Supporting Information

π -Conjugated thiolate amplified spectrophotometry nitrite assay with improved sensitivity and accuracy

Lijuan Zhang, Xiaoxia Wu, Zhiqin Yuan* and Chao Lu*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

E-mail: yuanzq@mail.buct.edu.cn (Z. Yuan) E-mail: luchao@mail.buct.edu.cn (C. Lu)

Experimental Section

Chemicals. Sodium nitrite (NaNO₂), sodium nitrate (NaNO₃), sodium dihydrogen phosphate (NaH₂PO₄), sodium sulfate (Na₂SO₄), sodium periodate (NaIO₄), sodium perchlorate (NaClO₄), sodium fluoride (NaF), sodium chloride (NaCl), sodium bromide (NaBr), sodium thiosulfate (Na₂S₂O₃), and sodium acetate (NaAcO) were obtained from Tianjin Fuchen Chemical Reagent Co., Ltd. (Tianjin, China). Sodium hypochlorite (NaClO) were acquired XiLong Scientific. Hydrochloric acid (HCl, 36%, V/V) and Hydrogen peroxide (H₂O₂, 30% wt) were supplied by Beijing Chemical Reagent Company (Beijing, China). Glutathione (GSH) and 4-amino-6-hydroxy-2-mercaptopyrimidine (AHMP) were purchased from Tokyo Chemical Industry. (Tokyo, Japan). 2-Thiobarbituric acid (TBA) was obtained from Alfa Aesar (Heysham, U.K.). Tiopronin (TPN) was supplied form Shanghai Yuanye Biological (Shanghai, China). Thioacetamide was provided from J&k Scientific Ltd. (Beijing, China). All reagents were analytical grade and used without further purification. Deionized water was from

a Millipore water purification system (18.2 MU cm, Milli Q, Millipore, Barnstead, CA, USA).

Characterizations. The UV–vis absorption spectra were collected with a UV–3600 spectrophotometer (Shimadzu, Japan). Fourier-transform infrared (FT–IR) spectra were obtained using a Nicolet 6700 FT–IR spectrometer (Thermo, U.S.A.). The cyclic voltammetry electrochemical measurements were conducted by a CHI660E electrochemical workstation (Shanghai Chenhua Instruments, China). The ESI-MS analyses was performed with a Xevo G2 Q-Tof mass spectrometer (Waters, USA)

UV-vis absorption measurements. A series of sodium nitrite, TBA, GSH, AHMP and TPN stock solutions were prepared for use, the reaction was conducted under acidic conditions (pH = 3.0). Separated TBA, GSH, AHMP, TPN was mixed with sodium nitrite solution and the corresponding absorption spectrum was measured.

Electrospray ionization mass spectrometry (ESI-MS) measurement. Typically, 10 mM TBA was reacted with sodium nitrite and the resulted solution was freezedried. A 5.7 mg of powder in 10 mL of methanol with 100-fold dilution was centrifuged at 1000 r/min for 5 minutes, and the supernatant was taken for mass spectrometry measurement. The mass spectrum of RSNO_{TBA} was performed with a negative mode. The capillary electrospray voltage was 2.2 kV, and the sample cone was 30 V. The solvent system consisted of 25% water (A) and 75% acetonitrile (B) with a flow rate of 100 μ L·min⁻¹.

Cyclic voltammetry measurements. A conventional three-electrode system was used for cyclic voltammetry determination. The reference electrode saturated was Ag/AgCl electrode, platinum wire as the counter electrode and the working electrode was glassy carbon electrode (GCE). The electrolyte was prepared with 0.1 M PBS (pH=7.4). The RSNO modified GCE was prepared by dropping the mixture of

thiolate and NaNO₂ on the surface of electrode, the scanning voltage ranged from -1.0 V to 1.0 V. For RSNO_{GSH}, the scanning voltage ranged from -1.7 V to 1.6 V. While for RSNO_{TPN}, the scanning voltage ranged from -1.9 V to 1.7 V. All the surface of electrode was dried *via* ultrapure N₂ blow, the scan rate was 100 mV/s.

Fig. S1 UV-vis absorption spectra of TBA (1.0 mM, orange line), NaNO₂ (200 μ M, purple line), RSNO_{TBA} (200 μ M, blue line).

Fig. S2 UV-vis absorption spectra of TBA-NaNO₂ solutions under different pH conditions.

Fig. S3 UV-vis absorption spectra of thioacetamide (TAA, 1 mM, blue line) and TAA-NaNO₂ (orange line, NaNO₂: 200 μ M) solution.

Fig. S4 UV-vis absorption spectra of 200 μ M RSNO_{AHMP} (blue line) and RSNO_{TPN} (orange line).

Fig. S5 Time-dependent absorbance at corresponding maximum absorption wavelength of four RSNOs. The concentrations of 200 μ M NaNO₂ and TBA, AHMP, GSH and TPN are 1, 1, 1, and 1 mM, respectively.

Fig. S6 Absorbance of various RSNOs at corresponding maximum absorption wavelengths versus the concentration of nitrite from 0 to 200 μ M. The concentrations of GSH, TPN, TBA and AHMP are 5, 5, 1, and 1 mM, respectively.

Fig. S7 UV-vis absorption spectra of RSNO_{TBA} (A), RSNO_{AHMP} (B), RSNO_{GSH} (C), and RSNO_{TPN} (D) *versus* the concentration of nitrite from 0 to 100 μ M. The concentrations of TBA, AHMP, GSH and TPN are 1, 1, 5, and 5 mM, respectively.

Fig. S8 Normalized UV-vis absorption spectra of $RSNO_{TBA}$, $RSNO_{AHMP}$, $RSNO_{GSH}$, and $RSNO_{TPN}$.

Fig. S9 The absorbance signals of thiol compounds-NaNO₂ solutions for 20 repeated measurements. (A) 5 mM TPN and 20 μ M NaNO₂, (B) 5 mM GSH and 20 μ M NaNO₂, (C) 1 mM AHMP and 20 μ M NaNO₂, and (D) 1 mM TBA and 20 μ M NaNO₂.

Samples	$E_{\rm OX}/V$	E_{HOMO} / eV	E_{Red} /V	E_{LUMO} / eV	E_g / eV	ϵ (cm ⁻¹ ·moL ⁻¹)
RSNO _{TBA}	0.05	-4.76	-0.12	-4.59	0.17	1.8×10^{4}
RSNO _{AHMP}	0.05	-4.76	-0.19	-4.52	0.24	1.3×10^{4}
RSNO _{GSH}	1.36	-6.02	-1.64	-3.08	3.00	9.1×10 ²
RSNO _{TPN}	1.51	-6.22	-1.71	-3.00	3.22	8.2×10^{2}

Table S1. The calculated energy gaps, potentials and molar absorption coefficients of S-nitrosothiol compounds.

Method	Material	Detection limit	Linear range	Ref
Colorimetric detection	μPAD	1µM	10-150µM	1
	GNRs	0.5µM	1-15µM	2
	TMB	1µM	0.5-30µM	3
	AuNPs-rGO	0.1µM	1-20µM	4
	AuNPs	1µM	0-200µM	5
Fluorescence Detection	N-CNDs	1µM	0-1mM	6
	Fe3O4@Rh 6G	0.8µM	1-50µM	7
	Azo-based probe	0.6 μΜ	0.3–3.0 µM	8
Electrochemical detection	ZnP-C ₆₀	1.44µM	2-164µM	9
UV resonance Raman spectra	WWTPs	<14µM	7-3500µM	10

on methods.

References

- 1 B. M. Jayawardane, S. Wei, I. D. McKelvie and S. D. Kolev, *Anal Chem*, 2014, **86**, 7274-7279.
- 2 Z, Chen, Z. Zhang, C. Qu, D. Pan and L. Chen, *Analyst*, 2012, **137**, 5197-5200.
- J. Zhang, C. Yang, C. Chen and X. Yang, *Analyst*, 2013, **138**, 2398-2404.
- 4 B. Amanulla, S. Palanisamy, S. M. Chen, T. W. Chiu, V. Velusamy, J. M. Hall, T. W. Chen and S. K. Ramaraj, *Sci. Rep.*, 2017, **7**,14182.
- 5 Y. Y. Ye, Guo, Y. Yue and Y. Zhang, Anal. Methods, 2015, 7, 4090-4096.
- 6 H. Zhang, S. Kang, G. Wang, Y. Zhang and H. Zhao, *ACS Sens.*, 2016, 1, 875-881.
- 7 Y. Zhang, Z. Su, B. Li, L. Zhang, D. Fan and H. Ma, *ACS Appl. Mater. Interfaces*, 2016, **8**, 12344-12351.
- 8 A. Chatterjee, D. G. Khandare, P. Saini, A. Chattopadhyay, M. S. Majik and M. Banerjee, *RSC Adv.*, 2015, **5**, 31479-31484.
- 9 H. Wu, S. Fan, X. Jin, H. Zhang, H. Chen, Z. Dai and X. Zou, Anal. Chem, 2014, 86, 6285-6290.
- 10 A. Ianoul, T. Coleman and S. A. Asher, Anal. Chem., 2002, 74, 1458-1461.