Supporting Information

Expedient Stereospecific Co-catalyzed tandem *C-N* and *C-O* bond formation of *N*-methylanilines with styrene oxides

Table of Contents

1	General Information	S2
2	General Procedure for the Synthesis of N-Methylanilines	S2
3	General Procedure for the Synthesis of Oxazolidines	S3
4	Characterization Data	S3-S15
5	HPLC Chromatograms	S16-S25
6	ESI-HRMS Spectrum of BHT Adduct	S26
7	¹ H, ¹³ C, DEPT-135 and HMBC NMR Spectra	S27-S98

General Information: Anilines, styrenes, styrene oxides, *m*-CPBA (77%), Cu(OTf)₂ (98%), Cu(OAc)₂ (98%), Fe(acac)₂ (97%), Fe(OAc)₂ (95%), Co(acac)₂ (97%), Co(OAc)₂·4H₂O (98%), CoCl₂ (98%), TBHP in decane and DTBP of Aldrich, and 30% H₂O₂ and BHT (99%) of Merck were used as received. Solvents were purchased from Merck, distilled by the standard protocol and stored over molecular sieves under nitrogen atmosphere prior to use.¹ The reactions were monitored by analytical TLC on Merck silica gel G/GF 254 plates. The column chromatography was performed with Rankem silica gel (60-120 mesh). NMR (¹H and ¹³C) spectra were recorded on 400/600 MHz NMR spectrometer using CDCl₃ as a solvent and TMS as an internal standard. The data are accounted as follows: chemical shifts (δ ppm) (multiplicity, coupling constant (Hz), integration). The abbreviations for multiplicity are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and dd = doublet of doublets. FT-IR spectra recorded on a Perkin Elmer spectrometer. HRMS were analyzed with Agilent Q-TOF 6500. Optical rotation was determined using a polarimeter with a 50 mm path length cell at 589 nm. HPLC analysis was carried out with Daicel Chiralcel OJ-H column.

General Procedure for Preparation of N-Methylanilines.²

$$R \xrightarrow{I_{1}} I$$

$$R \xrightarrow{I_{1}} I$$

$$i) Na metal, MeOH, 0 °C$$

$$(CH_{2}O)_{n}, reflux, 2 h$$

$$R \xrightarrow{I_{1}} I$$

$$K \xrightarrow{I_{1}} I$$

In an oven dried two-necked round bottom flask, NaOMe was prepared by adding sodium metal (10 mmol) portionwise in dry MeOH (20 mL) at 0 °C. Aniline (2 mmol) and paraformaldehyde (5 mmol) were added to a freshly prepared NaOMe at room temperature (26 °C), and the reaction mixture was allowed to stirr for 2 h at 90 °C to generate an imine intermediate. The resultant mixture was reacted with NaBH₄ (3 mmol) at 0 °C, and then refluxed for the additional 2 h. The reaction mixture was then cooled to room temperature, and the solvent was evaporated on a rotary evaporator to give a residue that was diluted with CH_2Cl_2 (15 mL) then washed with water (5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on a silica gel column chromatography using hexane as an eluent.

General Procedure for Co-Catalyzed Stereospecific *C-N* and C-O Bond Formation of styrene oxides with *N*-Methylanilines. N-Methylaniline (0.5 mmol), epoxide (0.5 mmol) and $Co(OAc)_2 \cdot 4H_2O$ (10 mol%) were stirred in $(CH_2Cl)_2$ (2 mL) at 60 °C for 2 h. The reaction was cooled to room temperature and treated with TBHP (1 mmol). The mixture was then stirred at 60 °C for the appropriate time. The progress of the reaction was monitored by TLC using ethyl acetate and hexane. After completion, the reaction was allowed to cool to room temperature and treated with saturated Na₂SO₃ (1 mL). After stirring for 1 h, the solution was extracted using CH_2Cl_2 (3x10 mL). The combined organic solution was then washed with brine (1x10 mL) and water (1x10 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was puritifed on silica gel column chromatography using ethyl acetate and hexane as the solvent.

Characterization Data

3,4-Diphenyloxazolidine 3a. Analytical TLC on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.61$;

Pale yellow liquid; 83 mg, yield 73%; ¹H NMR (600 MHz, CDCl₃) δ 7.37–7.34 (m, 4H), 7.30-7.28 (m, 1H), 7.19 (t, J = 7.2 Hz, 2H), 6.75 (t, J =7.2 Hz, 1H), 6.49 (d, J = 8.4 Hz, 2H), 5.33 (d, J = 2.4 Hz, 1H), 5.04 (d, J =2.4 Hz, 1H), 4.71 (dd, J = 6.6, 4.2 Hz, 1H), 4.42 (dd, J = 8.4, 6.6 Hz, 1H), 3.99 (dd, J = 8.4, 4.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 145.2, 141.6,

129.4, 129.0, 127.7, 126.4, 117.8, 112.9, 82.9, 75.9, 61.8; FT-IR (neat) 3060, 3029, 2929, 2867, 1600, 1504, 1391, 1346, 1211, 1164, 1089, 944, 749, 696 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₅H₁₅NO+H]⁺ 226.1226, found 226.1236; **(S)-3,4-Diphenyloxazolidine 3a** . 81 mg, yield 72%; $[\alpha]_D^{23} = +156.0$ (c= 0.32, CHCl₃); HPLC analysis: 98% ee [Daicel Chiralcel OJ-H column, hexane/*i*PrOH = 80:20, flow rate: 1 mL/min, $\lambda = 254$ nm, $t_R = 9.70$ min (minor), 14.37 min (major)].

 $2-(Methyl(o-tolyl)amino)-2-phenylethan-1-ol A_1$. Analytical TLC on silica gel, 1:5 ethyl

acetate/hexane $R_f = 0.40$; Yellow liquid; 97 mg, yield 81%; ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.28 (m, 3H), 7.24-7.19 (m, 3H), 7.11-7.01 (m, 2H), 6.89 (dd, J = 8.0, 1.2 Hz, 1H), 4.12 (t, J = 6.8 Hz, 1H), 4.22 (dd, J = 10.8, 7.2 Hz, 1H), 3.82 (dd, J = 11.2, 6.4 Hz, 1H), 2.55 (s, 3H), 2.46 (s, 3H),

2.25 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 137.8, 134.3, 131.4, 128.9, 128.4, 127.9, 126.5, 124.5, 123.7, 68.6, 63.1, 38.0, 18.7; FT-IR (neat) 3434, 3062, 3028, 2949, 2881, 2796, 1637, 1598, 1491, 1452, 1252, 1033, 911,767 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₆H₁₉NO+H]⁺ 242.1539, found 242.1530.

3-(3-Ethylphenyl)-4-phenyloxazolidine 3c. Analytical TLC on silica gel, 1:19 ethyl acetate/hexane R_f = 0.60; Yellow liquid; 91 mg, yield 72%; ¹H NMR (600 MHz, CDCl₃) δ 3.37-3.33 (m, 4H), 7.28-7.27 (m, 1H), 7.08 (t, *J* = 7.8 Hz, 1H), 6.61 (d, *J* = 7.8 Hz, 1H), 6.33-6.30 (m, 2H), 5.32 (d, *J* = 1.8 Hz, 1H), 5.03 (d, *J* = 2.4 Hz, 1H), 4.70 (dd, *J* = 7.2, 4.8 Hz, 1H), 4.39 (t, *J* = 7.2 Hz, 1H), 3.98 (dd, *J* = 8.4, 4.2 Hz, 1H), 2.57 (q, *J* = 7.8 Hz, 2H), 1.17 (t, *J* = 7.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 145.6, 145.3, 141.8, 129.3, 129.0, 127.7, 126.4, 117.6, 112.5, 110.5, 83.0, 75.9, 61.9, 29.3, 15.7; FT-IR (neat) 3063, 3032, 2963, 2928, 2867, 1604, 1493, 1453, 1390, 1355, 1089, 945, 755 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₇H₁₉NO+H]⁺ 254.1539, found 254.1549; **(S)-3-(3-Ethylphenyl)-4-phenyloxazolidine 3c**. 95 mg, yield 75%; [α]_D²³ = +27.0 (c= 0.31, CHCl₃); HPLC analysis: 98% ee [Daicel Chiralcel OJ-H column, hexane/*i*PrOH = 80:20, flow rate: 1 mL/min, λ = 254 nm, *t*_R = 6.11 min (minor), 10.84 min (major)].

4-Phenyl-3-(m-tolyl)oxazolidine 3d. Analytical TLC on silica gel, 1:19 ethyl acetate/hexane R_f

= 0.60; Pale yellow liquid; 84 mg, yield 70%; ¹H NMR (600 MHz, CDCl₃) δ 7.36-7.33 (m, 4H), 7.29-7.27 (m, 1H), 7.05 (t, *J* = 7.8 Hz, 1H), 6.56 (d, *J* = 7.2 Hz, 1H), 6.30-6.28 (m, 2H), 5.31 (d, *J* = 1.8 Hz, 1H), 5.01 (d, *J* = 1.8 Hz, 1H), 4.69 (dd, *J* = 6.6, 4.2 Hz, 1H), 4.40 (dd, *J* = 8.4, 7.2 Hz, 1H), 3.98 (dd, *J* = 8.4, 4.2 Hz, 1H), 2.25 (s, 3H); ¹³C NMR (150

MHz, CDCl₃) δ 145.3, 141.8, 139.2, 129.3, 129.0, 127.7, 126.3, 118.8, 113.6, 110.2, 83.0, 75.9, 61.8, 22.0; FT-IR (neat) 3061, 3026, 2920, 2861, 1619, 1521, 1391, 1344, 1088, 944, 803 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₆H₁₇NO+H]⁺ 240.1383, found 240.1397.

4-Phenyl-3-(3-(trifluoromethyl)phenyl)oxazolidine 3e. Analytical TLC on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.58$; Colorless liquid; 96 mg, yield 65%; ¹H

NMR (600 MHz, CDCl₃) δ 7.37-7.32 (m, 4H), 7.30-7.28 (m, 1H), 7.24 (t, *J* = 7.8 Hz, 1H), 6.97 (d, *J* = 7.8 Hz, 1H), 6.66 (s, 1H), 6.59 (dd, *J* = 8.4, 1.8 Hz, 1H), 5.33 (d, *J* = 2.4 Hz, 1H), 5.05 (d, *J* = 2.4 Hz, 1H), 4.73 (dd, *J* = 6.6, 4.2 Hz, 1H), 4.44 (dd, *J* = 9.0, 7.2 Hz, 1H), 4.01 (dd, *J* = 8.4, 4.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 145.1, 140.7, 132.0 (q, *J* = 31.5 Hz), 129.8, 129.2, 128.1, 126.3, 114.3 (q, *J* = 3.0 Hz), 109.1 (q, *J* = 3.0 Hz), 115.9, 82.7, 76.0, 61.8; FT-IR (neat) 3065, 6032, 2927, 2869, 1614, 1494, 1458, 1371, 1320, 1166, 1122, 1009, 948, 852 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₆H₁₄F₃NO+H]⁺ 294.1100, found 294.1124.

3-(4-Bromophenyl)-4-phenyloxazolidine 3f. Analytical TLC on silica gel, 1:19 ethyl

acetate/hexane $R_f = 0.60$; Pale yellow liquid; 114 mg, yield 75%; ¹H NMR (600 MHz, CDCl₃) δ 7.36-7.27 (m, 5H), 7.25 (d, J = 9.0 Hz, 2H), 6.34 (d, J = 9.0 Hz, 2H), 5.28 (d, J = 2.4 Hz, 1H), 4.98 (d, J = 2.4 Hz, 1H), 4.66 (dd, J = 6.6, 4.2 Hz, 1H), 4.43 (dd, J = 8.4, 6.6 Hz, 1H), 3.98 (dd, J = 8.4, 4.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 143.8, 140.7, 131.9, 128.9, 127.8, 126.1,

114.3, 109.7, 82.6, 75.8, 61.7; FT-IR (neat) 3063, 3028, 2989, 2925, 2857, 1594, 1491, 1390, 1357, 1164, 1088, 944, 807, 753 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for $[C_{15}H_{14}BrNO+H]^+$ 304.0332, found 304.0333; **(***S***)-3-(4-Bromophenyl)-4-phenyloxazolidine 3f** 106 mg, yield 70%; $[\alpha]_D^{22} = +92.07$ (c= 3.2, CHCl₃); HPLC analysis: 95% ee [Daicel Chiralcel OJ-H column, hexane/*i*PrOH = 80:20, flow rate: 1 mL/min, $\lambda = 254$ nm, $t_R = 10.39$ min (minor), 12.27 min (major)].

(S)-3-(4-Chlorophenyl)-4-phenyloxazolidine 3g. Analytical TLC on silica gel, 1:19 ethyl

acetate/hexane $R_f = 0.60$; Pale yellow liquid; 94 mg, yield 72%; ¹H NMR (600 MHz, CDCl₃) δ 7.36-7.27 (m, 5H), 7.11 (d, J = 9.0 Hz, 2H), 6.38 (d, J = 9.0 Hz, 2H), 5.28 (d, J = 2.4 Hz, 1H), 4.99 (d, J = 2.4 Hz, 1H), 4.66 (dd, J = 6.6, 4.8 Hz, 1H), 4.43 (dd, J = 8.4, 7.2 Hz, 1H), 3.97 (dd, J = 8.4, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 141.0, 129.3, 129.1, 127.9, 126.3,

122.8, 114.0, 82.9, 76.0, 62.0; FT-IR (neat) 3063, 3026, 2925, 2858, 1600, 1493, 1391, 1354, 1092, 944, 809 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for $[C_{15}H_{14}CINO+H]^+$ 260.0837, found 260.0847; **(S)-3-(4-Chlorophenyl)-4-phenyloxazolidine 3g**. 93 mg, yield, 72%; $[\alpha]_D^{24} =$

+72.6 (c= 0.22, CHCl₃); HPLC analysis: 99% ee [Daicel Chiralcel OJ-H column, hexane/*i*PrOH = 80:20, flow rate: 1 mL/min, λ = 254 nm, $t_{\rm R}$ = 10.34 min (minor), 13.42 min (major)].

4-((2-Hydroxy-1-phenylethyl)(methyl)amino)benzonitrile A2. Analytical TLC on silica gel,

3j'

1:4 ethyl acetate/hexane $R_f = 0.38$; yellow liquid; 85 mg, yield 68%; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 9.2 Hz, 2H), 7.37-7.31 (m, 3H), 7.20 (d, J = 7.2 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 5.17 (dd, J =8.8, 5.2 Hz, 1H), 4.23 (dd, J = 11.2, 4.8 Hz, 1H), 4.15 (dd, J = 11.2, 8.8 Hz, 1H), 2.90 (s, 3H), 2.19 (br s, 1H); ¹³C NMR (100 MHz,

CDCl₃) δ 153.4, 137.3, 133.6, 129.0, 128.9, 127.9, 126.9, 120.4, 112.6, 77.4, 63.2, 62.5, 32.5; FT-IR (neat) 3438, 3062, 2955, 2921, 2214, 1605, 1518, 1385, 1347, 1180, 1110, 1063, 817, 755, 702 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₆H₁₆N₂O+H]⁺ 253.1335, found 253.1352.

3-(4-Fluorophenyl)-4-phenyloxazolidine 3i. Analytical TLC on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.59$; Yellow liquid; 84 mg, yield 69%; ¹H NMR (600 MHz, CDCl₃) δ 7.37-7.34 (m, 4H), 7.31-7.27 (m, 1H), 6.89 (t, J = 9.0, 2H), 6.41-6.39 (m, 2H), 5.29 (d, J = 2.4 Hz, 1H), 4.97 (d, J = 2.4 Hz, 1H), 4.64 (dd, J = 6.6, 4.8 Hz, 1H), 4.43 (dd, J = 8.4, 7.2 Hz, 1H), 3.96 (dd, J = 8.4, 4.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 156.9 (J = 234 Hz), 141.89 (J = 1.5 Hz), 141.3, 129.1, 127.9, 126.4, 115.97 (J = 22.5 Hz), 113.7 (J = 7.5 Hz), 83.4, 76.0, 62.4; FT-IR (neat) 3059, 3029, 2929, 2968, 1673, 1515, 1392, 1350, 1226, 1161, 1090, 945, 815 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [$C_{15}H_{14}FNO+H$]⁺ 244.1132, found 244.1142. (*S*)-3-(4-Fluorophenyl)-4-phenyloxazolidine 3i'. 88 mg, yield, 72%; [α]_D²³ = +40.6 (c= 0.33, CHCl₃); HPLC analysis: 95% ee [Daicel Chiralcel OJ-H column, hexane/*i*PrOH = 80:20, flow rate: 1 mL/min, $\lambda = 254$ nm, $t_R = 8.45$ min (minor), 12.92 min (major)].

3-(4-Ethylphenyl)-4-phenyloxazolidine 3j. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.60$; Yellow liquid; 93 mg, yield 73%; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.27 (m, 5H), 7.02 (d, J = 8.4 Hz, 2H), 6.44 (d, J = 8.4 Hz, 2H), 5.32 (d, J = 2.4 Hz, 1H), 5.00 (d, J = 2.0 Hz, 1H), 4.67 (dd, J = 6.8, 4.8 Hz, 1H), 4.38 (t, J = 7.6 Hz, 1H), 3.97 (dd, J = 8.4, 4.8 Hz, 1H), 2.55 (q, J

= 7.2 Hz, 2H), 1.16 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 141.8, 133.7, 129.0, 128.8, 127.7, 126.4, 113.1, 83.3, 75.9, 62.2, 28.1, 16.1. FT-IR (neat) 3063, 3031, 2963, 2928, 2862, 1604, 1493, 1453, 1390, 1355, 1261,1166, 1089, 945 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₇H₁₉NO+H]⁺ 254.1539, found 254.1546. (*S*)-3-(4-Ethylphenyl)-4-phenyloxazolidine 3j \Box . 93 mg, yield, 73%; [α]_D²³ = +26.6 (c= 0.33, CHCl₃); HPLC analysis: 98% ee [Daicel Chiralcel OJ-H column, hexane/*i*PrOH = 80:20, flow rate: 1 mL/min, λ = 254 nm, $t_{\rm R}$ = 6.87 min (minor), 9.52 min (major)].

4-Phenyl-3-(*p*-tolyl)oxazolidine 3k. Analytical TLC on silica gel, 1:19 ethyl acetate/hexane R_f =

0.62; Yellow liquid; 90 mg, yield 75%; ¹H NMR (600 MHz, CDCl₃) δ 7.37-7.33 (m, 4H), 7.29-7.27 (m, 1H), 7.00-6.99 (d, J = 8.4 Hz, 2H), 6.42 (d, J = 8.4 Hz, 2H), 5.32 (d, J = 2.4 Hz, 1H), 5.00 (d, J = 2.4 Hz, 1H), 4.67 (dd, J = 7.2, 4.8 Hz, 1H), 4.41 (dd, J = 8.4, 7.2 Hz, 1H), 3.97 (dd, J = 8.4, 4.8 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 143.2, 141.7,

129.9, 129.0, 127.7, 127.1, 126.4, 113.0, 83.3, 75.9, 62.1, 20.5. FT-IR (neat) 3063, 3028, 2923, 2856, 1620, 1521, 1452, 1341, 1164, 1089, 944, 804, 755 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₆H₁₇NO+H]⁺ 240.1383, found 240.1392. **(S)-4-Phenyl-3-(***p***-tolyl)oxazolidine 3k'**. 90 mg, yield, 75%; [α]_D²³ = +85.0 (c= 1.3, CHCl₃); HPLC analysis: 99% ee [Daicel Chiralcel OJ-H column, hexane/*i*PrOH = 80:20, flow rate: 1 mL/min, λ = 254 nm, *t*_R = 8.59 min (minor), 12.02 min (major)].

3-(4-Isopropylphenyl)-4-phenyloxazolidine 31. Analytical TLC on silica gel, 1:19 ethyl

acetate/hexane $R_f = 0.62$; Pale yellow liquid; 103 mg, yield 77%; ¹H NMR (600 MHz, CDCl₃) δ 7.37-7.32 (m, 4H), 7.28-7.27 (m, 1H), 7.05 (d, J = 8.4Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 5.31 (d, J = 1.8 Hz, 1H), 4.99 (d, J = 2.4Hz, 1H), 4.65 (dd, J = 6.6, 4.2 Hz, 1H), 4.38 (dd, J = 8.4, 6.6 Hz, 1H), 3.96 (dd, J = 8.4, 4.2 Hz, 1H), 2.81-2.76 (m, 1H), 1.18 (d, J = 2.4 Hz, 3H), 1.17

(d, J = 2.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 143.5, 141.9, 138.3, 129.0, 127.7, 127.3, 126.4, 113.0, 83.3, 75.9, 62.9, 33.3, 24.4; FT-IR (neat) 3028, 2958, 2928, 2867, 2755, 1616, 1519, 1454, 1390, 1345, 1194, 1165, 1090, 946 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₈H₂₁NO+H]⁺ 268.1696, found 268.1699; **(S)-3-(4-Isopropylphenyl)-4-phenyloxazolidine**

31 \square . 102 mg, yield 76%; $[\alpha]_D^{23} = +46.0$ (c= 0.2, CHCl₃); HPLC analysis: 97% ee [Daicel Chiralcel OJ-H column, hexane/*i*PrOH = 80:20, flow rate: 1 mL/min, $\lambda = 254$ nm, $t_R = 4.80$ min (minor), 8.10 min (major)].

2-(Benzyl(phenyl)amino)-2-phenylethan-1-ol A_4 . Analytical TLC on silica gel, 1:5 ethyl

acetate/hexane $R_f = 0.40$; Yellow liquid; 133 mg, yield 88%; ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.17 (m, 7H), 7.14-7.08 (m, 5H), 6.18 (d, J = 8.4 Hz, 2H), 6.71 (t, J = 7.2 Hz, 1H), 5.08 (t, J = 6.8 Hz, 1H), 4.45 (d, J = 17.1 Hz, 1H), 4.37 (d, J = 17.1 Hz, 1H) 4.00 (d, J = 6.8 Hz, 2H), 1.90 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 139.8, 138.1, 129.3, 128.9, 127.8,

127.7, 127.1, 126.9, 118.94, 116.1, 65.2, 63.2, 51.0; FT-IR (neat) 3559, 3060, 3029, 2926, 2884, 1597, 1499, 1451, 1348, 1249, 1158, 1033, 990, 949,746 cm⁻¹; HRMS (ESI) m/z $[M+H]^+$ calcd for $[C_{21}H_{21}NO+H]^+$ 304.1696, found 304.1696.

3-(3,4-dimethylphenyl)-4-phenyloxazolidine 30. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.62$; Yellow liquid; 98 mg, yield 77%; ¹H NMR (600 MHz, CDCl₃) δ 7.36-7.32 (m, 4H), 7.27-7.25 (m, 1H), 6.92 (d, J = 8.4 Hz, 1H), 6.31 (d, J = 1.8 Hz, 1H), 6.24 (dd, J = 7.8, 2.4 Hz, 1H), 5.30 (d, J = 1.8 Hz, 1H), 5.98 (d, J = 2.4 Hz, 1H), 4.66 (dd, J = 7.2, 4.8 Hz,

1H), 4.38 (dd, J = 8.4, 7.2 Hz, 1H), 3.95 (dd, J = 8.4, 4.2 Hz, 1H), 2.16 (s, 3H), 2.13 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 143.6, 141.9, 137.6, 130.4, 129.0, 127.6, 126.4, 126.0, 114.5, 110.6, 83.3, 75.9, 62.0, 20.4, 18.9; FT-IR (neat) 3063, 3026, 2923, 2854, 1617, 1512, 1453, 1346, 1166, 1088, 949, 800 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₇H₁₉NO+H]⁺ 254.1539, found 254.1544; (*S*)-3-(3,4-

dimethylphenyl)-4-phenyloxazolidine 3o \square . 93 mg, yield 73 %; $[\alpha]_D^{23} = +47.0$ (c= 0.17, CHCl₃); HPLC analysis: 97% ee [Daicel Chiralcel OJ-H column, hexane/*i*PrOH = 80:20, flow rate: 1 mL/min, $\lambda = 254$ nm, $t_R = 8.55$ min (minor), 10.25 min (major)].

3-(3,5-dichlorophenyl)-4-phenyloxazolidine 3p. Analytical TLC on silica gel, 1:9 ethyl

acetate/hexane R_f = 0.60; Colorless liquid; 99 mg, yield 67%; ¹H NMR (600 MHz, CDCl₃) δ 7.38-7.35 (m, 2H), 7.32-7.28 (m, 3H), 6.70 (t, *J* =

1.8 Hz, 1H), 6.31 (d, J = 1.8 Hz, 2H), 5.24 (d, J = 6.6, 3.6 Hz, 1H), 4.97 (d, J = 8.4, 6.6 Hz, 1H), 4.67 (dd, J = 6.6, 3.6 Hz, 1H), 4.40 (dd, J = 8.4, 6.6 Hz, 1H), 3.99 (dd, J = 8.4, 4.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 146.3, 140.3, 135.7, 129.3, 128.2, 126.2, 117.6, 111.1, 82.4, 75.9, 61.6; FT-IR (neat) 3084, 3028, 2959, 2923, 2856, 1592, 1556, 1462, 1390, 1126, 1092, 1024, 982, 820, 705 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₅H₁₃C₁₂NO+H]⁺ 294.0447, found 294.0463.

3-(3,5-Dimethylphenyl)-4-phenyloxazolidine 3q. Analytical TLC on silica gel, 1:19 ethyl

acetate/hexane $R_f = 0.62$; Yellow liquid; 99 mg, yield 78%; ¹H NMR (600 MHz, CDCl₃) δ 7.35-7.33 (m, 4H), 7.29-7.27 (m, 1H), 6.42 (s, 1H), 6.12 (s, 2H), 5.30 (d, J = 2.4 Hz, 1H), 5.00 (d, J = 2.4 Hz, 1H), 4.69 (dd, J = 6.6, 4.2 Hz, 1H), 4.37 (dd, J = 8.4, 6.6 Hz, 1H), 3.97 (dd, J = 7.8, 3.6 Hz, 1H), 2.21 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 145.4, 142.0, 139.1, 129.0, 127.6, 126.4, 120.0, 110.9, 83.1, 75.9, 61.8, 21.8;

FT-IR (neat) 3063, 3032, 2953, 2923, 2855, 1602, 1456, 1362, 1216, 1157, 1090, 945, 819, 754 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for $[C_{17}H_{19}NO+H]^+$ 254.1539, found 254.1546; **(S)-3-(3,5-Dimethylphenyl)-4-phenyloxazolidine 3q** \Box . yield 96 mg, 76%; $[\alpha]_D^{23} = +56.2$ (c= 0.2, CHCl₃); HPLC analysis: 97% ee [Daicel Chiralcel OJ-H column, hexane/*i*PrOH = 80:20, flow rate: 1 mL/min, $\lambda = 254$ nm, $t_R = 5.05$ min (minor), 12.80 min (major)].

4-(2-Chlorophenyl)-3-phenyloxazolidine 3r. Aalytical TLC on silica gel, 1:9 ethyl

acetate/hexane $R_f = 0.58$; Colorless liquid; 94 mg, yield 72%; ¹H NMR (600 MHz, CDCl₃) δ 7.42 (dd, J = 7.8, 1.8 Hz, 1H), 7.37 (dd, J = 7.2, 1.8 Hz, 1H), 7.24-7.19 (m, 4H), 6.77 (t, J = 7.8 Hz, 1H), 6.43 (d, J = 8.4 Hz, 2H), 5.34 (d, J = 1.8 Hz, 1H), 5.10 (dd, J = 7.2, 3.0 Hz, 1H), 5.01 (d, J = 2.4 Hz, 1H), 4.47

 $(dd, J = 9.0, 7.0 Hz, 1H), 4.05 (dd, J = 8.4, 3.0 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 144.7, 138.6, 132.4, 129.8, 129.6, 128.9, 127.9, 127.4, 118.1, 112.9, 82.7, 74.5, 59.2; FT-IR (neat) 3063, 2993, 2926, 2864, 1600, 1505, 1391, 1348, 1264, 1170, 1091, 1035, 945, 746 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₅H₁₄ClNO+H]⁺ 260.0837, found 260.0845.$

4-(3-Methoxyphenyl)-3-phenyloxazolidine 3s. Analytical TLC on silica gel, 1:19 ethyl

acetate/hexane $R_f = 0.40$; Colorless liquid; 87 mg, yield 68%; ¹H NMR (600 MHz, CDCl₃) δ 7.28-7.25 (m, 1H), 7.19-7.16 (m, 2H), 6.95 (d, J= 7.8 Hz, 1H), 6.90 (s, 1H), 6.82 (dd, J = 8.4, 1.8 Hz, 1H), 6.74 (t, J = 7.8 Hz, 1H), 6.49 (d, J = 7.8 Hz, 2H), 5.31 (d, J = 2.4 Hz, 1H), 5.01 (d, J = 2.4 Hz, 1H), 4.66 (dd, J = 6.6, 4.2 Hz, 1H), 4.40 (dd, J = 8.4,

6.6 Hz, 1H), 3.98 (dd, J = 8.4, 4.2 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 160.3, 145.3, 143.5, 130.1, 129.4, 118.7, 117.9, 113.0, 112.9, 112.1, 83.0, 75.8, 61.9, 55.4; FT-IR (neat) 3040, 2998, 2933, 2866, 2836, 1600, 1494, 1346, 1261, 1148, 1090, 1045, 973, 946, 786, 749 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₆H₁₇NO₂+H]⁺ 256.1332, found 256.1341.

3-Phenyl-4-(*m***-tolyl)oxazolidine 3t**. Analytical TLC on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.60$; Colorless liquid; 89 mg, yield 74%; ¹H NMR (600 MHz, CDCl₃) δ 7.25 (t, *J* = 7.8 Hz, 1H), 7.21-7.16 (m, 4H), 7.12 (d, *J* = 7.2 Hz, 1H), 6.76 (t, *J* = 7.2 Hz, 1H), 6.51 (d, *J* = 7.8 Hz, 1H)

2H), 5.34 (d, J = 2.4 Hz, 1H), 5.04 (d, J = 2.4 Hz, 1H), 4.68 (dd, J = 7.2, 4.8 Hz, 1H), 4.41 (dd, J = 8.4, 6.6 Hz, 1H), 3.99 (dd, J = 8.4, 4.2 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 145.3, 141.7, 138.7, 129.4, 128.9, 128.6, 126.9, 123.4, 117.8, 112.9, 83.0, 76.0, 61.9, 21.7; FT-IR (neat) 3032, 2961, 2920, 2860, 1601, 1506, 1390, 1345, 1258, 1172, 1090, 946, 748 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₆H₁₇NO+H]⁺ 240.1383, found 240.1389.

4-(3-Fluorophenyl)-3-phenyloxazolidine 3u. Analytical TLC on silica gel, 1:5 ethyl acetate/hexane $R_f = 0.40$; Brown liquid; 85 mg, yield 70%; ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.30 (m, 1H), 7.21 (t, J = 7.6 Hz, 2H), 7.16 (d, J = 7.6 Hz, 1H), 7.10 (d, J = 9.6 Hz, 1H), 6.98 (t, J = 9.2 Hz, 1H), 6.78 (t, J = 7.6 Hz, 1H), 6.50 (d, J = 8.4 Hz, 2H), 5.33 (d, J = 2.0 Hz, 1H), 5.02 (d, J = 2.0 Hz, 1H), 4.71 (dd, J = 6.8, 4.4 Hz, 1H), 4.39 (t, J = 8.4 Hz, 1H), 4.00

 $(dd, J = 8.4, 4.0 Hz, 1H); {}^{13}C NMR (100 MHz, CDCl_3) \delta 164.7 (d, J = 245.0 Hz), 145.0, 130.6 (d, J = 8.0 Hz), 129.5, 122.0 (d, J = 3.0 Hz), 118.2, 114.8 (d, J = 22.0 Hz), 113.5 (d, J = 22.0 Hz), 113.0, 82.9, 75.6, 61.5, 61.51; FT-IR (neat) 3436, 3064, 2991, 2929, 2867, 1601, 1503, 120.0 Hz)$

1448, 1391, 1347, 1173, 1089, 947, 871, 788, 750 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for $[C_{15}H_{14}FNO+H]^+$ 244.1132, found 244.1146.

4-(3-Nitrophenyl)-3-phenyloxazolidine 3v. Analytical TLC on silica gel, 1:5 ethyl

acetate/hexane $R_f = 0.40$; Brown liquid; 78 mg, yield 58%; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (t, J = 2.0 Hz, 1H), 8.16-8.13 (m, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.21 (dd, J = 8.8, 7.6 Hz, 2H), 6.78 (t, J = 7.2 Hz, 1H), 6.46 (d, J = 8.0 Hz, 2H), 5.38 (d, J = 2.4Hz, 1H), 5.01 (d, J = 2.4 Hz, 1H), 4.80 (dd, J = 6.8, 4.4 Hz, 1H), 4.44

 $(dd, J = 8.8, 7.2 Hz, 1H), 4.01 (dd, J = 8.8, 3.6 Hz, 1H); {}^{13}C NMR (100 MHz, CDCl₃) \delta 148.9,$ 144.6, 144.4, 132.6, 130.1, 129.7, 123.0, 121.5, 118.6, 113.0, 83.1, 75.5, 61.6.; FT-IR (neat) 3032, 2965, 2929, 2867, 1600, 1496, 1454, 1355, 1201, 1172, 1091, 945, 848 cm⁻¹; HRMS (ESI) $m/z [M+H]^+$ calcd for $[C_{15}H_{14}N_2O_3+H]^+$ 271.1077, found 271.1070.

4-(3-Phenyloxazolidin-4-yl)phenyl acetate 3w. Analytical TLC on silica gel, 1:19 ethyl

acetate/hexane $R_f = 0.50$; Colorless liquid; 114 mg, yield 80%; ¹H NMR (600 MHz, CDCl₃) δ 7.36 (d, J = 7.8 Hz, 2H), 7.18 (t, J = 7.2 Hz, 2H), 7.07 (d, J = 9.0 Hz, 2H), 6.75 (t, J = 7.2 Hz, 1H), 6.47 (d, J = 7.8 Hz, 2H), 5.31 (d, J = 2.4 Hz, 1H), 5.00 (d, J = 2.4 Hz, 1H), 4.69 (dd, J = 6.6, 4.2 Hz, 1H), 4.38 (dd, J = 8.4, 6.6 Hz, 1H), 3.97 (dd, J = 8.4, 4.2 Hz, 1H), 2.29 (s, 1)3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.7, 150.2, 145.1, 139.9, 129.5, 127.4, 122.1, 118.0, 113.0, 83.0, 75.8, 61.4, 21.4; FT-IR (neat) 3063, 3035, 2957, 2924, 2854, 1761, 1600, 1505, 1366, 1196, 1088, 1014, 942, 749 cm⁻¹; HRMS (ESI) m/z $[M+H]^+$ calcd for $[C_{17}H_{17}NO_3+H]^+$ 284.1281, found 284.1286.

4-(4-Bromophenyl)-3-phenyloxazolidine 3x. Analytical TLC on silica gel, 1:19 ethyl

acetate/hexane $R_f = 0.60$; Brown liquid; 114 mg, yield 75%; ¹H NMR (600 MHz, CDCl₃) δ 7.47 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 7.18 (t, J = 8.4 Hz, 2H), 6.76 (t, J = 7.2 Hz, 1H), 6.45 (d, J = 7.8 Hz, 2H), 5.31 (d, J = 2.4 Hz, 1H), 5.00 (d, J = 2.4 Hz, 1H), 4.65 (dd, J = 6.6, 4.2

Hz, 1H), 4.39 (dd, J = 8.4, 6.6 Hz, 1H), 4.95 (dd, J = 8.4, 4.2 Hz, 1H); ¹³C NMR (150 MHz,

 $CDCl_3$) δ 144.88, 140.79, 132.13, 129.50, 128.14, 121.54, 118.13, 112.91, 82.93, 75.67, 61.33; FT-IR (neat) 3043, 2989, 2926, 2864, 1599, 1505, 1403, 1346, 1263, 1165, 1070, 943, 749 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₅H₁₄BrNO+H]⁺ 304.0332, found 304.0330

4-(4-Chlorophenyl)-3-phenyloxazolidine 3y. Analytical TLC on silica gel, 1:19 ethyl

acetate/hexane $R_f = 0.60$; Pale yellow liquid; 101 mg, yield 78%; ¹H NMR (600 MHz, CDCl₃) δ 7.32-7.28 (m, 4H), 7.20 (dd, J = 8.4, 7.2 Hz, 2H), 6.76 (t, J = 7.2 Hz, 1H), 6.46 (d, J = 7.8 Hz, 2H), 5.31 (d, J = 2.4 Hz, 1H), 5.00 (d, J = 2.4 Hz, 1H), 4.67 (dd, J = 6.6, 4.2 Hz, 1H), 4.39 (dd, J =

acetate/hexane $R_f = 0.60$; Brown liquid; 92 mg, yield 75%; ¹H NMR (600

8.4, 6.6 Hz, 1H), 3.95 (dd, J = 8.4, 4.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 144.9, 140.3, 133.5, 129.5, 129.2, 127.8, 118.1, 112.9, 82.9, 75.7, 61.3; FT-IR (neat) 3065, 3045, 2957, 2924, 2854, 1599, 1493, 1346, 1162, 1089, 1013, 643, 746cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for $[C_{15}H_{14}CINO+H]^+$ 260.0837, found 260.0838.

4-(4-Fluorophenyl)-3-phenyloxazolidine 3z. Analytical TLC on silica gel, 1:19 ethyl

MHz, CDCl₃) δ 7.36-7.34 (m, 2H), 7.21 (t, J = 7.8 Hz, 2H), 7.06 (t, J = 9.0 Hz, 2H), 6.78 (t, J = 7.2 Hz, 1H), 6.49 (d, J = 8.4 Hz, 2H), 5.35 (d, J =2.4 Hz, 1H), 5.03 (d, J = 2.4 Hz, 1H), 4.71 (dd, J = 7.2, 4.2 Hz, 1H), 4.41 $(dd, J = 8.4, 7.2 Hz, 1H), 3.98 (dd, J = 8.4, 4.2 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, CDCl₃) \delta 163.2 (d, J = 8.4, 12 Hz, 1H); {}^{13}C NMR (150 MHz, 12 Hz, 1H); {}^{13}C NMR (150 MZ, 1H); {}^{13}C NMR (150 MZ, 1H); {}^{13}C NMR (150 MZ$ J = 224.5 Hz), 145.0, 137.4 (d, J = 3.0 Hz), 129.5, 127.9 (d, J = 9.0 Hz), 118.0, 116.0 (d, J = 10.0 Hz) 21.0 Hz), 112.9, 82.9, 75.9, 61.2; FT-IR (neat) 3040, 2994, 2928, 2865, 1836, 1601, 1507, 1348, 1222, 1155, 1090, 943, 749 cm⁻¹; HRMS (ESI) m/z $[M+H]^+$ calcd for $[C_{15}H_{14}FNO+H]^+$ 244.1132, found 244.1144.

4-(2-Hydroxy-1-(methyl(phenyl)amino)ethyl)benzonitrile A₅. Analytical TLC on silica gel,

1:4 ethyl acetate/hexane $R_f = 0.42$; Yellow liquid; 103 mg, yield 82%; ¹H NMR (400 MHz, CDCl₃) 7.61 (d, *J* = 8.4 Hz, 2H), 7.29-7.25 (m, 4H), 6.91 (d, J = 8.0 Hz, 2H), 6.85 (t, J = 7.2 Hz, 1H), 5.08 (t, J = 7.2 Hz, 1H), 4.18-4.10 (m, 2H), 2.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 143.7, 132.6, 129.7, 128.2, 119.2, 118.8, 115.0, 111.8, 64.6, 61.8, 32.7; FT-IR (neat) 3440, 3063, 3034, 2957, 2924, 2216, 1604, 1519, 1386, 1346, 1178, 1111, 1063, 818 cm⁻¹; HRMS (ESI) m/z $[M+H]^+$ calcd for $[C_{16}H_{16}N_2O+H]^+$ 253.1335, found 253.1350.

1-(Methyl(phenyl)amino)butan-2-ol A₆. Analytical TLC on silica gel, 1:5 ethyl acetate/hexane $R_{f} = 0.40; \text{ Brown liquid; 81 mg, yield 90\%; }^{1}\text{H NMR (400 MHz, CDCl_3)}$

 $R_f = 0.40$; Brown liquid; 81 mg, yield 90%; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (m, 2H), 6.84 (d, J = 8.0 Hz, 2H), 6.78 (t, J = 7.2 Hz, 1H), 3.88-3.82 (m, 1H), 3.31-3.20 (m, 2H), 2.96 (s, 3H), 2.37 (br s, 1H), 1.61-1.47 (m, 2H), 1.05 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.6,

129.3, 117.5, 113.5, 70.7, 60.3, 39.5, 27.6, 10.1; FT-IR (neat) 3410, 3093, 3061, 2964, 2931, 2877, 1600, 1505, 1369, 1242, 1208, 987, 856, 749 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for $[C_{11}H_{17}NO+H]^+$ 180.1383, found 180.1408.

3-(4-Chlorophenyl)-4-(4-fluorophenyl)oxazolidine 3ac. Analytical TLC on silica gel, 1:19

ethyl acetate/hexane $R_f = 0.58$; Pale yellow liquid;101 mg, yield 73%; ¹H NMR (600 MHz, CDCl₃) δ 7.30-7.27 (m, 2H), 7.12 (d, J = 9.0 Hz, 2H), 7.03 (t, J = 8.4 Hz, 2H), 6.36 (d, J = 9.0 Hz, 2H), 5.28 (d, J = 2.4 Hz, 1H), 4.96 (d, J = 2.4 Hz, 1H), 4.64 (dd, J = 6.6, 4.2 Hz, 1H), 4.40 (dd, J = 8.4, 6.6 Hz, 1H), 3.94 (dd, J = 9.0, 4.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ

163.3 (d, J = 244.5 Hz), 143.5, 136.8 (d, J = 3.0 Hz), 129.3, 127.9 (d, J = 127.0 Hz), 123.0, 116.1 (d, J = 21.0 Hz), 114.0, 82.9, 75.9, 61.3; FT-IR (neat) 3073, 3049, 2992, 2925, 2860, 1601, 1507, 1391, 1356, 1223, 1156, 1093, 945, 810, 765 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₅H₁₃ClFNO+H]⁺ 278.0742 found 278.0749.

4-(3-(p-Tolyl)oxazolidin-4-yl)phenyl acetate 3ad. Analytical TLC on silica gel, 1:9 ethyl

acetate/hexane $R_f = 0.40$; Yellow liquid; 113 mg, yield 76%; ¹H NMR (600 MHz, CDCl₃) δ 7.37 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 8.4 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 6.40 (d, J = 8.4 Hz, 2H), 5.30 (d, J = 2.4 Hz, 1H), 4.97 (d, J = 2.4 Hz, 1H), 4.66 (dd, J = 7.2, 4.8 Hz, 1H), 4.38 (dd, J = 8.4, 6.6 Hz, 1H), 3.96 (dd, J = 8.4, 4.2 Hz, 1H), 2.29 (s, 3H), 2.22

(s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.7, 150.1, 143.1, 139.3, 130.0, 127.4, 127.3, 122.1, 113.1, 83.3, 75.8, 61.6, 21.4, 20.5; FT-IR (neat) 3006, 2923, 2860, 1763, 1619, 1521, 1366,

1214, 1088, 943,804 cm⁻¹. HRMS (ESI) m/z $[M+H]^+$ calcd for $[C_{18}H_{19}NO_3+H]^+$ 298.1438, found 298.1448.

3-(3-Ethylphenyl)-4-(4-fluorophenyl)oxazolidine 3ae. Analytical TLC on silica gel, 1:9 ethyl

acetate/hexane $R_f = 0.60$; Brown liquid; 97 mg, yield 71%; ¹H NMR (600 MHz, CDCl₃) δ 7.34-7.31 (m, 2H), 7.09 (t, J = 7.8 Hz, 1H), 7.03 (t, J = 9.0 Hz, 2H), 6.62 (d, J = 7.2 Hz, 1H), 6.30-6.27 (m, 2H), 5.32 (d, J = 1.2 Hz, 1H), 5.00 (d, J = 2.4 Hz, 1H), 4.68 (dd, J = 7.2, 4.2 Hz, 1H), 4.37 (dd, J = 8.4, 6.6 Hz, 1H), 3.95 (dd, J = 8.4, 4.2 Hz, 1H), 2.56 (q, J = 7.2 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 163.2 (d, J = 243.0

Hz), 145.7, 145.1, 137.6 (d, J = 3.0 Hz), 129.4, 128.0 (d, J = Hz), 117.7, 115.9 (d, J = 21.0 Hz), 112.5, 110.4, 83.0, 75.8, 61.2, 29.3, 15.7; FT-IR (neat) 3041, 2962, 2926, 2856, 1604, 1507, 1455, 1356, 1223, 1155, 1090, 945, 836, 752cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for $[C_{17}H_{18}FNO+H]^+$ 272.1445, found 272.1447.

3-Phenyl-2,3,6,10b-tetrahydro-5H-oxazolo[2,3-a]isoquinoline 5a. Analytical TLC on silica

gel, 1:19 ethyl acetate/hexane $R_f = 0.50$; Colorless liquid; 95 mg, yield 75%; 9:1 Mixture of diasteroisomers; ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, J = 7.2 Hz, 2H), 7.42-7.41 (m, 1H), 7.37 (t, J = 7.8 Hz, 2H), 7.29-7.25 (m, 3H), 7.19-7.17 (m, 1H), 5.45 (s, 1H), 4.47 (t, J = 7.8 Hz, 1H), 4.32 (t, J = 6.6 Hz, 1H), 3.82 (dd, J = 7.8, 6.0 Hz,

1H), 3.08-2.97 (m, 3H), 2.83-2.80 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 141.9, 135.7, 132.9, 128.8, 128.7, 128.3, 128.3, 127.4, 126.8, 126.6, 90.3, 71.4, 68.8, 46.9, 29.3; FT-IR (neat) 3063, 3030, 2924, 2853, 1711, 1682, 1455, 1373, 1314, 1234, 1030, 941, 746, 699 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₇H₁₇NO+H]⁺ 252.1383, found 252.1394.

3-(2-Chlorophenyl)-2,3,6,10b-tetrahydro-5H-oxazolo[2,3-a]isoquinoline 5b. Analytical TLC

on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.50$; Colorless liquid; 97 mg, yield 68%; 9:1 mixture of diasteroisomers; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 7.2 Hz, 1H), 7.42 (m, 2H), 7.30-7.19 (m, 5H), 5.37 (s, 1H), 4.68-4.59 (m, 2H), 3.63 (dd, J = 7.6, 5.6 Hz, 1H), 3.14-

2.99 (m, 3H), 2.84-2.78 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.8, 129.8, 128.9, 128.5,

128.5, 128.3, 127.6, 127.2, 126.6, 100.2, 90.3, 70.9, 67.2, 47.2, 29.9; FT-IR (neat) 3066, 2953, 2924, 2853, 1649, 1464, 1440, 1396, 1257, 1127, 1034, 942, 750 cm⁻¹; HRMS (ESI) m/z $[M+H]^+$ calcd for $[C_{17}H_{16}CINO+H]^+$ 286.0993, found 286.1003.

3-(4-Fluorophenyl)-2,3,6,10b-tetrahydro-5H-oxazolo[2,3-a]isoquinoline 5c. Analytical TLC

on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.50$; Colorless liquid; 97 mg, yield 72%; 9:1 Mixture of diasteroisomers; ¹H NMR (600 MHz, CDCl₃) δ 7.43-7.40 (m, 3H), 7.28-7.25 (m, 2H), 7.19-7.17 (m, 1H), 7.05 (t, J = 8.4 Hz, 2H), 5.42 (s, 1H), 4.45 (t, J = 7.8 Hz, 1H),

4.28 (t, J = 7.2 Hz, 1H), 3.77 (dd, J = 8.4, 6.6 Hz, 1H), 3.07-2.95 (m, 3H), 2.83-2.80 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 163.1 (d, J = 244.5 Hz), 137.6 (d, J = 4.5 Hz), 135.6, 132.9, 128.7, 128.4 (d, J = 7.5 Hz), 128.4, 128.3, 126.7, 115.7 (d, J = 21 Hz), 90.2, 71.5, 68.1, 46.9, 29.2; FT-IR (neat) 3067, 2957, 2924, 2854, 1637, 1508, 1424, 1223, 1154, 1096, 1033, 834, 746 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₇H₁₆FNO+H]⁺ 270.1289, found 270.1301.

2-(Methyl(phenyl)amino)-2-phenylethan-1-ol A_7 . Analytical TLC on silica gel, 1:5 ethyl acetate/hexane $R_f = 0.40$; Yellow liquid; 64 mg, yield 56%; ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.27 (m, 5H), 7.17 (d, J = 6.8 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 6.84 (t, J = 7.2 Hz, 1H), 5.13 (dd, J =

8.4, 6.0 Hz, 1H), 4.18-4.10 (m, 2H), 2.74 (s, 3H), 2.22 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 137.7, 129.4, 128.7, 127.7, 127.4, 118.5, 114.9, 64.7, 61.9, 32.3; FT-IR (neat) 3401, 3087, 3060, 3027, 2943, 2816, 1598, 1504, 1450, 1379, 1319, 1065, 1030, 900, 750 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for [C₁₅H₁₇NO+H]⁺ 228.1383, found 228.1398.

References

- B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell, *In Vogel's Textbook of Practical Organic Chemistry*, Fifth Edition, Pearson Education Pvt. Ltd., Indian Branch, Delhi, 2004, 928.
- 2. W. Qu, M.-P. Kung, C. Hou, T. E. Benedum and H. F. Kung, J. Med. Chem. 2007, 50, 2157

HPLC Chromatograms of compounds 3

2

14.379

512631

98.85

Peak Results				
	RT	Height (µV)	% Area	
1	6.095	874247	50.04	
2	11.109	549158	49.96	

Peak Results				
	RT	Height (µV)	% Area	
1	6.114	53738	1.13	
2	10.842	2376394	98.87	

	Peak Results				
	RT	Height (µV)	% Area		
1	10.395	132157	2.53		
2	12.271	2663180	97.47		

	RT	Height (µV)	% Area	
1	10.349	10268	1.47	
2	13.422	285341	98.53	

Peak Results				
	RT	Height (µV)	% Area	
1	8.457	57087	2.66	
2	12.924	749816	97.34	

		(µv)	1940-000 Policy 1
1	6.876	35123	1.02
2	9.529	2105040	98.98

Peak Results				
	RT	Height (µV)	% Area	
1	5.601	1409422	49.90	
2	8.540	935027	50.10	

Peak Results				
	RT	Height (µV)	% Area	
1	8.553	2065959	50.99	
2	10.352	1908580	49.01	

	RI	(μV)	% Area
1	5.121	1515064	49.71
2	12.414	728142	50.29

Peak Results				
	RT	Height (µV)	% Area	
1	5.051	64189	1.67	
2	12.807	1333216	98.33	

ESI-MS Spectrum of radical trapping experiment

NMR Spectra of compounds A, 3 and 5

S28

SV-06-R1-3,5-DiCl-1H/10

 $\begin{array}{c} 7.375\\ 7.3351\\ 7.3317\\ 7.3315\\ 7.3315\\ 7.3304\\ 7.3304\\ 7.3304\\ 7.225\\ 7.2295\\ 7.2293\\ 7.2293\\ 7.2260\\ 7.2260\\ 7.2262\\ 7.2263\\ 7$

SV-06-R2-4BR-1H/10

SV-06-R2-4CI-1H.10.fid

4,670 4,653 4,653 4,552 4,370 4,379 4,376 4,376 4,376 4,376 4,376 1,3,941 1,3,934

SV-06-BUTOXY-1H.10.fid

