Supporting Information

Michael Meanwell[†], Johannes Lehmann[†], Marc Eichenberger[‡], Rainer E. Martin[‡] and Robert Britton[†].

† Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

<u>‡ Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center</u> <u>Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland</u>

rbritton@sfu.ca

rainer_e.martin@roche.com

Table of contents	S1
General considerations and reaction procedures	S1-S2
Characterization data for all compounds	S2-S11
NMR spectra for all compounds	S12-S33
Stability data	S34-S36

General Considerations

All reactions were carried out with commercial solvents and reagents that were used as received. For NaDT photochemical reactions, degassing of the solvent was carried out via several freeze/pump/thaw cycles. Flash chromatography was carried out with Geduran® Si60 silica gel (Merck). Concentration and removal of trace solvents was done via a Büchi rotary evaporator using dry ice/acetone condenser, and vacuum applied from an aspirator or Büchi V-500 pump. All reagents and starting materials were purchased from Sigma Aldrich, Alfa Aesar, TCI America, and/or Strem, and were used without further purification. All solvents were purchased from Sigma Aldrich, EMD, Anachemia, Caledon, Fisher, or ACP and used without further purification, unless otherwise specified. Nuclear magnetic resonance (NMR) spectra were recorded using chloroform-d (CDCl₃), acetonitrile- d_3 (CD₃CN), DMSO- d_6 or methanol- d_4 (MeOD). Signal positions (δ) are given in parts per million from tetramethylsilane (δ 0) and were measured relative to the signal of the solvent (¹H NMR: CDCl₃: δ 7.26, CD₃CN: δ 1.96, DMSO-d₆: δ 2:50, MeOD: δ 3.31; ¹³C NMR: CDCl₃: δ 77.16, CD₃CN: δ 118.26, DMSO- d_6 : δ 39.52, MeOD: δ49.00). Coupling constants (J values) are given in Hertz (Hz) and are reported to the nearest 0.1 Hz. ¹H NMR spectral data are tabulated in the order: multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet), coupling constants, number of protons. NMR spectra were recorded on a Bruker Avance 600 equipped with a QNP, Bruker 500 (500 MHz), or Bruker 400 (400 MHz). Assignments of ¹H and ¹³C NMR spectra are based on analysis of ¹H-, ¹H COSY, HSQC, and HMBC spectra, where applicable. 1,3,5-Tris(trifluoromethyl)benzene was added to the crude reaction mixtures and used as an internal standard. Yields were then calculated following analysis of quantitative ¹⁹F NMR spectra. Highresolution mass spectra were performed on an Agilent 6210 TOF LC/MS, Bruker MaXis Impact TOF LC/MS, or Bruker microTOF-II LC mass spectrometer.

General Procedure A

To a solution of the aldehyde in CH₃CN (0.1 - 0.3 M) was added NFSI (1.1 equiv.) and NaDT (2.5 mol %). The resulting mixture was degassed via 3 x freeze/pump/thaw cycles. The reaction was irradiated with a long-wave UV (~365 nm) for 3 hours. The formation of the acyl fluoride intermediate was characterized by ¹⁹F NMR spectroscopy. *N*, *N*–Diisopropylethylamine (2.0 equiv.) and benzylamine (2.0 equiv.) were then added to the reaction mixture and the resulting solution was stirred for an additional 2 hours. The reaction mixture was then diluted with CH_2Cl_2 and washed with water and brine. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure and the crude reaction product was purified by column chromatography as indicated.

General Procedure B

To a solution of alcohol (1 equiv.) in CH₃CN (0.1 M) was added NFSI (2.5 equiv.) and NaDT (2.0 mol %). The resulting mixture was degassed via 3 x freeze/pump/thaw cycles. The reaction was irradiated with UV-light (~365 nm) for 16 hours. The formation of the acyl fluoride intermediate was characterized by ¹⁹F-NMR spectroscopy. *N*, *N*-Diisopropylethylamine (2 equiv.) and benzylamine (2 equiv.) were then added to the reaction mixture and the resulting solution was stirred for an additional 3 hours. The reaction mixture was then diluted with CH₂Cl₂ and washed with water and brine. The organic layer was then dried over MgSO₄, filtered, and concentrated under reduced pressure and the crude reaction product was purified by flash column chromatography.

Preparation of Compound 12

Following General Procedure **A**, a solution of benzaldehyde (0.106 g, 1.0 mmol), NFSI (0.378 g, 1.2 mmol), and NaDT (61.1 mg, 0.025 mmol) in 3 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **11** was characterized by ¹⁹F-NMR spectroscopy ($\delta = 17$ ppm, CD₃CN, ¹⁹F NMR yield = 79%). *N*, *N*-Diisopropylethylamine (0.348 mL, 2.0 mmol) and benzylamine (0.218 mL, 2.0 mmol) were then added to the reaction mixture and the resulting mixture was stirred for an additional 2 hours. Purification of crude amide **12** by flash chromatography (pentane-EtOAc 9:1) afforded amide **12** (0.166 g, 79% yield). Spectral data recorded on amide **12** were in complete agreement with that previously reported.¹

¹**H** NMR (300 MHz, CDCl₃): δ 7.76-7.83 (m, 2H), 7.27-7.54 (m, 8H), 6.39 (br s, 1H), 4.66 (d, J = 5.6 Hz, 2H); ¹³C NMR (75 MHz, DMSO- d_6): δ 166.2, 139.7, 134.3, 131.2, 128.30, 128.26, 127.21, 127.16, 126.7, 42.6; HRMS (ESI) calcd for [C₁₄H₁₄NO]⁺: 212.1070; found 212.1088.

¹Kosal, A. D.; Wilson, E. E.; Ashfeld, B. L. Angew. Chem. Int. Ed. 2012, 51, 12036

Preparation of Compound 13 and 13a

Following General Procedure **A**, a solution of 4-isopropylbenzaldehyde (0.074 g, 0.5 mmol), NFSI (0.189 g, 0.6 mmol), and NaDT (31.7 mg, 0.013 mmol) in 5.0 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **13** was characterized by ¹⁹F-NMR

spectroscopy ($\delta = 16$ ppm, CD₃CN, ¹⁹F NMR yield = 43%). The reaction mixture was then concentrated and purified by flash chromatography (pentane-Et₂O) to afford an analytical sample of **13**. In a separate identical experiment, *N*, *N*-diisopropylethylamine (0.174 mL, 1.0 mmol) and benzylamine (0.107 mL, 1.0 mmol) were directly added to the crude reaction mixture which was stirred for an additional 2 hours. Purification of crude amide **13a** by flash chromatography (pentane:EtOAc = 90:10) afforded amide **13a** (0.053 g, 42% yield). Spectral data recorded on amide **13a** were in complete agreement with that previously reported.²

Compound 13

¹**H NMR** (600 MHz, CD₂Cl₂): δ 7.96 (d, 2H), 7.40 (d, 2H), 3.00 (septet, J = 7.0 Hz, 1H), 1.27 (d, J = 7.0 Hz, 6H); ¹³**C NMR** (125 MHz, CDCl₃): δ 157.9, 157.8 (d, J = 343.0 Hz), 127.7 (d, J = 0.8 Hz), 122.6 (d, J = 61.5 Hz), 34.8, 23.6; ¹⁹**F NMR** (470 MHz, CD₂Cl₂): δ 16.8.

Compound 13a

IR (neat): $\upsilon = 3315$, 2960, 2930, 2875, 1635, 1539, 1308, 697 cm⁻¹; ¹**H NMR** (500 MHz, CDCl₃): δ 7.73 (d, J = 8.4 Hz, 2H), 7.34-7.37 (m, 4H), 7.27-7.32 (m, 3H), 6.33 (br s, 1H), 4.66 (d, J = 5.6 Hz, 2H), 2.95 (septet, J = 6.5 Hz, 1H), 1.26 (d, J = 6.9 Hz, 6H); ¹³**C NMR** (125 MHz, CDCl₃): δ 167.4, 152.9, 138.5,

132.0, 128.8, 128.0, 127.6, 127.3, 126.7, 44.1, 34.2, 23.9; HRMS (ESI⁺) calcd for $[C_{17}H_{20}NO]^+$ 254.1539, found 254.1514.

²Das, J.; Banerjee, D. J. Org. Chem. 2018, 83, 3378

Preparation of Compound 14

Following General Procedure **A**, a solution of methyl 3-formylbenzoate (0.082 g, 0.50 mmol), NFSI (0.173 g, 0.55 mmol), and NaDT (24.0 mg) in 0.5 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **14** was characterized by ¹⁹F-NMR spectroscopy ($\delta = 18$ ppm, CD₃CN, ¹⁹F NMR yield = 60%). The reaction mixture was then concentrated and purified by flash chromatography (pentane-Et₂O) to afford **14**.

¹**H NMR** (600 MHz, CDCl₃): δ 8.71 (s, 1H), 8.37 (d, J = 7.8 Hz, 1H), 8.24 (d, J = 7.8 Hz, 1H), 7.64 (dd, J = 7.8 Hz, 1H), 3.98 (s, 3H); ¹³**C NMR** (150 MHz, CDCl₃): δ 165.6, 156.8 (d, J = 345.5 Hz), 136.2, 135.5 (d, J = 4.1 Hz), 132.6 (d, J = 3.4 Hz), 131.6, 129.5, 125.7 (d, J = 62.7 Hz), 52.8; ¹⁹**F NMR** (470 MHz, CDCl₃): δ 19.2

Preparation of Compound 15

Following General Procedure **A**, a solution of 3-methylbenzaldehyde (0.050 g, 0.42 mmol), NFSI (0.145 g, 0.46 mmol), and NaDT (26.0 mg) in 2.1 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride **15** was characterized by ¹⁹F-NMR spectroscopy ($\delta = 17$ ppm, CD₃CN, ¹⁹F NMR = 69%). The reaction mixture was then concentrated and purified by flash chromatography (pentane-Et₂O) to afford **15**. In a separate identical experiment, *N*, *N*-diisopropylethylamine (0.146 mL, 0.84 mmol) and benzylamine (0.092 mL, 0.84 mmol) were directly

added to the crude reaction mixture which was left to stir for 2 hours. Purification of crude amide **15a** by flash chromatography (pentane-EtOAc 70:30) afforded amide **15a** (0.058 g, 62% yield). Spectral data recorded on amide **15a** were in complete agreement with that previously reported.³

Compound 15

¹**H NMR** (600 MHz, CD₂Cl₂): δ 7.86 (s, 1H), 7.85 (d, J = 8.7 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.41 (dd, J = 7.6 Hz, 1H), 2.43 (s, 3H); ¹³**C NMR** (150 MHz, CD₂Cl₂): δ 157.8 (d, J = 345.0 Hz), 139.2, 136.3, 132.0 (d, J = 4.1 Hz), 129.1 (d, J = 0.8 Hz), 128.8 (d, J = 3.8 Hz), 125.0 (d, J = 60.1 Hz), 21.4; ¹⁹**F NMR** (470 MHz, CD₂Cl₂): δ 18.3

³Birrell, J. A.; Desrosiers, J.-N.; Jacobsen, E. N. J. Am. Chem. Soc. 2011, 133, 1387.

Compound 15a

IR (neat): v = 3310, 1640, 1538, 743.7, 697 cm⁻¹; ¹**H** NMR (600 MHz, CDCl₃): δ 7.61 (s, 1H), 7.56 (m, 1H), 7.34 (m, 7H) 1H), 6.35 (br s), 4.66 (d, J = 5.3 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 167.7, 138.6, 138.4, 134.5, 132.4, 128.9, 128.6, 128.1, 127.8, 127.8, 124.0, 44.3, 21.5; HRMS (EI⁺) calcd for [C₁₅H₁₆NO]⁺ 226.1226, found 216.1205.

Kulkarni, ,S. S.; Xiangdong, H.; Manetsch, R. Chem. Commun. 2013, 49, 1193

Preparation of Compound 16

Following General Procedure **A**, a solution of p-anisaldehyde (0.050 mL, 0.41 mmol), NFSI (0.130 g, 0.41 mmol), and NaDT (25.0 mg, 0.010 mmol) in 2.7 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **16** was characterized by ¹⁹F-NMR spectroscopy ($\delta = 16$ ppm, CD₃CN). The reaction mixture was then concentrated and purified by flash chromatography (pentane-Et₂O) to afford **16**. Spectral data recorded on acyl fluoride **16** were in complete agreement with that previously reported.⁴ In a separate identical experiment, *N*, *N*-diisopropylethylamine (0.142 mL, 0.82 mmol) and benzylamine (0.090 mL, 0.82 mmol) were directly added to the crude reaction mixture which was left to stir for 2 hours. Purification of crude amide **16a** by flash chromatography (pentane-EtOAc 30:70) afforded amide **16a** (0.038 g, 38% yield). Spectral data recorded on amide **16a** were in complete agreement with that previously reported spectral amide **16a** (0.038 g, 38% yield).

Compound 16

¹**H NMR** (600 MHz, CDCl₃): δ 7.99 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 3.90 (s, 3H); ¹³**C NMR** (150 MHz, CDCl₃): δ 165.4, 157.5 (d, J = 340.2 Hz), 133.9 (d, J = 4.1 Hz), 117.0 (d, J = 61.7 Hz), 114.6 (d, J = 0.8 Hz), 55.8; ¹⁹**F NMR** (470 MHz, CDCl₃): δ 16.0

⁴Cismesia, M. A.; Ryan, S. J.; Bland, D. C.; Sanford, M. S. J. Org, Chem. 2017, 82, 5020

Compound 16a

¹**H NMR** (600 MHz, CDCl₃): δ 7.76 (dd, J = 8.8 Hz, 2H), 7.36 (m, 4H), 7.30 (m, 2H), 6.92 (d, J = 8.8, 2H), 6.28 (br s, 1H), 4.65 (d, J = 5.6 Hz, 2H), 3.85 (s, 3H); ¹³**C NMR** (150 MHz, CDCl₃): δ 167.0, 162.4, 138.5, 128.9, 128.9, 128.1 127.8, 126.7, 113.9, 55.6, 44.2; HRMS (EI⁺) calcd for [C₁₅H₁₆NO₂]⁺ 242.1176, found 242.1150.

⁵Lundbreg, H.; Tinnis, F.; Adolfsson, H. Chem. Eur. J. 2012, 18, 3822

Preparation of Compound 17

Following General Procedure **A**, a solution of hydrocinnamaldehyde (0.134 g, 1.0 mmol), NFSI (0.346 g, 1.1 mmol), and NaDT (46.0 mg, 0.020) in 10.0 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate was characterized by ¹⁹F-NMR spectroscopy (δ = 43 ppm, CD₃CN, ¹⁹F NMR yield = 51%). The reaction mixture was then concentrated and purified by flash chromatography (pentane-Et₂O) to afford **17**. Spectral data recorded on acyl fluoride **17** were in complete agreement with that previously reported.⁶

¹**H** NMR (600 MHz, CDCl₃): δ 7.32-7.22 (m, 5H), 3.00 (t, J = 8.0 Hz, 2H), 2.83 (t, J = 8.0 Hz, 2H); ¹³**C** NMR (150 MHz, CDCl₃): δ 162.8 (d, J = 360.2 Hz), 139.1, 128.9, 128.4, 127.0, 34.0 (d, J = 50.9 Hz), 30.2 (d, J = 2.8 Hz); ¹⁹F-NMR (470 MHz, CDCl₃): δ 45.3.

⁶L'Heureux, A.; Beaulieu, F.; Bennett, C.; Bill, D. R.; Clayton, S.; LaFlamme, F.; Mirmehrabi, M.; Tadayon, S.; Tovell, D.; Couturier, M. *J. Org. Chem.* **2010**, *75*, 3401.

Preparation of Compound 18a

Following General Procedure **A**, a solution of 4-bromobenzaldehyde (0.050 g, 0.27 mmol), NFSI (0.085 g, 0.27 mmol), and NaDT (0.016 g, 0.27 mmol) in 1.35 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **18** was characterized by ¹⁹F-NMR spectroscopy ($\delta = 17$ ppm, CD₃CN, ¹⁹F NMR yield = 40%). *N*, *N*-Diisopropylethylamine (0.094 mL, 0.54 mmol) and benzylamine (0.059 mL, 0.54 mmol) were then added to the reaction mixture and the resulting reaction mixture was stirred for an additional 2 hours. Purification of crude amide **18a** by flash chromatography (pentane-EtOAc 95:5) afforded amide **18a** (0.031 g, 40% yield). Spectral data recorded on amide **18a** were in complete agreement with that previously reported.⁷

¹**H** NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 8.3 Hz, 2H), 7.57 (d, J = 8.3 Hz, 2H), 7.36 (m, 4H), 7.31 (m, 1H), 6.31 (br s), 4.64 (d, J = 5.7 Hz, 2H); HRMS (ESI) calcd for [C₁₄H₁₃BrNO]⁺: 290.0175; found 290.0176.

⁷Liu, Y.; Shi, S.; Achtenhagen, M.; Liu, R.; Szostak, M. Org. Lett. 2017, 1, 1614.

Preparation of Compound 19a

Following General Procedure **A**, a solution of 4-(trifluoromethyl)benzaldehyde (0.050 g, 0.287 mmol), NFSI (0.100 g, 0.316 mmol), and NaDT (18.1 mg, 2.5 mol%) in 1.44 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **19** was characterized by ¹⁹F-NMR spectroscopy ($\delta = 19$ ppm, CD₃CN, ¹⁹F NMR yield = 53%). *N*, *N*-

Diisopropylethylamine (0.348 mL, 2.0 mmol) and benzylamine (0.218 mL, 2.0 mmol) were then added to the reaction mixture and the resulting mixture was stirred for an additional 2 hours. Spectral data recorded on crude amide **19a** were in complete agreement with that previously reported.⁸

⁸Sutthichat, K.; Quan, X.; Parihar, V. S.; Andersson, P. G. J. Org. Chem. 2015, 80, 11529

Preparation of Compound 20a

Following General Procedure **A**, a solution of 4-methylbenzaldehyde (0.122 g, 1.0 mmol), NFSI (0.378 g, 2.0 mmol), and NaDT (61.1 mg, 0.025 mmol) in 3 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **20** was characterized by ¹⁹F-NMR spectroscopy ($\delta = 16$ ppm, CD₃CN, ¹⁹F NMR yield = 70%). *N*, *N*-Diisopropylethylamine (0.348 mL, 2.0 mmol) and benzylamine (0.218 mL, 2.0 mmol) were then added to the reaction mixture and the resulting reaction mixture was stirred for an additional 2 hours. Purification of crude amide **20a** by flash chromatography (pentane-EtOAc 9:1) afforded amide **20a** (0.096 g, 43% yield). Spectral data recorded on crude amide **20a** were in complete agreement with that previously reported.⁸

¹**H** NMR (300 MHz, CDCl₃): δ 7.65-7.73 (m, 2H), 7.27-7.42 (m, 5H), 7.19-7.25 (m, 2H), 6.16-6.53 (m, 1H), 4.64 (d, J = 5.6 Hz, 2H), 2.39 (s, 3H); ¹³**C** NMR (75 MHz, DMSO- d_6) δ 166.0, 141.1, 139.8, 131.5, 128.8, 128.2, 127.23, 127.16, 126.7, 42.5, 20.9; HRMS (ESI) calcd for [C₁₅H₁₆NO]⁺: 226.1226; found

226.1236.

⁸Sutthichat, K.; Quan, X.; Parihar, V. S.; Andersson, P. G. J. Org. Chem. 2015, 80, 11529

Preparation of Compound 21a

Following General Procedure **A**, a solution of 4-chlorobenzaldehyde (0.146 g, 1.0 mmol), NFSI (0.378 g, 1.2 mmol), and NaDT (61.1 mg, 0.025 mmol) in 3 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **21** was characterized by ¹⁹F-NMR spectroscopy ($\delta = 17$ ppm, CD₃CN, ¹⁹F NMR yield = 67%). *N*, *N*-Diisopropylethylamine (0.348 mL, 2.0 mmol) and benzylamine (0.218 mL, 2.0 mmol) were then added to the reaction mixture and the resulting reaction mixture was stirred for an additional 2 hours. Purification of crude amide **21a** by flash chromatography (pentane-EtOAc 95:5) afforded amide **21a** (0.090 g, 37% yield). Spectral data recorded on crude amide **21a** were in complete agreement with that previously reported.⁹

¹**H-NMR** (300 MHz, CDCl₃): δ 7.73 (d, J = 8.46 Hz, 2H), 7.28-7.42 (m, 7H), 6.34 (br s, 1H), 4.64 (d, J = 5.6 Hz, 2H); ¹³**C-NMR** (75 MHz, DMSO-*d*₆): δ 165.1, 139.5, 136.0, 133.0, 129.2, 128.4, 128.3, 127.2, 126.8, 42.7; HRMS (ESI) calcd for [C₁₄H₁₃CINO]⁺: 246.0680; found 246.0686.

⁹Green, R. A.; Pletcher, D.; Leach, S.G.; Brown, R. C. D. Org. Lett. 2016, 18, 1198

Preparation of Compound 22a

Following General Procedure **A**, a solution of 4-pyridinecarboxyaldehyde (0.050 g, 0.467 mmol), NFSI (0.147 g, 0.467 mmol), and NaDT (28.0 mg, 2.5 mol%) in 3.10 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **22** was characterized by ¹⁹F-NMR

spectroscopy ($\delta = 21$ ppm, CD₃CN). *N*, *N*-Diisopropylethylamine (0.163 mL, 0.934 mmol) and benzylamine (0.102 mL, 0.934 mmol) were then added to the reaction mixture and the resulting reaction mixture was stirred for an additional 2 hours. Purification of crude amide **22a** by flash chromatography (pentane-EtOAc 70:30) afforded amide **22a** (0.055 g, 55% yield). Spectral data recorded on crude amide **22a** were in complete agreement with that previously reported.⁸

⁸Sutthichat, K.; Quan, X.; Parihar, V. S.; Andersson, P. G. J. Org. Chem. 2015, 80, 11529

Preparation of Compound 23a

Following General Procedure **A**, a solution of 4-pyridinecarboxyaldehyde (0.050 g, 0.467 mmol), NFSI (0.147 g, 0.467 mmol), and NaDT (28.0 mg, 2.5 mol%) in 3.10 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **23** was characterized by ¹⁹F-NMR

spectroscopy ($\delta = 21$ ppm, CD₃CN, ¹⁹F NMR yield = 37%). *N*, *N*-Diisopropylethylamine (0.163 mL, 0.934 mmol) and benzylamine (0.102 mL, 0.934 mmol) were then added to the reaction mixture and the resulting reaction mixture was stirred for an additional 2 hours. Purification of crude amide **23a** by flash chromatography (pentane-EtOAc 70:30) afforded amide **23a** (0.033 g, 33% yield). Spectral data recorded on crude amide **23a** were in complete agreement with that previously reported.¹⁰

¹⁰Orliac, A.; Pardo, D. G.; Bombrun, A.; Cossy, J. Org. Lett. 2013, 15, 902

Preparation of Compound 24a

Following General Procedure **A**, a solution of cyclohexanecarboxaldehyde (0.050 g, 0.446 mmol), NFSI (0.155 g, 0.491 mmol), and NaDT (27.2 mg) in 3.0 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate was characterized by ¹⁹F-NMR spectroscopy (δ = 35 ppm, CD₃CN, ¹⁹F NMR yield = 61%). *N*, *N*-Diisopropylethylamine (0.155 mL, 0.892 mmol) and benzylamine (0.097 mL, 0.892 mmol) were then added to the reaction mixture and the resulting reaction mixture was stirred for an additional 2 hours. Purification of crude amide **24a** by flash chromatography (pentane-EtOAc 80:20) afforded amide **24a** (0.053 g, 55% yield). Spectral data recorded on crude amide **24a** were in complete agreement with that previously reported.¹¹

IR (neat): $\upsilon = 3276$, 2927, 1641, 1552, 696 cm⁻¹; ¹**H-NMR** (600 MHz, CDCl₃): δ 7.33 (dd, J = 7.2, 7.2 Hz, 2H), 7.27 (m, 3H), 5.70 (br s, 1H), 4.44 (d, J = 5.7 Hz, 2H), 2.11(dddd, J = 11.9, 11.9, 3.3, 3.3 Hz, 1H), 1.89 (m, 2H), 1.80 (m, 2H), 1.67 (m, 1H), 1.47 (m, 2H), 1.25 (m, 3H); ¹³**C-NMR** (150 MHz, CDCl₃): δ 176.0, 138.7,

128.8, 127.9, 127.6, 45.7, 43.5, 29.9, 25.9; HRMS (EI⁺) calcd for $[C_{14}H_{20}NO]^+$ 218.1539, found 218.1513.

¹¹Liu, Y.; Achtenhagen, M.; Liu, R.; Szostak, M. Org. Biomol. Chem. 2018, 16, 1322

Preparation of Compound 25a

Following General Procedure **A**, a solution of 2-ethylbutanal (0.050 g, 0.50 mmol), NFSI (0.173 g, 0.55 mmol), and NaDT (32.0 mg) in 2.5 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **25** was characterized by ¹⁹F-NMR spectroscopy ($\delta = 39$ ppm, CD₃CN, ¹⁹F NMR yield = 40%). *N*, *N*-Diisopropylethylamine (0.174 mL, 1.00 mmol) and benzylamine (0.109 mL, 1.00 mmol) were then added to the reaction mixture and the resulting mixture was left for an additional 2 hours. Purification of crude amide **25a** by flash chromatography (pentane-EtOAc 80:20) afforded amide **25a** (0.036 g, 35% yield). Spectral data recorded on crude amide **25a** were in complete agreement with that previously reported.¹²

IR (neat): v = 3279, 2961, 1639, 1547, 691 cm⁻¹; ¹**H-NMR** (600 MHz, CDCl₃): δ 7.31 (m, 5H), 5.70 (br s, 1H), 4.48 (d, J = 5.8, 2H), 1.87 (m, 1H), 1.65 (m, 2H), 1.50 (m, 2H); ¹³**C-NMR** (150 MHz, CDCl₃): δ 175.7, 138.7, 128.8, 128.0, 127.6, 51.8, 43.6, 25.9, 12.3; HRMS (EI⁺) calcd for [C₁₃H₂₀NO]⁺ 206.1539, found 260.1514.

¹²Lafrance, D.; Bowles, P.; Leeman, K. L.; Rafka, R. Org. Lett. 2011, 13, 2322

Preparation of Compound 26a

Following General Procedure **A**, a solution of 3,3-dimethylbutanal (0.050 g, 0.485 mmol), NFSI (0.168 g, 0.534 mmol), and NaDT (30.0 mg) in 2.4 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **26** was characterized by ¹⁹F-NMR spectroscopy ($\delta = 53$ ppm, CD₃CN). *N*, *N*-Diisopropylethylamine (0.169 mL, 0.97 mmol) and benzylamine (0.106 mL, 0.97 mmol) were then added to the reaction mixture and the resulting mixture was left for an additional 2 hours. Purification of crude amide **26a** by flash chromatography (pentane-EtOAc 30:70) afforded amide **26a** (0.065 g, 65% yield). Spectral data recorded on crude amide **26a** were in complete agreement with that previously reported.¹³

IR (neat): v = 3293, 2953, 1641, 1543, 905, 725, 698 cm⁻¹; ¹**H-NMR** (600 MHz, CDCl₃): δ 7.33 (dd, J = 7.3, 7.3 Hz, 2H), 7.28 (m, 3H), 5.66 (br s, 1H), 4.43 (d, J = 5.7, 2H), 2.03 (s, 2H), 1.05 (s, 9H); ¹³**C-NMR** (150 MHz, CDCl₃): δ 171.6, 138.6, 128.8, 128.1, 127.6, 50.8, 43.7, 31.1, 30.0; HRMS (EI⁺) calcd

for $[C_{13}H_{20}NO]^+$ 206.1539, found 206.1517.

¹³Bechara, W. S.; Khazhieva, I. S.; Rodriguez, E.; Charette, A. B. Org. Lett. 2015, 17, 1184

Preparation of Compound 27a

Following General Procedure **A**, a solution of 3-methylbutanal (0.050 mL, 0.464 mmol), NFSI (0.161 g, 0.511 mmol), and NaDT (28.0 mg) in 2.3 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **27** was characterized by ¹⁹F-NMR spectroscopy ($\delta = 46$ ppm, CD₃CN, ¹⁹F NMR yield = 55%). *N*, *N*-Diisopropylethylamine (0.161 mL, 0.928 mmol) and benzylamine (0.101 mL, 0.928 mmol) were then added to the reaction mixture and the resulting mixture was left for an additional 2 hours. Purification of crude amide **27a** by flash chromatography (pentane-

EtOAc 70:30) afforded amide **27a** (0.046 g, 52% yield). Spectral data recorded on crude amide **19a** were in complete agreement with that previously reported.¹⁴

IR (neat): $\upsilon = 3288$, 2958, 1643, 1547, 698 cm⁻¹; ¹**H-NMR** (600 MHz, CDCl₃): δ 7.34 (dd, J = 7.3, 7.3 Hz, 2H), 7.28 (m, 3H), 5.70 (br s, 1H), 4.45 (d, J = 5.3 Hz, 2H), 2.15 (m, 1H), 2.09 (d, J = 7.0 Hz, 2H) 0.97 (d, J = 6.5 Hz, 6H); ¹³**C-NMR** (150 MHz, CDCl₃): δ 172.4, 138.6, 128.9, 128.0, 127.6, 46.3, 43.7, 26.3, 22.6; HRMS (EI⁺) calcd for [C₁₂H₁₈NO]⁺ 192.1383, found 192.1364.

¹⁴Starkov, P.; Sheppard, T. D. Org. Biomol. Chem. 2011, 9, 1320.

Preparation of Compound 28a

Following General Procedure **A**, a solution of cyclopropanecarbaldehyde (0.025 mL, 0.335 mmol), NFSI (0.105 g, 0.335 mmol), and NaDT (20.1 mg) in 1.6 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **28** was characterized by ¹⁹F-NMR spectroscopy ($\delta = 31$ ppm, CD₃CN, ¹⁹F NMR yield = 66%). *N*, *N*-Diisopropylethylamine (0.116 mL, 0.670 mmol) and benzylamine (0.073 mL, 0.670 mmol) were then added to the reaction mixture and the resulting mixture was left for an additional 2 hours. Purification of crude amide **28a** by flash chromatography (pentane-EtOAc 80:20) afforded amide **28a** (0.053 g, 64% yield). Spectral data recorded on crude amide **28a** were in complete agreement with that previously reported.¹⁵

¹**H-NMR** (600 MHz, CDCl₃): δ 7.34 (m, 2H), 7.29 (m, 3H), 5.90 (br s, 1H), 4.46 (d, J = 5.8 Hz, 2H), 1.35 (m, 1H), 1.01 (m, 2H), 0.75 (m, 2H); ¹³**C-NMR** (150 MHz, CDCl₃): δ 173.5, 138.6, 128.8, 128.0, 127.6, 44.0, 14.9, 7.4; HRMS (EI⁺) calcd for [C₁₁H₁₄NO]⁺ 176.1070, found 176.1072.

¹⁵Rolfe, A.; Probst, D. A.; Volpk, A.; Omar, I.; Flynn, D. L.; Hanson, P. R. J. Org. Chem. 2008, 73, 8785

Preparation of Compound 29a

Following General Procedure **A**, a solution of 4,4-difluorocyclohexane-1-carbaldehyde (0.050 g, 0.337 mmol), NFSI (0.117 g, 0.371 mmol), and NaDT (21 mg) in 1.7 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **29** was characterized by ¹⁹F-NMR spectroscopy ($\delta = 36$ ppm, CD₃CN, ¹⁹F NMR yield = 41%). *N*, *N*-Diisopropylethylamine (0.117 mL, 0.674 mmol) and benzylamine (0.074 mL, 0.674 mmol) were then added to the reaction mixture and the resulting mixture was left for an additional 2 hours. Purification of crude amide **29a** by flash chromatography (pentane-EtOAc 40:60) afforded amide **29a** (0.038 g, 44% yield).

IR (neat): v = 3296, 2950, 1647, 1110, 959, 732 cm⁻¹; ¹**H-NMR** (600 MHz, CDCl₃): δ 7.34 (t, J = 7.6 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 7.26 (m, 2H), 5.74 (br s), 4.44 (d, J = 5.6 Hz, 2H), 2.18 (m, 3H), 1.96 (m, 2H), 1.86 (m, 2H), 1.74 (m, 2H); ¹³**C-NMR** (150 MHz, CDCl₃): δ 173.9, 138.3, 129.0 (t, J = 24.6 Hz), 127.9, 127.8, 122.7 (t, J = 240.8 Hz), 43.7, 43.0, 33.0, 26.1 (t, J = 9.6 Hz); HRMS (EI⁺) calcd for [C₁₄H₁₈F₂NO]⁺ 254.1351, found 254.1327.

Preparation of Compound 30a

Following General Procedure **A**, a solution of methyl 4-oxobutanoate (0.050 g, 0.43 mmol), NFSI (0.150 g, 0.474 mmol), and NaDT (26.0 mg) in 2.2 mL CH₃CN was irradiated with UV-light (365 nm) for 3 hours. The formation of the acyl fluoride intermediate **30** was characterized by ¹⁹F-NMR spectroscopy ($\delta = 42$ ppm, CD₃CN). *N*, *N*-Diisopropylethylamine (0.15 mL, 0.86 mmol) and benzylamine (0.094 mL, 0.86 mmol) were then added to the reaction mixture and the resulting mixture was left for an additional 2 hours. Purification of crude amide **30a** by flash chromatography (pentane-EtOAc 50:50) afforded amide **30a** (0.045 g, 47% yield).

IR (neat): $\upsilon = 3304$, 2952, 1737, 1652, 1547, 1169, 700 cm⁻¹; ¹**H-NMR** (600 MHz, CDCl₃): δ 7.33 (t, J = 7.3 Hz, 2H), 7.28-7.26 (m, 3H), 5.97 (br s, 1H), 4.44 (d, J = 5.7 Hz, 2H), 3.68 (s, 3H), 2.70 (t, J = 6.8 Hz, 2H), 2.51 (t, J = 6.8 Hz, 2H); ¹³**C-NMR** (150 MHz, CDCl₃): δ 173.6, 171.3, 138.2, 128.8, 127.9, 127.6, 52.0, 43.8, 31.2, 29.5; HRMS (EI⁺) calcd for [C₁₂H₁₆NO₃]⁺ 222.1125,

Preparation of Compound 32

Following General Procedure **A**, to a solution of **31** (0.048 g, 0.13 mmol, 1 equiv.) in 1.3 mL of CH₃CN (0.1 M) was added NFSI (0.045 g, 0.143 mmol, 1.1 equiv.) and NaDT (6.0 mg, 2.0 mol %). The resulting mixture was degassed via 3 x freeze/pump/thaw cycles. The reaction was irradiated with UV-light (~365 nm) for 16 hours. The formation of the acyl fluoride intermediate was characterized by ¹⁹F-NMR spectroscopy ($\delta = 18$ ppm, CD₃CN). *N*, *N*-Diisopropylethylamine (0.042 g, 0.325 mmol, 2.5 equiv.) and *D*-phenylalanine methylester (0.034 g, 0.156 mmol, 1.2 equiv.) were then added to the reaction mixture and the resulting solution was left for 3 hours. The reaction mixture was then diluted with CH₂Cl₂ and washed with water and brine. The organic layer was then dried over MgSO₄, filtered, and concentrated under reduced pressure and the crude reaction product **32** was purified by flash column chromatography (pentanes-EtoAc 70:30) to afford amide **32** (0.025 g, 36%).

¹**H-NMR** (600 MHz, CDCl₃): δ 7.74 (d, J = 8.5 Hz, 2H), 7.24-7.36 (m, 8H), 7.13 (m, 4H), 6.56 (d, J = 7.5 Hz, 1H), 5.24 (d, J = 8.6 Hz, 1H), 5.14 (s, 2H), 5.08 (m, 1H), 4.62 (m, 1H), 3.77 (s, 3H), 3.29 (dd, J = 13.9, 5.8 Hz, 1H), 3.22 (dd, J = 13.9, 5.8 Hz, 1H), 1.82 (m, 2H), 1.68 (m, 1H), 1.01 (m, 6H); ¹³**C-NMR** (150 MHz, CDCl₃): δ 172.1, 171.6, 166.0, 156.2, 153.2, 138.2, 135.9, 131.9, 129.4, 128.8, 128.7, 128.7, 128.4, 128.3, 127.4, 121.7, 67.3, 53.7, 53.6, 52.9, 41.3, 38.0, 25.0, 23.0, 21.9; HRMS (EI⁺)

calcd for [C₃₁H₃₅N₂O₇]⁺ 547.2431, found 547.2450.

Preparation of Compound 34

Following General Procedure **B**, to a solution of 5-phenylpentan-1-ol (0.082 g, 0.50 mmol, 1 equiv.) in 5.0 mL of CH₃CN (0.1 M) was added NFSI (0.472 g, 1.5 mmol, 3.0 equiv.) and NaDT (24.0 mg, 2.0 mol0%). The resulting mixture was degassed via 3 x freeze/pump/thaw cycles. The reaction was irradiated with UV-light (~365 nm) for 16 hours. *N*, *N*-Diisopropylethylamine

(0.226 g, 1.75 mmol, 3.5 equiv.) and benzylamine (0.107 g, 1.00 mmol, 2 equiv.) were then added to the reaction mixture and the resulting solution was stirred for an additional 3 hours. The reaction mixture was then diluted with CH_2Cl_2 and washed with water and brine. The organic layer was then dried over MgSO₄, filtered, and concentrated under reduced pressure and the crude reaction product **34** was purified by flash column chromatography (pentanes-EtoAc 95:5) to afford amide **34** (0.050 g, 38%). Spectral data recorded on crude amide **34** were in complete agreement with that previously reported.¹⁶

¹⁶Zhang, G.; Gao, B.; Huang, H. Angew. Chem. Int. Ed. 2015, 54, 7657.

Preparation of Compound 35

Following General Procedure **B**, to a solution of (3,5-dichlorophenyl)methanol (0.089 g, 0.50 mmol, 1 equiv.) in 5.0 mL of CH₃CN (0.1 M) was added NFSI (0.394 g, 1.25 mmol, 2.5 equiv.) and NaDT (24.0 mg, 2.0 mol %). The resulting mixture was degassed via 3 x freeze/pump/thaw cycles. The reaction was irradiated with UV-light (~365 nm) for 16 hours. The formation of the acyl fluoride intermediate was characterized by ¹⁹F-NMR spectroscopy ($\delta = 19$ ppm, CD₃CN). *N*, *N*-Diisopropylethylamine (0.174 mL, 1.00 mmol, 2 equiv.) and benzylamine (0.109 mL, 1.00 mmol, 2 equiv.) were then added to the reaction mixture and the resulting solution was left for 3 hours. The reaction mixture was then diluted with CH₂Cl₂ and washed with water and brine. The organic layer was then dried over MgSO₄, filtered, and concentrated under reduced pressure and the crude reaction product **35** was purified by flash column chromatography (pentanes-EtoAc 95:5) to afford amide **35** (0.068 g, 49%) as a light orange solid.

IR (neat): v = 3310, 1645, 1566, 1542, 1163, 804, 698 cm⁻¹; ¹**H-NMR** (600 MHz, CDCl₃): δ 7.64 (s, 2H), 7.48 (s, 1H), 7.34 (m, 5H), 6.33 (br s, 1H), 4.62 (d, J = 5.5 Hz, 2H); ¹³**C-NMR** (150 MHz, CDCl₃): δ 164.9, 137.6, 137.4, 135.7, 131.6, 129.1, 128.2, 128.1, 125.8, 44.6; HRMS (EI⁺) calcd for [C₁₄H₁₂Cl₂NO]⁺ 280.0290, found 280.0300.

¹H and ¹³C NMR spectra of **12** recorded on 300 MHz spectrometer

¹H, ¹³C, and ¹⁹F-NMR spectra of **13** recorded on a 600 MHz spectrometer

¹H and ¹³C NMR spectra of **13a** recorded on a 600 MHz spectrometer

S14

¹H, ¹³C, and ¹⁹F-NMR spectra of **15** recorded on a 600 MHz spectrometer

¹H and ¹³C NMR spectra of **15a** recorded on a 600 MHz spectrometer

 $^1\text{H},\,^{13}\text{C},\,\text{and}\,\,^{19}\text{F-NMR}$ spectra of 16 recorded on a 600 MHz spectrometer

¹H and ¹³C NMR spectra of **16a** recorded on a 600 MHz spectrometer

^1H , ^{13}C , and ^{19}F NMR spectra of $\boldsymbol{17}$ recorded on a 600 MHz spectrometer

¹H NMR spectra of **18a** recorded on a 500 MHz spectrometer

¹H and ¹³C NMR spectra of **20a** recorded on a 300 MHz spectrometer

S22

¹H and ¹³C NMR spectra of **24a** recorded on a 600 MHz spectrometer

524

¹H and ¹³C NMR spectra of **25a** recorded on a 600 MHz spectrometer

¹H and ¹³C NMR spectra of **26a** recorded on 600 MHz spectrometer

¹H and ¹³C NMR spectra of **27a** recorded on 600 MHz spectrometer

¹H and ¹³C NMR spectra of **28a** recorded on a 600 MHz spectrometer

¹H and ¹³C NMR spectra of **29a** recorded on a 600 MHz spectrometer

¹H and ¹³C NMR spectra of **30a** recorded on a 600 MHz spectrometer

¹⁹F- NMR spectra of **31** recorded on a 600 MHz spectrometer

¹H and ¹³C NMR spectra of **32** recorded on a 600 MHz spectrometer

¹H and ¹³C NMR spectra of **35** recorded on a 600 MHz spectrometer

S33

Stability of Benzoyl Fluoride

*Note: Benzoyl fluoride used here was purchased from Sigma-Aldrich

pH = 4 (blue circles), 7 (red circles), and 9 (green circles)

Benzoyl fluoride: pH = 4-> the final pH was 1.10. ($\Delta pH = 2.90$)

Benzoyl fluoride: $pH = 7 \rightarrow$ the final pH was 1.65. ($\Delta pH = 5.35$)

Benzoyl fluoride: $pH = 9 \rightarrow$ the final pH was 1.55. ($\Delta pH = 7.45$)

Stability of Benzenesulfonyl Fluoride

pH = 4 (blue circles), 7 (red circles), and 9 (green circles)

Benzenesulfonyl fluoride: pH = 4 -> the final pH was 3.53. (ΔpH = 0.47)

Benzenesulfonyl fluoride: pH = 7 -> the final pH was 6.88. (ΔpH = 0.12)

Benzenesulfonyl fluoride: pH = 9 -> the final pH was 7.68. (ΔpH = 1.32)

Stability of benzoyl fluoride and benzenesulfonyl fluoride with and wiithout of cysteine methyl ester at pH = 4