Nickel-Catalysed Alkylation of $\mathbf{C}\left(\mathbf{s p}^{\mathbf{3}}\right)$-H Bond with Alcohols: Direct Access to Functionalised N-Heteroaromatics

Mari Vellakkaran, ${ }^{\ddagger}$ Jagadish Das, ${ }^{\ddagger}$ Sourajit Bera, and Debasis Banerjee*
Department of Chemistry
Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, India
E-mail: dbane.fcy@iitr.ac.in

Table of Contents
General Experimental S2
General Experimental Procedure S2
Alkylation of 2-methylquinolines with alcohols S3
Analytical Data S15
References S21
${ }^{1}$ H NMR, ${ }^{13}$ C NMR and HRMS Spectra for selected compounds S22

[1.1] General Experimental Details:

All solvents and reagents were used, as received from the suppliers. TLC was performed on Merck Kiesel gel 60, F_{254} plates with the layer thickness of 0.25 mm . Column chromatography was performed on silica gel (100-200 mesh) using a gradient of ethyl acetate and hexane as mobile phase. ${ }^{1} \mathrm{H}$ NMR spectral data were collected at, 400 MHz (JEOL), 500 MHz (Bruker) and ${ }^{13} \mathrm{C}$ NMR were recorded at 100 MHz . ${ }^{1} \mathrm{H}$ NMR spectral data are given as chemical shifts in ppm followed by multiplicity (s- singlet; d- doublet; t- triplet; q- quartet; m - multiplet), number of protons and coupling constants. ${ }^{13} \mathrm{C}$ NMR chemical shifts are expressed in ppm. Elemental analysis data were recorded in Vario Micro Cube. GC-MS were recorded using Agilent GC Mass Spectrometer. HRMS (ESI) spectral data were collected using Bruker High Resolution Mass Spectrometer. All the reactions were performed in a close system using Schlenk tube. All nickel salts were purchased from Sigma Aldrich. Nickel(II) bromide (Assay- 98\%; CAS Number 13462-88-9; EC Number 236-665-0; Pack Size- No 217891-10G). Potassium tert-butoxide was purchased from Avra Synthesis Pvt. Ltd., India. (Purity-98\%, CAS No: 865-47-4, Catalog No- ASP2012).

[1.2] General Procedure for Nickel Catalysed Alkylation of Methylquinolines with

 Primary Alcohols:
Procedure A:

In a 15 mL oven dried Schlenk tube, quinaldine (0.25 mmol), t-BuOK (0.25 mmol), NiBr_{2} $(10 \mathrm{~mol} \%)$, Phen $(50 \mathrm{~mol} \%)$, and alcohols $(0.50 \mathrm{mmol})$ were added followed by toluene 2.0 mL under an atmosphere of N_{2} and the reaction mixture was heated at $140{ }^{\circ} \mathrm{C}$ for 24 h in closed system. The reaction mixture was cooled to room temperature and 3.0 mL of ethyl acetate was added and concentrated in vacuo. The residue was purified by column chromatography using a gradient of hexane and ethyl acetate (eluent system) to afford the pure product.

Procedure B:

In a 15 mL oven dried Schlenk tube, quinaldine (0.25 mmol), t-BuOK (0.375 mmol), NiBr_{2} $(10 \mathrm{~mol} \%)$, Phen $(50 \mathrm{~mol} \%)$, and alcohols $(0.50 \mathrm{mmol})$ were added followed by toluene 2.0 mL under an atmosphere of N_{2} and the reaction mixture was heated at $140{ }^{\circ} \mathrm{C}$ for 24 h in close system. The reaction mixture was cooled to room temperature and 3.0 mL of ethyl acetate was added and concentrated in vacuo. The residue was purified by column
chromatography using a gradient of hexane and ethyl acetate (eluent system) to afford the pure product.

Procedure C:

In a 15 mL oven dried Schlenk tube, quinaldine (0.25 mmol), t-BuOK (0.50 mmol), NiBr_{2} ($20 \mathrm{~mol} \%$), Phen ($100 \mathrm{~mol} \%$), and alcohols (1.0 mmol) were added followed by toluene 2.0 mL under an atmosphere of N_{2} and the reaction mixture was heated at $140{ }^{\circ} \mathrm{C}$ for 24 h in close system. The reaction mixture was cooled to room temperature and 3.0 mL of ethyl acetate was added and concentrated in vacuo. The residue was purified by column chromatography using a gradient of hexane and ethyl acetate (eluent system) to afford the pure product.

[1.3] Alkylation of 2-methylquinolines with alcohols:

Table S1: Screening of catalyst ${ }^{a}$

Entry	Ni-Catalyst	GC-MS Conversion 3a (\%)	GC-MS Conversion 3a' (\%)
1	NiCl_{2}	53	47
$\mathbf{2}$	$\mathbf{N i B r}_{2}$	$\mathbf{7 3}(\mathbf{7 0 \%})^{b}$	$\mathbf{2 5}$
2	$\mathrm{Ni}(\mathrm{acac})_{2}$	30	34
3	$\mathrm{NiCl}_{2}(\mathrm{DME})$	13	48
4	$\mathrm{Ni}(\mathrm{COD})_{2}$	8	22
5	No Catalyst	0	0

Reaction condition:[a] Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), Ni Cat. ($10 \mathrm{~mol} \%$), Phen $(20 \mathrm{~mol} \%), t$-BuOK $(0.25 \mathrm{mmol})$, Toluene $(2.0 \mathrm{~mL})$, Schlenk tube under nitrogen atmosphere, $130^{\circ} \mathrm{C}$ oil bath, 24 h reaction time. [b] Isolated yield average of two run.

Table S2: Screening of ligands ${ }^{\text {a }}$

Entry	Ligand	GC-MS Conversion 3a (\%)	GC-MS Conversion 3a' ${ }^{(\%)}$
1		73 (70\%) ${ }^{\text {b }}$	25
2		1	9
3		0	12
4		2	47
5		0	10
9	No Ligand	8	22

Reaction condition:[a] Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), NiBr_{2} ($10 \mathrm{~mol} \%$), Ligand $(\mathbf{2 0} \mathbf{~ m o l} \%), t$-BuOK (0.25 mmol), Toluene (2.0 mL), Schlenk tube under nitrogen atmosphere, $130^{\circ} \mathrm{C}$ oil bath, 24 h reaction time. [b] Isolated yield average of two run.

Table S3: Screening of base ${ }^{\text {a }}$

Entry	Base	GC-MS Conversion 3a (\%)	GC-MS Conversion 3a' (\%)
$\mathbf{1}$	\boldsymbol{t}-BuOK	$\mathbf{7 3}(\mathbf{7 0 \%})^{b}$	$\mathbf{2 5}$

2	t-BuONa	14	39
3	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	0	18
4	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	2	12

Reaction condition:[a] Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), NiBr_{2} ($10 \mathrm{~mol} \%$), Phen (20 $\mathrm{mol} \%$), Base ($\mathbf{0 . 2 5} \mathbf{~ m m o l}$), Toluene (2.0 mL), Schlenk tube under nitrogen atmosphere, $130^{\circ} \mathrm{C}$ oil bath, 24 h reaction time. [b] Isolated yield average of two run.

Table S4: Screening of solvents ${ }^{\text {a }}$

Entry	Solvent	GC-MS Conversion 3a (\%)	GC-MS Conversion 3a’ (\%)
$\mathbf{1}$	Toluene	$\mathbf{7 3}(\mathbf{7 0 \%})^{b}$	$\mathbf{2 5}$
2	p-Xylene	34	40
3	1,4 -Dioxane	1	5
4	DMA	0	0
5	t-Amylalcohol	0	1

Reaction condition:[a] Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), NiBr_{2} ($10 \mathrm{~mol} \%$), Phen (20 $\mathrm{mol} \%), t$-BuOK (0.25 mmol), Solvent ($\mathbf{2 . 0} \mathbf{~ m L}$), Schlenk tube under nitrogen atmosphere, $130^{\circ} \mathrm{C}$ oil bath, 24 h reaction time. [b] Isolated yield average of two run.

Table S5: Screening of base equivalents ${ }^{\text {a }}$

Entry	Base Equivalent (X equiv.)	GC-MS Conversion 3a (\%)	GC-MS Conversion 3a’ (\%)
$\mathbf{1}$	\boldsymbol{t}-BuOK (1.0 equiv.)	$\mathbf{7 3 (7 0 \%) ^ { b }}$	$\mathbf{2 5}$
2	t-BuOK (0.75 equiv.)	12	35

3	t-BuOK (0.50 equiv.)	9	29
4	t-BuOK (0.25 equiv.)	0	1
5	-	0	0

Reaction condition:[a] Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), $\mathrm{NiBr}_{2}(10 \mathrm{~mol} \%)$, Phen (20 $\mathrm{mol} \%$), t-BuOK (X equiv.), Toluene (2.0 mL), Schlenk tube under nitrogen atmosphere, $130^{\circ} \mathrm{C}$ oil bath, 24 h reaction time. [b] Isolated yield average of two run.

Table S6: Screening of Catalyst and Ligand Loading a

Entry	Cat. (X mol\%)	$\begin{gathered} \hline \text { Ligand (Y } \\ \text { mol\%) } \end{gathered}$	GC-MS Conversion 3a (\%)	GC-MS Conversion 3a' (\%)
1	$\mathrm{NiBr}_{2} \mathbf{(1 0 ~ m o l \%)}$	Phen ($20 \mathrm{~mol} \%$)	73 (70\%) ${ }^{\text {b }}$	25
2	$\mathrm{NiBr}_{2}(10 \mathrm{~mol} \%)$	Phen (30 mol\%)	27	58
3	$\mathrm{NiBr}_{2}(10 \mathrm{~mol} \%)$	Phen (40 mol\%)	65	34
4	$\mathrm{NiBr}_{2} \mathbf{(1 0 ~ m o l \%)}$	Phen ($50 \mathrm{~mol} \%$)	100 (96\%) ${ }^{\text {b }}$	0
$5{ }^{\text {c }}$	$\mathrm{NiBr}_{2} \mathbf{(1 0 ~ m o l \%)}$	Phen ($50 \mathrm{~mol} \%$)	100 (97\%) ${ }^{\text {b }}$	0
6	$\mathrm{NiBr}_{2}(5.0 \mathrm{~mol} \%)$	Phen (25 mol\%)	13	18
7	$\mathrm{NiBr}_{2}(2.5 \mathrm{~mol} \%)$	Phen ($12.5 \mathrm{~mol} \%$)	8	36
8	-	-	0	0

Reaction condition:[a] Quinaldine 1a (0.25 mmol), Benzyl alcohol 2a (0.50 mmol), $\mathbf{N i B r}_{2}(\mathbf{X ~ m o l} \%$), Phen (\mathbf{Y} $\mathbf{m o l} \%$), t-BuOK (0.25 mmol), Toluene (2.0 mL), Schlenk tube under nitrogen atmosphere, $130^{\circ} \mathrm{C}$ oil bath, 24 h reaction time. [b] Isolated yield average of two run. [c] $140^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Deuterium incorporation studies:

Scheme S1:

Conversion was calculated by ${ }^{1} \mathrm{H}$-NMR integration value

		Deuterium incorporation in $\boldsymbol{\alpha}$ position	Deuterium incorporation in $\boldsymbol{\beta}$ position
Signal δ ppm	$7.21(1 \mathrm{H})$	$3.29(2 \mathrm{H})$	$3.15(2 \mathrm{H})$
Integral Value	1.0	0.91	0.43
Calculated ratio		$\{(2-0.91) / 2\} \times 100=$	$\mathbf{5 5 \%}$

Scheme S2:

Conversion was calculated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integration value

		Deuterium incorporation in $\boldsymbol{\alpha}$ position	Deuterium incorporation in $\boldsymbol{\beta}$ position
Signal δ ppm	$7.21(1 \mathrm{H})$	$3.29(2 \mathrm{H})$	$3.15(2 \mathrm{H})$
Integral Value	1.0	0.98	0.67
Calculated ratio		$\{(2-0.98) / 2\} \times 100=$ $\mathbf{5 1 \%}$	$\{(2-0.67) / 2\} \times 100=$ $\mathbf{6 7 \%}$

Scheme S3:

Conversion was calculated by ${ }^{1} \mathrm{H}$-NMR integration value

		Deuterium incorporation in $\boldsymbol{\alpha}$ position	Deuterium incorporation in $\boldsymbol{\beta}$ position
Signal $\delta \mathrm{ppm}$	$7.21(1 \mathrm{H})$	$3.29(2 \mathrm{H})$	$3.15(2 \mathrm{H})$
Integral Value	1.0	0.89	0.78

Calculated ratio		$\{(2-0.89) / 2\} \times 100=$	$\{(2-0.78) / 2\} \times 100=$		
$\mathbf{5 6 \%}$				\quad	$\mathbf{6 1 \%}$
:---					

Scheme S4:

Conversion was calculated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integration value

		Deuterium incorporation in $\mathbf{C H} 2$ position	Deuterium incorporation in OH position
Signal δ ppm (Standard)	$7.24-7.36(5 \mathrm{H})$	$4.65(2 \mathrm{H})$	$2.65(1 \mathrm{H})$
Integral Value (Scheme S4a)	5.0	0.16	1.05
Calculated ratio		$\{(2-0.16) / 2\} \times 100=\mathbf{9 2 \%}$	$\{(1-1)\} \times 100=\mathbf{0 \%}$
Integral Value (Scheme S4b)	5.0	2.0	0.02
Calculated ratio		$\{(2.0-2.0) / 2\} \times 100=\mathbf{0 \%}$	$\{(1-0.02)\} \times 100=$
$\mathbf{9 8 \%}$			

Scheme S5: Studies for the progress of the reaction over time

Graphical representation for GC Conversion of 1a, 3a and 3a' vs time

Scheme S6: Determination of rate and order of reaction

Run 1: Reaction was carried out in 2 mL of toluene and yield was calculated by GC

No.	$\mathbf{1 a}$ (mmol)	$\mathbf{2 a}$ (mmol)	NiBr_{2} (mmol)	Phen (mmol)	t-BuOK (mmol)	Toluene (mL)
Run 1	0.2	0.4	0.02	0.1	0.2	2.0

Sl. No.	Time (min)	Concentration of 1a (mM)
1	30	95
2	60	77
3	90	64
4	120	59
5	150	53
6	180	47
7	210	42
8	240	39

Run 2: Reaction was carried out in 2 mL of toluene and yield was calculated by GC

No.	$\mathbf{1 a}$ (mmol)	$\mathbf{2 a}$ (mmol)	NiBr_{2} (mmol)	Phen (mmol)	t-BuOK (mmol)	Toluene (mL)
Run 2	0.25	0.5	0.025	0.125	0.25	2.0

Sl. No.	Time (min)	Concentration of 1a (mM)
1	30	107
2	60	95
3	90	84
4	120	73
5	150	62
6	180	52
7	210	48
8	240	42

Graphical representation for determination of rate and order of reaction Considering steady state approximation for benzyl alcohol

From Run 1: \quad Slope $=k[1 a]^{x}$

$$
-0.248=k[0.2]^{x}
$$

From Run 2: Slope $=k[1 a]^{x}$

$$
\begin{gathered}
-0.316=\mathrm{k}[0.25]^{\mathrm{x}} \\
-0.316 /-0.248=[0.25]^{\mathrm{x}} /[0.2]^{\mathrm{x}} \\
1.27=[1.25]^{\mathrm{x}} \\
\log (1.27)=\mathrm{x} . \log (1.25) \\
\mathrm{x}=0.103 / 0.097 \\
=1.06 \approx 1 \\
\text { Rate }=\mathrm{k}[1 \mathrm{a}]^{1}
\end{gathered}
$$

Scheme S7:

(i) Metal hydride trapping studies using in situ ${ }^{1} \mathrm{H}$ NMR:

Reaction condition: [a] Benzyl alcohol (0.2 mmol), NiBr_{2}.Phen complex (0.02 mmol), t - $\mathrm{BuOK}(0.2 \mathrm{mmol}$), toluene $\mathrm{d}_{8}(0.4 \mathrm{~mL})$, in NMR tube under nitrogen atmosphere, ${ }^{1} \mathrm{H}$ NMR was recorded at $-75^{\circ} \mathrm{C}$.

The reaction mixture was turned reddish brown colour indicating the formation of metal hydride species, several attempt made to trace metal hydride by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ experiments and it was not successful. We observed the benzaldehyde formation. These results indicating that the nickel-hydride species is not stable under this conditions.

Characterization of NiBr_{2}.Phen complex: Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{Ni}$; Elemental Analysis calculated (\%): C, 36.15; H, 2.02; Br, 40.08; N, 7.03; Ni, 14.72; Found (\%): C, 35.57; H, 2.66; N, 6.91 (Ref: M. Khrizanforov, K.Vera, V. Mamedov, N. Zhukova, S. Strekalova, V. Grinenko, T. Gryaznova, O. Sinyashin, Y. Budnikova, J. Organomet. Chem. 2016, 820, 82).

(ii): Experimental evidences for generation of $\mathrm{Ni}-\mathrm{H}$ species:

Preparation of cat. A: The catalyst was prepared following literature reported procedure. The Ni-H species, cat. A was obtained as pale yellow solid and the solid decomposes very fast in solvent. Characterization data are in agreement with the literature reported data.

Characterization of cat. A: IR: Ni-H $1950 \mathrm{~cm} .^{-1}$; M.P: (150-151) ${ }^{\circ} \mathrm{C}$ (decompose).
Ref: 1. M. L. H. Green, T. Saito, P. J. Tanfield, J. Chem. Soc. A 1971, 152-154.
2. M. M. Lindner, U. Beckmann, W. Frank, W. Kläui, ISRN Inorg. Chem. 2013, 1-13.

[1.4] Spectroscopic and analytical data:

2-phenethylquinoline (3a) ${ }^{1}$: Following the general procedure A the title compound was
 isolated as light brown oil (Yield 97%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.08-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{ddt}, J=8.4$, $6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 6 \mathrm{H}), 3.32-$ $3.27(\mathrm{~m}, 2 \mathrm{H}), 3.18-3.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 161.91, 148.08, 141.61, 136.30, 129.49, 128.96, 128.61, 128.48, 127.61, 126.90, 126.08, 125.88, 121.65, 41.07, 36.02 .

2-(4-ethylphenethyl)quinoline (3b): Following the general procedure A the title compound
 was isolated as light brown oil (Yield 95\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{dd}, J=13.6,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=8.1,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.70$ (ddd, $J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (ddd, $J=8.0$,
$6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.30-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.08,148.06,141.98,138.80,136.33,129.49,128.95$, 128.53, 127.98, 127.62, 126.90, 125.87, 121.67, 41.22, 35.67, 28.55, 15.74. Elemental Analysis: Calculated C, 87.31; H, 7.33; N, 5.36; Found C, 86.42; H, 7.27; N, 4.08.

2-(4-isopropylphenethyl)quinoline (3c): Following the general procedure A the title
 compound was isolated as light brown oil (Yield 78%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07$ (dd, $J=15.3,8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.78 (dd, $J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{ddd}, J=8.4,6.9,1.5 \mathrm{~Hz}$, 1 H), 7.49 (ddd, $J=8.1,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 1H), $7.21-7.19$ (m, 2H), $7.17-7.15(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.93$ $-2.85(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.11,148.08$, 146.63, 138.95, 136.33, 129.49, 128.97, 128.50, 127.63, 126.90, 126.55, 125.87, 121.66, 41.20, 35.66, 33.80, 24.17; Elemental Analysis: Calculated C, 87.23; H, 7.69; N, 5.09; Found C, 88.02; H, 7.19; N, 4.38.

2-(4-methylphenethyl)quinolone (3d) ${ }^{1}$: Following the general procedure A the title compound was isolated as light brown oil (Yield 95\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06$ (dd, $J=12.3,8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{ddd}, J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{ddd}, J=$ $8.0,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.29-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $162.05,148.06,138.52,136.34,135.54,129.49,129.18,128.94,128.48,128.02,127.62$, 126.89, 121.68, 41.22, 35.63, 21.13.

2-(2-methylphenethyl)quinolone (3e) ${ }^{1}$: Following the general procedure A the title
 compound was isolated as light brown oil (Yield 94\%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{dd}, J=13.9,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{ddd}, J=8.0,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25-7.10(\mathrm{~m}, 5 \mathrm{H}), 3.27-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.34$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.08,148.09,139.77,136.32,136.12,130.29$, 129.50, 128.98, 128.95, 127.62, 126.89, 126.24, 126.12, 125.90, 121.61, 39.78, 33.35, 19.46.

2-(4-methoxyphenethyl)quinolone (3f) ${ }^{1}$: Following the general procedure A the title
 compound was isolated as light brown oil (Yield 96\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69$ (ddt, $J=8.2,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48 (ddt, $J=8.1,7.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.81$ (dd, $J=8.7,0.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.77 (s, 3H), $3.27-3.23$ (m, 2H), $3.10-3.06(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.03,157.94,148.04,136.30,133.65,129.52,129.48$, $128.91,127.63,126.87,125.85,121.72,113.86,55.33,41.38,31.05$.

2-(1-(naphthalen-2-yl)ethyl)quinolone (3g) $\mathbf{2}^{\mathbf{2}}$: Following the general procedure A the title
 compound was isolated as light brown oil (Yield 84\%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.06-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.19$ (dd, $J=12.8,10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.64-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.05$, 148.08, 137.61, 136.39, 135.19, 133.36, 131.88, 129.57, 128.92, 127.67, 126.94, 126.24, $126.04,125.95,125.68,125.62,124.90,123.85,121.74,40.16,33.16$.

2-nonylquinoline ($\mathbf{3 h})^{1}$: Following the general procedure A the title compound was isolated
 as pale yellow oil (Yield $60 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66$ (dd, $J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H})$, $7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.44-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 12 \mathrm{H}), 0.85(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H})$; GC-MS (EI) m/z $=255.1$.

2-undecylquinoline ($\mathbf{3 i}^{3}{ }^{3}$: Following the general procedure A the title compound was
 isolated as pale yellow oil (Yield 48%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.66 (dd, $J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.46-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.25(\mathrm{~m}, 16 \mathrm{H}), 0.85(\mathrm{t}, J=$ $8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.30,147.04,140.75,135.99,130.72$, 129.15, 127.44, 120.63, 113.19, 40.60, 31.99, 30.99, 30.16, 26.97, 22.77, 14.22.

2-Tridecylquinoline ($\mathbf{3 j})^{1}$: Following the general procedure A the title compound was
 isolated as pale yellow oil (Yield 38%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.66(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.46-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 20 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}$ $=8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.80,147.02,140.74,136.00,130.88,129.16$, 127.44, 120.63, 113.18, 40.60, 32.02, 30.99, 30.17, 29.75, 29.46, 26.97, 22.79, 14.23.

2-(4,8-dimethylnon-7-en-1-yl)quinoline (3k): Following the general procedure A the title
 compound was isolated as pale yellow oil (Yield 47\%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{dd}, J=4.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.2,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.95(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=6.3$ Hz, 2H), 2.20 (s, 3H), 2.09 (dd, $J=11.6,6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $1.71-1.61$ (m, 5H), 1.28 (s, 3H), 0.90 (dd, $J=11.6,5.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.94$, 140.70, 137.53, 135.85, $129.05,127.38,121.24,120.52,116.57,113.10,41.28,31.92,30.88,29.69,29.35,27.04$, 22.68, 21.84, 14.09. Elemental Analysis: Calculated C, 85.35; H, 9.67; N, 4.98; Found C, 84.16; H, 9.91; N, 5.19.

6-methoxy-2-phenethylquinoline (31) ${ }^{2}$: Following the general procedure B the title
 compound was isolated as light brown oil (Yield 62%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95$ ($\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (dd, J $=9.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.04(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.10(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $157.64,155.68,142.44,140.03,133.41,128.66,126.90,126.75,126.05,124.32,120.27$, 120.16, 103.64, 53.89, 39.07, 34.40.

8-methoxy-2-phenethylquinoline (3m) ${ }^{4}$: Following the general procedure B the title
 compound was isolated as light brown oil (Yield 92\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 1 \mathrm{H})$, 7.35 (dd, $J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{ddd}, J=$ $8.5,5.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.13$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.65,151.79,138.32,136.57,132.86,125.22$, 125.08, 124.67, 122.65, 118.66, 116.20, 111.69, 104.54, 52.84, 37.68, 32.76.

8-(allyloxy)-2-phenethylquinoline (3n): Following the general procedure B the title
 compound was isolated as pale yellow oil (Yield 60%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.34(\mathrm{~m}$, $3 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.04(\mathrm{~m}$, $2 \mathrm{H}), 6.57-6.54(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.04(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.34(\mathrm{~m}$, $2 \mathrm{H}), 3.20-3.17(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.83(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 161.30, 153.13, 141.83, 141.44, 139.84, 136.16, 129.49, 128.70, 128.45, 128.16, 126.01, 121.40, 112.72, 111.30, 109.68, 40.88, 35.70, 9.94; Elemental Analysis: Calculated C, 83.01; H, 6.62; N, 4.84; Found C, 82.36; H, 6.11; N, 4.08.

1-phenethylisoquinoline (30) ${ }^{5}$: Following the general procedure A the title compound was
 isolated as light brown oil (Yield 80%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.48(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 1 H), 7.66 (ddd, $J=8.2,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (ddd, $J=8.2,6.9,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.58$ (m, 2H), 3.23-3.18 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.95,139.89,134.18$, 127.72, $126.40,126.38,125.35,125.00,124.88,123.97,122.98,117.32,35.13,33.38$.

2-phenethylpyrazine ($\mathbf{3 p})^{6}$: Following the general procedure A the title compound was
 isolated as light brown oil (Yield 92\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.50(\mathrm{dd}, J=2.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 3 \mathrm{H}), 3.14-3.03(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.83,144.83,144.75,144.25,144.16,142.48,142.39$, 140.83, 128.54, 126.36, 37.32, 35.47.

2-(4-ethylphenethyl)pyrazine (3q) ${ }^{6}$: Following the general procedure B the title compound
 was isolated as light brown oil (Yield 71\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.13-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.05-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{q}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.65,144.81,144.20,142.28,140.97,137.90,130.33,128.43,37.40,35.15,28.52,15.72$.

2-(4-methoxyphenethyl)pyrazine (3r) ${ }^{7}$: Following the general procedure B the title

compound was isolated as light brown oil (Yield 55\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55-$ $8.52(\mathrm{~m}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.05-3.02(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.06,156.93,144.81,144.19,142.36,132.83,129.44,113.95,55.33$, 37.64, 34.67.

2,5-diphenethylpyrazine (3t) ${ }^{8}$: Following the general procedure A the title compound was
 isolated as colorless solid (Yield 52%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~s}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.21$ (dd, $J=11.3,7.2$ $\mathrm{Hz}, 6 \mathrm{H}$), $3.19-3.14(\mathrm{~m}, 4 \mathrm{H}), 3.13-3.08(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.66,142.86,140.91,128.61,128.53,126.31,37.11,35.61$.

2,6-diphenethylpyrazine (3u): Following the general procedure C the title compound was isolated as colorless oil (Yield 38%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14$ ($\mathrm{s}, 2 \mathrm{H}$), 7.27 (dd, $J=11.1,3.9 \mathrm{~Hz}, 4 \mathrm{H}$), 7.18 (dd, $J=12.7,7.2 \mathrm{~Hz}$, 6 H), 3.13 - $3.03(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.67, 141.77, 140.94, 128.46, 128.44, 126.15, 37.09, 35.44. HRMS (ESI): Calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2}\right]^{+}$289.1699; Found 289.1700 .

2,6-bis(4-methylphenethyl)pyrazine (3v): Following the general procedure C the title
 compound was isolated as colorless oil (Yield 30%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.13$ (s, 2H), $7.07-7.04$ (m, $8 \mathrm{H}), 3.10-3.06(\mathrm{~m}, 4 \mathrm{H}), 3.03-2.99(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.76, 141.76, 137.86, 135.59, 129.12, 128.34, 37.27, 35.06, 21.00. HRMS (ESI): Calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2}\right]^{+}$317.2012; Found 317.2014.

[1.5] References:

1 Y. Obora, S. Ogawa and N. Yamamoto, J. Org. Chem., 2012, 77, 9429-9433.
2 T. Feng, H. Li, D. J. Young and J. Lang, J. Org. Chem., 2017, 82, 4113-4120.
3 M. A. Fakhfakh, X. Franck, A. Fournet, R. Hocquemillera and B. Figadere, Tetrahedron Letters., 2001, 42, 3847-3850.
4 Z. Tan, H. Jiang and M. Zhang, Chem. Commun., 2016, 52, 9359.
5 P. Basnet, S. Thapa, D. A. Dickie and R. Giri, Chem. Commun., 2016, 52, 11072.
6 Y. Zhang, J. Briski, Y. Zhang, R. Rendy and D. A. Klumpp, Org. Lett., 2005, 7, 12.
7 B. Blank and Rhett Kempe, J. Am. Chem. Soc. 2010, 132, 924-925.
8 H. R. Henze and J. H. Shown Jr., J. Am. Chem. Soc., 1947, 69, 1662-1666.

[1.6] Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra for selected compounds

11
MIE MS Zoomed Spectrum

$x 107$ ($\operatorname{Cpd} 3:$ C22 H24 N2: +ESI MFE Spectrum ($0.036-0.837 \mathrm{~min}$) Frag=175.0V MV-1136P.d

