calculated: 577.4426, found: 577.4432.

2,2',2"-(4-(4-chlorophenyl)butane-1,2,3-triyl)tris(4,4,5,5-tetramethyl-1,3,2-

The product was purified by flash column chromatography using pentane:ethyl acetate (20:1) as eluent. The product 8 was obtained as a white solid ($108.6 \mathrm{mg}, 50 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.13-7.03(\mathrm{~m}, 4 \mathrm{H}), 2.73-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.33$ (m, 1H), $1.23-1.12(\mathrm{~m}, 24 \mathrm{H}), 1.05(\mathrm{~s}, 6 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}), 0.96-0.72(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=141.7,130.9,130.5,127.9,82.9,82.9,35.8,35.5$, 25.0, 24.9, 24.7.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=33.48$ (br s).

N,N-dimethyl-4-(2,3,4-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)butyl)aniline (10)

The product was purified by flash column chromatography using pentane:ethyl acetate (10:1) as eluent. The product 10 was obtained as a yellow liquid ($162 \mathrm{mg}, 60 \%$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.12$ - $7.05(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{dd}, \mathrm{J}=8.8,2.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.85 (s, 6H), 2.73-2.56 (m, 2H), 1.45 (dd, J = 9.8, 6.1 Hz, 1H), 1.37-1.27 (m, 1H) 1.29 - 1.17 (m, 24H), 1.15 (s, 6H), 1.04 (s, 6H), $0.99-0.78$ (m, 2H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\boldsymbol{\delta}=149.0,132.0,129.7,129.6,110.1,82.7,82.6,41.2$, 35.3, 25.0, 24.9, 24.8, 24.7.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=33.27$ (br s).

2,2',2"-(4-(p-tolyl)butane-1,2,3-triyl)tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)

(12)

The product was synthesized according to the general procedure. The product was purified by flash column chromatography using pentane:ethyl acetate (20:1) as eluent. The product 12 was obtained as a colourless liquid (168 mg, 65\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.04(\mathrm{dd}, J=7.8,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.73-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.10(\mathrm{~m}, 24 \mathrm{H}), 1.09(\mathrm{~s}$, $6 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H}), 0.97-0.71(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=140.0,139.9,134.5,129.0,128.5,83.5,82.8,82.7$, 36.0, 35.7, 25.1, 25.0, 24.9, 24.8, 24.7, 21.0.
${ }^{11} \mathrm{~B}$ NMR ($\mathbf{1 2 8} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=35.53$ (br s).
HRMS-(ESI+) for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{NaB}_{3} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$: calculated: 549.3706, found:549.3717.

2,2',2"-(4-(4-methoxyphenyl)butane-1,2,3-triyl)tris(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (14)

The product was synthesized according to the general procedure. The product was purified by flash column chromatography using pentane:ethyl acetate (20:1) as eluent. The product 14 was obtained as a colourless liquid ($162 \mathrm{mg}, 60 \%$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.07(\mathrm{dd}, J=8.4,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.10(\mathrm{~m}$, 24 H), 1.09 ($\mathrm{s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H}), 0.96-0.75(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=157.4,135.3,135.2,130.0,113.3,82.7,55.3,35.5$, 29.7, 25.0, 24.9.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=34.00(\mathrm{br} \mathrm{s})$.
HRMS-(ESI+) for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{NaB}_{3} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$: calculated: 565.3655 , found: 565.3666.

2,2',2"-(4-(2-methoxyphenyl)butane-1,2,3-triyl)tris(4,4,5,5-tetramethyl-1,3,2-

The product was synthesized according to the general procedure. The product was purified by flash column chromatography using pentane:ethyl acetate (20:1) as eluent. The product 16 was obtained as a colourless liquid ($177 \mathrm{mg}, 65 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.14(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.65(\mathrm{~m}, 2 \mathrm{H}), 3.70$ (s, 3H), $2.80-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.12(\mathrm{~m}, 24 \mathrm{H})$, $1.05(\mathrm{~m}, 6 \mathrm{H}), 1.01(\mathrm{~m}, 6 \mathrm{H}), 0.97-0.83(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=157.8,131.3,130.7,126.4,119.8,109.9,82.8,55.1$, 30.0, 25.0, 24.9.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=33.17$ (br s).
HRMS-(ESI+) for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{NaB}_{3} \mathrm{O}_{7}\left[\mathbf{M}+\mathrm{Na}^{+}\right]^{+}$: calculated: 565.3662 , found: 565.3655.

2,2',2"-(4-(furan-2-yl)butane-1,2,3-triyl)tris(4,4,5,5-tetramethyl-1,3,2-

The product was purified by flash column chromatography using pentane:ethyl acetate (20:1) as eluent. The product 18 was obtained as a white solid ($160.6 \mathrm{mg}, 64 \%$).
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.19-7.13(\mathrm{~s}, 1 \mathrm{H}), 6.17-6.10(\mathrm{~m}, 1 \mathrm{H}), 5.93-5.85$ (m, 1H), 2.76 (dd, $J=15.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=15.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.45$ $(\mathrm{m}, 1 \mathrm{H}), 1.25(\mathrm{dt}, \mathrm{J}=11.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~m}, 24 \mathrm{H}), 1.09(\mathrm{~m}, 12 \mathrm{H}), 0.93-0.70(\mathrm{~m}$, $2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta=157.0,140.2,109.9,104.9,83.5,83.0,82.9,28.5$, 25.0, 24.9, 24.8, 24.7.
${ }^{11} \mathrm{~B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=33.74$ (br s), 30.45 (s)
HRMS-(APCI+) for $\mathbf{C}_{26} \mathbf{H}_{46} \mathbf{B}_{3} \mathrm{O}_{\mathbf{7}}\left[\mathbf{M}+\mathrm{H}^{+}\right]^{+}$: calculated: 503.3523 , found: 503.3517.

3-(2,3,4-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)pyridine (20)

The product was synthesized according to the general procedure. The product was purified by flash column chromatography using pentane:ethyl acetate (1:1) as eluent. The product 20 was obtained as a colourless liquid ($20 \mathrm{mg}, 10 \%$)
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=8.45(\mathrm{~m}, 1 \mathrm{H}), 8.35(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.08$ (dd, $J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (dd, $J=13.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 (dd, $J=13.6,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.42(\mathrm{dt}, J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~m}, 24 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H})$, 1.03 (s, 6H), $0.96-0.73(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=150.3,145.4,130.7,86.8,85.7,35.9,28.7,23.9,23.7$, 23.4.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=34.23$ (br s), 22.49 (s$)$
HRMS-(APCI+) for $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{~B}_{3} \mathrm{NO}_{6}\left[\mathbf{M + \mathrm { H } ^ { + }] ^ { + } \text { : calculated: } 5 1 4 . 3 6 8 3 \text { , found: } 5 1 4 . 3 6 7 7 \text { . } ~}\right.$

2,2',2"-(4,4-diphenylbutane-1,2,3-triyl)tris(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (22)

The product was purified by flash column chromatography using pentane:ethyl acetate (20:1) as eluent. The product 22 was obtained as a colourless oil ($138.2 \mathrm{mg}, 47 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.40-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.03$ $(\mathrm{m}, 4 \mathrm{H}), 7.03-6.90(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dd}, J=12.7,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.25 (s, 6H), 1.15 (s, 6H), 1.12 (s, 12H), 1.07 (d, J = $7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 0.84 (s, 6H), 0.81 (s, 6 H), 0.63 (dd, $J=16.2,5.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=146.7,128.4,128.3,128.1,125.7,125.5,82.8,82.7$, 82.6, 51.8, 29.7, 25.5, 25.1, 24.8, 24.7, 24.4.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=38.86$ (br s).
HRMS-(APCI+) for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{~B}_{3} \mathrm{O}_{6}\left[\mathbf{M}+\mathrm{H}^{+}\right]^{+}$: calculated: 589.4043, found: 589.4038.

2,2',2"-(1-phenylpentane-2,3,4-triyl)tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)

(24)

The product was purified by flash column chromatography using pentane:ethyl acetate (10:1) as eluent. The product 24 was obtained as a colourless oil ($79 \mathrm{mg}, 30 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.21-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 1 \mathrm{H}), 2.83$ (ddd, J $=13.5,5.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{ddd}, \mathrm{J}=47.0,13.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.44-$ $1.24(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~m}, 24 \mathrm{H}), 1.09(\mathrm{~s}, 6 \mathrm{H}), 0.98(\mathrm{~s}, 6 \mathrm{H}), 0.83(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=143.3,142.7,129.2,127.8,125.3,125.3,83.0,82.6$, 36.7, 36.5, 25.1, 25.0, 24.8, 24.7, 15.1, 12.9.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=33.64$ (br s).
HRMS-(ESI+) for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{~B}_{3} \mathrm{NaO}_{6}\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$: calculated: 549.3711, found: 549.3706.

2,2',2"-(1-(4-chlorophenyl)pentane-2,3,4-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (26)

The product was purified by flash column chromatography using pentane:ethyl acetate (20:1) as eluent. The product 26 was obtained as a colourless oil ($56 \mathrm{mg}, 20 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.10(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{dd}, J=13.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (dd, $J=13.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 24 \mathrm{H}), 1.05(\mathrm{~s}$, 6 H), 0.97 (s, 6H), $0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\boldsymbol{\delta}=141.9,141.3,130.9,130.5,127.9,83.0,82.7,53.5$, 35.9, 29.7, 25.2, 24.8, 15.1, 13.2.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=33.00(\mathrm{brs})$.
HRMS-(ESI+) for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{~B}_{3} \mathrm{CINaO}_{6}\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$: calculated: 583.3316, found: 583.3339.

N,N-dimethyl-4-(2,3,4-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)pentyl)aniline (28)

The product was purified by flash column chromatography using pentane:ethyl acetate (10:1) as eluent. The product 28 was obtained as a colourless oil ($81.4 \mathrm{mg}, 30 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.04(\mathrm{~d}, ~ J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.80$ (s, 6H), 2.74 (dd, $J=13.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (dd, $J=13.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H})$, 1.41 - 1.30 (m, 2H), 1.19 (s, 12H), 1.11 (s, 12H), 1.04 (s, 6H), 0.94 (s, 6H), 0.88 (d, J $=7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=129.7,113.6,113.6,82.9,82.5,41.6,35.4,29.7,25.0$, 24.8, 12.9.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=34.98$ (br s).
HRMS-(ESI+) for $\mathrm{C}_{31} \mathbf{H}_{55} \mathrm{~B}_{3} \mathrm{NO}_{6}\left[\mathbf{M +} \mathrm{H}^{+}\right]^{+}$: calculated: 570.4309, found: 570.4311.

2,2',2"-(3-methyl-4-phenylbutane-1,2,3-triyl)tris(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (32)

The product was purified by flash column chromatography using pentane:ethyl acetate (10:1) as eluent. The product 32 was obtained as a colourless oil (126.7 mg, 48\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=7.18(\mathrm{dd}, \mathrm{J}=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H})$, $7.08-7.01(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26$ (dd, $J=$ $12.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.21-1.14(\mathrm{~m}, 24 \mathrm{H}), 1.12(\mathrm{~s}, 6 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}), 0.95(\mathrm{~m}, 2 \mathrm{H}), 0.85$ ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta=141.3,130.7,127.4,125.4,83.0,82.9,82.7,43.5$, 25.3, 25.1, 25.0, 24.9, 24.7, 20.4.
${ }^{11}{ }^{1} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=33.09$ (br s).
HRMS-(ESI+) for $\mathbf{C}_{29} \mathrm{H}_{49} \mathrm{NaB}_{3} \mathrm{O}_{6}\left[\mathbf{M}+\mathrm{Na}^{+}\right]^{+}$: calculated: 549.3706, found: 549.3716.

General Procedure for the Suzuki-Miyaura Cross-Coupling Reaction: ${ }^{2}$

To a Schlenk flask equipped with a stirrer bar was added the substrate (1 equiv, 0.3 mmol), 4-iodotoluene (1.5 equiv, 0.45 mmol) and solid potassium hydroxide (3 equiv, $0.9 \mathrm{mmol})$. The flask was then sealed and flushed three times with argon before being taken to the glovebox where palladium acetate ($10 \mathrm{~mol} \%$) and Ruphos ($10 \mathrm{~mol} \%$) were added. The flask was once again sealed. The sealed flask was taken from the glovebox and dry THF (3.5 mL) and water, sparged for thirty minutes with argon (0.35 mL), were added. The reaction was heated to $90^{\circ} \mathrm{C}$ and left to stir for 12 hours.

2,2'-(4-phenyl-2-(p-tolyl)butane-1,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (36)

The product was synthesised according to the general procedure. The product was purified by flash column chromatography using pentane:ethyl acetate (30:1) as eluent. The product 36 was obtained as a colourless oil ($11 \mathrm{mg}, 11 \%$ (22% by NMR)). ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.08$ (dt, J=7.4, 3.3 Hz, 4H), 7.05-6.95 (m, 5H), 2.87 (ddd, $J=11.8,10.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.46-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.21$ (s, 3H), 1.63 (ddd, $J=11.5$, $10.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.23-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~s}, 6 \mathrm{H}), 0.93(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=143.5,142.3,135.1,128.8,128.7,127.9,127.8,125.4$, 83.0, 82.8, 43.2, 36.6, 29.7, 25.0, 24.9, 24.7, 24.6, 24.5, 21.0.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=34.37$ (br s).
HRMS-(ESI+) for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{~B}_{2} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$: calculated: 499.3174, found: 499.3166.

2,2'-(2-(4-methoxyphenyl)-4-phenylbutane-1,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (37)

The product was synthesised according to an adapted version of the general procedure using 4-iodoanisole. The product was purified by flash column chromatography using pentane:ethyl acetate (25:1) as eluent. The product 37 was obtained as a colourless oil ($20 \mathrm{mg}, 10 \%$ (40% by NMR)).
${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=7.19-7.05(\mathrm{~m}, 4 \mathrm{H}), 7.05-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.79-6.71$ (m, 2H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.86$ (ddd, J = 11.8, 10.3, 4.7 Hz, 1H), 2.46-2.28(m, 2H), 1.59 (td, J = 10.9, 5.8 Hz, 1H), $1.18-1.08(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=157.8,142.2,138.9,128.8,127.9,125.4,113.4,83.0$, 82.8, 55.3, 42.8, 36.6, 29.7, 25.0, 24.7, 24.5.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=39.26$ (br s).
HRMS-(ESI+) for $\mathbf{C}_{29} \mathrm{H}_{42} \mathbf{B}_{2} \mathrm{O}_{5} \mathbf{N a}\left[\mathbf{M}+\mathrm{Na}^{+}\right]^{+}$: calculated: 515.3118 , found: 515.3166.

2,2'-(4-(4-methoxyphenyl)-2-(p-tolyl)butane-1,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (38)

The product was synthesised according to the general procedure. The product was purified by flash column chromatography using pentane:ethyl acetate (20:1) as eluent. The product 38 was obtained as a colourless oil ($20 \mathrm{mg}, 20 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=7.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.85$ (ddd, $J=11.7,10.3$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{dt}, J=10.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~m}$, $2 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}), 0.95(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=157.5,143.5,135.1,134.4,129.7,128.6,127.8,113.3$, 83.0, 82.7, 55.3, 43.1, 35.7, 25.0, 24.8, 24.6, 24.5, 21.1.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=32.56$ (br s).
HRMS-(ESI+) for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~B}_{2} \mathrm{O}_{5} \mathrm{Na}\left[\mathbf{M}+\mathrm{Na}^{+}\right]^{+}$: calculated: 529.3275, found: 529.3272.

2,2'-(4-(2-methoxyphenyl)-2-(p-tolyl)butane-1,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (39)

The product was synthesised according to the general procedure. The product was purified by flash column chromatography using pentane:ethyl acetate (20:1) as eluent. The product 39 was obtained as a colourless oil ($11 \mathrm{mg}, 11 \%$ (40% by NMR)). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{dd}, J=7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99-6.94(\mathrm{~m}, 3 \mathrm{H}), 6.72-6.60(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.35$ $(\mathrm{m}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{td}, J=9.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.13-1.08(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H})$, 0.95 (s, 6H), 0.92 (s, 12H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=157.6,143.7,134.9,130.8,130.3,129.4,128.4,128.0$, $126.8,126.6,119.8,110.0,82.8,82.7,55.1,43.3,31.0,29.7,25.1,24.8,24.7,24.6$, 21.1.
${ }^{11} \mathrm{~B}^{\mathrm{B}} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=30.48$ (br s).
HRMS-(ESI+) for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~B}_{2} \mathrm{O}_{5} \mathrm{Na}\left[\mathbf{M}+\mathrm{Na}^{+}\right]^{+}$: calculated: 529.3273, found: 529.3272.

4-phenyl-2-(p-tolyl)butane-1,3-diol (40)

The product was synthesised according to an adapted version of the general procedure using an oxidative workup $\left(\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}\right)$ upon completion of the reaction. The product was purified by flash column chromatography using pentane:ethyl acetate
(2:1) as eluent. The product 40 was obtained as a colourless oil ($12 \mathrm{mg}, 15 \%$ (20% by NMR)).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.30-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.13-6.99(\mathrm{~m}, 5 \mathrm{H}), 4.14$ (td, $\mathrm{J}=$ $9.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=11.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (br s, 1H), 2.81 (ddd, $J=9.4,7.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.64 (dd, $J=13.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dd, $J=13.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (s, 3H), 1.55 (br s, 1H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=138.0,136.8,136.8,129.7,129.4,128.7,128.1,126.7$, 67.3, 53.1, 42.5, 24.9, 21.1.

HRMS-(ESI+) for $\mathrm{C}_{17} \mathrm{H}_{\mathbf{2 0}} \mathrm{O}_{\mathbf{2}}$ [M] ${ }^{+}$: calculated: 256.1463, found: 256.1465.

2,2'-(4-(furan-2-yl)-2-(p-tolyl)butane-1,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (41)

The product was synthesised according to the general procedure. The product was purified by flash column chromatography using pentane:ethyl acetate (20:1) as eluent. The product 41 was obtained as a colourless oil ($40 \mathrm{mg}, 29 \%$ (50% by NMR)). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=7.13(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{td}, J$ $=10.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=15.1,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=15.2,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 12 \mathrm{H}), 0.90(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=156.1,140.4,135.2,128.6,127.8,109.8,105.0,83.1$, 82.8, 42.5, 28.7, 24.9, 24.6, 21.0.
${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=33.03$ (br s).
HRMS-(ESI+) for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{~B}_{\mathbf{2}} \mathrm{O}_{5} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$: calculated: 489.2953 , found: 489.2959

Spectra for 1,3-dienes:

11

1.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0 $\mathrm{f}(\mathrm{ppm})$	3.5	3.0	2.5	2.0	1.5	1.0	0.5
7.1														

13

Ω

T	1	1		1			1		T		1	1			,	,
. 0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\begin{aligned} & 4.0 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

15

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | $90_{\mathrm{f}(\mathrm{ppm})}$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

17

19

$\begin{array}{llllllllllllllllllllllllllll}150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 \\ (\mathrm{ppm})\end{array}$

60	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
								f1 (ppm)								

31

33

35

whlor whala In M
\qquad Willue

| 1 | | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0
 $f(p p m)$ | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |

, II

$\begin{array}{ll}30 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0\end{array}$

90	80	70	60	50	40	30	$\begin{aligned} & 20 \\ & \mathrm{f} 1 \text { (ppm) } \end{aligned}$	10	0	-10	-20	-30	-40	-50	-6C

| 160 | 150 | 140 | 130 | 120 | 110 | 100 | $90_{\mathrm{f}(\mathrm{ppm})}^{80}$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

\qquad u \qquad ル a allum \qquad aunh \qquad

22

22

(

$\left.\begin{array}{llllllllllllllllllllllllllll}50 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 \\ \mathrm{fl}\end{array}\right)$

| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80
 $f 1(\mathrm{ppm})$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

90	80	70	60	50	40	30	$\begin{gathered} 20 \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$	10	0	-10	-20	-30	-40	-50	-6

Spectra for Suzuki-Miyaura Cross-Coupling Products:

| 1 | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5
 $\mathrm{f} 1(\mathrm{ppm})$ | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |

$\begin{array}{llllllllllllllllllllllllllllll}145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0\end{array}$

X-Ray Crystal Data for 38

Table 1. Crystal data and structure refinement for $\mathbf{3 8}$

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
mo_ED134_0m
C30 H44 B2 O5
506.27

100(2) K
0.71073 Å

Monoclinic

Space group	P2(1)/c
Unit cell dimensions	$\mathrm{a}=13.0983(18) \AA$ 俍 $\quad \alpha=90^{\circ}$.
	$b=12.425(3) \AA \quad \beta=95.349(5)^{\circ}$.
	$\mathrm{c}=18.235(4) \AA \quad \gamma=90^{\circ}$.
Volume	2954.8(10) \AA^{3}
Z	4
Density (calculated)	$1.138 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.074 \mathrm{~mm}^{-1}$
F(000)	1096
Crystal size	$0.20 \times 0.10 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	1.986 to 26.425°.
Index ranges	$-16<=\mathrm{h}<=16,-15<=\mathrm{k}<=15,-17<=1<=22$
Reflections collected	25716
Independent reflections	$5972[\mathrm{R}(\mathrm{int})=0.0479]$
Completeness to theta $=26.425^{\circ}$	98.2\%
Absorption correction	Multi-scan
Max. and min. transmission	0.996 and 0.91
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5972/ 476/ 497
Goodness-of-fit on F^{2}	1.017
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0769, \mathrm{wR} 2=0.1844$
R indices (all data)	$\mathrm{R} 1=0.1121, \mathrm{wR} 2=0.2055$
Largest diff. peak and hole	0.664 and -0.377 e. \AA^{-3}

Table 2. Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for 38

Bond lengths----	
O1-C7	$1.384(3)$
O1-C1	$1.429(4)$
C2-C7	$1.376(4)$
C2-C3	$1.406(4)$
C3-C4	$1.408(4)$
C4-C5	$1.382(4)$
C4-C8	$1.524(4)$
C5-C6	$1.364(4)$
C6-C7	$1.392(4)$
C8-C9	$1.543(4)$

C9-C16	1.541(4)
C9-B1	1.581(4)
B1-O2'	$1.292(11)$
B1-O3	1.338(6)
B1-O2	1.409(6)
B1-O3'	1.417(10)
O2-C10	1.461(5)
O3-C13	1.460(5)
C10-C12	1.444(7)
C10-C13	1.528(6)
C10-C11	1.596(8)
C13-C14	1.472(9)
C13-C15	1.620(9)
O2'-C10'	1.464(7)
O3'-C13'	1.470(7)
C10'-C12'	1.427(10)
C10'-C13'	1.526(8)
C10'-C11'	1.621(11)
C13'-C14'	1.467(10)
C13'-C15'	$1.606(11)$
C16-C24	1.520(4)
C16-C17	$1.526(4)$
C17-C22	1.377(4)
C17-C18	1.394(4)
C18-C19	1.387(4)
C19-C20	1.393(5)
C20-C21	$1.378(5)$
C20-C23	1.521(4)
C21-C22	1.389(4)
C24-B2	1.577(4)
B2-O4	1.292(9)
B2-O5'	1.302(8)
B2-O5	1.370(6)
B2-O4'	1.460 (10)
O4-C25	1.482(6)
O5-C28	1.456(6)
C25-C27	1.494(8)
C25-C28	1.534(7)

$\mathrm{C} 25-\mathrm{C} 26$	$1.539(7)$
$\mathrm{C} 28-\mathrm{C} 29$	$1.514(7)$
$\mathrm{C} 28-\mathrm{C} 30$	$1.527(8)$
$\mathrm{O} 44^{\prime}-\mathrm{C} 25^{\prime}$	$1.475(7)$
$\mathrm{O} 5^{\prime}-\mathrm{C} 28^{\prime}$	$1.459(6)$
$\mathrm{C} 25^{\prime}-\mathrm{C} 27^{\prime}$	$1.497(8)$
$\mathrm{C} 25^{\prime}-\mathrm{C} 28^{\prime}$	$1.541(8)$
$\mathrm{C} 25^{\prime}-\mathrm{C} 26^{\prime}$	$1.544(8)$
$\mathrm{C} 28^{\prime}-\mathrm{C} 30^{\prime}$	$1.514(9)$
$\mathrm{C} 28^{\prime}-\mathrm{C} 29^{\prime}$	$1.521(8)$

Angles---------	
C7-O1-C1	$116.7(2)$
C7-C2-C3	$119.0(3)$
C2-C3-C4	$120.6(3)$
C5-C4-C3	$118.0(3)$
C5-C4-C8	$120.0(3)$
C3-C4-C8	$122.0(3)$
C6-C5-C4	$121.9(3)$
C5-C6-C7	$120.0(3)$
C2-C7-O1	$124.3(3)$
C2-C7-C6	$120.5(3)$
O1-C7-C6	$115.2(3)$
C4-C8-C9	$115.3(2)$
C16-C9-C8	$113.4(2)$
C16-C9-B1	$111.0(2)$
C8-C9-B1	$110.5(2)$
O3-B1-O2	$112.0(3)$
O2'-B1-O3'	$114.0(5)$
O2'-B1-C9	$124.8(4)$
O3-B1-C9	$126.3(3)$
O2-B1-C9	$121.7(3)$
O3'-B1-C9	$121.2(4)$
B1-O2-C10	$106.6(4)$
B1-O3-C13	$109.2(4)$
C12-C10-O2	$109.8(4)$
C12-C10-C13	$118.9(5)$
O2-C10-C13	

C12-C10-C11	113.7(5)
O2-C10-C11	103.2(4)
C13-C10-C11	106.2(5)
O3-C13-C14	111.2(6)
O3-C13-C10	103.4(4)
C14-C13-C10	119.9(6)
O3-C13-C15	103.2(4)
C14-C13-C15	113.1(5)
C10-C13-C15	104.3(5)
B1-O2'-C10'	109.0(6)
B1-O3'-C13'	104.2(6)
C12'-C10'-O2'	107.4(8)
C12'-C10'-C13'	121.9(9)
O2'-C10'-C13'	102.4(6)
C12'-C10'-C11'	111.8(9)
O2'-C10'-C11'	108.1(8)
C13'-C10'-C11'	104.3(8)
C14'-C13'-O3'	104.1(7)
C14'-C13'-C10'	119.4(9)
O3'-C13'-C10'	103.3(6)
C14'-C13'-C15'	114.2(9)
O3'-C13'-C15'	108.2(9)
C10'-C13'-C15'	106.5(8)
C24-C16-C17	111.0(2)
C24-C16-C9	112.8(2)
C17-C16-C9	112.5(2)
C22-C17-C18	117.5(3)
C22-C17-C16	120.7(3)
C18-C17-C16	121.8(2)
C19-C18-C17	121.6(3)
C18-C19-C20	120.4(3)
C21-C20-C19	117.9(3)
C21-C20-C23	121.5(3)
C19-C20-C23	120.6(3)
C20-C21-C22	121.5(3)
C17-C22-C21	121.1(3)
C16-C24-B2	113.5(2)
O4-B2-O5	115.3(4)

O5'-B2-O4'	108.8(5)
O4-B2-C24	124.2(4)
O5'-B2-C24	126.7(4)
O5-B2-C24	120.5(3)
O4'-B2-C24	124.1(4)
B2-O4-C25	107.6(5)
B2-O5-C28	105.6(4)
O4-C25-C27	110.3(6)
O4-C25-C28	102.0(5)
C27-C25-C28	115.9(6)
O4-C25-C26	106.6(5)
C27-C25-C26	109.6(7)
C28-C25-C26	111.9(6)
O5-C28-C29	107.9(5)
O5-C28-C30	104.0(5)
C29-C28-C30	110.1(6)
O5-C28-C25	102.7(4)
C29-C28-C25	117.4(6)
C30-C28-C25	113.4(5)
B2-O4'-C25'	108.3(6)
B2-O5'-C28 ${ }^{\prime}$	112.1(5)
O4'-C25'-C27'	113.2(8)
O4'-C25'-C28'	101.9(6)
C27'-C25'-C28'	114.6(8)
O4'-C25'-C26'	105.0(7)
C27'-C25'-C26'	109.9(7)
C28'-C25'-C26'	111.7(8)
O5'-C28'-C30'	107.5(6)
O5'-C28'-C29'	106.8(5)
C30'-C28'-C29'	110.9(7)
O5'-C28'-C25'	103.3(6)
C30'-C28'-C25'	113.1(6)
C29'-C28'-C25'	114.5(7)

[^0]| C7-C2-C3-C4 | 0.3(4) |
| :---: | :---: |
| C2-C3-C4-C5 | -0.7(4) |
| C2-C3-C4-C8 | 178.9(2) |
| C3-C4-C5-C6 | 0.7(4) |
| C8-C4-C5-C6 | -178.9(3) |
| C4-C5-C6-C7 | -0.3(4) |
| C3-C2-C7-O1 | -179.8(2) |
| C3-C2-C7-C6 | 0.2(4) |
| C1-O1-C7-C2 | 8.0(4) |
| C1-O1-C7-C6 | -172.0(3) |
| C5-C6-C7-C2 | -0.2(4) |
| C5-C6-C7-O1 | 179.8(3) |
| C5-C4-C8-C9 | 137.3(3) |
| C3-C4-C8-C9 | -42.4(4) |
| C4-C8-C9-C16 | -173.9(2) |
| C4-C8-C9-B1 | -48.5(3) |
| C16-C9-B1-O2' | 58.1(6) |
| C8-C9-B1-O2' | -68.6(6) |
| C16-C9-B1-O3 | -96.9(4) |
| C8-C9-B1-O3 | 136.4(4) |
| C16-C9-B1-O2 | 81.8(4) |
| C8-C9-B1-O2 | -44.9(4) |
| C16-C9-B1-O3' | -121.8(5) |
| C8-C9-B1-O3' | 111.5(5) |
| O3-B1-O2-C10 | -10.6(5) |
| C9-B1-O2-C10 | 170.5(3) |
| O2-B1-O3-C13 | -4.6(5) |
| C9-B1-O3-C13 | 174.2(4) |
| B1-O2-C10-C12 | 148.2(4) |
| B1-O2-C10-C13 | 20.3(6) |
| B1-O2-C10-C11 | -90.3(5) |
| B1-O3-C13-C14 | 147.0(5) |
| B1-O3-C13-C10 | 17.0(6) |
| B1-O3-C13-C15 | -91.4(5) |
| C12-C10-C13-O3 | -144.5(5) |
| O2-C10-C13-O3 | -22.4(6) |
| C11-C10-C13-O3 | 85.9(5) |
| C12-C10-C13-C14 | 91.0(8) |

O2-C10-C13-C14	-146.9(6)
C11-C10-C13-C14	-38.6(7)
C12-C10-C13-C15	-36.8(6)
O2-C10-C13-C15	85.3(5)
C11-C10-C13-C15	-166.4(4)
O3'-B1-O2'-C10'	6.4(10)
C9-B1-O2'-C10'	-173.5(5)
O2'-B1-O3'-C13'	11.3(9)
C9-B1-O3'-C13'	-168.7(5)
B1-O2'-C10'-C12'	108.9(10)
B1-O2'-C10'-C13'	-20.5(10)
B1-O2'-C10'-C11'	-130.3(9)
B1-O3'-C13'-C14'	102.6(9)
B1-O3'-C13'-C10'	-22.9(9)
B1-O3'-C13'-C15'	-135.6(8)
C12'-C10'-C13'-C14'	151.4(11)
O2'-C10'-C13'-C14'	-88.8(9)
C11'-C10'-C13'-C14'	23.7(10)
C12'-C10'-C13'-O3'	-93.7(11)
O2'-C10'-C13'-O3'	26.1(9)
C11'-C10'-C13'-O3'	138.7(8)
C12'-C10'-C13'-C15'	20.3(13)
O2'-C10'-C13'-C15'	140.1(9)
C11'-C10'-C13'-C15'	-107.4(10)
C8-C9-C16-C24	177.5(2)
B1-C9-C16-C24	52.4(3)
C8-C9-C16-C17	-56.0(3)
B1-C9-C16-C17	178.9(2)
C24-C16-C17-C22	-127.6(3)
C9-C16-C17-C22	104.9(3)
C24-C16-C17-C18	54.1(3)
C9-C16-C17-C18	-73.4(3)
C22-C17-C18-C19	-1.1(4)
C16-C17-C18-C19	177.3(3)
C17-C18-C19-C20	-0.9(5)
C18-C19-C20-C21	1.7(5)
C18-C19-C20-C23	-176.2(3)
C19-C20-C21-C22	-0.6(5)

C23-C20-C21-C22	177.3(3)
C18-C17-C22-C21	2.2(5)
C16-C17-C22-C21	-176.2(3)
C20-C21-C22-C17	-1.4(5)
C17-C16-C24-B2	51.5(3)
C9-C16-C24-B2	178.8(3)
C16-C24-B2-O4	53.2(5)
C16-C24-B2-O5'	-155.7(4)
C16-C24-B2-O5	-125.3(4)
C16-C24-B2-O4'	31.9(6)
O5-B2-O4-C25	-4.1(6)
C24-B2-O4-C25	177.3(4)
O4-B2-O5-C28	-13.2(6)
C24-B2-O5-C28	165.4(4)
B2-O4-C25-C27	142.1(7)
B2-O4-C25-C28	18.5(6)
B2-O4-C25-C26	-98.9(6)
B2-O5-C28-C29	148.1(5)
B2-O5-C28-C30	-94.9(5)
B2-O5-C28-C25	23.5(6)
O4-C25-C28-O5	-25.1(6)
C27-C25-C28-O5	-144.9(6)
C26-C25-C28-O5	88.5(6)
O4-C25-C28-C29	-143.2(5)
C27-C25-C28-C29	96.9(8)
C26-C25-C28-C29	-29.7(8)
O4-C25-C28-C30	86.5(6)
C27-C25-C28-C30	-33.4(8)
C26-C25-C28-C30	-160.0(6)
O5'-B2-O4'-C25'	-3.7(8)
C24-B2-O4'-C25'	169.9(5)
O4'-B2-O5'-C28'	-12.3(7)
C24-B2-O5'-C28'	174.3(5)
B2-O4'-C25'-C27'	140.0(8)
B2-O4'-C25'-C28'	16.5(8)
B2-O4'-C25'-C26'	-100.1(8)
B2-O5'-C28'-C30'	-97.4(7)
B2-O5'-C28'-C29'	143.6(7)

B2-O5'-C28'-C25'	$22.5(7)$
O4'-C25'-C28'-O5'	$-22.4(7)$
C27'-C25'-C28'-O5'	$-144.9(8)$
C26'-C25'-C28'-O5'	$89.3(8)$
O4'-C25'-C28'-C30'	$93.5(8)$
C27'-C25'-C28'-C30'	$-29.0(10)$
C26'-C25'-C28'-C30'	$-154.8(8)$
O4'-C25'-C28'-C29'	$-138.0(7)$
C27'-C25'-C28'-C29'	$99.4(9)$
C26'-C25'-C28'-C29'	$-26.4(10)$

[^0]: Table 3. Torsion angles [${ }^{\circ}$] for $\mathbf{3 8}$.

