Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Highly Enantioselective Addition of Dimethylzinc to Fluorinated Alkyl Ketones, and the Mechanism Behind It

Tomaz Neves–Garcia, Andrea Vélez, Jesús M. Martínez–Ilarduya, and Pablo Espinet

IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid, Spain

E-mail: <u>espinet@qi.uva.es</u>

1. General information	3
2. Preparation of L*	3
3. General procedure for the catalytic enantioselective addition of ZnMe2	o ketones
	4
1,1–difluoro–2–phenylpropan–2–ol (1b)	4
1,1,1–trifluoro–2–phenylpropan–2–ol (2b)	5
1–chloro–1,1–difluoro–2–phenylpropan–2–ol (3b)	5
1,1,1,2,2–pentafluoro–3–phenylbutan–3–ol (4b)	6
1,1,1–trifluoro–2–(4–fluorophenyl)propan–2–ol (5b)	6
1,1,1–trifluoro–2–(4–chlorophenyl)propan–2–ol (6b)	7
1,1,1–trifluoro–2–(4–bromophenyl)propan–2–ol (7b)	7
1,1,1–trifluoro–2–(4–methylphenyl)propan–2–ol (8b)	8
1,1,1–trifluoro–2–(4–ethylphenyl)propan–2–ol (9b)	8
1,1,1–trifluoro–2–(4–isopropylphenyl)propan–2–ol (10b)	9
1,1,1–trifluoro–2–(3,5–dimethylphenyl)propan–2–ol (11b)	10
1,1,1–trifluoro–2–(2–methoxyphenyl)propan–2–ol (12b)	
1,1,1–trifluoro–2–(4–methoxyphenyl)propan–2–ol (13b)	11
1,1,1–trifluoro–2–(4–(methylthio)methylphenyl)propan–2–ol (14b)	11
1,1,1–trifluoro–2–(4–(ethylthio)phenyl)propan–2–ol (15b)	12
4. NMR spectra of the fluoroalkyl alcohols	13
1,1–difluoro–2–phenylpropan–2–ol (1b)	14
1,1,1–trifluoro–2–phenylpropan–2–ol (2b)	17
1–chloro–1,1–difluoro–2–phenylpropan–2–ol (3b)	20
1,1,1,2,2–pentafluoro–3–phenylbutan–3–ol (4b)	23

1,1,1–trifluoro–2–(4–fluorophenyl)propan–2–ol (5b)	26
1,1,1–trifluoro–2–(4–chlorophenyl)propan–2–ol (6b)	
1,1,1–trifluoro–2–(4–bromophenyl)propan–2–ol (7b)	
1,1,1–trifluoro–2–(4–methylphenyl)propan–2–ol (8b)	
1,1,1–trifluoro–2–(4–ethylphenyl)propan–2–ol (9b)	
1,1,1–trifluoro–2–(4–isopropylphenyl)propan–2–ol (10b)	
1,1,1-trifluoro-2-(3,5-dimethylphenyl)propan-2-ol (11b)	
1,1,1-trifluoro-2-(2-methoxyphenyl)propan-2-ol (12b)	
1,1,1-trifluoro-2-(4-methoxyphenyl)propan-2-ol (13b)	50
1,1,1-trifluoro-2-(4-(methylthio)methylphenyl)propan-2-ol (14b)	53
1,1,1–trifluoro–2–(4–(ethylthio)phenyl)propan–2–ol (15b)	56
5. Results of enantioselective addition of ZnMe2 to (T)FAKs in toluene and in DCM. The conversions (19 F NMR integration) and enantiomeric excesses (chiral GC or HPLC analysis) of the products (C ₆ H ₄ R)C(CF ₂ X)(Me)(OH) are presented59	

FAK 1a	
TFAK 2a	65
FAK За	
FAK 4a	74
TFAK 5a	
ТҒАК ба	
TFAK 7a	
TFAK 8a	
TFAK 9a	
TFAK 10a	
TFAK 11a	
TFAK 12a	
TFAK 13a	
TFAK 14a	
TFAK 15a	

1. General information

All reactions were carried out under nitrogen atmosphere using Schlenk–tube techniques. Dichloromethane and tetrahydrofuran were obtained oxygen– and water–free from an SPS PS– MD–5 solvent purification apparatus. Toluene was dried over sodium and distilled. Dimethylzinc solutions (0.5 M in dichloromethane o toluene) were prepared from pure ZnMe₂ purchased from Strem. Fluorinated ketones were purchased from commercial sources (Fluorochem or Apollo Scientific) and used without further purification.

¹H, ¹³C{¹H} and ¹⁹F NMR spectra were recorded on Bruker AV–400 and/or Varian Inova 500–MR instruments. Chemical shifts (in δ units, parts per million) were referenced to the residual solvent peaks (¹H, ¹³C{¹H}) or internal CFCl₃ (¹⁹F). Coupling constants *J* and variation of frequencies Δv (AB spin systems) are given in hertz. The following abbreviations are used to describe peak patterns when appropriate: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sept (septuplet), m (multiplet), br (broad) and AB (AB spin system). Mass spectra were recorded using an Agilent Technologies 5973 Network apparatus.

Purification of reaction solutions were carried out by flash chromatography using silica gel (silica gel 60, 230–400 mesh, Merk). Enantiomeric excesses (ee) were determinated by gas chromatography (GC) or high–pressure liquid chromatography (HPLC) analysis. Chiral GC analyses were performed on an Agilent chromatograph, equipped with a flame ionization detector (FID). LIPODEX–E (30 m × 0.25 mm ; DF = 0.25 μ m) capillary column was used with helium as the carrier gas in a constant flow 1 ml/min. The injector was operated in the splitless (1/20) mode at 200 °C and the detector at 250 °C. Chiral HPLC analyses were performed on a Agilent HPLC system using ChiralPack–AD column or Lux–amyl–1_002–CH1. The GC and the HPLC traces of the product were compared to those of the corresponding racemic samples prepared through the *Grignard reaction* by addition of MeMgBr to the corresponding ketone.

2. Preparation of L*

A solution of (1R,2R)-1,2-diphenylethane-1,2-diamine (1.0 g, 4.71 mmol, 1 eq), (S)-2,2'bis(bromomethyl)-1,1'-binaphthalene (4.35 g, 9.89 mmol, 2.1 eq) and trimethylamine (2.6 mL, 1.91 g, 18.84 mmol, 4 eq) in anhydrous THF (50 mL) was stirred at 65 °C under nitrogen atmosphere. After 48 h, the suspension obtained was filtered over silica to remove NHEt₃Br and the solution was concentrated under reduced pressure. The residue was purified by crystallization in dichloromethane/acetone to afford **L*** (3.08 g, 4.0 mmol, 85% yield).

3. General procedure for the catalytic enantioselective addition of ZnMe₂ to ketones In a typical procedure, The ketone (0.42 mmol, 1 eq) was added to a previously prepared solution containing 0.5 M ZnMe2 in dichloromethane (1 mL, 0.5 mmol, 1.2 eq) and L* (0.042 mmol, 0.01 eq) in a 25 mL screw tap Schlenk and immersed in a –85 °C bath of isopropanol. After addition of the ketone, the reaction was placed in an isopropanol bath with the temperature regulated by a cryoprobe.

After the corresponding reaction time, the mixture was carefully hydrolysed with 2 M HCl (5 mL). The organic layer (DCM) was separated and an aliquot was taken to determine by ¹⁹F NMR spectroscopy and chiral gas chromatography or HPLC the conversion and enantiomeric. The aqueous layer was extracted with OEt₂ (2 X 5 mL). This OEt₂ solution was added to the dichloromethane solution, whereupon a white precipitate, corresponding to Zn salts containing the ligand **L*** was formed. The DCM+OEt₂ solution, containing the alcohol, was dried over MgSO₄, filtered, and concentrated by passing airflow until ca. 4 mL. The solution was then filtered through a silica gel column to remove the salt derived from the ligand. Removal of the solvent by airflow gave the corresponding alcohol. The yield of the reaction was measured by weighing (60-95%).

`CHF₂ <u>1,1–difluoro–2–phenylpropan–2–ol</u> (1b)

Starting from **1a** (52 μ L, 65.1 mg, 0.42 mmol) and following the general procedure described above (–30 °C, 24 h), compound **1b** (52.0 mg, 73%) was obtained as a colorless oil. The conversion observed by ¹⁹F NMR was > 99%. In these conditions, the compound was obtained with a 89:11 enantiomeric ratio determined by HPLC using Chiralpak–AD column [hexane/isopropanol (95:5), 1 mL/min]: t_{mayor} = 8.381 min, t_{minor} = 9.136 min.

¹H NMR (499.72 MHz, CDCl₃, 298 K): δ 7.53 (m, 2H, *o*-CH), 7.40 (m, 2H, *m*-CH), 7.35 (m, 1H, *p*-CH), 5.73 (dd, $J_{H-F} = 56.8$, 56.1 Hz, 1H, CHF₂), 2.53 (br, 1H, OH), 1.66 (t, $J_{H-F} = 1.6$, 3H, CH₃). ¹⁹F NMR (470.15 MHz, CDCl₃, 298 K): δ -129.6 and -130.3 (*ABX* system, $J_{AB} = 277.0$ Hz, $J_{H-F} = 56.8$, 56.1 Hz, 2F, CHF₂). ¹³C{¹H} NMR (125.67 MHz, CDCl₃, 298 K): δ 140.5 (dd, $J_{C-F} = 2.1$, 1.1 Hz, C_{arom} -COH), 128.5 (s, *m*-CH), 128.2 (s, *p*-CH), 125.8 (t, $J_{C-F} = 1.1$ Hz, *o*-CH), 117.0 (t, $J_{C-F} = 249.2$ Hz, CHF₂), 74.3 (t, $J_{C-F} = 22.0$ Hz, COH), 22.4 (t, $J_{C-F} = 2.6$ Hz, CH₃).

MS: calculated mass for C₉H₁₀F₂O: 172.07; measured mass: 172.04

Starting from **2a** (57 µL, 72.6 mg, 0.42 mmol) and following the general procedure described above (-30 °C, 24 h), compound **2b** (74.2 mg, 94%) was obtained as a colorless oil. The conversion observed by ¹⁹F NMR was > 99%. In these conditions, the compound was obtained with a 96:4 enantiomeric ratio determined by GC using LIPODEX–E capillary column [T_0 = 100 °C; t_0 = 15 min; *ramp* = 20 °C /min; T_f = 120 °C; t_f = 10 min]: t_{mayor} = 18.985 min, t_{minor} = 19.684 min.

¹H NMR (400.14 MHz, CDCl₃, 298 K): δ 7.59 (m, 2H, *o*–CH), 7.45–7.35 (m, 3H, *p*–CH + *m*–CH), 2.38 (s, 1H, OH), 1.80 (s, 3H, CH₃). ¹⁹F NMR (376.51 MHz, CDCl₃, 298 K): δ –81.00 (s, 3F, CF₃). ¹³C{¹H} NMR (100.62 MHz, CDCl₃, 298 K): δ 138.6 (s, C_{arom} –COH), 128.7 (s, *p*–CH), 128.5 (s, *m*– CH), 126.2 (s, *o*–CH), 125.8 (q, J_{C-F} = 285.2 Hz, CF₃), 75.0 (q, J_{C-F} = 29.2 Hz, COH), 23.9 (s, CH₃).

MS: calculated mass for C₉H₉F₃O: 190.06; measured mass: 190.02

1-chloro-1,1-difluoro-2-phenylpropan-2-ol (**3b**)

Starting from **3a** (60 µL, 79.4 mg, 0.42 mmol) and following the general procedure described above (–30 °C, 24 h), compound **3b** (80.4 mg, 93%) was obtained as a colorless oil. The conversion observed by ¹⁹F NMR was > 99%. In these conditions, the compound was obtained with a 99:1 enantiomeric ratio determined by GC using LIPODEX–E capillary column [isotherm conditions, T = 110 °C; *t* = 40 min]: t_{mayor} = 29.146 min, t_{minor} = 31.035 min.

¹H NMR (499.72 MHz, CDCl₃, 298 K): δ 7.61 (m, 2H, *o*–CH), 7.33–7.45 (m, 3H, *p*–CH + *m*–CH), 3.03 (br, 1H, OH), 1.85 (s, 3H, CH₃). ¹⁹F NMR (470.15 MHz, CDCl₃, 298 K): δ –64.2 and –64.6 (*AB* system, J_{AB} = 164.0 Hz, Δv = 198.8 Hz, 2F, CClF₂). ¹³C{¹H} NMR (125.67 MHz, CDCl₃, 298 K): δ 139.0 (s, C_{arom} –COH), 131.7 (t, J_{C-F} = 301.1 Hz, CClF₂), 128.6 (s, *p*–CH), 128.2 (s, *m*–CH), 126.6 (t, J_{C-F} = 1.6 Hz, *o*–CH), 78.4 (t, J_{C-F} = 24.9 Hz, COH), 24.5 (t, J_{C-F} = 1.6 Hz, CH₃).

MS: calculated mass for C₉H₉ClF₂O: 206.03; measured mass: 206.00

Starting from **4a** (68 μ L, 93.4 mg, 0.42 mmol) and following the general procedure described above (–30 °C, 24 h), compound **4b** (78.7 mg, 79%) was obtained as a colorless oil. The conversion observed by ¹⁹F NMR was 87%. In these conditions, the compound was obtained with a 100:0 enantiomeric ratio determined by GC using LIPODEX–E capillary column [isotherm conditions, T = 100 °C; t = 30 min]: t_{mayor} = 22.882 min, t_{minor} = 23.705 min.

¹H NMR (499.72 MHz, CDCl₃, 298 K): δ 7.58 (m, 2H, *o*-CH), 7.35–7.43 (m, 3H, *p*-CH + *m*-CH), 2.43 (br, 1H, OH), 1.83 (s, 3H, CH₃). ¹⁹F NMR (470.15 MHz, CDCl₃, 298 K): δ –77.97 (s, 3F, CF₂CF₃), -121.5 and -123.0 (*AB* system, *J_{AB}* = 277.5 Hz, Δv = 686.4 Hz, 2F, CF₂CF₃). ¹³C{¹H} NMR (125.67 MHz, CDCl₃, 298 K): δ 138.7 (dd, *J*_{C-F} = 1.9, 0.7 Hz, *C*_{arom}-COH), 128.7 (s, *p*-CH), 128.4 (s, *m*-CH), 126.2 (t, *J*_{C-F} = 1.5 Hz, *o*-CH), 119.4 (qt, *J*_{C-F} = 288.1, 36.6 Hz, CF₂CF₃), 114.5 (tq, *J*_{C-F} = 261.9, 34.6, CF₂CF₃), 75.2 (t, *J*_{C-F} = 23.8 Hz, COH), 24.8 (tq, *J*_{C-F} = 3.3, 1.6 Hz, *C*H₃).

MS: calculated mass for $C_{10}H_9F_5O$: 240.06; measured mass: 239.00

Starting from **5a** (80.0 mg, 0.42 mmol) and following the general procedure described above (– 30 °C, 24 h), compound **5b** (72.6 mg, 84%) was obtained as a colorless oil. The conversion observed by ¹⁹F NMR was > 99%. In these conditions, the compound was obtained with a 96:4

enantiomeric ratio determined by GC using LIPODEX–E capillary column [isotherm conditions, T = 110 °C; t = 30 min]: t_{mayor} = 14.347 min, t_{minor} = 15.829 min.

¹H NMR (499.72 MHz, CDCl₃, 298 K): δ 7.56 (m, 2H, *o*–C*H*), 7.08 (m, 2H, *m*–C*H*), 2.40 (s, 1H, O*H*), 1.78 (q, *J*_{H–F} = 1.0 Hz, 3H, *CH*₃). ¹⁹F NMR (470.15 MHz, CDCl₃, 298 K): δ –81.29 (s, 3F, *CF*₃), –113.70 (tt, *J*_{F–H} = 8.4, 5.3 Hz, 1F, *p*–C*F*). ¹³C{¹H} NMR (125.67 MHz, CDCl₃, 298 K): δ 163.0 (d, *J*_{C–F} = 247.8 Hz, *p*–CF), 134.2 (d, *J*_{C–F} = 3.2 Hz, *C*_{arom}–COH), 128.2 (dq, *J*_{C–F} = 8.3, 1.4 Hz, *o*–CH), 125.6 (q, *J*_{C–F} = 285.1 Hz, *C*F₃), 115.4 (d, *J*_{C–F} = 21.5 Hz, *m*–CH), 74.7 (q, *J*_{C–F} = 29.4 Hz, *C*OH), 24.2 (q, *J*_{C–F} = 1.1 Hz, *C*H₃).

MS: calculated mass for C₉H₈F₄O: 208.05; measured mass: 208.03

CI
CI
$$CF_3$$

 $1,1,1-trifluoro-2-(4-chlorophenyl)propan-2-ol}$ (6b)

Starting from **6a** (80.0 mg, 0.42 mmol) and following the general procedure described above (– 30 °C, 24 h), compound **6b** (73.5 mg, 79%) was obtained as a colorless oil. The conversion observed by ¹⁹F NMR was > 99%. In these conditions, the compound was obtained with a 95:5 enantiomeric ratio determined by GC using LIPODEX–E capillary column [T_0 = 100 °C; t_0 = 15 min; *ramp* = 5 °C /min; T_f = 120 °C; t_f = 25 min]: t_{mayor} = 38.221 min, t_{minor} = 40.589 min.

¹H NMR (499.72 MHz, CDCl₃, 298 K): δ 7.52 (m, 2H, *o*–CH), 7.37 (m, 2H, *m*–CH), 2.39 (s, 1H, OH), 1.77 (q, *J*_{H-F} = 1.1 Hz, 3H, *CH*₃). ¹⁹F NMR (470.15 MHz, CDCl₃, 298 K): δ –81.17 (s, 3F, *CF*₃). ¹³C{¹H} NMR (125.67 MHz, CDCl₃, 298 K): δ 136.9 (s, *p*–CCl), 134.9 (s, *C*_{arom}–COH), 128.6 (s, *m*–CH), 127.6 (q, *J*_{C-F} = 1.3 Hz, *o*–CH), 125.5 (q, *J*_{C-F} = 285.3 Hz, *CF*₃), 74.7 (q, *J*_{C-F} = 29.6 Hz, *COH*), 24.1 (q, *J*_{C-F} = 1.1 Hz, *C*H₃).

MS: calculated mass for C₉H₈ClF₃O: 224.02; measured mass: 223.97

Starting from **7a** (105.4 mg, 0.42 mmol) and following the general procedure described above (–30 °C, 24 h), compound **7b** (100.1 mg, 89%) was obtained as a colorless oil. The conversion

observed by ¹⁹F NMR was > 99%. In these conditions, the compound was obtained with a 94:6 enantiomeric ratio determined by GC using LIPODEX–E capillary column [T₀ = 100 °C; t_0 = 15 min; ramp = 5 °C /min; T_f = 120 °C; t_f = 30 min]: t_{mayor} = 24.782 min, t_{minor} = 30.139 min.

¹H NMR (499.72 MHz, CDCl₃, 298 K): δ 7.40 (m, 2H, *o*–C*H*), 7.47 (m, 2H, *m*–C*H*), 2.87 (s, 1H, O*H*), 1.70 (s, 3H, C*H*₃). ¹⁹F NMR (470.15 MHz, CDCl₃, 298 K): δ –80.94 (s, 3F, C*F*₃). ¹³C{¹H} NMR (125.67 MHz, CDCl₃, 298 K): δ 137.5 (s, C_{arom} –COH), 131.6 (s, *m*–CH), 128.0 (s, *o*–CH), 125.4 (q, J_{C-F} = 285.2 Hz, CF₃), 123.1 (s, *p*–CBr), 74.8 (q, J_{C-F} = 29.4, Hz, COH), 23.7 (s, CH₃).

MS: calculated mass for C₉H₈BrF₃O: 267.97; measured mass: 267.96

Starting from **8a** (63 µL, 78.4 mg, 0.42 mmol) and following the general procedure described above (–30 °C, 24 h), compound **8b** (68.3 mg, 80%) was obtained as a colorless oil. The conversion observed by ¹⁹F NMR was > 99%. In these conditions, the compound was obtained with a 94:6 enantiomeric ratio determined by GC using LIPODEX–E capillary column [T_0 = 100 °C; t_0 = 15 min; *ramp* = 20 °C /min; T_f = 120 °C; t_f = 30 min]: t_{mayor} = 21.472 min, t_{minor} = 22.905 min.

¹H NMR (499.72 MHz, CDCl₃, 298 K): δ 7.46 (m, 2H, o–CH), 7.21 (m, 2H, m–CH), 2.40 (s, 1H, OH), 2.37 (s, 3H, C_{arom}–CH₃), 1.77 (s, 3H, CH₃). ¹⁹F NMR (470.15 MHz, CDCl₃, 298 K): δ –81.09 (s, 3F, CF₃). ¹³C{¹H} NMR (125.67 MHz, CDCl₃, 298 K): δ 138.4 (s, p–CMe), 135.5 (s, C_{arom}–COH), 129.0 (s, m–CH), 125.9 (q, $J_{C-F} = 1.2$ Hz, o–CH), 125.6 (q, $J_{C-F} = 285.2$ Hz, CF₃), 74.7 (q, $J_{C-F} = 29.2$ Hz, COH), 23.8 (q, $J_{C-F} = 1.1$ Hz, CH₃), 21.0 (s, p–CCH₃).

MS: calculated mass for $C_{10}H_{11}F_3O$: 204.08; measured mass: 204.05

Starting from **9a** (70 μ L, 84.2 mg, 0.42 mmol) and following the general procedure described above (–30 °C, 24 h), compound **9b** (69.0 mg, 76%) was obtained as a colorless oil. The

conversion observed by ¹⁹F NMR was > 99%. In these conditions, the compound was obtained with a 94:6 enantiomeric ratio determined by GC using LIPODEX–E capillary column [isotherm conditions, T = 110 °C; t = 40 min]: t_{mayor} = 28.928 min, t_{minor} = 32.128 min.

¹H NMR (499.72 MHz, CDCl₃, 298 K): δ 7.49 (m, 2H, *o*–C*H*), 7.24 (m, 2H, *m*–C*H*), 2.67 (q, *J*_{H–H} = 7.6, 2H, *CH*₂CH₃), 2.46 (s, 1H, O*H*), 1.78 (q, *J*_{H–F} = 1.1 Hz, 3H, *CH*₃), 1.25 (t, *J*_{H–H} = 7.6 Hz, 3H, CH₂C*H*₃). ¹⁹F NMR (470.15 MHz, CDCl₃, 298 K): δ –81.04 (s, 3F, *CF*₃). ¹³C{¹H} NMR (125.67 MHz, CDCl₃, 298 K): δ 144.7 (s, *p*–CEt), 135.7 (s, *C*_{arom}–COH), 127.8 (s, *m*–CH), 125.9 (q, *J*_{C–F} = 1.2 Hz, *o*–CH), 125.6 (q, *J*_{C–F} = 285.3 Hz, *CF*₃), 74.7 (q, *J*_{C–F} = 29.2 Hz, *C*OH), 28.4 (s, *C*H₂CH₃), 23.8 (q, *J*_{C–F} = 1.1, *C*H₃), 15.3 (s, CH₂CH₃).

MS: calculated mass for C₁₁H₁₃F₃O: 218.09; measured mass: 218.10

Starting from **10a** (78 µL, 90.1 mg, 0.42 mmol) and following the general procedure described above (–30 °C, 24 h), the conversion to **10b** observed by ¹⁹F NMR was < 2%. In this case, it was necessary to increasing the temperature (25°C, 24h) in order to get the compound **10b** (93,4 mg, 97%) as a colorless oil. The conversion observed by ¹⁹F NMR was 76%. In these new conditions, the compound was obtained with a 73:27 enantiomeric ratio determined by GC using LIPODEX–E capillary column [isotherm conditions, T = 110 °C; t = 50 min]: $t_{mayor} = 34.040$ min, $t_{minor} = 36.731$ min.

¹H NMR (499.72 MHz, CDCl₃, 298 K): δ 7.49 (m, 2H, *o*–C*H*), 7.24 (m, 2H, *m*–C*H*), 2.93 (sp, *J*_{H–H} = 6.9 Hz, C*H*(CH₃)₂), 2.39 (s, 1H, O*H*), 1.77 (s, 3H, C*H*₃), 1.26 (d, *J*_{H–H} = 6.9 Hz, 6H, CH(C*H*₃)₂). ¹⁹F NMR (470.15 MHz, CDCl₃, 298 K): δ –80.90 (s, 3F, C*F*₃). ¹³C{¹H} NMR (125.67 MHz, CDCl₃, 298 K): δ 149.3 (s, *p*–*C*ⁱPr), 135.8 (s, *C*_{arom}–COH), 126.4 (s, *m*–CH), 125.9 (q, *J*_{C–F} = 1.3 Hz, *o*–CH), 125.6 (q, *J*_{C–F} = 285.2 Hz, CF₃), 74.7 (q, *J*_{C–F} = 29.1 Hz, COH), 33.7 (s, CH(CH₃)₂), 23.8 (q, *J*_{C–F} = 1.1, CH₃), 23.8 (s, CH(CH₃)₂).

MS: calculated mass for $C_{12}H_{15}F_3O$: 232.11; measured mass: 232.06

Starting from **11a** (71 μ L, 84.2 mg, 0.42 mmol) and following the general procedure described above (–30 °C, 24 h), compound **11b** (72.2 mg, 79%) was obtained as a colorless oil. The conversion observed by ¹⁹F NMR was > 99%. In these conditions, the compound was obtained with a 98:2 enantiomeric ratio determined by GC using LIPODEX–E capillary column [isotherm conditions, T = 110 °C; t = 30 min]: t_{mayor} = 21.014 min, t_{minor} = 22.092 min.

¹H NMR (499.72 MHz, CDCl₃, 298 K): δ 7.18 (s, 2H, *o*–CH), 7.02 (m, 1H, *p*–CH), 2.46 (s, 1H, OH), 2.36 (q, *J*_{H-F} = 0.6 Hz, 6H, CH₃), 1.77 (q, *J*_{H-F} = 1.1 Hz, 3H, CH₃). ¹⁹F NMR (470.15 MHz, CDCl₃, 298 K): δ –81.19 (s, 3F, CF₃). ¹³C{¹H} NMR (125.67 MHz, CDCl₃, 298 K): δ 138.5 (s, *C*_{arom}–COH), 138.0 (s, *m*–CMe), 130.3 (s, *p*–CH), 125.7 (q, *J*_{C-F} = 285.3 Hz, CF₃), 123.8 (q, *J*_{C-F} = 1.2 Hz, *o*–CH), 74.9 (q, *J*_{C-F} = 29.1 Hz, COH), 24.1 (q, *J*_{C-F} = 1.3 Hz, CH₃), 21.6 (s, *m*–CCH₃).

MS: calculated mass for $C_{11}H_{13}F_3O$: 218.09; measured mass: 218.02

OH

$$CF_3$$

OMe 1,1,1-trifluoro-2-(2-methoxyphenyl)propan-2-ol (12b)

Starting from **12a** (64 μ L, 85.0 mg, 0.42 mmol) and following the general procedure described above (–30 °C, 24 h), compound **12b** (32.1 mg, 32%) was obtained as a colorless oil. The conversion observed by ¹⁹F NMR was 64%. In these conditions, the compound was obtained with a 42:58 enantiomeric ratio determined by GC using LIPODEX–E capillary column [isotherm conditions, T = 110 °C; t = 30 min]: t_{minor} = 20.676 min, t_{mayor} = 21.698 min.

¹H NMR (499.72 MHz, CDCl₃, 298 K): δ 7.30–7.40 (m, 2H), 6.97–7.07 (m, 2H), 6.13 (s, 1H, O*H*), 3.93 (s, 3H, OC*H*₃), 1.79 (s, 3H, C*H*₃). ¹⁹F NMR (470.15 MHz, CDCl₃, 298 K): δ –81.43 (s, 3F, C*F*₃). ¹³C{¹H} NMR (125.67 MHz, CDCl₃, 298 K): δ 158.2 (s, *o*–COMe), 130.4 (s, *p*–CH), 129.5 (q, $J_{C-F} =$ 1.0 Hz, *o*–CH), 126.1 (q, $J_{C-F} = 287.2$ Hz, *CF*₃), 125.9 (s, C_{arom} –COH), 121.7 (s, *m*–CH), 112.6 (s, *m*– CH), 76.4 (q, $J_{C-F} = 29.6$ Hz, COH), 56.3 (s, OCH₃), 22.5 (q, $J_{C-F} = 1.6$ Hz, *C*H₃).

MS: calculated mass for C₁₀H₁₁F₃O₂: 220.07; measured mass: 220.05

Starting from **13a** (62 μ L, 85.0 mg, 0.42 mmol) and following the general procedure described above (–30 °C, 24 h), compound **13b** (65 mg, 71%) was obtained as a colorless oil. The conversion observed by ¹⁹F NMR was < 99%. In these conditions, the compound was obtained with a **92:8** enantiomeric ratio determined by HPLC using Lux–amyl–1_002–CH1 column [hexane/isopropanol (98:2), 1.0 mL/min]: τ_{major} = 23.550 min, τ_{minor} = 25.042 min.

¹H NMR (499.72 MHz, CDCl₃, 298 K): δ 7.18 (m, 2H, *o*-CH), 6.92 (m, 2H, *m*-CH), 3.82 (s, 3H, OCH₃), 2.46 (s, 1H, OH), 1.77 (q, *J*_{H-F} = 1.1 Hz, 3H, CH₃). ¹⁹F NMR (470.15 MHz, CDCl₃, 298 K): δ - 81.64 (s, 3F, CF₃). ¹³C{¹H} NMR (125.67 MHz, CDCl₃, 298 K): δ 159.7 (s, *p*-COMe), 130.9 (s, *C*_{arom}-COH), 127.6 (q, *J*_{C-F} = 1.1 Hz, *o*-CH), 125.8 (q, *J*_{C-F} = 285.2 Hz, *C*F₃), 113.7 (s, *m*-CH), 74.6 (q, *J*_{C-F} = 29.2 Hz, COH), 55.4 (s, OCH₃), 23.8 (q, *J*_{C-F} = 1.2 Hz, CH₃).

MS: calculated mass for $C_{10}H_{11}F_3O_2$: 220.07; measured mass:220.05

Starting from **14a** (91.7 mg, 0.42 mmol) and following the general procedure described above (–30 °C, 24 h), compound **14b** (72.4 mg, 74%) was obtained as a colorless oil. The conversion observed by ¹⁹F NMR was > 99%. In these conditions, the compound was obtained with a 91:9 enantiomeric ratio determined by GC using LIPODEX–E capillary column [T₀ = 130 °C; t_0 = 20 min; *ramp* = 10 °C /min; T_f = 140 °C; t_f = 20 min]: t_{mayor} = 36.232 min, t_{minor} = 37.381 min.

¹H NMR (499.72 MHz, CDCl₃, 298 K): δ 7.49 (m, 2H, o–CH), 7.31 (m, 2H, m–CH), 2.52 (s, 1H, OH), 2.50 (s, 3H, SCH₃), 1.76 (s, 3H, CH₃). ¹⁹F NMR (470.15 MHz, CDCl₃, 298 K): δ –81.07 (s, 3F, CF₃). ¹³C{¹H} NMR (125.67 MHz, CDCl₃, 298 K): δ 139.3 (s, p–CSMe), 135.1 (s, C_{arom} –COH), 126.5 (s, m– CH), 126.1 (s, o–CH), 125.5 (q, J_{C-F} = 285.3 Hz, CF₃), 74.6 (q, J_{C-F} = 29.3 Hz, COH), 23.7 (s, CH₃), 15.4 (s, SCH₃).

MS: calculated mass for C₁₀H₁₁F₃OS: 236.05; measured mass: 236.04

— 11 —

Starting from **15a** (97.6 mg, 0.42 mmol) and following the general procedure described above (–30 °C, 24 h), compound **15b** (68.3 mg, 66%) was obtained as a colorless oil. The conversion observed by ¹⁹F NMR was > 99%. In these conditions, the compound was obtained with a 7:93 enantiomeric ratio determined by HPLC using Chiralpak–AD column [hexane/isopropanol (97:3), 1 mL/min]: t_{minor} = 9.754 min, t_{mayor} = 10.887 min

¹H NMR (499.72 MHz, CDCl₃, 298 K): δ 7.48 (m, 2H, *o*–C*H*), 7.31 (m, 2H, *m*–C*H*), 3.0 (q, $J_{H-H} = 7.4$, 2H SC H_2 CH₃), 2.16 (s, 1H, OH), 1.75 (s, 3H, C H_3), 1.33 (t, $J_{H-H} = 7.4$, 3H, SCH₂C H_3). ¹⁹F NMR (470.15 MHz, CDCl₃, 298 K): δ –81.05 (s, 3F, C F_3). ¹³C{¹H} NMR (125.67 MHz, CDCl₃, 298 K): δ 137.6 (s, *p*–CSEt), 135.7 (s, C_{arom} –COH), 128.0 (s, *m*–CH), 126.6 (q, $J_{C-F} = 1.2$ Hz, *o*–CH), 125.5 (q, $J_{C-F} = 285.3$ Hz, CF_3), 74.6 (q, $J_{C-F} = 29.3$ Hz, COH), 27.1 (s, SCH₂CH₃), 23.7 (s, CH₃), 14.2 (s, SCH₂CH₃).

MS: calculated mass for C₁₁H₁₃F₃OS: 250.06; measured mass: 250.06

4. NMR spectra of the fluoroalkyl alcohols

S 2. ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) of **1b**.

S 5. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) of **2b**.

S 7. ¹H NMR (500 MHz, CDCl₃, 298 K) of **3b**

S 8. ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) of **3b**.

S 9. ¹⁹F NMR (470 MHz, CDCl₃, 298 K) of **3b**

S 11. ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) of **4b**

S 12. ¹⁹F NMR (470 MHz, CDCl₃, 298 K) of **4b**

S 13. ¹H NMR (500 MHz, CDCl₃, 298 K) of **5b**

S 14. ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) of **5b**

— 28 —

S 17. ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) of **6b**

S 19. ¹H NMR (400 MHz, CDCl₃, 298 K) of **7b**

S 20. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) of **7b**

S 21. ¹⁹F NMR (376 MHz, CDCl₃, 298 K) of **7b**

S 23. ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) of **8b**.

— 37 —

S 26. ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) of **9b**

— 41 —

S 29. ¹³C{¹H } NMR (100 MHz, CDCl₃, 298 K) of **10b**.

AVB-7-completo

Bruker BioSpin GmbH376.51 MHz CDCl3 294.6°C

S 32. ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) of **11b**.

S 33. ¹⁹F NMR (470MHz, CDCl₃, 298 K) of **11b**

S 34. ¹H NMR (500 MHz, CDCl₃, 298 K) of **12b**

S 35. ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) of **12b**

S 36. ¹⁹F NMR (470 MHz, CDCl₃, 298 K) of **12b**

S 37. ¹H NMR (500 MHz, CDCl₃, 298 K) of **13b**

S 38. ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) of **13b**

S 39. ¹⁹ F NMR (470 MHz, CDCl₃, 298 K) of **13b**

S 40. ¹H NMR (400 MHz, CDCl₃, 298 K) of **14b**

S 41. ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) of **14b**

AVB-11-completo

Bruker BioSpin GmbH376.51 MHz CDCl3 300.9°C

S 42. ¹⁹ F NMR (376 MHz, CDCl₃, 298 K) of **14b**

S 43. ¹H NMR (500 MHz, CDCl₃, 298 K) of **15b**

S 44. ¹³C{¹H} NMR (126 MHz, CDCl₃, 298 K) of **15b**

S 45. $^{\rm 19}$ F NMR (470 MHz, CDCl₃, 298 K) of ${\rm 15b}$

5. Results of enantioselective addition of ZnMe₂ to (T)FAKs in toluene and in DCM. The conversions (¹⁹F NMR integration) and enantiomeric excesses (chiral GC or HPLC analysis) of the products (C6H4R)C(CF2X)(Me)(OH) are presented.

S 46. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **1a** in DCM at –30 °C.

AVB-R20180101-A Coversion (CH2Cl2)

Bruker BioSpin GmbH376.51 MHz CD2Cl2 298.9°C

S 47. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **1a** in toluene at –30 °C.

S 48. Enantiomeric resolution by chiral HPLC from racemic compound 1a.

S 49. Enantiomeric resolution by HPLC from the organic layer after the hydrolysis of enantioselective addition of $ZnMe_2$ to TFMK **1a** in DCM at -30 °C.

Sample Name: A -T Acq. Operator : marta Seq. Line : 2 Acq. Instrument : LC-PREP Location : Vial 2 Injection Date : 5/15/2018 2:07:48 PM Inj: 1 Inj Volume : 1 µl : C:\CHEM32\1\DATA\ANDREA\ANDREA_JM 2018-05-15 13-24-45\ANDREA_JM.M Acq. Method Last changed : 5/15/2018 1:24:44 PM by marta Analysis Method : C:\CHEM32\1\METHODS\ANDREA_JM.M Last changed : 5/15/2018 1:24:44 PM by marta DAD1 A, Sig=254,4 Ref=360,100 (C:\CHEM32\1\DATA\ANDREA\ANDREA_JM 2018-05-15 13-24-45\A -601.D) Norm 400 -350 -OH 300 -CHF₂ 250 -200 -150 -3.524 100 -50 -0. 12 18 min _____ Area Percent Report Sorted By 2 Signal Multiplier: 1.0000 1 Dilution: . 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=254,4 Ref=360,100 Height [mAU] Peak RetTime Type Width Area Area [min] [mAU*s] # [min] 8 ----|-----|-----|------|------|------1 7.803 BV 0.1916 5141.78564 406.31320 83.6057 2 8.524 VB 0.1958 1008.25836 77.99348 16.3943 Totals : 6150.04401 484.30668

Data File C:\CHEM32\1\DATA\ANDREA\ANDREA_JM 2018-05-15 13-24-45\A -601.D

LC-PREP 7/4/2018 11:27:58 AM marta

Page 1 of 2

S 50. Enantiomeric resolution by HPLC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **1a** in toluene at −30 °C

AVB-R201800313-B Coversion (CH2Cl2)

Bruker BioSpin GmbH376.51 MHz CD2Cl2 294.1°C

S 51. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **2a** in DCM at –30 °C.

AVB-R20180501-B Coversion (CH2Cl2)

Bruker BioSpin GmbH376.51 MHz CD2Cl2 294.7°C

S 52. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **2a** in toluene at –30 °C.

S 53. Enantiomeric resolution by chiral GC from racemic compound 2a.

S 54. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **2a** in DCM at –30 °C.

S 55. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK 2a in toluene at -30 °C

AVB-C-Conversion_CH2Cl2__FLUORINE_01 AVB-C-Conversion_CH2Cl2_

Varian470.17 MHz cd2cl2 25.0°C

S 56. ¹⁹F NMR (470 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **3a** in DCM at –30 °C.

AVB-R20180501-C Coversion (CH2Cl2)

Bruker BioSpin GmbH376.51 MHz CD2Cl2 295.5°C

S 57. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **3a** in toluene at –30 °C.

S 58. Enantiomeric resolution by chiral GC from racemic compound 3b.

S 59. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **3a** in DCM at –30 °C.

S 60. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **3a** in toluene at -30 °C.

AVB-D-Conversion_CH2Cl2__FLUORINE_01 AVB-C-Conversion_CH2Cl2_

Varian470.17 MHz cd2cl2 25.0°C

S 61. ¹⁹F NMR (470 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **4a** in DCM at –30 °C.

AVB-R20180101-D Coversion (CH2Cl2)

Bruker BioSpin GmbH376.51 MHz CD2Cl2 298.5°C

S 62. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **4a** in toluene at –30 °C.

S 63. Enantiomeric resolution by chiral GC from racemic compound 4b.

S 64. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **4a** in DCM at –30 °C.

S 65. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK 4a in toluene at -30 °C.

S 66. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **5a** in DCM at –30 °C.

S 67. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **5a** in toluene at –30 °C.

S 68. Enantiomeric resolution by chiral GC from racemic compound 5b.

S 69. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **5a** in DCM at -30 °C.

S 70. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK 5a in toluene at -30 °C.

AVB-R201800313-3 Coversion (CH2Cl2)

Bruker BioSpin GmbH376.51 MHz CD2Cl2 294.1ºC

S 71.¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **6a** in DCM at -30 °C.

AVB-R20180501-3 Coversion (CH2Cl2)

--72.464

Bruker BioSpin GmbH376.51 MHz CD2Cl2 294.6°C

CF3

S 72. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **6a** in Toluene at –30 °C.

S 73. Enantiomeric resolution by chiral GC from racemic compound 6b.

S 74. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **6a** in DCM at –30 °C.

S 75. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **6a** in toluene at -30 °C.

S 76. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **7a** in DCM at –30 °C.

S 77. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **7a** in toluene at –30 °C.

S 78. Enantiomeric resolution by chiral GC from racemic compound 7b.

S 79. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **7a** in DCM at –30 °C.

S 80. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK 7a in toluene at -30 °C.

S 81. ¹⁹F NMR (470 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **8a** in DCM at –30 °C.

AVB-R20180101-5 Coversion (CH2Cl2)

Bruker BioSpin GmbH376.51 MHz CD2Cl2 298.5°C ЮН KCF₃ Me 0.35 --99.65 -80 f1 (ppm) 10 -20 -30 -10 -40 -50 -60 -70 -90 -100 -110 -120 -130 -140 -150 -170 0 -160

S 82. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **8a** in toluene at –30 °C.

S 83. Enantiomeric resolution by chiral GC from racemic compound 8a.

S 84. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **8a** in DCM at -30 °C.

S 85. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK 8a in toluene at -30 °C.

S 86. ¹⁹F NMR (470 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **9a** in DCM at –30 °C.

S 87. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **9a** in toluene at –30 °C.

S 88. Enantiomeric resolution by chiral GC from racemic compound 9b.

S 89. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **9a** in DCM at –30 °C.

S 90. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK 9a in toluene at -30 °C.

Varian470.17 MHz cd2cl2 25.0°C

S 91. ¹⁹F NMR (470 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **9a** in DCM at –30 °C.

AVB-R20180101-7 Coversion (CH2Cl2)

Bruker BioSpin GmbH376.51 MHz CD2Cl2 298.7°C

--72.797

S 92. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **9a** in toluene at –30 °C.

S 93. ¹⁹F NMR (470 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **10a** in DCM at 25 °C.

S 94. Enantiomeric resolution by chiral GC from racemic compound 10b.

S 95. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **10a** in DCM at 25 °C

S 96. ¹⁹F NMR (470 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **11a** in DCM at –30 °C.

AVB-R20180501-8 Coversion (CH2Cl2)

Bruker BioSpin GmbH376.51 MHz CD2Cl2 294.6°C

S 97. ¹⁹F NMR (470 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **11a** in toluene at –30 °C.

S 98. Enantiomeric resolution by chiral GC from racemic compound 11b.

S 99. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **11a** in DCM at –30 °C.

S 100. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **11a** in toluene at –30 °C.

S 101. ¹⁹F NMR (470 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **12a** in DCM at –30 °C.

AVB-R20180501-9 Coversion (CH2Cl2)

Bruker BioSpin GmbH376.51 MHz CD2Cl2 294.7°C

CF3 OMe

-75.231

S 102. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **12a** in toluene at –30 °C.

S 103. Enantiomeric resolution by chiral GC from racemic compound 12b.

S 104. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK 12a in DCM at -30 °C.

S 105. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **12a** in toluene at -30 °C.

S 106. ¹⁹F NMR (470 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **13a** in DCM at –30 °C.

S 107. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **13a** in toluene at –30 °C.

Chromatogram

S 108. Enantiomeric resolution by chiral HPLC from racemic compound 13a

S 109. Enantiomeric resolution by HPLC from the organic layer after the hydrolysis of enantioselective addition of $ZnMe_2$ to TFMK **13a** in DCM at -30 °C.

Chromatogram

S 110. Enantiomeric resolution by HPLC from the organic layer after the hydrolysis of enantioselective addition of $ZnMe_2$ to TFMK **13a** in toluene at -30 °C.

AVB-11-Conversion_CH2Cl2__FLUORINE_01 AVB-C-Conversion_CH2Cl2_

Varian470.17 MHz cd2cl2 25.0°C

S 111. ¹⁹F NMR (470 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **14a** in DCM at –30 °C.

AVB-R20180501-11_OK Coversion (CH2Cl2)

Bruker BioSpin GmbH376.51 MHz CD2Cl2 294.7°C

S 112. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **14a** in toluene at –30 °C.

S 113. Enantiomeric resolution by chiral GC from racemic compound 14b

S 114. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **14a** in DCM at –30 °C.

S 115. Enantiomeric resolution by GC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **14a** in toluene at –30 °C.

S 116. ¹⁹F NMR (470 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **15a** in DCM at –30 °C.

AVB-R20180501-12Coversion (CH2Cl2)

Bruker BioSpin GmbH376.51 MHz CD2Cl2 294.7°C

S 117. ¹⁹F NMR (376 MHz, CH₂Cl₂, 298 K) from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **15a** in toluene at –30 °C.

Data File C:\CHEM32\1\DATA\C18034\ANDREA JM 2018-03-15 14-16-26\12.D

LC-PREP 3/15/2018 6:13:26 PM marta

Page 1 of 2

S 118. Enantiomeric resolution by chiral HPLC from racemic compound 15a.

Data File C:\CHEM32\1\DATA\C18034\ANDREA_JM 2018-03-26 18-30-43\12 2018_03_182.D Sample Name: 12 2018_03_18

Acq. Operator : marta Seq. Line : 1 Acq. Instrument : LC-PREP Location : Vial 21 Injection Date : 3/26/2018 6:47:36 PM Inj: 2 Inj Volume : 1 µl : C:\CHEM32\1\DATA\C18034\ANDREA_JM 2018-03-26 18-30-43\ANDREA_JM.M Acq. Method Last changed : 3/20/2018 12:48:21 PM by marta Analysis Method : C:\CHEM32\1\METHODS\ACHETATO.M Last changed : 3/26/2018 6:13:38 PM by marta (modified after loading) Sample Info : HEXANO/IPA 97/3

S 119. Enantiomeric resolution by HPLC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **15a** in DCM at –30 °C.

Data File C:\CHEM32\1\DATA\ANDREA\ANDREA_JM 2018-05-15 13-24-45\A RAC1.D Sample Name: 12-T

Acq. Operator	:	marta	Seq	. Li	ne	:	1		
Acq. Instrument	:	LC-PREP	Lo	cati	on	: V	ial	1	
Injection Date	÷	5/15/2018 1:25:32 PM		I	nj	:	1		
		I	inj	Volu	me	: 1	μl		
Acq. Method	:	C:\CHEM32\1\DATA\ANDREA\ANDREA_	JM	2018	-05	-15	13-	-24-45\ANDREA	JM.M
Last changed	÷	5/15/2018 1:24:44 PM by marta							
Analysis Method	:	C:\CHEM32\1\METHODS\ANDREA_JM.M	1						
Last changed	÷	5/15/2018 1:24:44 PM by marta							
Sample Info	÷	HEXANO/IPA 95/5							

LC-PREP 7/4/2018 11:26:40 AM marta

Page 1 of 2

S 120. Enantiomeric resolution by HPLC from the organic layer after the hydrolysis of enantioselective addition of ZnMe₂ to TFMK **15a** in toluene at –30 °C.