Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

The Growth and Fluorescence of Phthalocyanine Monolayers, Thin Films and

Multilayers on Hexagonal Boron Nitride

Manal Alkhamisi^a, Vladimir V. Korolkov^a, Anton S. Nizovtsev^{b,c}, James Kerfoot^a, Takashi Taniguchi^d, Kenji

Watanabe^d, Nicholas A. Besley^b, Elena Besley^b and Peter H.Beton^a

^aSchool of Physics & Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K.

^bSchool of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K.

^cNikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences,

Academician Lavrentiev Avenue 3, 630090, Novosibirsk, Russian Federation.

^dNational Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

ELECTRONIC SUPPLEMENTARY INFORMATION

1. Computational details

The geometric parameters of the species under study were optimized using the range-separated hybrid ω B97X-D functional with empirical dispersion correction^[1] in combination with the correlation-consistent cc-pVDZ basis set^[2] employing the (75,302) integration grid. The maximum overlap method (MOM)^[3] was used for the structural optimization of compounds in the S₁ excited state. The *h*BN surface was modelled by a flake consisting of 65 boron atoms and 65 nitrogen atoms, the flake's edges were capped with hydrogen atoms. The B–N bond lengths were calculated to be of 1.44 Å in average. Atomic positions of the surface were optimized and kept fixed in the subsequent calculations. The adsorption energy of H₂Pc molecule was calculated using the ω B97X-D/cc-pVTZ method with the structure optimized with the smaller cc-pVDZ basis set. The most energetically preferred adsorption site was used for calculating excited state properties. Excitation energies corresponding to absorption (S₁ \leftarrow S₀ transition) and fluorescence (S₀ \leftarrow S₁ transition) were determined with time-dependent density functional theory (TD-DFT) at the same level of theory using the (MOM-) ω B97X-D/cc-pVDZ optimized structures of the S₀ and S₁ states, respectively.

0–0 energies were estimated using zero-point vibrational energies computed at the (MOM-) ω B97X-D/ccpVDZ level of theory within harmonic approximation. To save computational time, vibrational frequencies of adsorbed molecules were calculated without taking into account *h*BN surface. Atomic partial charges were calculated within ChelpG formalism.^[4] All calculations were performed with the Q-Chem software package.^[5]

Results and discussion

The equilibrium structures of the H₂Pc molecule adsorbed on the *h*BN surface are shown in Figure S1. The molecule-surface separation was calculated to be *ca.* 3.3 Å. The adsorption energy computed at the ω B97X-D/cc-pVTZ level is 3.35 eV (Table S1). To calculate fluorescence energies, structural optimization of the first singlet excited state, which is the first dipole-allowed excited state for all systems under study, was performed using MOM. It is worth noting that MOM provides structural parameters which are comparable to those calculated by TD-DFT but at lower computational cost.^[6]

Figure S2 shows that the difference between the S₀ and S₁ relaxed structures is rather small ($\Delta r = 0.00-0.02$ Å). Upon interaction with the surface bond lengths of H₂Pc are only slightly changed and absorbed molecule maintains its planarity. The most intense band in the fluorescence spectra of isolated and adsorbed H₂Pc arises from the electronic transition between the highest occupied (HOMO) and the lowest unoccupied (LUMO) molecular orbitals which have π and π^* character, respectively (Figure S3). The corresponding transition density is presented in Figure S4 (see Krueger et al.^[7] for a discussion of transition density).

Calculated absorption ($S_1 \leftarrow S_0$) and fluorescence ($S_0 \leftarrow S_1$) energies with the corresponding transition dipole moments and oscillator strengths for compounds under study are collated in Table S2. Computed vertical transition energies agree well with the available experimental data ($\Delta\Delta E = 0.01-0.08 \text{ eV}$; Table S3). 0– 0 energies that include relaxation of the final electronic state and zero-point energy correction were also calculated (Table S3). When going from the gas phase to absorbed on the *h*BN surface the calculated position of maximum in the fluorescence spectrum is red-shifted by 0.11 eV. This corresponds to the non-resonant shift discussed in the main text. In order to explain the origin of this contribution to the observed red shift in fluorescence spectra after adsorption of H₂Pc molecule, an energy decomposition of the shift into the contributions from molecular distortion, electrostatic and orbital interactions was performed according to methodology suggested by Hochheim and Bredow.^[8] The orbital interactions between the molecule and the surface atoms were found to be responsible for the red shift ($\Delta E_{chem} = 0.11 \text{ eV}$; Table S4).

Figure S1. Structure of the H_2Pc/hBN system in S_0 and S_1 electronic states calculated at the (MOM-) ω B97X-D/cc-pVDZ level of theory.

Figure S2. Selected bond lengths (Å) of H₂Pc in the gas phase and adsorbed on *h*BN in S₀ and S₁ electronic states calculated at the (MOM-) ω B97X-D/cc-pVDZ level of theory.

Figure S3. Highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals of H_2Pc in its equilibrium S_1 geometry on the *h*BN surface calculated at the ω B97X-D/cc-pVDZ level of theory. Isosurfaces with ±0.01 a.u. isovalues are shown.

Figure S4. Transition density ($S_0 \leftarrow S_1$ fluorescence process) calculated for H_2Pc molecule in its equilibrium S_1 geometry on the *h*BN surface at the TD- ω B97X-D/cc-pVDZ level of theory. An isosurface with ±0.0003 a.u. isovalues is shown.

Table S1. Energy of adsorption of H₂Pc molecule on the *h*BN surface (ΔE_{ads}) calculated at the ω B97X-D/ccpVTZ// ω B97X-D/cc-pVDZ and ω B97X-D/cc-pVDZ// ω B97X-D/cc-pVDZ (in parentheses) theoretical levels.

System	ΔE_{ads} , eV		
H₂Pc/ <i>h</i> BN	3.35 (3.68)		

Table S2. Details of absorption $(S_1 \leftarrow S_0)$ and fluorescence $(S_0 \leftarrow S_1)$ processes for H_2Pc , H_2Pc/hBN (in parentheses) and H_2Pc at H_2Pc/hBN geometry (in brackets) calculated at the TD- ω B97X-D/cc-pVDZ//(MOM) ω B97X-D/cc-pVDZ level of theory. Energies of frontier molecular orbitals are also given.

	Absorption	Fluorescence	
	1.96 / 632	1.87 / 663	
Transition energy, eV / nm	(1.88) / (660)	(1.76) / (703)	
	[1.96] / [632]	[1.87] / [662]	
	(-7.89, 0.00, 0.00)	(0.00, -8.93, 0.00)	
Transition dipole moment, D	((-6.34, -3.07, 0.06))	((-1.18, 7.92, 0.02))	
	[(-7.62, -2.02, 0.04)]	[(-1.60, 8.77, -0.01)]	
	0.46	0.57	
Oscillator strength, au	(0.35)	(0.43)	
	[0.46]	[0.56]	
	-6.31 {-6.41} ^a / -1.66	-6.26 / -1.88	
Е _{номо} / Е _{цимо} , eV	(-6.31/-1.71)	(-6.26 / -1.93)	
	[-6.31 / -1.66]	[-6.26 / -1.88]	
	4.65{4.03} ^b	4.38	
$\Delta E_{\text{HOMO-LUMO}}$, eV	(4.60)	(4.33)	
	[4.65]	[4.38]	

^{*a*} -IP (ionization potential) experimental value. ^[9]

^b Value calculated by GW-BSE method. ^[9]

Table S3. Absorption ($S_1 \leftarrow S_0$), fluorescence ($S_0 \leftarrow S_1$), and 0–0 energies of H_2Pc and H_2Pc/hBN calculated at the TD- ω B97X-D/cc-pVDZ//(MOM) ω B97X-D/cc-pVDZ level of theory.

System	Absorption, eV / nm	Fluorescence, eV / nm	Δ <i>E</i> ^{0–0} , eV / nm
H₂Pc	1.96 / 632 ª [1.88 / 661] ^d [1.83 / 677] ^e	1.87 / 663 ^b [1.83 / 677] e	1.88 / 661 ^c
H₂Pc/ <i>h</i> BN	1.88 / 660 ^a	1.76 / 703 ^b [1.75 / 708] ^f	1.75 / 706 ^c

^{*a*} Vertical absorption energy.

^b Vertical fluorescence energy.

^c Zero-point vibrational energy corrected 0–0 transition energy.

- ^d Experimental value (free jet). ^[10]
- ^e Experimental value (Ar matrix). ^[10]
- ^{*f*} Experimental value. This work.

Table S4. Energy decomposition of fluorescence shift for H_2Pc/hBN calculated at the TD- ω B97X-D/ccpVDZ//(MOM) ω B97X-D/cc-pVDZ level of theory. All values are given in eV.

System	Egas	E dist	E _{pc}	E _{ads}	ΔE_{dist}	ΔE_{elec}	$\Delta E_{\rm chem}$	ΔE_{tot}
H₂Pc/ <i>h</i> BN	1.87	1.87	1.87	1.76	0.00	0.00	0.11	0.11

2. Experimental Methods

Substrates are prepared by mechanically exfoliating hBN flakes from mm-scale crystals using the scotch tape method; the flakes are transferred to thermally oxidised silicon wafers, with an oxide thickness of 300 nm. The flakes are then immersed in toluene for approximately 12 hours, annealed in H₂:Ar (5% : 95%) at 400 °C for 8 hours, subjected to brief flame annealing prior to the introduction to the vacuum system.

Fluorescence spectroscopy is carried out using a Horiba LabRAM HR spectrometer, equipped with a 660 nm excitation laser. Laser powers in the range of 1-50 μ W are used to reduce photo-bleaching and damage to the sample. The sample morphology is determined using AFM, carried out under ambient conditions in tapping mode using the Asylum Research Cypher S with Mulit75Al-G silicon cantilevers from Budget Sensors.

References

- [1] J.-D. Chai, M. Head-Gordon, *Phys. Chem. Chem. Phys.*, **2008**, *10*, 6615–6620.
- [2] T. H. Dunning, J. Chem. Phys., **1989**, 90, 1007–1023.
- [3] A.T. B. Gilbert, N. A. Besley, P. M. W. Gill, J. Phys. Chem. A, **2008**, 112, 13164–13171.
- [4] C. M. Breneman, K. B. Wiberg, J. Comput. Chem., **1990**, *11*, 361–373.
- Y. Shao, Z. Gan, E. Epifanovsky, A. T. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X.
 Feng *et al.*, *Mol. Phys.*, **2015**, *113*, 184–215.
- [6] M. W. D. Hanson-Heine, M. W. George and N. A. Besley, J. Chem. Phys., 2013, 138, 064101.
- [7] B.P. Krueger, G.D. Scholes and G.R. Fleming, J. Phys. Chem. B, **1998**, 102, 5378-5386.
- [8] M. Hochheim, T. Bredow, J. Comput. Chem., 2015, 36, 1805–1811.
- [9] S. Refaely-Abramson, R. Baer, L. Kronik, *Phys. Rev. B*, **2011**, *84*, 075144.
- [10] C. Murray, N. Dozova, J. G. McCaffrey, N. Shafizadeh, W. Chin, M. Broquier, C. Crepin, *Phys. Chem. Chem. Phys.*, **2011**, *13*, 17543–17554.