Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Unexpected, Photochemically Induced Activation of the Tetrabutylammonium Cation by Hexachloroplatinate(IV)

Imelda H. Silalahi,^{*a,b*} Navpreet K. Sethi,^{*a*} Marsel Z. Shafikov,^{*a,c*} Victor Chechik,^{*a*} Adrian C. Whitwood^{*a*} and Duncan W. Bruce^{**a*}

^{*a*} Department of Chemistry University of York Heslington YORK YO10 5DD (UK) Tel: (+44) 1904 324085 E-mail: <u>duncan.bruce@york.ac.uk</u>

^b Department of Chemistry University of Tanjungpura Pontianak Kalimantan Barat INDONESIA.

 ^c Laboratory of Organic Materials Institute of Organic Synthesis Ural Federal University Mira 19 Ekaterinburg, 620002 RUSSIA.

Supplementary Information

Experimental

Electron Paramagnetic Resonance Spectroscopy

EPR spectroscopy was performed using a JEOL JES-RE1X-ESR spectrometer equipped with a 100 W Mercury lamps without a filter ($\lambda > 250$ nm). A sample of a solution of the analyte was loaded into a flat, quartz cell. A background spectrum was recorded at room temperature followed by the spectrum of sample at 120 K. The spectra were processed using SpecView software.

Mass Spectrometry

Liquid injection field desorption/ionisation mass spectrometry (LIFDI-MS) analysis was carried out using a Bruker Daltronics microTOF-Agilent series 1200LC spectrometer.

Preparation of Tetrabutylammonium Hexachloroplatinate(IV)

In a round-bottom flask, potassium hexachloroplatinate (1.15 g; 2.37 mmol) was stirred with acetone (15 cm³). While stirring, tetrabutylammonium chloride (1.31 g; 4.73 mmol) was added into the flask. The mixture was stirred overnight to afford an orange solution and a colourless precipitate. The solution was filtered *in vacuo* to remove the precipitate and then the solvent was removed resulting in an orange precipitate. The solid was allowed to dry *in vacuo* in for two of hours to give a crystalline orange solid. Yield: 97% (2.04 g; 2.28 mmol). Anal. calc. for C₃₂H₇₂N₂Cl₆Pt: Calc.: C = 43.1, H = 8.1, N = 3.1%. Found: C = 43.1, H = 8.1, N = 3.0%. ¹H NMR, δ_{H} (400 MHz, d₆-acetone): 0.98 (24 H, t, -CH₃), 1.45 (16 H, m, -CH₂-), 1.80 (16 H, m, -CH₂-), 3.46 (16 H, m, -NCH₂-). ¹⁹⁵Pt NMR, δ_{Pt} (107.5 MHz, d₆-acetone, 298 K): 377.

Reaction of tetrabutylammonium hexachloroplatinate(IV) in dry acetone

Tetrabutylammonium hexachloroplatinate(IV) (202.9 mg; 0.2273 mmol) in dry acetone (40 cm³) was heated under reflux under an atmosphere of nitrogen and ambient light for 48 h. The mixture was concentrated using a rotary evaporator to afford a brown paste which was dissolved in a small amount of acetone and crystallised by addition of diethyl ether to give a pale-yellow precipitate and a supernatant. The precipitate was isolated by decanting of the solution, and it was then dried in air to afford (NBu₄)₂[η^2 -Cl₃Pt(C₄H₆)- η^2 -PtCl₃], as a yellow, crystalline solid. The precipitation was then repeated a few times to obtain greater yields. Yield: 88.21 mg, 0.077 mmol, 68%. Anal. calc. for C₃₆H₇₈N₂Cl₆Pt₂: Calc.: C = 37.9, H = 6.9, N = 2.5%. The CHN analysis was conducted for compounds randomly taken from three batches of precipitation. Found: 1: C = 37.5, H = 6.8, N = 2.3%. 2: C = 38.2, H = 6.9, N = 2.4%. 3: C = 38.0, H = 6.5, N = 2.2%. $\delta_{\rm H}$ (500 MHz, CD₂Cl₂, 295 K): *anti-trans*-butadiene-conformer: 5.56 (2H, m, H_X, H_{X'}), 4.80 (2H, dd, ³J_{HH} = 12.8 Hz, ²J_{HH} = 1.2 Hz, ²J_{PtH} = 60 Hz, H_A, H_{A'}), 4.44 (2H, dd, ³J_{HH} = 7.1 Hz, ²J_{HH} = 1.2 Hz, ²J_{PtH} = 60 Hz, H_A, H_{A'}), 4.44 (2H, m, H_X, H_X), 4.32 (2H, d, ³J_{HH} = 13.2 Hz, H_A, H_{A'}), 4.12 (2H, d, ³J_{HH} = 7.6 Hz, H_M, H_{M'}), *anti-cis*-butadiene-conformer:

conformer: 6.33 (2H, d of t, ${}^{3}J_{HH} = 17.2 \text{ Hz}$, ${}^{3}J_{HH} = 10.4$, ${}^{3}J_{HH} = 10.4\text{Hz}$, H_{X} , $H_{X'}$), 5.80 (2H, d, ${}^{3}J_{HH} = 17.2 \text{ Hz}$, H_{A} , $H_{A'}$), 5.52 (2H, d, ${}^{3}J_{HH} = 10.4 \text{ Hz}$, H_{M} , $H_{M'}$). 195 Pt NMR, δ_{Pt} (107.5 MHz, CD₂Cl₂, 295 K): -2521 (*anti-trans*-butadiene-conformer), -2591 (*syn-trans*-butadiene-conformer).

The four possible conformers of **1**: left-to-right: *anti,trans; syn,trans; anti,cis* and *syn,cis*. Note that the *syn,cis* conformer is not observed (sterically too crowded) and that there is relatively little of the *anti,cis*, which is why it is not readily observed by ¹⁹⁵PT NMR spectroscopy.

Photoreaction of Tetrabutylammonium Hexachloroplatinate(IV)

Tetrabutylammonium hexachloroplatinate(IV) (10.18 mg, 0.01140 mmol) in dry acetone (2.0 cm³) was irradiated with UV light with λ > 305 nm for 18 h; a parallel reaction in three Young's NMR tubes was carried out. The mixture was concentrated *in vacuo* to give a yellowish paste which was solidified by addition of diethyl ether to give a pale-yellow precipitate. The precipitate was isolated by decanting and dried in air to afford (NBu₄)₂[η ²-Cl₃Pt(C₄H₆)- η ²-PtCl₃], I, as a yellow, crystalline solid. Yield: 4.52 mg, 0.004 mmol, 69%. δ _H (500 MHz, CD₂Cl₂, 295 K): *anti-trans*-butadiene-conformer: 5.56 (2H, m, H_X, H_{X'}), 4.80 (2H, dd, ³J_{HH} = 12.8 Hz, ²J_{HH} = 1.2 Hz, ²J_{PtH} = 60 Hz, H_A, H_{A'}), 4.44 (2H, dd, ³J_{HH} = 7.1 Hz, ²J_{PtH} = 1.2 Hz, ²J_{PtH} = 60 Hz, H_A, H_{A'}), 4.44 (2H, dd, ³J_{HH} = 7.1 Hz, ²J_{HH} = 1.2 Hz, ²J_{PtH} = 60 Hz, H_A, H_{A'}), 4.44 (2H, dd, ³J_{HH} = 7.1 Hz, ²J_{HH} = 13.2 Hz, H_A, H_{A'}), 4.12 (2H, d, ³J_{HH} = 7.6 Hz, H_M, H_{M'}), *anti-cis*-butadiene-conformer: 6.33 (2H, d of t, ³J_{HH} = 17.2 Hz, ³J_{HH} = 10.4, ³J_{HH} = 10.4Hz, H_X, H_{X'}), 5.80 (2H, d, ³J_{HH} = 17.2 Hz, H_A, H_{A'}), 5.52 (2H, d, ³J_{HH} = 10.4 Hz, H_M, H_{M'}). ¹⁹⁵Pt NMR, δ _{Pt} (107.5 MHz, CD₂Cl₂, 295 K): - 2521 (*anti-trans*-butadiene-conformer), - 2591 (*syn-trans*-butadiene-conformer).

Figure S1: The ¹H NMR spectrum (500 MHz) of **1** recorded in CD_2Cl_2 at 295 K.

Figure S2: The ¹H NMR spectrum (500 MHz) of 1 recorded in in d₆-acetone at 298 K

Single crystal X-ray diffraction

CCDC Deposition No.	1860540
Empirical formula	$C_{36}H_{78}CI_6N_2Pt_2$
Formula weight	1141.88
Temperature/K	109.9(4)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	13.1677(5)
b/Å	12.8495(6)
<i>c</i> /Å	13.3831(7)
α/°	90
β/°	98.427(4)
γ/°	90
Volume/Å ³	2239.95(18)
Z	2
$ ho_{ m calc}$ /g cm ⁻³	1.693
µ/mm⁻¹	6.622
F(000)	1132.0
Crystal size/mm ³	0.1848 × 0.1316 × 0.0612
Radiation	ΜοΚα (λ = 0.71073)
2 θ range for data collection/°	6.918 to 59.992
Index ranges	-17 ≤ <i>h</i> ≤ 18, -18 ≤ <i>k</i> ≤ 11, -18 ≤ <i>l</i> ≤ 18
Reflections collected	11858
Independent reflections	6514 [<i>R</i> _{int} = 0.0382, <i>R</i> _{sigma} = 0.0619]
Data/restraints/parameters	6514/0/221
Goodness-of-fit on F^2	1.068
Final R indexes [/>=2 σ (I)]	$R_1 = 0.0360, wR_2 = 0.0719$
Final R indexes [all data]	$R_1 = 0.0481$, w $R_2 = 0.0791$
Largest diff. peak/hole / e Å ⁻³	3.52/-2.86

Figure S3 Molecular structure of ${\bf 1}$ using thermal ellipsoid representation.