Electronic Supplementary Information

Experimental section

Materials: Tannic acid (TA), silver nitrate (AgNO₃) and K_2CO_3 were purchased from Aladdin Ltd. (Shanghai, China). All reagents were used as received without further purification. The water used throughout all experiments was purified through a Millipore system.

Synthesis of Ag nanosheet: Firstly, 60 mL of 3 mM TA aqueous solution was prepared and taken into the beaker. This solution was adjusted at pH=7 by adding 0.5 M K₂CO₃ aqueous solution. Secondly, 60 mL of 3 mM AgNO₃ was added into the above solution with vigorous magnetic stirring for 5 h at room temperature and kept absent of light by using aluminum foil. Thirdly, the reaction mixture was centrifuged at 5000 rpm for 30 min.¹ The obtained precipitate was carefully washed with distilled water and ethanol for a dozen times, aiming to completely remove the NO₃⁻. Then, the precipitate was dried at 60 °C for 12 h. Finally, the dried precipitate was well grinded to obtain the fine powder.

Characterization: XRD data were collected on X-ray diffractometer (Philip Company, Pw1730) equipped with a Cu K α radiation (λ =1.5418 Å). TEM measurements were carried out on a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. UV-Vis spectra were measured applying a SHIMADZU UV-2700 ultraviolet-visible (UV-Vis) spectrophotometer.

Electrochemical measurement: NRR tests were performed in a two-compartment cell separated by Nafion 211 membrane under ambient condition. The membrane was protonated by first boiling in ultrapure water for 1 h and treating in H_2O_2 (5 wt%) aqueous solution at 80 °C for another 1 h. Then, the membrane was treaded in 0.5 M H_2SO_4 for 3 h at 80 °C and finally in water for 6 h. The electrochemical experiments were tested with an electrochemical workstation (CHI 660E) using a three-electrode configuration with prepared electrode, graphite rod and Ag/AgCl electrode (saturated KCl electrolyte) as working electrode, counter electrode and reference electrode, respectively. The potentials reported in this work were converted to reversible

hydrogen electrode (RHE) scale via calibration with the following equation: E (vs. RHE) = E (vs. Ag/AgCl) + 0.256 V and the presented current density was normalized to the geometric surface area. For electrochemical NRR tests, the 0.1 M HCl electrolyte was bubbled with N₂ for 30 min before the measurement.

of NH₃: The concentration of produced NH₃ Determination was spectrophotometrically determined by the indophenol blue method.² In detail, 2 mL of post-tested electrolyte was taken from the cathodic compartment and transferred into a 10 mL plastic tube. Then, 2 mL of 1 M NaOH solution (containing 5% salicylic acid and 5% sodium citrate), 1 mL of 0.05 M NaClO and 0.2 mL of 1% C₅FeN₆Na₂O·2H₂O were added into the above solution. After standing at room temperature and keeping out of the light for 2 h, the UV-Vis absorption was measured at a wavelength of 655 nm. The concentrationabsorbance curves were calibrated using standard NH₄Cl solution with a serious of concentrations. The fitting curve (y = 0.3563x + 0.0427, $R^2 = 0.999$) shows good linear relation of absorbance value with NH4⁺ concentration by three times independent calibrations. The NH₃ concentration was calculated from the calibration curve and the NH₃ yield rate was calculated using the following equation:

NH₃ yield rate= $(c_{NH3} \times V) / (17 \times t \times A)$

Where c_{NH3} is the measured NH₃ concentration, V is the volume of electrolyte, t is the reduction reaction time, and A is the geometric area of the cathode (1×1 cm⁻²). **Determination of FE:** Assuming three electrons were needed to produce one NH₃ molecule, the FE in 0.1 M HCl could be calculated as follows:

$$FE = 3F \times c_{NH3} \times V / 17 \times Q$$

Where F is the Faraday constant, Q is the quantity of applied electricity.

Determination of N₂H₄: N₂H₄ presented in the electrolyte was estimated by the method of Watt and Chrisp.³ A mixed solution of 5.99 g C₉H₁₁NO, 30 mL HCl and 300 mL ethanol was used as a color reagent. The calibration curve was plotted as follow: a series of reference solutions with increasing concentration of N₂H₄·H₂O solution were prepared, their calibration concentrations are: 0, 0.1, 0.2, 0.3, 0.4 and

0.5 μ g mL⁻¹, and then 5 mL color reagent was added into each solution under stirring for 15 min at room temperature, finally the absorbance was measured at 455 nm. The obtained calibration curve is y=1.0334x + 0.0348, R²=0.999. The yields of N₂H₄ after NRR electrolysis were estimated by using 5 mL residual electrolyte mixed with 5 mL color reagent (also under stirring for 15 min at 25 °C).

Fig. S1. (a) UV-Vis absorption spectra of indophenol assays with $NH_{4^{+}}$ ions after incubation for 2 h at room temperature. (b) Calibration curve used for estimation of NH_{3} concentration.

Fig. S2. (a) UV-Vis absorption spectra of various N_2H_4 concentrations after incubation for 15 min at room temperature. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S3. NH₃ yield rates and FEs of Ag/CPE under different flow rates operated at - 0.60 V.

Fig. S4. UV-Vis absorption spectra of electrolytes at each given potential stained with $p-C_9H_{11}NO$ indicator after 2h NRR electrolysis.

Fig. S5. The amount of NH_3 produced vs. reaction time at -0.60 V

.

Fig. S6. (a) Time dependent current density curves at various potentials Ag/CPE in 0.05 M HCl. (b) UV-Vis absorption spectra of the electrolytes colored with indophenol indicator after 2-h NRR electrolysis at different potentials. (c) NH_3 yield rates and (d) FEs at corresponding given potentials.

Fig. S7. (a) Time dependent current density curves at various potentials Ag/CPE in 0.2 M HCl. (b) UV-Vis absorption spectra of the electrolytes colored with indophenol indicator after 2 h NRR electrolysis at different potentials. (c) NH₃ yield rates and (d) FEs at corresponding given potentials.

Fig. S8. (a) Time dependent current density curves at various potentials Ag/CPE in 0.5 M LiClO₄. (b) UV-Vis absorption spectra of the electrolytes colored with indophenol indicator after 2 h NRR electrolysis at different potentials. (c) NH_3 yield rates and (d) FEs at corresponding given potentials.

Fig. S9. (a) Time dependent current density curves at various potentials Ag/CPE in 0.1 M KOH. (b) UV-Vis absorption spectra of the electrolytes colored with indophenol indicator after 2 h NRR electrolysis at different potentials. (c) NH_3 yield rates and (d) FEs at corresponding given potentials.

Catalyst	Electrolyte	Conditions	NH ₃ yield rate	FE (%)	Ref.
Ag/CPE	0.1 M HCl	25 °C	$4.62 \times 10^{-11} \text{ mo1 s}^{-1} \text{ cm}^{-2}$	4.8	This work
Mo nanofilm	0.01 M H ₂ SO ₄	25 °C	$3.09 \times 10^{-11} \text{ mo1 s}^{-1} \text{ cm}^{-2}$	0.72	4
PEBCD/C	0.5 M Li ₂ SO ₄	25 °C	$2.58 \times 10^{-11} \text{ mo1 s}^{-1} \text{ cm}^{-2}$	2.85	5
Fe ₂ O ₃ -CNT	KHCO ₃	20 °C	$0.36 \times 10^{-11} \text{ mo1 s}^{-1} \text{ cm}^{-2}$	0.15	6
MoS ₂ /CC	$0.1 \text{ M Na}_2 \text{SO}_4$	25 °C	$8.08 \times 10^{-11} \text{ mo1 s}^{-1} \text{ cm}^{-2}$	1.17	7
MoO ₃	0.1 M HCl	25 °C	29.43 $\mu g h^{-1} m g^{-1}_{cat.}$	1.9	8
Fe ₃ O ₄ /Ti	0.1 M Na ₂ SO ₄	25 °C	$5.6 \times 10^{-11} \text{ mo1 s}^{-1} \text{ cm}^{-2}$	2.6	9
Mo ₂ N	0.1 M HCl	25 °C	78.4 $\mu g h^{-1} m g^{-1}{}_{cat.}$	4.5	10
MoN	0.1 M HCl	25 °C	$3.01 \times 10^{-10} \text{ mo1 s}^{-1} \text{ cm}^{-2}$	1.15	11
VN	0.1 M HCl	25 °C	$8.40 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	2.25	12
Ru/C	2 М КОН	20 °C	$0.34 \times 10^{-11} \text{ mo1 s}^{-1} \text{ cm}^{-2}$	0.28	13
a-Au/CeO _x -RGO	0.1 M HCl	25 °C	$8.3 \ \mu g \ h^{-1} \ mg^{-1}_{cat.}$	10.10	14
TiO ₂	0.1 M Na ₂ SO ₄	25 °C	$9.16 \times 10^{-11} \text{ mol s}^{-1} \cdot \text{cm}^{-2}$	2.5%	15
TiO ₂ -rGO	0.1 M Na ₂ SO ₄	25 °C	$15.13 \ \mu g \ h^{-1} \ mg^{-1}_{cat.}$	3.3%	16

Table S1. Comparison of the NRR performances for Ag/CPE with other reportedNRR electrocatalysts at ambient conditions.

References

- Z. Yi, X. Li, X. Xu, B. Luo, J. Luo, W. Wu, Y. Li and Y. Tang, *Colloid. Surface. A*, 2011, **392**, 131–136.
- 2 D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, *Nat. Mater.*, 2013, **12**, 836–841.
- 3 G. W. Watt and J. D. Chrisp, *Anal. Chem.*, 1952, **24**, 2006–2008.
- 4 D. Yang, T. Chen and Z. Wang, J. Mater. Chem. A, 2017, 5, 18967–18971.
- 5 G. Chen, X. Cao, S. Wu, X. Zeng, L. Ding, M. Zhu and H. Wang, J. Am. Chem. Soc., 2017, 139, 9771–9774.
- 6 S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, *Angew. Chem.*, *Int. Ed.*, 2017, **56**, 2699–2703.
- 7 L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Mater.*, 2018, **30**, 1800191.
- 8 J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li and X. Sun, J. Mater. Chem. A, 2018, 6, 12974–12977.
- 9 Q. Liu, X. Zhang, B. Zhang, Y. Luo, G. Cui, F. Xie and X. Sun, *Nanoscale*, 2018, 10, 14386–14389.
- X. Ren, G. Cui, L. Chen, F. Xie, Q. Wei, Z. Tian and X. Sun, *Chem. Commun.*, 2018, 54, 8474 8477.
- R. Zhang, Y. Zhang, X. Ren, G. Cui, A. M. Asiri, B. Zheng and X. Sun, ACS Sustainable Chem. Eng., 2018, 6, 9545–9549.
- 12 R. Zhang, Y. Zhang, X. Ren, G. Cui, A. M. Asiri, B. Zheng and X. Sun, ACS Sustainable Chem. Eng., 2018, DOI: 10.1021/acssuschemeng.8b01261.
- 13 V. Kordali, G. Kyriacou and C. Lambrou, Chem. Commun., 2000, 17, 1673–1674.
- S. Li, D. Bao, M. Shi, B. Wulan, J. Yan and Q. Jiang, *Adv. Mater.*, 2017, 29, 1700001.
- 15 R. Zhang, X. Ren, X. Shi, F. Xie, B. Zheng, X. Guo and X. Sun, ACS Appl. Mater. Interfaces, 2018, 10, 28251–28255.
- X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, T. Li and X. Sun, J. Mater. Chem.
 A, 2018, DOI: 10.1039/C8TA05627G.